Sparse change detection in high-dimensional linear regression

Tengyao Wang

London School of Economics and Political Science

Departmental Research Day

Jun 2022

(日) (四) (문) (문) (문) (문)

990

Fengnan Gao Fudan University

• Observations $(x_t, y_t) \in \mathbb{R}^p \times \mathbb{R}$ for $t = 1, \dots, n$ generated from

$$y_t = x_t^\top \beta_t + \epsilon_t,$$

where $\epsilon_t \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$.

• Coefficients β_1, \ldots, β_n piecewise constant with changepoints at z_1, \ldots, z_{ν}

$$\beta_t = \beta^{(r)}$$
 for $z_{r-1} < t \le z_r, 1 \le r \le \nu + 1$.

- **Goal**: estimate the changepoint locations z_1, \ldots, z_{ν} .
- Key challenge: we only assume sparsity of $\beta^{(r)} \beta^{(r-1)}$ but not $\beta^{(r)}$ themselves.

- High dimensional linear regression: one of the most fruitful area of statistical research in the past twenty years (Tibshrani, 1996; Fan and Lv, 2010; Bühlmann and van de Geer, 2011; etc)
- Data heterogeneity in high-dimensional linear models (Städler et al., 2010; Krishnamurthy et al., 2019).

- High dimensional linear regression: one of the most fruitful area of statistical research in the past twenty years (Tibshrani, 1996; Fan and Lv, 2010; Bühlmann and van de Geer, 2011; etc)
- Data heterogeneity in high-dimensional linear models (Städler et al., 2010; Krishnamurthy et al., 2019).
- Changepoint analysis: a useful framework for analysing data with temporal heterogeneity (Page, 1955)
- High-dimensional mean change estimation (Cho and Fryzlewicz, 2015; Jirak, 2015; W. and Samworth, 2018; Enikeeva and Harchaoui, 2019; etc)
- Multivariate change in regression (Bai and Perron, 1998; Fryzlewicz, 2021; etc)
- High-dimensional change in regression (Lee et al., 2015; Leonardi and Bühlmann, 2016; Rinaldo et al., 2021; Wang et al., 2021)

 Many changepoint procedures are constructed from two-sample testing statistics (e.g. CUSUM statistics for change-in-mean problems)

 Many changepoint procedures are constructed from two-sample testing statistics (e.g. CUSUM statistics for change-in-mean problems)

▶ Two samples $(X^{(1)}, Y^{(1)}) \in \mathbb{R}^{n_1 \times p} \times \mathbb{R}^{n_1}$ and $(X^{(2)}, Y^{(2)}) \in \mathbb{R}^{n_2 \times p} \times \mathbb{R}^{n_2}$, generated from the linear models:

$$\begin{cases} Y^{(1)} = X^{(1)}\beta^{(1)} + \epsilon^{(1)} \\ Y^{(2)} = X^{(2)}\beta^{(2)} + \epsilon^{(2)}, \end{cases}$$

where $\epsilon^{(1)} \sim N_{n_1}(0, \sigma^2 I_{n_1})$ and $\epsilon^{(2)} \sim N_{n_2}(0, \sigma^2 I_{n_2})$ are independent. \blacktriangleright Given $(X^{(1)}, Y^{(1)})$ and $(X^{(2)}, Y^{(2)})$, we want to test

$$H_0: \beta^{(1)} = \beta^{(2)} \quad \text{vs} \quad H_1: \|\beta^{(1)} - \beta^{(2)}\|_2 \ge \rho \text{ and } \|\beta^{(1)} - \beta^{(2)}\|_0 \le k.$$

Two sample testing of regression coefficients

- Existing works mostly assume sparsity on both $\beta^{(1)}$ and $\beta^{(2)}$ (e.g. Xia, Cai and Cai, 2018)
- But parameter of interest is really

$$\theta := \frac{\beta^{(1)} - \beta^{(2)}}{2}$$

and $\gamma:=(\beta^{(1)}+\beta^{(2)})/2$ is a possibly dense nuisance parameter.

Two sample testing of regression coefficients

- Existing works mostly assume sparsity on both $\beta^{(1)}$ and $\beta^{(2)}$ (e.g. Xia, Cai and Cai, 2018)
- But parameter of interest is really

$$\theta := \frac{\beta^{(1)} - \beta^{(2)}}{2}$$

and $\gamma:=(\beta^{(1)}+\beta^{(2)})/2$ is a possibly dense nuisance parameter.

- Application: testing whether two networks formulated by Gaussian graphical models are the same.
 - Gene-gene interaction network
 - Foreign exchange network model

Tengyao Wang

Bansal et al. (Sci. Adv. 2019)

Chen et al. (PLOS ONE, 2015)

Complementary sketching

▶ Procedure: Given data $X^{(1)}, X^{(2)}, Y^{(1)}, Y^{(2)}$, set $m := n_1 + n_2 - p$

Construct A₁ ∈ ℝ^{n₁×m} and A₂ ∈ ℝ^{n₂×m} such that (A₁/A₂) has orthonormal columns orthogonal to the column space of (X⁽¹⁾/X⁽²⁾).
Compute

Similar to orthogonal sketching, but sketches the covariate matrix and the response vector in opposite ways in the second block.

Observe that

$$\begin{split} Z &= A_1^\top Y^{(1)} + A_2^\top Y^{(2)} = A_1^\top X^{(1)} \beta^{(1)} + A_2^\top X^{(2)} \beta^{(2)} + A_1 \epsilon^{(1)} + A_2 \epsilon^{(2)} \\ &= A_1^\top X^{(1)} \theta + \underline{A_1^\top} X^{(1)} \overline{\gamma} - A_2^\top X^{(2)} \theta + \underline{A_2^\top} X^{(2)} \overline{\gamma} + A_1 \epsilon^{(1)} + A_2 \epsilon^{(2)} \\ &= W \theta + \xi, \end{split}$$

where $\xi \sim N_m(0, \sigma^2 I_m)$.

We have reduced the two-sample testing problem to a one-sample problem of sample size m without the nuisance parameter.

Observe that

$$\begin{split} Z &= A_1^\top Y^{(1)} + A_2^\top Y^{(2)} = A_1^\top X^{(1)} \beta^{(1)} + A_2^\top X^{(2)} \beta^{(2)} + A_1 \epsilon^{(1)} + A_2 \epsilon^{(2)} \\ &= A_1^\top X^{(1)} \theta + \underline{A_1^\top} X^{(1)} \overline{\gamma} - A_2^\top X^{(2)} \theta + \underline{A_2^\top} X^{(2)} \overline{\gamma} + A_1 \epsilon^{(1)} + A_2 \epsilon^{(2)} \\ &= W \theta + \xi, \end{split}$$

where $\xi \sim N_m(0, \sigma^2 I_m)$.

- ▶ We have reduced the two-sample testing problem to a one-sample problem of sample size *m* without the nuisance parameter.
- \blacktriangleright Let \tilde{W} be W with columns normalised to have unit ℓ_2 norms. If θ is sparse, then the test

$$\psi_{\lambda,\tau} := \mathbb{1}\{\|\mathbf{hard}(\tilde{W}^{\top}Z,\lambda)\|_2^2 \ge \tau\},\$$

with suitably chosen tuning parameters can be shown to be minimax rate optimal (Gao and W., 2021).

Single changepoint estimation

- ► Inspired by the two-sample testing problem, we construct A ∈ D^{n×(n-p)} whose columns span the orthogonal complement of the column space of X.
- For any $t \in [n-1]$, form sketched design matrx

$$W_t := A_{(0,t]}^{\top} X_{(0,t]} - A_{(t,n]}^{\top} X_{(t,n]} = 2A_{(0,t]}^{\top} X_{(0,t]} \in \mathbb{R}^{m \times p}$$

The sketched response is

$$Z := A^{\top}Y = A_{(0,z]}^{\top}(X_{(0,z]}\beta^{(1)} + \epsilon_{(0,z]}) + A_{(z,n]}^{\top}(X_{(z,n]}\beta^{(2)} + \epsilon_{(z,n]})$$
$$= A_{(0,z]}^{\top}X_{(0,z]}(\theta + \gamma) - A_{(z,n]}^{\top}X_{(z,n]}(\theta - \gamma) + \xi = W_{z}\theta + \xi,$$

Reduced to finding t such that W_t forms a 'best' sparse linear approximation of Z.

▶ Let $Q = (Q_1, ..., Q_{n-1})^{\top}$ be defined such that $Q_t := \tilde{W}_t^{\top} Z \propto \operatorname{Corr}(W_t, Z),$ where $\tilde{W}_t := W_t \{ \operatorname{diag}(W_t^{\top} W_t) \}^{-1/2}$. Estimate changepoint by

$$\hat{z}^{\operatorname{corr}} := \underset{t}{\operatorname{argmax}} \|\operatorname{soft}(Q_t, \lambda)\|_2^2.$$

Algorithm 1: Pseudocode for change-point estimation

Input: $X \in \mathbb{R}^{n \times p}, Y \in \mathbb{R}^n$ satisfying $n > p, \lambda \ge 0, \alpha > 0$

- 1 Set $m \leftarrow n p$;
- **2** Form $A \in \mathbb{O}^{n \times m}$ with columns orthogonal to the column space of X;
- **3** Compute $Z \leftarrow A^{\top}Y$;
- 4 Set $W_0 = \mathbf{0}_{m \times p};$
- 5 for $1 \le t \le n 1$ do
- **6** Compute $W_t \leftarrow W_{t-1} + 2a_t x_t^\top$;
- 7 Compute $Q_t = \{ \operatorname{diag}(W_t^\top W_t) \}^{-1/2} W_t^\top Z;$
- **s** Compute $H_t \leftarrow \|\operatorname{soft}(Q_t, \lambda)\|_2$;

Output: $\hat{z} := \arg \max_{\alpha n < t < (1-\alpha)n} H_t.$

• Let $Q = (Q_1, \dots, Q_{n-1})^{\top}$ be defined such that $Q_t := \tilde{W}_t^{\top} Z \propto \operatorname{Corr}(W_t, Z),$ where $\tilde{W}_t := W_t \{ \operatorname{diag}(W_t^{\top} W_t) \}^{-1/2}$. Estimate changepoint by

$$\hat{z}^{\operatorname{corr}} := \operatorname*{argmax}_{t} \|\operatorname{soft}(Q_t, \lambda)\|_2^2.$$

▶ Let $Q = (Q_1, ..., Q_{n-1})^\top$ be defined such that $Q_t := \tilde{W}_t^\top Z \propto \operatorname{Corr}(W_t, Z),$ where $\tilde{W}_t := W_t \{ \operatorname{diag}(W_t^\top W_t) \}^{-1/2}$. Estimate changepoint by

$$\hat{z}^{\operatorname{corr}} := \underset{t}{\operatorname{argmax}} \|\operatorname{soft}(Q_t, \lambda)\|_2^2.$$

• Let $Q = (Q_1, \ldots, Q_{n-1})^{\top}$ be defined such that $Q_t := \tilde{W}_t^{\top} Z \propto \operatorname{Corr}(W_t, Z),$ where $\tilde{W}_t := W_t \{ \operatorname{diag}(W_t^{\top} W_t) \}^{-1/2}.$ Estimate changepoint by $\hat{z}^{\operatorname{corr}} := \operatorname{argmax} \|\operatorname{soft}(Q_t, \lambda)\|_2^2.$

Alternatively, let \hat{v} be the leading left singular vector of **soft** (Q, λ) , estimate

$$\hat{z}^{\text{proj}} := \underset{t}{\operatorname{argmax}} (\hat{v}^{\top} Q_t).$$

• We can also simply run Lasso on (W_t, Z) to find the best fit

$$\hat{z}^{\text{lasso}} := \underset{t}{\operatorname{argmin}} \|Z - W_t \hat{\theta}_t(\lambda)\|_2^2,$$

where $\hat{\theta}_t(\lambda) := \operatorname{argmin}_{\theta} \{ \frac{1}{2m} \| Z - W_t \theta \|_2^2 + \lambda \| \theta \|_1 \}.$

Tengyao Wang

Empirical performances

- Gaussian Orthogonal Ensemble design matrices
- $\theta^{(1)}$ sampled as a Gaussian vector
- ▶ $\theta^{(2)} \theta^{(1)}$ randomly generated *k*-sparse vector with ℓ_2 norm ρ .

Figure: Left: n = 600, p = 200, z = 180; Right: n = 1200, p = 1000, z = 120

Empirical performances

Figure: $n = 600, p = 200, z = 180, k = 14, \rho = 2$

Empirical performances

Figure: $n = 1200, p = 1000, z = 120, k = 31, \rho = 8$

Theoretical analysis

- $\blacktriangleright \quad \tilde{W}_t^\top Z = \{ \operatorname{diag}(W_t^\top W_t) \}^{-1/2} \left(W_t^\top W_z \theta + W_t^\top \xi \right)$
- Key step: show that $W_t^{\dagger}W_z$ is close to $4t(n-z)(n-p)n^{-2}I_p$ in *k*-operator norm uniformly over *t*.
- ► Hence $H_t := \|\mathbf{soft}(\tilde{W}_t^\top Z, \lambda)\|_2$ is close to $\tilde{H}_t := \|(\tilde{W}_t^\top W_z)_{S,S} \theta_S\|_2$, which can be in turn shown to be approximately

$$h_t := \frac{4(n-p)}{n} \bigg\{ \sqrt{\frac{t}{n(n-t)}} (n-z) \mathbb{1}_{\{t \le z\}} + \sqrt{\frac{n-t}{nt}} z \mathbb{1}_{\{t > z\}} \bigg\}.$$

Theoretical analysis

- $\blacktriangleright \quad \tilde{W}_t^\top Z = \{ \operatorname{diag}(W_t^\top W_t) \}^{-1/2} \left(W_t^\top W_z \theta + W_t^\top \xi \right)$
- Key step: show that $W_t^{\dagger}W_z$ is close to $4t(n-z)(n-p)n^{-2}I_p$ in *k*-operator norm uniformly over *t*.
- ► Hence $H_t := \|\mathbf{soft}(\tilde{W}_t^\top Z, \lambda)\|_2$ is close to $\tilde{H}_t := \|(\tilde{W}_t^\top W_z)_{S,S} \theta_S\|_2$, which can be in turn shown to be approximately

$$h_t := \frac{4(n-p)}{n} \bigg\{ \sqrt{\frac{t}{n(n-t)}} (n-z) \mathbb{1}_{\{t \le z\}} + \sqrt{\frac{n-t}{nt}} z \mathbb{1}_{\{t > z\}} \bigg\}.$$

Theoretical analysis

- $\blacktriangleright \quad \tilde{W}_t^\top Z = \{ \operatorname{diag}(W_t^\top W_t) \}^{-1/2} \left(W_t^\top W_z \theta + W_t^\top \xi \right)$
- Key step: show that $W_t^{\dagger}W_z$ is close to $4t(n-z)(n-p)n^{-2}I_p$ in *k*-operator norm uniformly over *t*.
- ► Hence $H_t := \|\mathbf{soft}(\tilde{W}_t^\top Z, \lambda)\|_2$ is close to $\tilde{H}_t := \|(\tilde{W}_t^\top W_z)_{S,S} \theta_S\|_2$, which can be in turn shown to be approximately

$$h_t := \frac{4(n-p)}{n} \bigg\{ \sqrt{\frac{t}{n(n-t)}} (n-z) \mathbb{1}_{\{t \le z\}} + \sqrt{\frac{n-t}{nt}} z \mathbb{1}_{\{t > z\}} \bigg\}.$$

Assumptions

- (A1) Random design: $x_t \sim N_p(0, I_p)$ independently for $t = 1, \ldots, n$
- (A2) Asymptotic regime: n, z, p satisfies p < n and $z/n \rightarrow \tau \in (0, 1)$ and $(n-p)/n \rightarrow \eta \in (0, 1)$ as $n \rightarrow \infty$.

Theorem. Assume Conditions (A1) and (A2). Suppose that $\|\theta\|_2 \le 1$, $k \le p/2$. There exists c, C > 0, depending only on τ, η , such that if $\lambda > c\sigma \log p$, then asymptotically with probability 1, for all but finitely many *n*'s, we have

$$\frac{|\hat{z}^{\text{corr}} - z|}{n} \le \frac{C\lambda\sqrt{k}}{\sqrt{n}\|\theta\|_2}$$

Theorem. Under the same condition as above, There exists c, C > 0, depending only on τ, η , such that if $\lambda > c\sigma \log p$, then asymptotically with probability 1, for all but finitely many n's, we have

$$\sin \angle (\hat{v}^{\text{proj}}, \theta) \le \frac{C\lambda\sqrt{k}}{\sqrt{n}\|\theta\|_2}.$$

Hence, \hat{z}^{proj} satisfies

$$\frac{|\hat{z} - z|}{n} \le \frac{C\lambda^2\sqrt{k}\log p}{\sqrt{n}\|\theta\|_2^2}.$$

Theorem. Under the same condition as above, There exists c, C > 0, depending only on τ, η , such that if $\lambda > c\sigma \log p$, then asymptotically with probability 1, for all but finitely many n's, we have

$$\sin \angle (\hat{v}^{\text{proj}}, \theta) \le \frac{C\lambda\sqrt{k}}{\sqrt{n}\|\theta\|_2}.$$

Hence, a sample-splitting variant of \hat{z}^{proj} satisfies

$$\frac{|\hat{z} - z|}{n} \le \frac{C\lambda\sqrt{k}\log p}{\sqrt{n}\|\theta\|_2}$$

Summary

- It is possible to estimate sparse changes in high-dimensional regression coefficients, even if the coefficients themselves are dense.
- Use complementary sketching to eliminate nuisance parameter.
- Future work
 - Multiple changepoints / non-GOE design
 - Can the rate of convergence be improved?
 - Theory for \hat{z}^{lasso} ?

Summary

- It is possible to estimate sparse changes in high-dimensional regression coefficients, even if the coefficients themselves are dense.
- Use complementary sketching to eliminate nuisance parameter.
- Future work
 - Multiple changepoints / non-GOE design
 - Can the rate of convergence be improved?
 - Theory for \hat{z}^{lasso} ?

Main references:

Gao, F. and Wang, T. (2021) Two-sample testing of high-dimensional linear regression coefficients via complementary sketching. *arXiv preprint*, arxiv:2011.13624.

Gao, F. and Wang, T. (2022) Sparse change detection in high-dimensional linear regression. *In preparation.*

Thank you!

References

- Bai, J. and Perron, P. (1998) Estimating and testing linear models with multiple structural changes. *Econometrica*, 66, 47–78.
- Bühlmann, P. and van de Geer, S. (2011) Statistics for High-dimensional Data: Methods, Theory and Applications. Springer.
- Cho, H. and Fryzlewicz, P. (2015) Multiple changepoint detection for high dimensional time series via sparsified binary segmentation. J. R. Stat. Soc. Ser. B, 77, 475–507.
- Enikeeva, F. and Harchaoui, Z. (2019) High-dimensional change-point detection under sparse alternatives. Ann. Statist., 47, 2051–2079.
- Fan, J. and Lv, J. (2010) A selective overview of variable selection in high dimensional feature space. *Statist. Sinica*, 20, 101–148.
- Fryzlewicz, P. (2021) Narrowest significant pursuit: inference for multiple changepoints in linear models. *arXiv preprint*, arxiv: 2009.05431.
- Krishnamurthy, A., Mazumdar, A., McGregor, A. and Pal, S. (2019) Sample complexity of learning mixture of sparse linear regressions. *Adv. Neur. Inform. Proc. Sys.*, 32.
- Lee, S., Seo, M. H. and Shin, Y. (2016) The lasso for high dimensional regression with a possible change point. J. Roy. Statist. Soc., Ser. B, 78, 193–210.

References

- Leonardi, F. and Bühlmann, P. (2016) Computationally efficient change point detection for high-dimensional regression. arXiv preprint, arXiv:1601.03704.
- Page, E. S. (1955) A test for a change in a parameter occurring at an unknown point. Biometrika, 42, 523-527
- Rinaldo, A., Wang, D., Wen, Q., Willett, R. and Yu, Y. (2021) Localizing changes in high-dimensional regression models. In *International Conference on Artificial Intelligence and Statistics*, 2089-2097).
- ► Städler, N., Bühlmann, P. and van de Geer, S. (2010) ℓ₁-penalization for mixture regression models. *Test*, **19**, 209–256
- Tibshirani, R. (1996) Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc., Ser. B, 58, 267–288.
- Wang, D., Zhao, Z., Lin, K. Z. and Willett, R. (2021) Statistically and computationally efficient change point localization in regression settings. J. Mach. Learn. Res., 22, 1–46.
- Wang, T. and Samworth, R. J. (2018) High-dimensional change point estimation via sparse projection. J. Roy. Statist. Soc., Ser. B, 80, 57–83.
- Xia, Y., Cai, T. and Cai, T. T. (2018) Two-sample tests for high-dimensional linear regression with an application to detecting interactions. *Statist. Sinica*, 28, 63–92.