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Single-Stream Sequential Change Detection

Change time: τ

Detection time: A stopping time T .

Performance metric: Detection delay, false alarm, etc.
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Single-Stream Sequential Change Detection (con’d)

Rich literature on this topic!

Shewhart’s control chart (Shewhart, 1931)

CUSUM algorithm (Page, 1954)

Shiryaev procedure (Shiryaev, 1963)

...
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Parallel Sequential Change Detection

Data Xk,t : Data on stream k at time t.

Detection time: Stopping times T = (T1, ...,TK ).

Stochastic control: Intervention on detected streams, which also

changes the information filtration (e.g., deactivate the detected

streams).
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Parallel Sequential Change Detection (Con’d)

Why do we want to study this problem? Can’t we simply apply a

single-stream change detection procedure to each stream individually?

How do we formulate the problem and design methods?

How do we assess their performance?
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Parallel Sequential Change Detection (Con’d)

Chen, Y. and Li, X. (2021). Compound Online Changepoint Detection in

Parallel Data Streams. Statistica Sinica. Accepted.

Chen, Y., Lee, Y-H, and Li, X. (2021). Item Quality Control in Educational

Testing: Change Point Model, Compound Risk, and Sequential Detection.

Journal of Educational and Behavioral Statistics. Accepted.

Lu, Z., Chen, Y. and Li, X. (2022). Optimal Parallel Sequential Change

Detection under Generalized Performance Measures. Submitted to IEEE

Transactions on Signal Processing. Under review.
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Why Parallel Sequential Change Detection?
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Application I: Item Pool Quality Control (CL, 2021, CLL,
2021)

Standardised testing and item pool.

Each item is a data stream.
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Application I: Item Pool Quality Control (con’d)

Change point τk : The time point at which item k is leaked (e.g., by a

test preparation company).

Detection time Tk (stochastic control): Time to remove (review and

revise) item k.
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Application I: Item Pool Quality Control (con’d)

Goals:

Control the proportion of leaked items (false non-discoveries) in the

remaining item pool at any time point.

Avoid making too many false alarms, i.e., make full use of the

pre-change items.

There is a trade-off between the quality of the test and the financial cost

for operating the test. This is a compound decision problem as the

performance metrics are based on all the data streams.
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Application II: Market Basket Analysis

Customers purchase grocery online sequentially (Instacart, Amazon

Fresh, Tesco ...).

Each customer corresponds to a data stream.

We want to detect dramatic changes to customers’ shopping lists and

make interventions (e.g., coupons).

Goal: control and optimise some compound risk functions (to

maximise the profit).
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Other Applications

Detect chip defects in cloud computing.

Multi-channel spectrum sensing for cognitive radios (Chen, Zhang,

and Poor, 2020).
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Why Parallel Sequential Change Detection?

Multi-stream data are everywhere.

Often, we need to make individualised decisions based on compound

risks (which cannot be controlled using single-stream change

detection methods).

Methodologically interesting (compound decision, change detection,

stochastic adaptive control, computation)!
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Problem Formulation
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A General Multi-stream Bayesian Change Point Model
(CL, 2021)

τ = (τ1, · · · , τK ) follows a known prior distribution.

Given τ , Xk,t ’s are independent for different k and t.

Xk,t ∼

{
pk,t if t ≤ τk (pre-change distribution)

qk,t if t > τk (post-change distribution)
,

where the pre- and post-distributions are known. (Still possible with

partial information about these distributions; see CLL, 2021)
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Example: An i.i.d. Model

τ1, · · · , τK
i .i .d .∼ Geo(θ).

Pre-change distribution (density): p.

Post-change distribution (density): q.

This model is a multi-dimensional extension of the classic Bayesian

change model for a single data stream (Shiryaev, 1963).
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Compound Sequential Change Detection Procedure (CL,
2021)

At each time, we decide which streams to deactivate for the next time

point based on information currently available.

This is a compound decision, because whether a stream will be

deactivated or not depends on currently available information from all

the streams.

Once a stream is deactivated, it will not be reactivated and its data

are no longer collected (other types of controls are possible, but we

focus on deactivation here).

This procedure can be described by an index set process, denoted by

St , where St is the set of active streams at time t.
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Compound Sequential Change Detection Procedure (con’d)

Key components:

Ft : Information σ-field at time t.

St+1: The set of active streams at time t + 1, satisfying that St+1 is

Ft measurable, St+1 ⊂ St , and S1 = {1, ...,K}

⇒ Detection time of the kth stream: Tk = sup{t : k ∈ St}.

⇒ Ft+1 = σ(Ft , St+1,Xk,t+1, k ∈ St+1).
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Compound Sequential Change Detection Procedure (con’d)

A toy example with three streams (K = 3).
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Compound Sequential Change Detection Procedure (con’d)

A toy example with three streams (K = 3).
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Compound Performance Metrics (LCL, 2022)

In hypothesis testing, we control Type I error and try to maximise

power.

When designing a parallel change detection procedure, we also

consider two compound performance metrics. At each time point, we

control one metric, and try to optimise the other.

The choice of performance metrics should depend on the application.

In what follows, we give some examples. See LCL (2022) for other

performance metrics.
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Compound Performance Metrics (con’d)

Standardised educational testing:

A test company would like to control the quality of the item pool at

each time point, which may be measured by the false non-discovery

proportion

FNPt =

∑
k∈St+1

1(τk < t)

|St+1 ∨ 1|
=

No. of active post-change streams

No. of active streams

As FNP is not observable, we control the local false non-discovery

rate (LFNR)

LFNRt = E[FNPt |Ft ].
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Compound Performance Metrics (con’d)

Standardised educational testing:

In the meantime, we may want to maximise the incremental run

length (IRL), defined as

IRLt =
∑

k∈St+1

1{τk>t},

which indicates the total number of pre-change streams being used at

each time.

Again, as IRL is not observable, we hope to maximise its posterior

mean, called the incremental average run length (IARL)

IARLt = E[IRLt |Ft ].
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Compound Performance Metrics (con’d)

Standardised educational testing:

Trade-off between IARL and LFNR: More detections ⇒ smaller LFNR

& smaller IARL.

Goal: maximize IARL while controlling LFNR to a prespecified level α

(e.g., α = 0.05) at any time.
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Compound Performance Metrics (con’d)

Spectrum sensing for cognitive radios:

Following the arguments in Chen, Zhang, and Poor (2020), it is of

interest to control the false discovery proportion (FDP):

FDPt =

∑
k∈St\St+1

1{τk≥t}

|St \ St+1| ∨ 1
,

which concerns the quality of the detection set.

Again, we can only control its posterior mean

LFDRt = E[FDPt |Ft ].
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Compound Performance Metrics (con’d)

Spectrum sensing for cognitive radios:

In the meantime, we may want to minimise the incremental detection

delay (IDD)

IDDt =
∑

k∈St+1

1{τk<t},

which indicates the total number of post-change streams being used

at each time.

Again, we need to consider its estimate

IADDt = E[IDDt |Ft ].

30 / 39



Methods and Optimality
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Proposed One-step Update Rule (control LFNR)

Input: α, index set St , and posterior probability of active streams:

Wk,t = P(τk < t|Ft) for k ∈ St .

Sort Wk,t for k ∈ St .

Deactivate streams from the largest Wk,t to the smallest one, until

the average of the remainning ones is no larger than α.

Output: Index set St+1.

Proposition: This one-step update rule guarantees LFNRt ≤ α.
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Proposed One-step Update Rule (control LFDR)

Input: α, index set St , and posterior probability of active streams:

Wk,t = P(τk < t|Ft) for k ∈ St .

Sort Wk,t for k ∈ St .

Deactivate streams from the largest Wk,t to the smallest one, until

the average of the selected ones is no larger than 1− α.

Output: Index set St+1.

Proposition: This one-step update rule guarantees LFDRt ≤ α.
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Wk,t in the i.i.d. Model

Wk,0 = 0 for all k , and

Wk,t+1 =

{
q(Xk,t+1)/p(Xk,t+1)

(1−θ)(1−Wk,t)/(θ+(1−θ)Wk,t)+q(Xk,t+1)/p(Xk,t+1)
if k ∈ St+1

Wk,t if k /∈ St+1

Recall in the i.i.d. model, τ1, ..., τK
i .i .d .∼ Geo(θ), with pre-change

density p and post-change density q.

Calculating Wk,t is almost the same as in the Shiryaev procedure.
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Proposed One-step Update Rule: Local Optimality

Proposition: The one-step update rule for controlling LFNR is locally

optimal with respect to IARL, in the sense that the IARLt based on St+1

is no smaller than that based on any other S ∈ Ft .

Proposition: The one-step update rule for controlling LFDR is locally

optimal with respect to IADD, in the sense that the IADDt based on St+1

is no larger than that based on any other S ∈ Ft .
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Proposed Compound Detection Method: Optimality

Theorem (CL, 2021, LCL, 2022): Under the i.i.d. model, if we keep

running the proposed one-step update rule for controling LFNR (with

threshold α), then this procedure (denoted by T∗) is uniformly optimal

with respect to IARL, in the sense that LFNRt(T∗) ≤ α and for any T
satisfying LFNRt(T) ≤ α for all t, we have

E(IARLt(T)) ≤ E(IARLt(T∗)).

We note that the procedure for controlling LFDR does not have

uniform optimality, due to the lack of certain monotone properties.
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Comparison with CZP (2020)
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FDPt (left) and IDDt (right) averaged over 1000 Monte Carlo

simulations with K = 100.

Goal: control FDR under α = 0.1.
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Extentions

Partial information about the prior, pre- and post-distributions (CLL,

2021)

Other types of controls

Frequentist formulation and methods (currently considering a

knock-off type procedure)

Dependent streams

Multi-stream point process data

...
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Thank you!
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