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» Observations (z4,y:) € RP x Rfort = 1,...,n generated from
ye =) B+ e,

where ¢; 9 N(0,02).

» Coefficients g1, .. ., B, piecewise constant with changepoints at z1,..., 2,
5t:B(T) forz,_1 <t<z,1<r<v+1l

» Goal: estimate the changepoint locations 21, ..., z,.

> Key challenge: we only assume sparsity of 5(") — 3("=1) but not 3(")
themselves.
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» High dimensional linear regression: one of the most fruitful area of
statistical research in the past twenty years (Tibshrani, 1996; Fan and Lv, 2010;
Bithlmann and van de Geer, 2011; etc)

» Data heterogeneity in high-dimensional linear models (Stadler et al., 2010;
Krishnamurthy et al., 2019).
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Bithlmann and van de Geer, 2011; etc)

» Data heterogeneity in high-dimensional linear models (Stadler et al., 2010;
Krishnamurthy et al., 2019).

» Changepoint analysis: a useful framework for analysing data with
temporal heterogeneity (Page, 1955)

» High-dimensional mean change estimation (Cho and Fryzlewicz, 2015; Jirak,
2015; W. and Samworth, 2018; Enikeeva and Harchaoui, 2019; etc)

» Multivariate change in regression (Bai and Perron, 1998; Fryzlewicz, 2021; etc)

» High-dimensional change in regression (Lee et al., 2015; Leonardi and
Buhlmann, 2016; Rinaldo et al., 2021; Wang et al., 2021)
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» Many changepoint procedures are constructed from two-sample testing
statistics (e.g. CUSUM statistics for change-in-mean problems)
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» Many changepoint procedures are constructed from two-sample testing
statistics (e.g. CUSUM statistics for change-in-mean problems)

> Two samples (X1, Y (1)) € R"1*P x R™ and
(X@),Y?) € R"2XP x R™2, generated from the linear models:

Y — xMa0) 4 (0
{ Y@ = x5 4 (@)

where ) ~ N, (0,021,,,) and €® ~ N,,,(0,0%I,,) are independent.
» Given (XM YD) and (X®)Y(?)), we want to test

Hy : 5(1) — 5(2) vs Hj: Hﬂ(l) _ 5(2)“2 > pand ||5(1) _ 5(2)”0 <k.
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> Existing works mostly assume sparsity on both (1) and 5 (e.g. Xia, Cai
and Cai, 2018)

» But parameter of interest is really

_ B —p®
2

and v := (B 4 3?) /2 is a possibly dense nuisance parameter.
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> Existing works mostly assume sparsity on both (1) and 5 (e.g. Xia, Cai
and Cai, 2018)

» But parameter of interest is really
_ -
2
and v := (B 4 3?) /2 is a possibly dense nuisance parameter.

»> Application: testing whether two networks formulated by Gaussian
graphical models are the same.
- Gene-gene interaction network
- Foreign exchange network model

Bansal et al. (Sci. Adv. 2019) Chen et al. (PLOS ONE, 2015)
Tengyao Wang
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» Procedure: Given data X(l),X(Q), Y(l),Y(Q), setm:=mn;+ne —p
1. Construct A; € R™"1%X™ and A, € R™2*™ such that (ﬁ;) has

orthonormal columns orthogonal to the column space of (§§2)
2. Compute
P m
x@
— T T m
W= (4] —A43) <X(2)> € R™P,
y® "
- T T m
7= (AT A]) (Y@)) eR™.
ny X, A

» Similar to orthogonal sketching, but sketches the covariate matrix and the
response vector in opposite ways in the second block.
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» Observe that

7= ATYW 4 ATy ® = AT xWE0 4 AT X 4 Ay 4 Aye®

= AT XM+ AT — AT XD 4 AT 4 A D 4 4,2

=W0+¢,

where ¢ ~ N,,(0,021,,).

» We have reduced the two-sample testing problem to a one-sample problem
of sample size m without the nuisance parameter.
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» Observe that

Z=ATYW + ATy ® = AT xWBM 4 AT X2 4 A1) 4 4,6
= AT XV 4 AT¥IT AT X0+ AT +
=Wo+¢,

where £ ~ N,,(0,021,,).

» We have reduced the two-sample testing problem to a one-sample problem
of sample size m without the nuisance parameter.

> Let W be W with columns normalised to have unit {9 norms. If @ is sparse,
then the test R
Yrr = 1{||hard(W T Z,\)|3 > 7},

with suitably chosen tuning parameters can be shown to be minimax rate
optimal (Gao and W., 2021).
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» Inspired by the two-sample testing problem, we construct A € Q"*("=P)
whose columns span the orthogonal complement of the column space of X.

» Foranyt € [n — 1], form sketched design matrx
W, .= A(T(M]X(O’t] - A&n]X(t,n] = QAEE),t]X(Oyt] € R™*P
» The sketched response is

7 = ATY = AEB,Z] (X(o7z]ﬁ(1) + 6(072]) + Az—z,n] (X(z,n]ﬂ(z) + 6(z,n])
= Al X020 +7) = AL Xm0 —7) +E= W0+,

(z.m]

» Reduced to finding ¢ such that W, forms a ‘best’ sparse linear
approximation of Z.
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Changepoint algorithms St e

> Let Q = (Q1,...,Qn_1)" be defined such that
Qi :=W," Z « Corr(Wy, Z),
where W, := W;{diag(W," W;)}~1/2. Estimate changepoint by

2Corr

2 = argmaXHSOﬂ(Qt,/\)Hg'
t

Algorithm 1: Pseudocode for change-point estimation
Input: X € R¥P )Y € R" satisfyingn >p, A >0, a >0
Set m < n — p;
Form A € O™ with columns orthogonal to the column space of X;
Compute Z + ATY;
Set Wy = Opxp:
for1<t<n-1do
Compute W + W, + 2az];
Compute @Q; = {diag(W, W,)}~*W, Z;
Compute Hy < |[soft(Q¢, A)||2;

Output: 2 := argmax,, i« (1—ayn H-

[ I N N N
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2Corr
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> Let Q = (Q1,...,Qn_1)" be defined such that
Qi :=W," Z « Corr(Wy, Z),
where W, := W;{diag(W," W;)}~1/2. Estimate changepoint by

2Corr

2 = argmaXHSOﬂ(Qt,/\)H%'
t

> Alternatively, let ¥ be the leading left singular vector of soft(Q, \), estimate
2Pro) = argmax (0 ' Q).
t
» We can also simply run Lasso on (W3, Z) to find the best fit

21&550 = argmin ||Z - Wtét(A)H%7
t

where 0;(\) := argming{5L-(|Z — W,0|13 + \[|0]|1 }.
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Figure: Left: n = 600, p = 200, z = 180; Right: n = 1200, p = 1000, z = 120
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> W, Z = {diag(W, Wy)} ~Y/2(W," W.0 + W,"¢)

> Key step: show that W, W, is close to 4t(n — 2)(n — p)n~=2I, in
k-operator norm uniformly over ¢.

> Hence H; := ||soft(W,' Z,\)|2 is close to H; := ||(W," W.) 5,505 |2, which
can be in turn shown to be approximately

LE { - )l{m}ﬂ/f zn{m}}

statistics
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Assumptions
(A1) Random design: z; ~ N, (0, I,) independently fort =1,...,n

(A2) Asymptotic regime: n, z, p satisfies p < nand z/n — 7 € (0,1) and
(n—p)/n—mne(0,1)asn — oo.

Theorem. Assume Conditions (A1) and (A2). Suppose that [|0]|2 < 1, k < p/2.
There exists ¢, C' > 0, depending only on 7,7, such that if A\ > co log p, then
asymptotically with probability 1, for all but finitely many n’s, we have

corr —Z| - C)\\/E
no = Vnlfz

|2
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Theorem. Under the same condition as above, There exists ¢, C > 0,
depending only on 7,7, such that if A > co log p, then asymptotically with
probability 1, for all but finitely many n’s, we have

CA\/E

sin Z(0P™, 0)
= VAl

Hence, 2P™ satisfies
£ -2 _ CX2Vklogp
n = nlol3
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Theorem. Under the same condition as above, There exists ¢, C > 0,
depending only on 7,7, such that if A\ > co log p, then asymptotically with
probability 1, for all but finitely many n’s, we have

- C\Wk
~ Vol

Hence, a sample-splitting variant of 2P™J satisfies

sin Z(0P™, 0)

|2 -2 _ CM\klogp
<
n V0l
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Summary L§

» [t is possible to estimate sparse changes in high-dimensional regression
coefficients, even if the coefficients themselves are dense.

» Use complementary sketching to eliminate nuisance parameter.
» Future work

— Multiple changepoints / non-GOE design
— Can the rate of convergence be improved?
- Theory for z'ass0?
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