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Problem setup

I Observations (xt, yt) ∈ Rp × R for t = 1, . . . , n generated from

yt = x>t βt + εt,

where εt
iid∼ N(0, σ2).

I Coe�icients β1, . . . , βn piecewise constant with changepoints at z1, . . . , zν

βt = β(r) for zr−1 < t ≤ zr , 1 ≤ r ≤ ν + 1.

I Goal: estimate the changepoint locations z1, . . . , zν .
I Key challenge: we only assume sparsity of β(r) − β(r−1) but not β(r)

themselves.
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Landscape of relevant literature

I High dimensional linear regression: one of the most fruitful area of
statistical research in the past twenty years (Tibshrani, 1996; Fan and Lv, 2010;
Bühlmann and van de Geer, 2011; etc)

I Data heterogeneity in high-dimensional linear models (Städler et al., 2010;
Krishnamurthy et al., 2019).

I Changepoint analysis: a useful framework for analysing data with
temporal heterogeneity (Page, 1955)

I High-dimensional mean change estimation (Cho and Fryzlewicz, 2015; Jirak,
2015; W. and Samworth, 2018; Enikeeva and Harchaoui, 2019; etc)

I Multivariate change in regression (Bai and Perron, 1998; Fryzlewicz, 2021; etc)

I High-dimensional change in regression (Lee et al., 2015; Leonardi and
Bühlmann, 2016; Rinaldo et al., 2021; Wang et al., 2021)
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Two sample testing of regression coe�icients

I Many changepoint procedures are constructed from two-sample testing
statistics (e.g. CUSUM statistics for change-in-mean problems)

I Two samples (X(1), Y (1)) ∈ Rn1×p × Rn1 and
(X(2), Y (2)) ∈ Rn2×p × Rn2 , generated from the linear models:{

Y (1) = X(1)β(1) + ε(1)

Y (2) = X(2)β(2) + ε(2),

where ε(1) ∼ Nn1
(0, σ2In1

) and ε(2) ∼ Nn2
(0, σ2In2

) are independent.
I Given (X(1), Y (1)) and (X(2), Y (2)), we want to test

H0 : β(1) = β(2) vs H1 : ‖β(1) − β(2)‖2 ≥ ρ and ‖β(1) − β(2)‖0 ≤ k.
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Two sample testing of regression coe�icients

I Existing works mostly assume sparsity on both β(1) and β(2) (e.g. Xia, Cai
and Cai, 2018)

I But parameter of interest is really

θ :=
β(1) − β(2)

2

and γ := (β(1) + β(2))/2 is a possibly dense nuisance parameter.
I Application: testing whether two networks formulated by Gaussian

graphical models are the same.
– Gene-gene interaction network
– Foreign exchange network model
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Complementary sketching

I Procedure: Given data X(1), X(2), Y (1), Y (2), set m := n1 + n2 − p
1. Construct A1 ∈ Rn1×m and A2 ∈ Rn2×m such that

(
A1

A2

)
has

orthonormal columns orthogonal to the column space of
(
X(1)

X(2)

)
.

2. Compute

W :=
(
A>1 −A>2

)(X(1)

X(2)

)
∈ Rm×p,

Z :=
(
A>1 A>2

)(Y (1)

Y (2)

)
∈ Rm.

I Similar to orthogonal sketching, but sketches the covariate matrix and the
response vector in opposite ways in the second block.
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Complementary sketching

I Observe that

Z = A>1 Y
(1) +A>2 Y

(2) = A>1 X
(1)β(1) +A>2 X

(2)β(2) +A1ε
(1) +A2ε

(2)

= A>1 X
(1)θ +�����

A>1 X
(1)γ −A>2 X(2)θ +�����

A>2 X
(2)γ +A1ε

(1) +A2ε
(2)

=Wθ + ξ,

where ξ ∼ Nm(0, σ2Im).
I We have reduced the two-sample testing problem to a one-sample problem

of sample size m without the nuisance parameter.

I Let W̃ be W with columns normalised to have unit `2 norms. If θ is sparse,
then the test

ψλ,τ := 1{‖hard(W̃>Z, λ)‖22 ≥ τ},

with suitably chosen tuning parameters can be shown to be minimax rate
optimal (Gao and W., 2021).
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Single changepoint estimation

I Inspired by the two-sample testing problem, we construct A ∈ On×(n−p)
whose columns span the orthogonal complement of the column space of X .

I For any t ∈ [n− 1], form sketched design matrx

Wt := A>(0,t]X(0,t] −A>(t,n]X(t,n] = 2A>(0,t]X(0,t] ∈ Rm×p

I The sketched response is

Z := A>Y = A>(0,z](X(0,z]β
(1) + ε(0,z]) +A>(z,n](X(z,n]β

(2) + ε(z,n])

= A>(0,z]X(0,z](θ + γ)−A>(z,n]X(z,n](θ − γ) + ξ =Wzθ + ξ,

I Reduced to finding t such that Wt forms a ‘best’ sparse linear
approximation of Z .
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Changepoint algorithms

I Let Q = (Q1, . . . , Qn−1)
> be defined such that

Qt := W̃>t Z ∝ Corr(Wt, Z),

where W̃t :=Wt{diag(W>t Wt)}−1/2. Estimate changepoint by

ẑcorr := argmax
t
‖so�(Qt, λ)‖22.
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ẑcorr := argmax
t
‖so�(Qt, λ)‖22.

Tengyao Wang 10/20



Changepoint algorithms

I Let Q = (Q1, . . . , Qn−1)
> be defined such that

Qt := W̃>t Z ∝ Corr(Wt, Z),

where W̃t :=Wt{diag(W>t Wt)}−1/2. Estimate changepoint by
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Qt := W̃>t Z ∝ Corr(Wt, Z),

where W̃t :=Wt{diag(W>t Wt)}−1/2. Estimate changepoint by

ẑcorr := argmax
t
‖so�(Qt, λ)‖22.

I Alternatively, let v̂ be the leading le� singular vector of so�(Q,λ), estimate

ẑproj := argmax
t

(v̂>Qt).

I We can also simply run Lasso on (Wt, Z) to find the best fit

ẑlasso := argmin
t
‖Z −Wtθ̂t(λ)‖22,

where θ̂t(λ) := argminθ{ 1
2m‖Z −Wtθ‖22 + λ‖θ‖1}.
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Empirical performances

I Gaussian Orthogonal Ensemble design matrices
I θ(1) sampled as a Gaussian vector
I θ(2) − θ(1) randomly generated k-sparse vector with `2 norm ρ.
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Empirical performances
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Theoretical analysis
I W̃>t Z = {diag(W>t Wt)}−1/2

(
W>t Wzθ +W>t ξ

)
I Key step: show that W>t Wz is close to 4t(n− z)(n− p)n−2Ip in
k-operator norm uniformly over t.

I Hence Ht := ‖so�(W̃>t Z, λ)‖2 is close to H̃t := ‖(W̃>t Wz)S,SθS‖2, which
can be in turn shown to be approximately

ht :=
4(n− p)

n

{√
t

n(n− t)
(n− z)1{t≤z} +

√
n− t
nt

z1{t>z}

}
.
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Theoretical guarantees

Assumptions
(A1) Random design: xt ∼ Np(0, Ip) independently for t = 1, . . . , n

(A2) Asymptotic regime: n, z, p satisfies p < n and z/n→ τ ∈ (0, 1) and
(n− p)/n→ η ∈ (0, 1) as n→∞.

Theorem. Assume Conditions (A1) and (A2). Suppose that ‖θ‖2 ≤ 1, k ≤ p/2.
There exists c, C > 0, depending only on τ, η, such that if λ > cσ log p, then
asymptotically with probability 1, for all but finitely many n’s, we have

|ẑcorr − z|
n

≤ Cλ
√
k√

n‖θ‖2
.
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Theoretical analysis

Theorem. Under the same condition as above, There exists c, C > 0,
depending only on τ, η, such that if λ > cσ log p, then asymptotically with
probability 1, for all but finitely many n’s, we have

sin∠(v̂proj, θ) ≤ Cλ
√
k√

n‖θ‖2
.

Hence, ẑproj satisfies
|ẑ − z|
n

≤ Cλ2
√
k log p√

n‖θ‖22
.
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Summary

I It is possible to estimate sparse changes in high-dimensional regression
coe�icients, even if the coe�icients themselves are dense.

I Use complementary sketching to eliminate nuisance parameter.
I Future work

– Multiple changepoints / non-GOE design
– Can the rate of convergence be improved?
– Theory for ẑlasso?

I Main references:

Gao, F. and Wang, T. (2021) Two-sample testing of high-dimensional linear
regression coe�icients via complementary sketching. arXiv preprint,
arxiv:2011.13624.

Gao, F. and Wang, T. (2022) Sparse change detection in high-dimensional
linear regression. In preparation.
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Thank you!
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