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Introduction

An earthquake early warning system limits the impact of future earthquakes on
communities living nearby. The system detects an earthquake at its very be-
ginning and rapidly issues alerts to users in its path. The alert outpaces strong
earthquake shaking and may provide critical time to take basic protective actions
such as seeking cover or exiting a building.
A seismic station is a device that records ground motion. In particular Grillo de-
vices record the acceleration of the ground motion. The device uses a similar
(albeit more precise) accelerometer sensor than you would find in consumer elec-
tronics such as smartphones. The device records the ground acceleration in three
components - two horizontal ones and one vertical (x, y, z).

Fig. 1: Device and signal.

As mentioned above, once an earthquake occurs, it generates two kinds of waves
that penetrate the Earth as body waves. Each wave has a characteristic speed
and style of motion.

• P-wave / Primary wave: The primary wave the first seismic wave detected by
seismographs due to high velocity in the rock environment between 5 and 8
km/s. The wave is usually relatively low-amplitude, does not carry much of
the earthquake energy, and thus does not cause a significant damage.

• S-wave / Secondary wave: The secondary wave travels slower than the P-
wave (3 to 5 km/s). However, it carries more energy and causes more dam-
age than the P-wave.

EEW systems need to reliably detect the P-waves as this will allow for faster de-
tections and therefore provide more time for the end users to take action. There
is a number of traditional seismological algorithms that are usually based on rapid
increase of [amplitude of ground motion](https://www.esgsolutions.com/technical-
resources/microseismic-knowledgebase/event-detection-and-triggering). They
are simple and effective, yet, they lack the ability to distinguish between signals
created by earthquakes and other kind of disturbances (slamming doors, passing
trucks..). In recent years, seismologists and data scientist have started to utilize
neural-networks-based algorithms, hoping that those will be able to reduce the
number of false positive detections.

Dataset

A network of about 20 Grillo instruments has been monitoring the southwest
coast of Mexico since 2017. Grillo recorded segments with and without earth-
quake P-waves (a.k.a. signal and noise). And the task will be to train a model
that can distinguish between them.

• Signal: Roughly 1,223 earthquake records from Grillo stations. Each record
comes from a single seismic station, has 3 independent channels (x, y, z)
and is 2000 data samples long. The records are centered at earthquake
P-wave, which starts always at data sample 1,000.

• Noise: Randomly selected noise segments from the data and non-
earthquake disturbances. There are 17,850 noise segments. Noise seg-
ments are also 2,000 data samples long.

Methodology

Fig. 2: Neural Network

The architecture of PhaseNet is modified from U-Net (Ronneberger et al. 2015)
to deal with 1-D time-series data. The mapping to our problem is to localize the
properties of our time-series into three classes: P pick, S pick and noise. The
inputs are three-component seismograms of known earthquakes. The outputs
are probability distributions of P wave, S wave and noise. In our experiments,
the input and output sequences contain 1000 data points for each component
(32 s long, sampled at 31.25 Hz). The P and S arrival times are extracted from
the first time the result value passing through the threshold.

Focal loss is an improved version of cross-entropy which can handle the imbal-
ance of classes. The formula of focal loss is:

FL(pt) = −αt(1− pt)
γlog(pt)

γ can be used to adjust the penalty to the misclassification of hard class. The
higher γ is, the heavier the penality will be. After several experiments, we find
that γ = 3 gives the best performance in this case.

Result

Evaluation Metrics:
F1score = 2 ∗ (Precision ∗Recall)/(Precision +Recall) where
Precision = (TruePositives)/(TruePositives + FalsePositives)
Recall = (TruePositives)/(TruePositives + FalseNegatives)

Noise Earthquake
Noise 1778 2

Earthquake 4 106

F1Score = 0.9383886255924171

Conclusion

We have built a training data set using manually picked P and S arrival times
from the data provided by Grillo. We have built our network based on PhaseNet,
a deep neural network algorithm that uses three component waveform data to
predict the probability distributions of P pick, S pick and noise.
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Haslinger, Dario Jozinović, Alberto Michelini, Joachim Saul, Hugo Soto. (2021).
SeisBench - A Toolbox for Machine Learning in Seismology (v0.1.7). Zenodo.
https://doi.org/10.5281/zenodo.5568813


