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1 Introduction 

Income inequality has been rising in many developed countries since the 1970s and its 

consequences are today the focus of much research (for an overview see e.g. Atkinson et al., 

2011). At the same time, manmade climate change is now recognised as a major threat to 

well-being and sustainable development in the long-run. This paper aims to improve the 

understanding of the interplay between the distribution of income within a country and the 

environmental burden related to household consumption.  

In a first step, we estimate the carbon dioxide (CO2) content of the consumption baskets of a 

sample of households in the United States, covering the period between 1996 and 2009. We 

then estimate Environmental Engel curves (EECs), which represent household carbon at 

different positions in the income distribution. Just like EECs for air pollutants (Levinson and 

O’Brien, 2015), we find EECs for CO2 to be upward-sloping, concave, and shifting downwards 

over time. We then demonstrate the usefulness of both nonparametric and regression-based 

estimates of EECs for further analysis.  

We first use nonparametric EECs to derive suggestive evidence of the contributions of 

technology, income growth and expenditure dynamics to trends in aggregate household 

carbon. We then exploit parametric estimates for EECs for a more systematic decomposition 

of the evolution of average household carbon over time and the distribution of household 

carbon with a given year. We find that income (and even more so total expenditure) is the 

main driver of household carbon both over time and between households within time. 

Meanwhile, other household characteristics appear to play only a minor role in shaping 

household carbon. 

This regression-based decomposition based on quadratic EEC estimates is a useful addition 

to the existing literature on consumption-based household carbon footprints and their 

drivers, which has often relied on more descriptive analyses and single estimates of income 

elasticities (e.g. Weber and Matthews, 2008; Buechs and Schnepf, 2013). We demonstrate 

that a second-order polynomial specification for EECs approximates well the relationship 

between income and household carbon found by higher-order polynomial models and more 

flexible nonparametric estimation techniques. 
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We then consider the consequences of income redistribution for consumption patterns and household 

carbon. Much of the existing research assessing the relationship between the distribution of 

income and the environment has focused on how social groups are differentially affected by 

environmental pressures, adding a layer of environmental inequalities often related to 

economic ones. Growing evidence points to regressive effects of both local environmental 

externalities, such as air pollution (Currie and Neidell, 2005; Holland et al., 2016), as well as 

global ones, such as climate change (Mendelsohn et al., 2006; Hsiang et al., 2017). This paper 

is interested in the inverse of that relationship, asking if and how the distribution of income 

affects aggregate environmental outcomes.  

Based on the observation of concave EECs, we formulate and quantify what we call the 

“equity-pollution dilemma” – namely that positive income redistribution may raise aggregate household 

carbon. To the best of our knowledge, this is the first attempt to quantify this dilemma using 

microdata on household consumption within a single country. It thus builds on the literature 

which resulted from the initial formulation of the dilemma by Scruggs (1998) and proposed 

empirical investigations using cross-country analyses following Heerink et al. (2001). We 

propose a simple method to quantify the “equity-pollution dilemma” which relies on the 

quadratic specification of EECs as well as the dispersion measure known as Gini’s mean 

difference. Assuming (conditional) homogeneity in preferences, we predict that income 

transfers would raise household carbon by 5.1% at the margin and by about 2.3% under 

complete income redistribution in 2009. For hypothetical scenario under which the 

distribution of household incomes in the United States is distributed in a similar fashion to 

that in Sweden, we predict an increase in household carbon of about 1.5%. The estimated 

magnitude of the “equity-pollution dilemma” is larger for CO2 than for two other greenhouse 

gases - methane (CH4) and nitrous oxide (N2O) - which we also analyse. We hope that the 

proposed metric for the “equity-pollution dilemma” will inspire future work assessing the 

relationship between the distribution of income and environmental burden using microdata 

across different countries, time periods and pollutants. 

The rest of this paper is structured as follows. Section 2 reviews the previous literature. 

Section 3 discusses the methodology and data used. Section 4 presents evidence from 

nonparametric EECs, while Section 5 presents quantitative results from regression-based, 

parametric EECs. Section 6 quantifies the “equity-pollution dilemma”. Section 7 concludes. 
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2 Previous literature  

In this paper, we investigate the relationship between the distribution of income, the 

consumption decisions of individual households, and the carbon content of that consumption. 

In doing so, we contribute to two growing literatures. The first literature is the one asking 

how income inequality within a country affects aggregate greenhouse gas emissions (and 

environmental burden more broadly). The second literature is concerned with accounting for 

the carbon footprint of household consumption, assessing its distribution over households, 

and understanding its principal drivers.  

Distributional causes of environmental pressure: 

This paper adds to an emerging literature assessing the potential contribution of economic 

inequality to growing environmental pressures caused by economic activity. The existing 

literature has focused on two channels through which the shape of the income distribution in 

an economy may affect environmental outcomes – through consumer choice or political economy 

dynamics.  

The first channel builds on the observation that the level and composition of aggregate 

consumption result from a combination of consumer preferences and budgets. This 

transmission channel was first proposed by Scruggs (1998) and then formalised by Heerink 

et al. (2001). Essentially, the observation that consumers at different income levels allocate 

varying budget shares to different product categories, leads to the proposition that 

redistribution of income will change the composition of aggregate consumption and in consequence the 

environmental burden linked to it. 

The second transmission channel relies on a political economy perspective. It presupposes 

that environmental policy is the result of differential political power and tastes along the 

income distribution (Boyce, 1994). From that perspective, the distribution of income reflects 

differences in political influence between groups of varying concern for the environment.  

However, existing empirical evidence does not support a systematic relationship between 

inequality and pollution (see survey by Berthie and Elie, 2015). Baek and Gweisah (2013) find 

a positive association between income inequality (measured as Gini index) and per capita CO2 

emissions in the United States for different years between 1967-2008. Meanwhile, Heerink et 

al. (2001) find a negative association between the Gini index and per capita CO2 emissions 
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across 180 countries in the period 1961-2001. For air pollution, Torras and Boyce (1998) find 

a positive association between inequality (Gini) and air pollution levels in a number of cities 

and countries between 1977-1991.  

Results from these studies are rather mixed, and appear to vary with choice of pollution type 

(air, water, waste, etc.), regional scale of analysis, timing and empirical specification. It is 

worth mentioning the inherent limitations to drawing inference about the relationship 

between income inequality and aggregate pollution from such cross-country studies. 

Arguably, both the degree of income inequality and the pollution attributed to a country 

respond to a variety of structural, cultural, economic, and political factors.  

This paper contributes to that literature by relating consumer choice to environmental 

outcomes within one country. It builds on the empirical literature concerned with estimating 

the pollution intensity of household consumption using microdata. 

Consumption-based household carbon accounting: 

Over the past decades, research into the greenhouse gas (GHG) emissions attributable to 

individual countries, regions, sectors, firms and households has been growing rapidly. 

Spurred on by international efforts to mitigate GHG emissions, most countries have by now 

implemented detailed accounting for GHG emissions produced within their territory. More 

recently, consumption-based GHG accounting has grown in popularity (Davis and Caldeira, 

2010). As opposed to territorial or production-based GHG accounting, consumption-based 

GHG accounting attributes the emissions embedded in a good produced in country A but 

consumed in country B to the account of the latter. A key motivation for consumption-based 

emissions accounting is the quantification of so-called “carbon leakage”, describing the carbon 

emissions embedded in trade between producing and consuming countries (see surveys by 

Wiedmann, 2009; Sato, 2014). 

At the micro-scale, a growing literature is aiming to quantify the carbon content of individual 

products (e.g. Tukker and Jansen, 2006) or of the consumption basket of households within a 

country (e.g. Weber and Matthews, 2008). The latter is the approach most relevant to this 

paper, as we are aiming to relate the income and socio-economic characteristics of individual 

households to the carbon content of their consumption.  

Similar to the literature on “carbon-leakage” at the economy level, the literature quantifying 

the greenhouse gas content of individual households’ consumption baskets is motivated by a 



5 
 

consumer responsibility perspective (Druckman et al., 2008; Lenzen, 2008). That literature 

has thus far focused on understanding the drivers of emissions as contained in household 

consumption (Weber and Matthews, 2008; Buechs and Schnepf, 2013) and quantifying the 

“rebound effect” (Thomas and Azevedo, 2013; Chitnis et al., 2014).  

A key finding of that literature is that measures of consumption-based GHG emissions are 

increasing with income. For example, Weber and Matthews (2008) construct measures of 

household carbon footprint (HCF) based on expenditure data from the Consumer 

Expenditure Survey in the United States. They find that income and household expenditure 

are the strongest predictors of the HCF, with high income households generating more than 

10 times the emissions of low income ones. Findings are similar for studies that focus only on 

certain portions of household consumption, such as fossil fuel use (Papathanasopoulou and 

Jackson, 2009) or the energy content of household consumption (Lenzen et al. 2006). Some 

further factors that have been found to predict household emission budgets are household 

size, age, employment status, educational attainment, urban vs. rural location, and the quality 

of housing stock (for a recent survey of the literature see Druckman and Jackson, 2016).  

We contribute to this line of work by analysing in detail the distribution of household carbon 

in the United States. Our main contribution to the literature exploring the drivers of 

household carbon is that we decompose the variation in household carbon into the respective 

contributions of socio-economic characteristics. This regression-based decomposition analysis is 

possible because we rely on the concept of Environmental Engel curves (proposed by 

Levinson and O’Brien, 2015), which is introduced below. This provides a prototype in moving 

beyond descriptive statistics and income elasticity estimates used in the literature so far.  

A related literature has used estimates of consumption-based household carbon footprints and 

especially its association with household income to derive estimates of the global distribution 

of greenhouse gas emissions. Policy implications derived include the allocation of global 

carbon reduction targets to nations according to the principle of “common but differentiated 

responsibilities” (Chakravarty et al., 2009) and highlight the disproportionate responsibility 

on the part of the rich independent of nationality (Chancel and Piketty, 2015). 

Another insight emerging from this literature is that household carbon is not a linear function 

of income, but that households tend to increase budget shares of less carbon intensive goods 

as they become richer (e.g. Buechs and Schnepf, 2013; Chitnis et al., 2014). This finding has 

important implications for the likely welfare effects of environmental policy such as pollution 
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taxes. It is often argued that carbon taxes will be regressive by disproportionally affecting 

poorer households who will be harder hit from price increases to carbon-intensive necessities 

such as heating fuel (e.g. Pearce, 1991; Grainger and Kolstad, 2010). Similarly, knowing the 

carbon content of certain types of consumption baskets can help inform the feasibility of 

emissions targets given current technologies. For example, Druckman and Jackson (2010) 

estimate minimal GHG emissions requirements based on “minimum income standard” 

budgets needed to provide a “decent life”. 

The exact shape of the relationship between income and household carbon is still debated in 

the literature. Early contributions hypothesised an inverted U-shaped relationship between 

household income and the pollution intensity of consumption (Kahn, 1998; Heerink et al., 

2001). More recent empirical evidence shows that the pollution burden per unit of 

expenditure is indeed decreasing in income, suggesting concavity if not an inverted U-shape 

(e.g. Liu et al., 2013; Buechs and Schnepf, 2013). In the literature on consumption-based CO2 

emissions, this observation is usually summarised by an expenditure elasticity of CO2 below 

1, with most estimates between 0.8-1.0 (Chakravarty et al., 2009). In this paper, we will go 

beyond a single estimate of income elasticity and demonstrate the usefulness of estimating 

Environmental Engel curves – which describe more fully the carbon content of demand 

schedules as they are related to income.  

This approach explicitly allows for income elasticities of demand to differ at various income 

levels in line with recent evidence on energy services which constitute an important portion 

of household carbon budget. Fouquet (2014) estimates long-run income elasticities for energy 

services (domestic heating, lighting, passenger transport) and finds income elasticities which 

are rising at lower levels of incomes up to a certain point and subsequently tend towards zero. 

Similar trends can be observed in our data when assessing expenditure shares of energy 

services at different points of the income distribution (Figure A.4 in the Appendix). It is 

apparent that energy services in aggregate represent a slightly growing budget share in total 

expenditures at low levels of household income and only exhibit diminishing budget shares 

at household incomes above about USD 40k. The composition of expenditures on energy 

services reveals further interesting patterns (Figure A.5). While electricity can clearly be 

described as a necessity (shrinking expenditure shares all along the income distribution), 

gasoline appears to be a luxury good at incomes below USD 50k and only exhibits clearly 

diminishing budget shares at incomes above USD 100k. Our point estimates of concave 

Environmental Engel curves are consistent with such “saturation effects”.  
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Environmental Engel curves: 

We use parametric estimates of Environmental Engel curves (EECs) for decomposition 

analyses and to construct a measure for the degree to which income redistribution may affect 

aggregate emissions embedded in consumption.  

I doing so, we follow Levinson and O'Brien (2015), who construct EECs describing the 

relationship between income and air pollutants embodied in the consumption of households 

in the United States. They focus on PM10, but find similar results for VOC, NOx, SO2 and CO. 

EECs are useful visualisations of the income-pollution relationship. Levinson and O’Brien 

(2015) find EECs for air pollutants to be upward sloping and concave.  

A key contribution of this paper is that we estimate parametric EECs for CO2 emissions embedded 

in the consumption of households in the United States between 1996 and 2009. Similar to Levinson 

and O’Brien (2015), we also find the carbon EECs to be upward sloping and concave. 

Parametric estimation of EECs as proposed by Levinson and O’Brien (2015) opens up a range 

of avenues for more theoretical considerations based on empirical estimates from 

consumption microdata. In this paper, we use estimates of EECs to generate insights into the 

relationship between the distribution of income and aggregation consumption-based carbon 

emissions. We demonstrate that simple parametric EECs that include a quadratic term for 

income (i.e. second-degree polynomial) match well the relationship estimated using more 

flexible nonparametric methods. One advantage of the parametric (quadratic) specification is 

that it makes possible the decomposition of household carbon inequality by contributing 

factors, decomposing the evolution of average household carbon over time, and quantifying 

the potential trade-off between income redistribution and emissions reduction. Our results 

yield systematic evidence of income being a main driver of household carbon, both over time 

and between households within time. 
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The “equity-pollution dilemma”: 

Much empirical work remains to discover shapes of EECs for different types of pollutants, in 

different economic contexts and across time. As we demonstrate below, EECs change over 

time with the composition of consumption and production technologies. Analytically, the 

concavity of EECs may have important consequences for redistributive considerations. As 

discussed above, it has been a long-standing argument that mitigation policies may be 

regressive by disproportionally raising prices for carbon-intensive necessities with income 

elasticities below 1 (Pearce, 1991; Grainger and Kolstad, 2010; Gough, 2013). We focus on 

the flip-side of this, which we call the “equity-pollution dilemma”: 

Given the higher pollution intensity of consumption per unit of expenditure by poorer households, 

progressive redistribution may result in higher aggregate pollution from consumption. 

Based on the constructed EECs for household carbon, we assess whether or not the “equity-

pollution dilemma” is likely to hold and what might be its magnitude. We use the derived 

EECs to illustrate under which assumptions an “equity-pollution dilemma” may arise. We 

propose a method to quantify the “equity-pollution” dilemma based on parametric EECs using 

consumption microdata for households within one country. We hope that this adds to the 

literature concerned with the inequality-pollution relationship, which often relies on single 

income elasticity estimates and cross-country data (Scruggs, 1998; Heerink et al., 2001). 

It is noteworthy here that concavity of EECs which pass through the origin implies an income 

elasticity below 1. However, we believe that the analysis throughout this paper demonstrates 

the usefulness of estimating the shape of EECs in more detail, rather than focusing on a single 

estimate of income elasticity. 

We thus see three major contributions of this paper. In a first instance, we generate estimates 

of consumption-based household carbon for the United States between 1996 and 2009 in the 

form of Environmental Engel curves. These estimates are useful tools for descriptive 

analyses, such as separating the contributions to changes in emission over time from changes 

in technologies, savings rates, and the composition of consumption. Secondly, we demonstrate 

how parametric estimates of EECs can be used for regression-based decomposition of 

household carbon over time and within time. Thirdly, we rely on estimates of quadratic EECs 

to generate a simple formula for the quantification of the “equity-pollution dilemma” under 

(conditionally) homogenous preferences. 
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3 Data and methodology 

We construct Environmental Engel curves (EECs) for carbon dioxide (CO2) contained in the 

consumption of households in the United States. We focus on households in the United States, 

because it has some of the highest consumption-based CO2 per household (e.g. Chancel and 

Piketty, 2015). At the same time, detailed data are available on the income and consumption 

patterns of households. We estimate the CO2 attributable to the consumption of all energy, 

fuels, goods and services by households at different positions in the income distribution. The 

focus of this exercise is thus on total emissions contained in household consumption. This 

includes direct emissions from the consumption of fossil fuel based energy (e.g. heating, 

electricity, transportation fuels) as well as indirect or “embedded” emissions from the 

production of goods and services consumed.  

We then combine information on yearly expenditures of households on different consumption 

items (in dollars) with estimates of the carbon intensity of these different goods and services 

(kg of CO2 per dollar) to construct EECs following the methodology proposed by Levinson 

and O’Brien (2015). Our emissions accounting methodology is based on Environmentally-

Extended Input-Output Analysis as is standard in the literature on consumption-based 

greenhouse gas emission accounting (Wiedmann, 2009). 

Data: 

Information on household income, consumption expenditures and socio-demographic 

characteristics comes from the United States Consumer Expenditure Survey (CEX). The 

Bureau of Labor Statistics provides anonymised public use micro-data from 1996. We make 

use of the interview portion of the CEX, containing information on survey responses by 

“consumer units” (CU). In what follows, we will refer to “consumer units” as households. Our 

main source of information is the collection of “monthly expenditures” files (MTBI), which 

contain information on a household’s expenditures (and incomes) split into over 800 

categories assigned universal classification codes (UCC). We combine these with income and 

socio-demographic characteristics contained in the “consumer unit characteristics and 

income” files (FMLI). To allocate emissions intensities to consumption categories, 

information from the World Input-Output Tables (WIOD) is used. WIOD contains 

information on 35 production sectors in 40 countries. Notably, WIOD publishes 

“Environmental Accounts”, which include information on emissions and gross output per 

sector. We use these to allocate to each sector a direct emissions intensity (CO2 per $ output). 
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Estimation of carbon content of consumption: 

We use the input-output portion of WIOD to attribute to each sector a total emissions intensity, 

taking into account the full chain of intermediate inputs from other sectors ad infinitum. This 

is done, following the procedure proposed by Leontief (1970) assuming a linear relationship 

between the sector outputs and the required inputs (i.e. linear production function and 

constant returns to scale). The total emissions intensity (kg of CO2 per USD output) of a sector 

is what we refer to below as production technology. 

The CEX consumption expenditures are then each allocated to one WIOD production sector. 

It is in this step, where a number of judgements by the researcher are necessary. We follow 

where possible the matching procedure used by Levinson and O’Brien (2015) to link UCC to 

IO codes used in the input-output tables of the Bureau of Economic Analysis1. Appendix A.1 

contains a detailed description of the procedure including the assumptions necessary to arrive 

at a complete matching of expenditure categories to production sectors2. Table A.1 lists the 

34 WIOD sectors and estimated emissions intensities for the years 1996 and 2009.  

Multiplying the consumption expenditures of a household with the matched total emissions 

intensity yields a rough estimate of the CO2 embedded in the yearly consumption of that 

household, which we shall call estimated household carbon / CO2.  

Direct emission factors for high-carbon goods: 

To improve the precision of our estimates, we allocate emissions intensities to certain high-

carbon consumption categories directly. We do so for expenditures on home electricity, 

heating oil, natural gas, gasoline for vehicles (incl. Diesel and motor oil), and air travel. Data 

on end consumer prices for electricity, heating oil, natural gas, and gasoline are provided by 

the U.S. Energy Information Administration (2017). Emissions factors for gasoline, heating 

oil, natural gas, and kerosene are those used by the U.S. Environmental Protection Agency 

in guidelines for the Greenhouse Gas Inventory (EPA, 2009). The emissions intensity of 

residential electricity is taken from the EPA’s Emissions & Generation Resource Integrated 

Database (EPA, 2017). An overview of the resulting emission factors used is given in 

Appendix Table A.2. 

                                                
1 We are grateful to Arik Levinson and James O’Brien for kindly sharing their matching from UCC categories to IO codes used in their 
forthcoming paper and for answering our questions regarding their methodology. As there are many more UCC categories than IO sectors, 
the matching procedure applied by Levinson and O’Brien (2015) relies on a number of subjective judgements, which they outline in an online 
appendix to their forthcoming paper. 
2 Matching of CEX UCC codes to WIOD sectors to be provided as online appendix for eventual publication. 
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We believe that this methodology significantly improves the precision of our estimates of 

household carbon embedded in consumption. The implementation of direct emission factors 

for these consumption categories increases aggregate household carbon by about 25% (e.g. 

from 25.0t on average with only WIOD factors to 31.0t with added direct emission factors in 

2009). 

Limitations and refinements: 

Input-output based accounting for consumption-based CO2 emissions is by now a common 

methodology. The major advantage of the approach is that, in theory, it allows for a 

comprehensive account of emissions related to all types of expenditures by a household. A 

key weakness of this method is that it cannot account for systematic differences in 

price/quality of goods consumed. In our methodology, $5 spent on a premium organic loaf of 

bread will be estimated to have five times the CO2 content than $1 spent on a more mass-

market industrial loaf. Assuming that the consumption of goods from the same category but 

with higher price-per-CO2 ratio is generally increasing with income, we may thus 

underestimate the concavity of EECs. 

Furthermore, some input-output based emissions accounting assumes a closed economy and 

ignores international trade, assuming instead in the calculation of emissions intensities that 

the value chain of all goods is entirely based within the United States. This might introduce 

a bias in final estimates of consumption-based CO2 emissions, especially if the content of 

traded inputs into a sector is large. This is likely true for certain sectors, as the literature on 

embedded carbon in trade has highlighted (surveyed in Sato, 2014). For example, Weber and 

Matthews (2008) estimate that approximately 30% of CO2 emissions from US household 

consumption occurred outside the US. This can matter for our analysis especially if we 

suspect that households at different income levels might consume goods with different import 

shares. To overcome this limitation, we rely on the multi-region input-output (MRIO) tables 

included in WIOD to explicitly account for both a global supply chain and trade in final goods. 

Global supply chains:   Estimates of carbon intensities of consumption by US 

consumers are derived accounting for the global nature of production supply chains. This can 

be problematic if certain goods rely on a higher portion of intermediate goods from countries 

where those sectors are relatively more (or less) emissions intensive than in the United States. 

We resolve this issue by expanding the input-output analysis described above is applied to 

the 34 WIOD sectors in 41 countries (including the United States and “rest of the world”). 
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This results in estimates of the emissions intensities of the 34 WIOD sectors in the United 

States, but taking into account intermediate inputs from 1394 (41x34) WIOD sectors around 

the world. The procedure is described in more detail in Appendix A.1 

Trade in final goods:   In addition to the global nature of supply chains (i.e. trade in 

intermediate goods), misguided estimates may arise when a certain share of final goods 

consumed by US households is directly imported from other countries. We exploit 

information contained in WIOD on “final consumption expenditure by private households” 

to take into account the share of final demand by US consumers per WIOD sector that is 

demanded from countries outside of the United States. The inclusion of global supply chains 

raises average estimates of household emissions by about 7.4% in 2009 as compared to the 

closed economy assumption (from 31.0t to 33.3t), while the consideration of trade in final 

goods adds another 1.8% (from 33.3t to 33.9t). However, these changes have slightly different 

effects at different points of the income distribution, with a higher proportional effect for 

higher income households as shown in Figure A.1 in the Appendix. 

Other greenhouse gases:  Finally, other greenhouse gases, such as methane (CH4) and 

nitrous oxide (N20), are usually emitted alongside CO2, but in much smaller quantities. 

Excluding these gases may introduce a bias in the analysis if their relationship with income 

and consumption systematically differs from CO2 for certain types of consumption (e.g. food). 

We thus complement the methodology to include emissions of CH4 and N2O, information on 

which is also contained in WIOD Environmental Accounts. Finally, we generate an overall 

measure of greenhouse gas emissions by converting CH4 and N2O into CO2 equivalents 

(CO2e) based on their respective global warming potential. On average, this raises estimates 

of household greenhouse footprint by about 42% in 2009, this time with a slightly higher 

increase for low-income households. Further detail on the methodology can be found in 

Appendix A.1. 

Notwithstanding remaining limitations of the methodology, we believe that this approach 

yields a useful first estimate of household carbon. 
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Final sample: 

We supplement data on expenditures and estimated CO2 with further information on 

household income, composition and socio-economic characteristics taken from the FMLI 

interview files of CEX. Households are surveyed in five consecutive quarter-yearly interview 

rounds. There are thus different waves of households starting the survey procedure in every 

quarter of every year. To generate yearly cross-sections, we assign households to the year in 

which their 2nd interview took place, independent of the specific date of the interview. To 

obtain the most representative mapping from household income to expenditures to emissions, 

we limit our sample to those observations for which a complete record from five interviews is 

available. We further limit our sample to those households classified by CEX as “complete 

income reporters”3. Our final sample then consists of 51,265 households, surveyed between 

1996 and 2009, that completed 5 quarterly interviews, and for which both expenditures and 

reported incomes are available for 12 months preceding the fifth interview. Only households 

with a positive reported annual after-tax income are included to avoid distortion from those 

households declaring financial losses. Due to lacking information at the upper tail of the 

income distribution, we limit the sample to households with after-tax income below USD 

400k (real 2009). Table 1 provides summary statistics of select key variables in the final 

sample. 

Table 1: Summary Statistics 
 

  (1) (2) (3) (4) (5) (6) 
 N mean sd min max Gini (2009) 
        
Income before tax (k$) 51,265 54.88 50.73 0.00100 510.1 0.45 
Income after tax (k$) 51,265 51.86 47.09 0.00100 389.0 0.44 
Expenditure (k$) 51,265 42.14 35.98 2.439 1,411 0.33 
HH CO2 (kg, closed) 51,265 34,371 18,992 515.8 435,572 0.28 
HH CO2 (kg, open) 51,265 36,915 20,919 627.7 479,490 0.28 
HH CO2 (kg, open+trade) 51,265 37,574 21,545 656.3 517,434 0.29 
HH CH4 (kg, open+trade) 51,265 320.5 182.8 5.284 6,206 0.29 
HH N2O (kg, open+trade) 51,265 11.59 6.252 0.0890 105.9 0.28 
HH GHG (kg CO2e, open+trade) 51,265 51,927 29,039 915.5 759,985 0.28 
Age (HH head) 51,265 51.63 16.85 15 94  
Family size 51,265 2.586 1.496 1 14  
Population weight 51,265 15,882 5,940 460.4 81,398  
Year 51,265 2,003 4.109 1,996 2,009  
       

Notes: Estimates for household emissions contained in consumption expenditure according to methodology described. All other 
variables from the US Consumer Expenditure Survey.  

  

                                                
3 The CEX data contains imputed values for incomes of those not considered to be “complete reporters” from 2004 onwards. To ensure 
comparability, we limit our sample to “complete reporters” throughout. 
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4 Descriptive Environmental Engel curves 

Following the methodology proposed by Levinson and O’Brien (2015), we construct both 

parametric and nonparametric estimates for the Environmental Engel curves (EECs) for 

consumption-based carbon dioxide emissions. The advantage of the nonparametric approach 

is that it does not impose any functional structure on EECs, and thus is a natural starting 

point for descriptive analysis. 

Figure 1 presents nonparametric estimates of the EECs. It represents the estimated CO2 

contained in the yearly consumption expenditures of households at different positions in the 

income distribution. Households are divided into income deciles, for which average after-tax 

incomes and CO2 are calculated. The CO2 content of consumption reported here is that based 

on calculations considering a global supply chain and including direct imports of final goods 

(“open+trade”). A breakdown of household carbon in 2009 by major consumption categories 

and information on other greenhouse gases can be found in Appendix Figure A.1. To avoid 

confusion with the more involved nonparametric smoothing techniques applied below, we 

shall call these “descriptive” EECs. 

Figure 1: Descriptive Environmental Engel curve – Household CO2  

 

Notes: Decile averages of household income after tax (2009 USD) and estimated CO2-content of consumption (current 
technology). Household weights as provided by CEX sample. Households with negative reported after-tax income are 
excluded. 
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We display descriptive EECs for the years 1996, 2000, 2005, and 2009.  Figure 1 visually 

suggests the following characteristics of consumption-based carbon: 

1) EECs are increasing: The average households higher up in the income distribution are 

responsible for significantly more CO2 contained in their consumption. For example, 

in 1996 we estimate a carbon content of 21t for the yearly consumption of the average 

household in the bottom decile, while the number for the top decile is over 70t. 

2) EECs are concave: Households with higher income have on average a less carbon-

intensive consumption mix, i.e. the carbon intensity of the average dollar spent is 

decreasing with income. 

3) EECs shift down over time: The average carbon-content of consumption decreases with 

time across the income distribution. For example, the average CO2 embedded in the 

consumption of the top income decile was reduced from 70t in 1996 to ca. 56t in 2009. 

Two effects might contribute to this shift: 

a. Composition effect: Consumers are shifting to a less carbon-intensive mix  

b. Technology effect: Carbon intensity (kg/USD) is decreasing in most 

industries  

These observations are in line with those made by Levinson and O’Brien (2015) about EECs 

for air pollutants. Moreover, our estimates for consumption-based household carbon are 

broadly in line with previous estimates. For example, Weber and Matthews (2008) estimate 

an average pollution intensity of aggregate consumption of 0.7 kg CO2/$ in the US in 2004. 

Our aggregate average in that year is 0.82 kg CO2/$ (0.68 kg CO2/$ when using only WIOD-

based emission factors). 

The role of income growth, technology, and consumption composition: 

Descriptive EECs make possible a range of insights. Following Levinson and O’Brien (2015), 

we will here decompose the aggregate CO2 embedded in US household consumption into 

three effects: income growth and changes in income distribution (shifts along the EECs), 

changes in expenditure levels per unit of income, and composition/technology effects (shifts 

of the EECs). We note that, had technologies not improved, the consumption of the average 

household would be responsible for significantly more CO2 than at current technologies. 

Figure 2 shows exactly that. It compares the actual CO2 content of the consumption of the 

average household (at current technologies) to hypothetical estimates assuming constant 

1996/2009 technologies (i.e. carbon-intensities, in kg per $ of final demand). For example, 
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the average household carbon of 2009 consumption levels would have been linked to 57.9t of 

CO2 if technology had not improved since 1996 (instead of 33.9t at current technology). 

However, improvements in technology have outweighed these dynamics, and average 

household carbon at current technology has decreased from 37.8t in 1996 to 33.9t in 2009. 

Figure 2: Technology improvement 

 
Notes: Averages of estimated CO2-content of consumption (current technology, constant 1996, and constant 2009 
technology). Household weights as provided in CEX sample. Households with negative reported after-tax income and 
income above USD 400k excluded. 

 
 

This perspective only highlights the changes in the technology dimension and cannot account 

for income growth and changes in the composition of expenditures. EECs are a useful tool to 

disentangle these dynamics. Figure 3 compares different representations of the EECs for the 

years 1996, 2000, 2005, and 2009. The top left panel plots the EECs based on current 

technologies and real household income (2009 dollars). It is equivalent to Figure 1 discussed 

above. In the top right panel, we repeat the decile-based estimation of EECs relative to 

household income. However, here we hold the technology constant at 1996 levels. This 

comparison makes apparent that had technology not changed (in the sense of significant 

reductions in carbon-content per dollar output in most WIOD sectors), EECs would have 

shifted upwards. Clearly, without significant reductions in the emissions intensity of 

production, current consumption of US households would be responsible for significantly 

higher levels of CO2 across the income distribution.  
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Figure 2 also illustrates that, when in this paper we refer to a change in the emissions 

intensity of goods as “technology”, this includes price variations for example in the price of 

oil. For example, the observation that emissions would have been higher in 2008 at 2009 

emission factors (blue line above dark grey line in 2008), is driven by the strong decline in oil 

prices between 2008 and 2009, which resulted in an increase of emission factors for gasoline, 

heating fuel and natural gas (this is not observed when using WIOD factors only). More 

broadly, in the case of fossil fuel combustion, changes in technology, i.e. variation in direct 

emissions intensities (kg of CO2 per USD of output), are largely driven by changes to retail 

prices rather than gains in combustive efficiency. 

Figure 3: Descriptive Engel curve variations – Technology and savings 

 
Notes: Decile averages of household income after tax (current USD and constant 2009 USD), household consumption 
expenditure (2009 USD), and estimated CO2-content of consumption (current technology and constant 1996 technology). 
Household weights as provided in CEX sample. Households with reported after-tax income below USD 10k excluded. 

 

This increase in the CO2 content of consumption can have two explanations: (a) households 

with the same nominal income spend more on carbon-intensive goods (according to 1996 

technology), and (b) households at a given income level spend more on aggregate. Indeed, 

when comparing aggregate dollar consumption expenditures to aggregate dollar after-tax 

incomes (bottom left panel), it becomes apparent that nominal spending4 is higher for 

                                                
4 It is important here to mention that throughout this paper we refer to as expenditures/spending only those expenditures that we have 
linked to WIOD sectors and thus to a carbon intensity. Significant portions of consumer spending that may be left out are for example the 
acquisition of housing via mortgages or debt-financed purchases of vehicles. 
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households with the same nominal income in 2009 than it was in 1996. However, even when 

accounting for this difference in aggregate spending (or savings rates), there appears to be a 

compositional effect. In the bottom right panel, we plot EECs relative to nominal aggregate 

consumption expenditures. It is apparent that, even for the same level of aggregate 

expenditures (and assuming the same emissions intensities), households consumed more 

carbon-intensive mix of goods in 2009 than in 1996. 

The above analysis has shown that different representations of EECs can provide useful 

evidence on structural changes over time in consumption and its carbon content. A key 

insight is that there has been a significant downward trend the emissions intensity of 

consumption - what we refer to as technology. Keeping technology constant, income (and 

expenditure) growth appears to be a main driver of household carbon over time. Furthermore, 

we observe a compositional shift in the emissions intensity of expenditure (holding 

technology constant). While visual inspection of difference versions of descriptive EECs is 

clearly a useful first step of analysis, it is limited in its potential to disentangle the relative 

importance of these trends.  

Below, we will investigate these suggested insights further using systematic decomposition 

analysis relying regression-based estimates of EECs. 
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5 Parametric Environmental Engel curves 

Above, we showed that descriptive (or nonparametric) EECs are useful tools for comparison 

of consumer behaviour and its environmental burden between income groups and over time. 

Of course, the consumption pattern of a given household will not only depend on the income 

available (as an approximation of the budget set), but also on the needs, attitudes and habits 

of the household members (preferences). It is likely that households at different positions of 

the income distribution will also differ with respect to other characteristics related to 

consumer preferences. Obvious examples of household characteristics that vary with income 

and may influence consumption plans are household size, education, location (e.g. local 

weather, infrastructure, and culture), and many more (e.g. Buechs and Schnepf, 2013). To 

account for some of this heterogeneity, we turn to parametric estimation of EECs based on a 

linear regression model: 

𝑦"# = 𝛽&#𝑚"# + 𝛽)#𝑚"#
) + 𝒙𝒊𝒕′𝜹𝒕 + 𝜀"# (1) 

For each yearly cross-section of CEX data, we run a linear regression using estimates of the 

consumption-based CO2 emissions 𝑦"# of household 𝑖 living in year 𝑡 as the dependent 

variable. Independent variables include after-tax household income 𝑚"# (real 2009 USD), its 

square, and a vector of household characteristics 𝒙𝒊𝒕. We should note that this approach does 

not presuppose a model of causal relationships, but is simply a tool to elucidate partial linear 

associations between the variables of interest. The advantage of using a linear regression 

model will become apparent in subsequent analyses presented below, which will make 

possible the decomposition of changes in household carbon into contributing factors such as 

income and expenditure growth, the decomposition of inequality of household carbon, and 

the quantification of the “equity-pollution dilemma” based on a quadratic term for income. 

 

Quadratic vs. nonparametric fit: 

The inclusion of a term for squared income in a linear regression model is a standard ad hoc 

procedure when nonlinear relationships with income are suspected. However, to account for 

the possibility of a more complex relationship between income and household carbon, we 

compare the fit of our quadratic specification with a semiparametric one. We control for the 

same set of covariates in a linear fashion and then fit a nonparametric Gaussian kernel 

weighted local polynomial to describe the relationship between after tax income and 
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household carbon5. Results of these two approaches are presented in Figure 4. The left panel 

presents the fitted values of the quadratic specification (Figure 4a) and 95% confidence 

intervals (relying on Huber-White heteroscedasticity-robust standard errors). The right 

panel (Figure 4b) compares the quadratic model with the nonparametric fit. 

 
Figure 4: Environmental Engel curves – CO2 – 2009 

Figure 4a: Quadratic fit Figure 4b: Nonparametric fit 

  
Note: Blue = fitted values of quadratic model (holding other covariates 
constant at mean);Grey = 95% confidence intervals 

Note: Green = fitted values of semiparametric model & 95% 
confidence intervals; Blue = fitted values of quadratic model 

 
 
To test the appropriateness of a quadratic specification in income (polynomial of degree 2), 

we implement a test for equivalence between a parametric (polynomial) and nonparametric 

models as proposed by Hardle and Mammen (1993). Table 2 represents the results for the 

2009 sample and different degrees of polynomial fit. The null hypothesis each time is that the 

polynomial adjustment of degree n is appropriate. We are thus looking for the lowest degree 

of polynomial for which we clearly fail to reject the null hypothesis. As can be seen from Table 

2, this is the case for the quadratic model. 

 
Table 2: Goodness of fit – Nonparametric vs. polynomial 

 Polynomial degree tested (0) (1) (2) (3) (4) 

 None Linear Quadratic Cubic Quartic 

   
    

T test (standardised) 26.395*** 1.911* 0.792 0.770 0.596 
[p value] [0.00] [0.09] [0.73] [0.84] [0.97] 
      
Notes: Hardle and Mammen (1993) test for goodness of fit of polynomial adjustment; different polynomial degrees by 
column; 2009 data.  
*** p<0.01, ** p<0.05, * p<0.1. 

                                                
5 The semiparametric specification includes the following linear covariates: family size, family size (squared), age of HH head, age 
(squared), marital status, education, race, region. Estimates are derived using the Stata module SEMIPAR, which estimates Robinson’s 
(1988) double residual estimator.  
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This is confirmed visually by Figure 5, which compares the change in model fit when moving 

to higher-order polynomials. It is visible how the quadratic model (red) diverges significantly 

from the predictions of the linear model. However, higher-order polynomials, which include 

a cubic and quartic term, do not seem to deviate significantly from the fit of the quadratic 

specification. 

 
Figure 5: Engel curves – Quadratic vs. higher-order polynomial (2009)  

 
Notes: Fitted values of multiple linear regression models including polynomial terms (of orders 1 through 4) for income after 
tax. Covariates are family size, family size (squared), age of HH head, age (squared), marital status, education, race, region. 
Dotted lines mark 95% confidence intervals using heteroscedasticity robust standard errors. 

 

We interpret results presented in Table 2 and Figures 4 and 5 as evidence that the quadratic 

specification used throughout this section is an adequate approximation capturing a large 

portion of the relationship between after tax income and household carbon after controlling 

for covariates. We now turn to estimation of this quadratic model and applications making 

use of parametric EECs. 
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Parametric (quadratic) Environmental Engel curves:  

Table 3 presents parameter estimates from the model specified in (1) for survey years 1996 

and 2009. In line with the nonparametric representation of Engel curves, the results support 

EECs for consumption-based CO2 which are upward sloping (𝛽&# > 0) and concave (𝛽)# < 0).  

While household characteristics other than income appear to be associated with household 

carbon, the signs and magnitudes of the income coefficient estimates remain similar when 

controlling for these characteristics (Columns 2 and 4 respectively). This is important, 

because it indicates that differences in the composition and carbon intensity of consumption 

between households with different incomes are not primarily due to structural differences 

between these households (e.g. education levels). With regards to a potential “equity-

pollution dilemma”, this would indicate that an income transfer from a richer to a poorer 

household might add to aggregate CO2 emissions even when holding constant the households’ 

other characteristics.  

We will show below that estimates of the coefficient for quadratic income 𝛽)# are useful to 

characterise the magnitude of the “equity-pollution dilemma”. Inclusion of socio-demographic 

controls thus significantly reduces the estimated magnitude of the dilemma. Of course, when 

assessing the impact of policies targeting inequality in the long-run, such as through 

education policy, the nonparametric EECs might provide a more appropriate vision, as in the 

long-run household incomes and other characteristics (education, size, environmental 

awareness, etc.) are largely co-determined. 
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Table 3: Parametric estimates of quadratic EECs (1996 / 2009) 
 

 1996 2009 
  (1) (2) (3) (4) 
 OLS (income) OLS (full) OLS (income) OLS (full) 
          
Income (k USD, after tax) 597.537*** 397.392*** 333.674*** 223.187*** 

 (30.6475) (33.8508) (12.5338) (13.3885) 
Income squared (k USD, after tax) -1.264*** -0.566** -0.538*** -0.258*** 

 (0.2389) (0.2478) (0.0571) (0.0571) 
Family size  7,224.712***  6,045.746*** 

  (721.2440)  (640.5012) 
Family size squared  -531.372***  -390.455*** 

  (96.7207)  (89.3228) 
Age of household head  882.973***  602.852*** 

  (83.5928)  (68.3003) 
Age squared  -7.216***  -4.566*** 

  (0.7774)  (0.6224) 
Married (binary)  3,017.720***  3,498.022*** 

  (727.3970)  (516.9155) 
Race (Black)  -4,538.612***  -2,222.663*** 

  (833.7596)  (625.6325) 
Race (Native American)  -4,061.459***  -3,850.197 

  (1,517.4194)  (2,381.0824) 
Race (Asian / Pacific)  -6,459.371***  -3,523.863*** 

  (1,242.5257)  (1,202.1452) 
Race (Pacific Islander)    -5,189.483** 

    (2,595.3759) 
Race (Multi-race)    3,073.647 

    (2,920.3731) 
Education (below high school)  1,543.111**  1,527.981** 

  (758.2393)  (595.5659) 
Education (high school)  3,874.106***  3,552.079*** 

  (804.1852)  (612.2637) 
Education (some college/vocational)  4,583.578***  3,130.905*** 

  (979.1615)  (743.7333) 
Education (college degree or higher)  3,360.628**  3,048.080*** 

  (1,425.7927)  (1,113.4889) 
Region (Midwest)  -147.868  -2,074.284*** 

  (792.3300)  (631.2095) 

Region (South)  1,582.209**  -499.459 
  (800.7617)  (604.0257) 

Region (West)  -1,986.629**  -2,938.677*** 
  (846.8349)  (682.1159) 

     
     

Constant 18,110.522*** -17,674.053*** 17,360.021*** -10,358.121*** 
 (686.5682) (2,350.5535) (446.1919) (2,047.4550) 
     

Observations 3,069 3,069 4,407 4,378 
R-squared 0.450 0.552 0.402 0.506 
Notes: Estimates from linear regression. Household weights as provided in CEX sample. Households with reported 
after-tax income below USD 10k excluded. Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1. 
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The role of income growth, expenditure, and consumption composition: 

Above, we have discussed the evidence (Figure 3) based on nonparametric EECs which 

suggests that increased carbon-content of household consumption between 1996 and 2009 

was due to increases in income, but also due to changes in expenditure per unit of income and 

the composition of consumption. We will now quantify these effects using Oaxaca-Blinder 

decomposition, which was initially suggested to decompose wage differentials between 

population groups (Oaxaca, 1973; Blinder, 1973). 

 

Table 4: Movement along parametric EECs - CO2 (1996 vs. 2009) 
 

 Change due to movement along EECs 
 (1) (2) 

Income after tax 4.9*  
Income squared -1.0*  
   
Expenditure  7.7* 
Expenditure squared  -0.8* 
   
Family size -0.1 0.0 
Family size squared 0.1 0.0 
   
Age 1.0* 0.8* 
Age squared -0.7* -0.6* 
   
Married 0.0 0.0 
   
Race dummies 0.0 0.0 
   
Education dummies 0.1* 0.0 
   
Regional dummies -0.1* -0.1* 
   
    
Total change due to income  
(movement along EECs) 

3.9  

   
Total change due to expenditure 
(movement along EECs) 

 6.9 

   
Total change due to other 
demographics 

0.4 0.2 

   
Unexplained difference (shift in EECs) 7.0 4.4 
   
Notes: Estimates based on Oaxaca-Blinder decomposition. Movement along EECs in column 1 is calculated 
as coefficient estimates from regression model (Table 1, column 2) multiplied by difference by 
corresponding changes in variable levels. Column 2 is constructed in parallel fashion but replacing after-tax 
income with aggregate consumption expenditure in the regression and decomposition. CO2 content is 
estimates based on method described in Section 3, using CEX and WIOD data. Weights as provided by 
CEX survey. * regression coefficient significant at p<0.05. 

 
 

  



25 
 

The consumption-based CO2 budget of the average household at constant 2009 technology 

increased by 11.3t between 1996 and 2009 (from 22.6t to 33.9t). Table 4 displays results of 

an Oaxaca-Blinder decomposition, which relies on coefficient estimates from the regression-

based estimation of EECs. Essentially, the changes in levels of the outcome variable (here 

household CO2) are divided into (i) changes in levels of explanatory variables when assuming 

constant regression coefficients, (ii) changes in regression coefficients holding variable levels 

constant, and (iii) an interaction thereof. For more details about Oaxaca-Blinder 

decomposition, the reader is referred to Appendix A.2 and the summary in Fortin et al. (2011). 

 

Table 4 Column 1 shows that changes in (i) income after tax, essentially movement along 

EECs, can account for about 3.9t (4.9 - 1.0) of the 11.3t overall change in household carbon 

between 1996 and 2009 (at constant 2009 technology). Changes in demographic 

characteristics contribute very little (0.4t of combined effects) to aggregate change. 

Meanwhile, effects (ii) and (iii), essentially shifts in the EECs, account for 7.0t of the 

difference. Column 2 makes clear that a significant portion of the unexplained shift in EECs 

is due to changes in expenditure levels at a given income. When replacing after-tax income 

with aggregate consumption expenditures (in the linear regression model and the 

decomposition), movement along the EECs accounts for 6.9t of the overall 11.3t change in 

household carbon.  

 

In sum, changes in aggregate expenditure levels, which represent the combination of income 

growth and higher expenditure at given income, account for roughly 55% (6.9t out of 11.3t) 

of the total increase of average household CO2 holding technology constant at 2009 levels. 

Meanwhile, shifts of EECs, which represent a change in the composition of consumption at a 

given expenditure level, account for about 35% (3.9t out of 11.3t) of the change.  

 

As we have shown in Figure 2, improvements in technology have outweighed these dynamics, 

and average household carbon at current technology has decreased from 37.8t in 1996 to 

33.9t in 2009. 
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Decomposing carbon inequality: 

Figure 6: Lorenz curves – Income and household carbon (2009)  

 
Notes: Cumulative population share and cumulative values of after-tax income (current USD), estimated household 
carbon contained in consumption (kg) and predicted values based on linear regression model with income and its square 
as independent variables. Household weights as provided by CEX sample. Households with reported after-tax income 
below USD 10k excluded. 

Estimates of the carbon content of household consumption allow us to characterise the 

distribution of CO2 in the population. A useful visual representation of distributions is given 

by the (generalised) Lorenz curve, plotting cumulative population shares against cumulative 

values of the variable of interest. In Figure 6, we present such Lorenz curves for after-tax 

incomes in 2009 and the estimated CO2 content of household consumption. A few interesting 

insights are immediately suggested by visual inspection of Figure 6. Firstly, incomes were 

more unevenly distributed than consumption-based CO2 in 2009 (Gini of 0.44 and 0.29 

respectively). Secondly, it suggests that income inequality is an important driver of CO2 

inequality. This can be seen when comparing the CO2 levels predicted (blue line) based on a 

linear regression of CO2 on income and its square (Table 3, Column 3) with the estimated 

CO2 levels based on expenditures (orange line). Figure 6 suggests that the distribution of 

income alone can reproduce a large portion of the inequality in household carbon (Gini of 0.22 

and 0.29 respectively).  

However, it is important to note that such visual inspection is merely suggestive, ignoring 

individual heterogeneity and associations with other relevant variables. In particular, the 

ordering of households in the income and CO2 distributions may not be identical.  
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A more systematic method of quantifying the contribution of different variables to the 

dispersion of household CO2 is again based on the coefficient estimates from Table 3. We 

follow the regression-based approach suggested by Fields (2003) and building on factor 

decomposition initiated by Shorrocks (1982). A brief description of this method can be found 

in Appendix A.3. 

Results of the inequality decomposition are presented in Table 5. They confirm that income 

appears to be the key determinant in the distribution of household carbon as suggested by 

upward-sloping EECs. Depending on model specification, after-tax income accounts for about 

31-40% of the dispersion of CO2 in 2009. Interestingly, the weight of income in explaining 

household carbon dispersion appears to be decreasing over time (from 34-45% in 1996 to 31-

40% in 2009). Family size is the second most important factor out of those included, 

accounting for about 13% and 12% in 1996 and 2009 respectively. Table 4 also suggests that 

there is a significant portion of the dispersion in CO2, which is not accounted for by income 

or other variables. Residual dispersion is 45% and 49% in 1996 and 2009 respectively. This 

suggests that a significant role for household heterogeneity in preferences or for additional 

demographic characteristics not included here. 

Table 5: Inequality decomposition – Household CO2 (1996 / 2009) 
 

  (1) (2) (3) (4) 

 
1996 

(income) 
1996  
(full) 

2009 
(income) 

2009 
(full) 

      
     
Income after tax 0.642 0.427 0.606 0.407 
Income (squared) -0.192 -0.0861 -0.204 -0.0984 
Famiy size  0.215  0.207 
Family size (squared)  -0.0889  -0.0773 
Age  -0.0902  -0.0597 
Age (squared)  0.112  0.0686 
Married  0.0327  0.0407 
Race (sum)  0.012  0.004 
Education (sum)  0.018  0.012 
Region (sum)  0.001  0.002 
     
Residual 0.550 0.448 0.598 0.494 
Observations 3,069 3,069 4,407 4,378 
     
     
Total contribution of 
income 

45% 34% 40% 31% 

Total contribution of 
other demographics 

NA 21% NA 20% 

Unexplained (residual) 55% 45% 60% 49% 
     
Notes: Inequality decomposition based on coefficient estimates from linear regression models (Table 2). 
Calculations made using Stata module INEQRBD by Fiorio and Jenkins (2007). Household weights as provided 
in CEX sample. Households with reported after-tax income below USD 10k excluded. 
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6 The “equity-pollution dilemma” 

We have demonstrated that Environmental Engel curves (EECs) are a useful tool in the 

analysis of household carbon, its’ drivers and its’ distribution over households. EECs for 

greenhouse gases from household consumption are clearly upward-sloping and concave. 

Assuming conditional heterogeneity of preferences, this concavity implies what we call the 

“equity-pollution dilemma” – progressive redistribution of income may increase the emissions content 

of aggregate consumption. While this dilemma has been acknowledged (Scruggs, 1998; Heerink 

et al., 2001), it has yet to be quantified using microdata. We propose a method to do so below.  

Quantifying the “equity-pollution dilemma” with parametric (quadratic) Engel curves: 

We have demonstrated above that a linear specification of EECs that includes a quadratic 

term (second-degree polynomial) approximates well the relationship between (after tax) 

income and household carbon while allowing for additive covariates. This quadratic 

specification yields a simple formula for the “equity-pollution dilemma”. We continue to 

assume that households have homogenous preferences, i.e. that households move in parallel 

to the EECs when their incomes change (at least conditional on other linear associations 

included in the model). The marginal change in consumption-based CO2 of household i when 

her income changes is then:  

𝜕𝑦"
𝜕𝑚"

= 𝛽& + 2𝛽)𝑚" (2) 

A marginal transfer from household j to household i has the following effect on total CO2: 

𝜕𝑦"
𝜕𝑚"

−
𝜕𝑦8
𝜕𝑚8

= −2𝛽)(𝑚8 − 𝑚") (3) 

This leaves us with a useful result to quantify the “equity-pollution dilemma”:  

The expected change in aggregate CO2, when choosing at random two households from the population, 

and re-distributing a small amount of income from the richer to the poorer, can be expressed as a 

function of the coefficient estimate 𝛽) and Gini’s mean difference6 𝛹 (GMD), giving 

𝐸"8
𝜕𝑦"
𝜕𝑚"

−
𝜕𝑦8
𝜕𝑚8

𝑚8 > 𝑚" = −2𝛽)𝐸"8 𝑚8 − 𝑚" 𝑚8 > 𝑚" = −2𝛽)Ψ 𝐹 𝑚  

where	Ψ 𝐹 𝑚 = 𝑦 − 𝑧 	𝑑𝐹 𝑦 	𝑑𝐹(𝑧) 

(4) 

                                                
6 The GMD is equivalent to the “average self-distance” proposed by Koszegi and Rabin (2007) in their analysis of reference-dependent 
risk preferences. 



29 
 

In this simple quadratic approximation of EECs, and under the assumption of homogenous 

preferences (conditional on included covariates, household carbon moves in parallel to 

estimated EEC), the expected effect of a small progressive redistribution of income is thus 

negatively proportional to 𝛽) as well as the dispersion measure Ψ. 7 The more dispersed the 

distribution of incomes and the more negative is 𝛽), the larger the “equity-pollution dilemma”. 

For example, in our sample of US households in the year 2009, Ψ = 55.3 (in k USD) and 

𝛽) = −0.26 give an estimated increase of about 28.5 kg of household CO2 for a marginal 

redistribution of 1000 USD from a higher income to a lower income household (both drawn at 

random). That constitutes about 5% of the carbon related to 1000 USD of income on average 

(514 kg). 

Table 6: The “equity-pollution dilemma” – Comparison of pollutants (2009) 
 

  (1) (2) (3) (4) 
 CO2 CO2e CH4 N2O 
          
Income (k USD, after tax) 223.187*** 304.581*** 1.996*** 0.045*** 

 (13.3885) (18.3258) (0.1285) (0.0040) 
Income squared (k USD, after 
tax) -0.258*** -0.336*** -0.002*** -0.000*** 

 (0.0571) (0.0785) (0.0006) (0.0000) 

     
Observations 4,378 4,378 4,378 4,378 
R-squared 0.506 0.525 0.506 0.476 
HH characteristics YES YES YES YES 
     

Implied “equity-pollution dilemma” 
     

Avg. emissions per income 
(kg per k USD) 563.3 789.9 5.186 0.169 
     
−2𝛽)Ψ 28.55 37.23 0.214 0.0047 
     
Marginal effect of 
redistribution +5.1% +4.8% +4.2% +2.8% 
Effect of full redistribution +2.3% +2.1% +1.8% +1.3% 
     
Notes: Estimates from linear regression. Household weights as provided in CEX sample. Households with negative reported 
after-tax income and income above USD 400k excluded. Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1. 

 

 

 

                                                
7 The discrete version of GMD can be defined as Ψ = &

G(GH&)
𝑚" − 𝑚8 	G

8I&
G
"I& for	𝑖 ≠ 𝑗. 
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Table 6 lists regression coefficient estimates and the implied magnitudes of the “equity-

pollution dilemma” when comparing the embedded emissions of different greenhouse gases 

in 2009. Column 1 reproduces the estimates of Table 3 as well as the calculation described 

above. Columns 2-4 list estimates for totals greenhouse gases (CO2e), methane (CH4), and 

nitrous oxide (N2O) respectively. For each of these pollutants, we do estimate concave EECs 

and thus a positive “equity-pollution dilemma”. However, this dilemma seems to be the largest 

for CO2, with estimates of the rise in pollution from a marginal redistribution at 4.2% and 

2.8% for CH4 and N2O respectively. 

 

Full redistribution: 

Regression-based EECs also allow for the calculation of the change in predicted household 

carbon if all households had the same income equal to the mean: 

The difference between the expected mean of household carbon under “full equality” and the current 

mean level at a given income distribution is given by: 

𝛽) 𝑚) −
1
𝑁 (𝑚"))

G

"I&

	 

In the case of our sample, average household carbon in 2009 is predicted to increase by 0.8t 

from 33.9t estimated currently to about 34.7t under full income equality, a rise of 2.3%. The 

respective increases in emissions when moving to full equality are 1.8% for CH4 and 1.3% for 

N2O.  

The above quantification makes clear that estimates of the magnitude of the “equity-pollution 

dilemma” are sensitive to estimates of 𝛽). For example, without including socio-demographic 

covariates (Table 3 Column 3), we estimated a much larger absolute 𝛽) (0.54 instead of 0.26) 

and hence would have significantly overestimated the dilemma. 
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Hypothetical income distribution – Sweden: 

Finally, we estimate the predicted change in average household carbon when moving from 

the 2009 distribution of household incomes in the United States to the income distribution of 

Sweden in the same year. To do so, we obtain decile average household incomes in 2009 

(disposable income including capital income, equalised) as provided by Statistics Sweden 

(SCB, 2017). We then scale decile average incomes in the United States so that they match 

the decile shares in total income of the Swedish distribution. We rescale incomes to keep 

constant the aggregate mean income in the United States to avoid scale effects. Figure 7a 

compares these hypothetical average decile incomes (red) with the actual average household 

incomes by decile as observed in our sample for 2009 (green). 

We then estimate the change in predicted household carbon when moving from the actual 

average income per decile to the hypothetical value emulating the Swedish income 

distribution. The effect of this change is predicted based on the coefficient estimates from our 

preferred specification (Table 3 Column 4). We predict that average household carbon would 

have been 0.5t higher under the Swedish income distribution, corresponding to an increase 

of about 1.5% relative to average household carbon of 33.9t in 2009. Figure 7b illustrates how 

that predicted increase in average household carbon is distributed over income deciles. 

 

Figure 7: Hypothetical income distribution – Sweden – 2009 
Figure 7a: Comparison – Household incomes Figure 7b: Predicted change in HH carbon 

  
Note: Green = Average household income after as observed in analysis 
sample; Green = Average household income after scaling of US 
distribution to mirror decile shares of Swedish distribution of 
disposable household income. Both by income deciles, 2009 data. 

Note: Predicted difference between average household CO2 by income 
decile between hypothetical distribution emulating Sweden and actual 
distribution in the United States. Calculations based on estimates 
reported in Table 3, Column 4. 2009 data. 
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Assumptions and limitations: 

The methodology proposed above to quantify the “equity-pollution dilemma” is based on 

three critical assumptions. Firstly, we assume throughout that we have arrived at unbiased 

estimates of the carbon content of household consumption baskets along the income 

distribution. Limitations to input-output based carbon accounting have been discussed above. 

One important remaining concern is the assumption of constant emissions intensity per dollar 

expenditure along the income distribution. As discussed above, price/quality heterogeneity 

of products thus likely results in estimates of EECs that are more convex than true EECs, 

resulting in underestimation of 𝛽) and consequently the “equity-pollution dilemma”. 

Secondly, we assume throughout that the linear model specified in equation (1) is adequate. 

We have shown above that a second-degree polynomial specification approximates well the 

relationship between income and household carbon as shown by more flexible nonparametric 

models. Relatedly, we assume homogeneity of household preferences conditional on income 

and the set of household characteristics included in (1) as covariates. 

We thus assume that households will respond to a change in their income by moving in 

parallel to the estimated EECs8. This implies that there is no variable omitted from our 

specification of EECs that influences both incomes and consumption preferences at the same 

time. While this assumption is necessary for our analysis, there is some evidence to the 

contrary.  For example, Lewbel and Pendakur (2017) find evidence of significant preference 

heterogeneity in the demand for energy. Such unobserved heterogeneity in preferences would 

pose a problem for our quantification of the “equity-pollution dilemma” if it means that the 

observed relationship between household income and the income elasticity of demand were 

driven by some unobserved factor. This might lead to households responding to income 

changes by not moving in parallel to the EECs, which is our fundamental assumption in 

quantifying the dilemma. Arguably, income and consumption preferences are shaped by a 

range of experiences, choices, and external factors over a household’s life cycle. Alan et al. 

(forthcoming) find evidence of such co-dependence between income and preferences. This 

opens the possibility of bias in our hypothetical analysis underlying the “equity-pollution 

dilemma”. However, we are not aware of convincing evidence that would predict the sign of 

such a bias nor of possible ways to overcome this limitation. 

                                                
8 Consider a hypothetical change in income for a household with actual income x to hypothetical income y. We thus assume throughout that 
this household would consume the same bundle of goods as a household with actual incomey (holding constant all other household 
characteristics to be included in the analysis). 
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We further assume that consumer preferences are not only homogenous (conditional on 

observed household characteristics), but also independent of the distribution of income. 

However, a growing literature finds evidence of relative preferences, such as conspicuous 

consumption based on a desire for status (Veblen, 1899; Bagwell and Bernheim, 1996; Charles 

et al., 2009). Allowing for preferences to be endogenous in such a fashion would mean that 

the shape of EECs themselves would change in response to changes in the distribution of 

income, negating our counterfactual analysis. 

Finally, we assume throughout that external circumstance of consumption remain fixed when 

income is redistributed. In particular, our analysis is a partial equilibrium one and we assume 

that redistribution does not affect the emissions intensity of goods, implying no effect of 

income redistribution on production technologies and retail prices. However, it is conceivable 

that demand shifts towards less emissions intensive goods might induce changes in relative 

prices or stimulate innovation in production. Similarly, production technologies and market 

conditions may change if income redistribution would indeed influence the political landscape 

by shifting political influence between different demographics – the political economy channel 

proposed by Boyce (1994), which was not the focus on this paper. 

The assumptions listed above are generally less restrictive when considering marginal or 

small-scale redistribution of income. Meanwhile, large-scale income redistribution might 

have wider-ranging implications which themselves feed back into production technologies 

and prices. 

Welfare economic implications: 

We believe that the above finding of a potential trade-off between income redistribution and 

carbon emissions – what we term the “equity-pollution dilemma” – is an important dynamic 

to consider when designing redistributive policies. However, the “equity-pollution dilemma” 

does not necessarily render income redistribution undesirable. The optimal degree of 

redistributive policy requires extensive welfare economic analysis and will rely on a variety 

of assumptions regarding market structure, household welfare and socially desirable 

outcomes. For example, the estimated increase of about 28.5 kg of household CO2 for a 

marginal redistribution of 1000 USD in 2009 might represent a social externality cost of 

roughly 90 cents (applying a conservative estimate for the social cost of carbon of 31 USD 

following Nordhaus, 2017). An inequality-averse social planner might well believe that the 

benefits of redistributing 1000 USD may compensate for a social cost of 90 cents.  
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7 Conclusion 

This paper contributes to the understanding of the interplay between the distribution of 

household income, expenditure, and the carbon content of consumption. Based on detailed 

expenditure data from the US Consumer Expenditure Survey (CEX) for the period 1996-

2009, estimates of household carbon are derived based on input-output data from WIOD as 

well as energy emissions factors. Estimates of household carbon are used to derive 

Environmental Engel curves (EECs) for CO2. This paper estimates parametric EECs for 

greenhouse gases, following Levinson and O’Brien (2015) who do so for air pollutants. EECs 

are found to be upward-sloping, concave, and shifting downwards over time. We find that a 

second-degree polynomial specification for EECs fits well the observed relationship between 

income and household carbon, after controlling for household characteristics. The paper 

proceeds with a range of simple descriptive/predictive analyses, which highlight the 

usefulness of such parametric estimates of EECs.  

The paper finds that average household carbon has declined from 37.8t in 1996 to 33.9t in 

2009. However, it would have risen significantly had technology remained constant. Based 

on coefficient estimates from regression-based EECs, an Oaxaca-Blinder decomposition 

suggests that changes in incomes can account for about 35% of this increase in household 

carbon at constant technology. Factoring in changes in savings behaviour, changes in 

expenditure levels even account for about 55% of the increase. We further find that there is 

significant inequality in household carbon, though it is lower than inequality of income and 

expenditure. Using regression-based inequality decomposition, we find that income is the 

strongest driver of carbon inequality out of the variables considered. Household income is 

found to account for about 31-40% of carbon inequality in 2009. 

A key contribution of this paper is the quantification of the “equity-pollution dilemma”: Given 

the higher pollution intensity of consumption per expenditure by poorer households, progressive 

redistribution may result in higher aggregate pollution from consumption. Assuming that 

households have (conditionally) homogenous preferences, we find that a marginal transfer of 

1000 USD from a richer to a poorer household in 2009 may increase the CO2 content of that 

income by about 28.5kg or 5%. Similarly, we predict that aggregate household carbon would 

have been about 1.5% higher under a hypothetical scenario of income distributed as in Sweden 

and 2.3% higher under full equality. We hope that the formal analysis relying on parametric 

estimates of EECs, and in particular the proposed quantification of the “equity-pollution 

dilemma” will inspire further systematic work on the relationship between household income 

and consumption-based pollution. 
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Appendix A.1: Estimation of emission content of consumption 
 

We aim to construct Environmental Engel curves (EECs) for household carbon in the United 

States. We focus on households in the United States, because it has some of the highest 

consumption-based CO2 per household (e.g. Chancel and Piketty, 2015). At the same time, 

detailed data are available on the income and consumption patterns of households. We 

estimate the CO2 attributable to the consumption of all energy, fuels, goods and services by 

households at different positions in the income distribution. The focus of this exercise is thus 

on total emissions contained in household consumption. This includes direct emissions from the 

consumption of fossil fuel based energy (e.g. heating, electricity, transportation fuels) as well 

as indirect or “embedded” emissions from the production of goods and services consumed. We 

base our accounting methodology on Environmentally-Extended Input-Output Analysis as 

is standard in the literature on consumption-based emission accounting (Wiedmann, 2009). 

We then construct EECs by following the methodology by Levinson and O’Brien (2015) in 

combining information on yearly expenditures of households on different consumption items 

(in dollars) with estimates of the carbon intensity of these different goods and services (kg of 

CO2 per dollar). 

Consumption data: 

Information on household income, consumption expenditures, and socio-demographic 

characteristics, comes from the United States Consumer Expenditure Survey (CEX). The 

Bureau of Labor Statistics provides anonymised public use micro-data from 1996. We make 

use of the interview portion of the CEX, containing information on survey responses by 

“consumer units” (CU). In what follows, we will refer to “consumer units” as households. Our 

main source of information are the “monthly expenditures” files (MTBI), which contain 

information on a household’s expenditures (and incomes) split into over 800 categories 

assigned universal classification codes (UCC). We combine these with income and socio-

demographic characteristics contained in the “consumer unit characteristics and income” files 

(FMLI). 

The CEX consumption expenditures are then each allocated to one WIOD production sector. 

It is in this step, where a number of judgements by the researcher are necessary. We follow 

where possible the matching procedure used by Levinson and O’Brien (2015) to link UCC to 



 

IO codes used in the input-output tables of the Bureau of Economic Analysis9. We then match 

the IO codes to the smaller number of WIOD production sectors (34 sectors, excluding the 

“Private Households” sector). Due to significant overlap in definitions and coding 

conventions, the matching of BEA IO to WIOD codes is mostly unambiguous.  Nevertheless, 

there are certain categories, where we used assumptions to arrive at a full and exclusive 

matching of expenditure categories to production sectors10. 

Multiplying the consumption expenditures of a household with the matched total emissions 

intensity yields a rough estimate of the CO2 embedded in the yearly consumption of that 

household, which we shall call estimated household carbon / CO2.  

Emission content of consumption: 

Total emissions z can be represented as two identities, depending on either total output x or 

final demand y: 

𝑧 = 𝒙′𝒅 = 𝒚′𝒆 

As we have obtained estimates of final demand per household k (i.e. the vector yk) from the 

CEX data, we aim to multiply household final demand with total emission intensities e to 

arrive at estimates of the total emissions content of the consumption by household k: 

𝑧Q = 𝒚Q′𝒆 

We thus require estimates of the emissions intensity e per unit of final demand y per sector. 

Input-output based emission factors: 

In order to allocate emissions intensities to consumption categories, information from the 

World Input-Output Tables (WIOD) is used. The 2013 release of WIOD contains 

information on 35 production sectors in 40 countries for the years 1995 through 2009. 

Notably, WIOD publishes “Environmental Accounts”, which include information on total 

yearly emissions per sector (represented by the vector z) and gross output per sector 

(represented by the vector x). In this paper, we make use of the information on 34 of the 35 

                                                
9 We are grateful to Arik Levinson and James O’Brien for kindly sharing their matching from UCC categories to IO codes used in their 
forthcoming paper and for answering our questions regarding their methodology. As there are many more UCC categories than IO 
sectors, the matching procedure applied by Levinson and O’Brien (2015) relies on a number of subjective judgements, which they outline 
in an online appendix to their forthcoming paper. 
10 Matching of CEX UCC codes to WIOD sectors to be provided as online appendix for eventual publication. 



 

WIOD sectors (excluding production in “Private Households”). A list of the 34 WIOD sectors 

used and their estimated emissions intensities for the years 1996 and 2009 is provided in 

Table A.1. We use these to allocate to each sector a direct emissions intensity (kg of CO2, CH4, 

N2O per $ of total output): 

𝒅 = 𝒛	 ⊘ 	𝒙 

Here, ⊘ represents element-wise division. We make use of the input-output portion of WIOD 

to attribute to each sector a total emissions intensity (vector e). This total emissions intensity e 

is intended to capture the emission content of each unit of final demand y per industry. To 

arrive at a useful estimate of e, we need to incorporate the role of intermediate goods – output 

that is not used for final demand, but nevertheless requires economic activity and thus 

emissions. We exploit the global nature of the input-output tables to construct three types of 

emission factors based on different assumptions regarding trade: (a) Closed economy, (b) 

Global supply-chain, but no trade; (c) Global supply-chain and trade. 

Closed economy: 

We follow Leontief (1970), who proposed a linear relationship between the vector of total 

output in 𝑛 sectors, 𝐱, and the final demand from those 𝑛 sectors,	𝐲, of the form: 

𝐱 = 𝐂𝐱 + 𝐲 

Here, the 𝑛×𝑛  (n=34 under the closed economy assumption) matrix 𝐂 is called the Direct 

Requirement matrix and has element c"8 , which stands for the dollar amount of input from 

industry 𝑖 necessary for the production of a dollar output from production 𝑗. In order to take 

account of secondary and higher-order relationships between input and output sectors, the 

Direct Requirement matrix 𝐂  can be converted into the Total Requirement matrix 𝐓. This matrix 

gives the dollar amount of output necessary from each sector 𝑗 for a dollar of consumption in 

each sector 𝑖, taking into account all intermediate steps in the supply chain ad infinitum: 

𝐱 = [𝐈 − 𝐂]H𝟏𝐲 = 𝐓𝐲 

We then convert the vector of emissions intensities	𝐝 into the vector of total emissions intensities 𝐞: 

𝒆 = 𝐓′𝐝 



 

Global supply chain: 

The above derivation of the emissions intensity for final demand by US consumers in 34 

sectors, represented by the vector 𝒆, is based on the assumption that the United States is a 

closed economy and that all final consumption as well as intermediate goods are produced by 

domestic sectors. We now introduce a global supply chain, which incorporates the fact that 

US sectors obtain intermediate goods from productive sectors around the world. We make 

use of data contained in WIOD on 40 countries (incl. the United States).  

With 𝑚 = 41 countries (including “Rest of the World”) and 𝑛 = 34 sectors, the Direct 

Requirement matrix 𝐂 is now of dimension (𝑚𝑛×𝑚𝑛)=(1394  × 1394). We again obtain the 

Total Requirement matrix 𝐓 = [𝐈 − 𝐂]H𝟏. The vector of emissions intensities	𝐝𝑾𝒐𝒓𝒍𝒅 is now also of 

the dimension (1394 × 1) as is the vector of total emissions intensities 𝒆𝑾𝒐𝒓𝒍𝒅 = 𝐓′𝐝𝑾𝒐𝒓𝒍𝒅. 

In a final step, we then extract only the 34-element vector relating to the final demand of 

consumers in the United States, 𝒆𝑼𝑺, which now incorporates the emissions of intermediate 

goods supplied by the 34 sectors in all 41 countries. 

 

Trade in final goods: 

In a final step, we incorporate the fact that some of the final demand by consumers in the 

United States will be met through final goods imported from other countries. To do so, we 

make use of information on “final consumption expenditure by private households” contained 

in the WIOD input-output tables. Starting from this, we construct a matrix M, which has 

dimension (𝑚×𝑛)=(41  × 34), where entry 𝑚"8 represents the share of final demand of US 

private households to sector 𝑗 imported from country 𝑖 (i.e. columns of M sum to 100%). 

We then convert the vector of total emissions intensities 𝒆𝑾𝒐𝒓𝒍𝒅 to a matrix 𝑬𝑾𝒐𝒓𝒍𝒅 with 

dimensions (𝑛×𝑚)=(34  × 41). The vector of emission intensities corresponding to final 

demand by US households, but incorporating the shares of final goods imported from other 

countries, is then given by: 

𝒆𝑭𝒖𝒍𝒍 = diag(𝑬𝑾𝒐𝒓𝒍𝒅𝐌) 



 

Figure A.1a represents adjustment factors when moving from the closed-economy 

assumption to a global supply chain and the inclusion of direct imports of final goods. 

Interestingly, the inclusion of trade has a larger relative impact on estimates of household 

carbon for those with higher incomes (e.g. an approximate 12% increase in CO2 for the top 

decile when considering global supply chains compared to an 8% increase for households at 

the bottom decile). 

 

Figure A.1: Comparison of emission measures – 2009 
Figure A.1a: Global supply chain & trade Figure A.1b: CO2 vs. CO2e (incl. CH4, N2O) 

  
Note: Red = Average ratio of household CO2 emissions when including 
global supply chain vs. closed economy assumption; Blue = Average 
ratio of household CO2 emissions when including direct imports of final 
goods vs. all final goods from US production. Both by income deciles, 
2009 data. 

Note: Average ratio of household total greenhouse gas emissions 
(CO2e) vs. CO2 emissions by income deciles. 2009 data. 

 

Direct emission factors for high-carbon goods: 

To improve the precision of our estimates, we allocate emissions intensities to certain high-

carbon consumption categories directly. We do so for expenditures on home electricity, 

heating oil, natural gas, gasoline for car (incl. Diesel and motor oil), and air travel. Data on 

end consumer prices for electricity, heating oil, natural gas, and gasoline are provided by the 

U.S. Energy Information Administration (2017). Emissions factors for gasoline, heating oil, 

natural gas, and kerosene are those used by the U.S. Environmental Protection Agency in 

guidelines for the Greenhouse Gas Inventory (EPA, 2009). Emission intensity of residential 

electricity is taken from the EPA’s Emissions & Generation Resource Integrated Database 

(EPA, 2017). An overview of the resulting emission factors used is given in Table A.2. 



 

We believe that this methodology improves significantly the precision of our estimates of 

household carbon embedded in consumption. The implementation of direct emission factors 

for these consumption categories increases aggregate household carbon by about 25% (from 

25.0t on average with only WIOD factors to 31.0t with added direct emission factors in 2009). 

Emission factors for methane (CH4) and nitrous oxide (N2O): 

While carbon dioxide (CO2) is the most common greenhouse gas, especially when 

considering energy production based on fossil fuels, there are further greenhouse gases which 

contribute to global warming. Among those, we account for methane (CH4) and nitrous oxide 

(N2O), both of which are reported in the WIOD Environmental Accounts. We thus repeat 

the procedure described above for both CH4 and N2O. In a final step we then construct an 

aggregate measure for greenhouse gas content in consumption, converted into carbon dioxide 

equivalent scale, by multiplying emissions with their 100 year global warming potential 

multipliers11. Figure A.2b depicts adjustment factors of that process. 

 

Consumption categories: 

We follow closely the methodology of Heffetz (2011), building on Harris and Sabelhaus 

(2000), who assign UCC categories from the CEX survey to 109 categories (47 for 

consumption, 22 for income and 40 for other). We then assign expenditures to 29 of the 

consumption categories used by Heffetz (2011) (excluding from his original 31 categories 

those of expenditures on cell phones, and underwear).   

                                                
11 We use the 100 year global warming potential multipliers with climate-carbon feedbacks as reported in the IPCC AR5 report (Myhre et 
al., 2013) – namely 34 for CH4 and 298 for N2O. 



 

 

Table A.1: List of WIOD Sectors used 
 

WIOD 
Code WIOD Name 

CO2  
(kg/$, 1996) 

CO2  
(kg/$, 2009) 

CH4  
(g/$, 2009) 

N2O 
(g/$, 2009) 

15t16 Food, Beverages and Tobacco 0.71 0.49 11.55 0.73 
17t18 Textiles and Textile Products 0.91 0.75 8.58 0.34 

19 Leather, Leather and Footwear 0.77 0.56 10.42 0.50 
20 Wood and Products of Wood and Cork 1.20 0.85 10.43 0.55 

21t22 Pulp, Paper, Paper , Printing and 
Publishing 0.69 0.47 2.21 0.06 

23 Coke, Refined Petroleum and Nuclear 
Fuel 2.27 0.94 23.26 0.03 

24 Chemicals and Chemical Products 1.15 0.68 5.02 0.18 
25 Rubber and Plastics 0.94 0.62 4.62 0.13 
26 Other Non-Metallic Mineral 3.21 1.94 6.17 0.05 

27t28 Basic Metals and Fabricated Metal 1.50 0.85 4.77 0.04 
29 Machinery, Nec 0.71 0.57 3.68 0.04 

30t33 Electrical and Optical Equipment 0.64 0.42 2.87 0.04 
34t35 Transport Equipment 0.55 0.38 2.24 0.03 
36t37 Manufacturing, Nec; Recycling 0.71 0.55 4.80 0.13 

50 Sale, Maintenance and Repair of Motor 
Vehicles and Motorcycles; Retail Sale of 
Fuel 0.32 0.17 0.94 0.01 

51 Wholesale Trade and Commission Trade, 
Except of Motor Vehicles and 
Motorcycles 0.21 0.09 0.49 0.01 

52 Retail Trade, Except of Motor Vehicles 
and Motorcycles; Repair of Household 
Goods 0.34 0.17 0.62 0.01 

60 Inland Transport 1.07 0.79 9.63 0.03 
61 Water Transport 2.94 1.98 5.20 0.10 
62 Air Transport 1.77 1.48 4.95 0.07 
63 Other Supporting and Auxiliary 

Transport Activities; Activities of Travel 
Agencies 0.45 0.44 2.04 0.02 

64 Post and Telecommunications 0.23 0.18 1.32 0.01 
70 Real Estate Activities 0.21 0.06 0.38 0.00 

71t74 Renting of M&Eq and Other Business 
Activities 0.26 0.14 0.95 0.01 

AtB Agriculture, Hunting, Forestry and 
Fishing 0.73 0.49 36.88 2.61 

C Mining and Quarrying 1.29 0.57 34.90 0.02 
E Electricity, Gas and Water Supply 7.93 5.42 10.54 0.09 
F Construction 0.57 0.38 4.06 0.04 
H Hotels and Restaurants 0.57 0.30 2.29 0.10 
J Financial Intermediation 0.17 0.09 0.58 0.01 
L Public Admin and Defence; Compulsory 

Social Security 0.52 0.25 1.71 0.02 
M Education 0.56 0.35 1.17 0.03 
N Health and Social Work 

0.36 0.17 0.85 0.02 
O Other Community, Social and Personal 

Services 0.43 0.18 8.59 0.04 
Notes: List of 34 out of 35 WIOD sectors (excluding “Private Household”). Estimates for kg CO2 content per USD output according to methodology 
described in Section 3 (1996 and 2009). 



 

 
 
 

Table A.2: List of WIOD countries 
 

Code Country Code Country 

AUS Australia  JPN Japan  
AUT Austria  KOR Korea  
BEL Belgium  LVA Latvia  
BRA Brazil  LTU Lithuania  
BGR Bulgaria  LUX Luxembourg  
CAN Canada  MLT Malta  
CHN China  MEX Mexico  
CYP Cyprus  NLD Netherlands  
CZE Czech Republic  POL Poland  
DNK Denmark  PRT Portugal  
EST Estonia  ROM Romania  
FIN Finland  RUS Russia  
FRA France  SVK Slovak Republic  
DEU Germany  SVN Slovenia  
GRC Greece  ESP Spain  
HUN Hungary  SWE Sweden  
IND India  TWN Taiwan  
IDN Indonesia  TUR Turkey  
IRL Ireland  GBR United Kingdom  
ITA Italy  USA United States  
RoW Rest of World   

Notes: List of 41 WIOD countries (including “Rest of World”). 

 
  



 

 
Table A.3: Direct emission factors (kg CO2 per USD) 

Year Electricity Gasoline 
Heating 

fuel 
Natural 

gas Air travel 

1996 8.67 7.14 9.26 7.82 2.14 

1997 8.72 7.14 9.46 7.31 2.11 

1998 8.61 8.29 11.09 7.32 1.99 

1999 8.58 7.56 10.69 7.42 2.07 

2000 8.45 5.84 6.85 6.40 1.81 

2001 8.07 6.09 7.66 5.50 1.99 

2002 8.16 6.41 8.26 6.35 2.07 

2003 7.86 5.54 6.73 5.13 1.89 

2004 7.61 4.69 5.65 4.68 1.92 

2005 7.03 3.84 4.46 3.97 1.80 

2006 6.30 3.39 4.23 3.85 1.65 

2007 6.07 3.13 3.64 3.83 1.59 

2008 5.57 2.69 3.26 3.46 1.51 

2009 5.28 3.69 4.03 4.22 1.63 
Notes: Based on annual average price data in the United States for residential electricity, gasoline, heating fuel, and natural gas 
(EIA); data on average air fares, passenger miles, and fuel consumption by US domestic airlines with revenue above $20m 
(BTS); constant CO2 emission factors for gasoline, heating fuel, natural gas, and kerosene (EPA); yearly average emission 
intensity of electricity generation (EPA eGRiD). 

 
  



 

 
 

Figure A.2: Carbon Consumption Breakdown – 2009 

 
Notes: Decile averages of household income after tax (2009 USD) and estimated CO2-content of consumption (current technology). 
Household weights as provided by CEX sample. Households with reported after-tax income below 0 USD and above USD 400 k excluded. 
 
 
 
 

Figure A.3: Greenhouse Gas Breakdown – 2009 

 
Notes: Decile averages of household income after tax (2009 USD) and estimated GHG-content of consumption (current technology). 
Household weights as provided by CEX sample. Households with reported after-tax income below 0 USD and above USD 400 k excluded. 
 
  



 

 
Figure A.4: Energy services – Share in expenditure / CO2 emissions – 2009 

 
Notes: Household total expenditure on energy services (air travel, electricity, gasoline, heating fuel, natural gas) as share of total 
expenditures (left axis) and CO2 emissions related to energy services as share in CO2 emissions in total consumption expenditures (right 
axis); both as a function of income after tax (2009 USD). Kernel-weighted local polynomial fit (Epanechnikov, bandwith=7.52). 
Households with reported after-tax income below 0 USD and above USD 200 k excluded. 
 
 
 
 

Figure A.5: Electricity & gasoline – Share in energy expenditure – 2009 

 
Notes: Household expenditure on individual energy services (electricity and gasoline) as share of total expenditure on energy services (air 
travel, electricity, gasoline, heating fuel, natural gas); both as a function of income after tax (2009 USD). Kernel-weighted local polynomial 
fit (Epanechnikov, bandwith=7.94). Households with reported after-tax income below 0 USD and above USD 200 k excluded. 
 
  



 

Appendix A.2: Oaxaca-Blinder decomposition – Difference in means 

 

In this paper we use Oaxaca-Blinder decomposition to decompose the change in average 

emission content of household consumption over time. The methodology was initially 

suggested to decompose wage differentials between population groups (Oaxaca, 1973; 

Blinder, 1973). 

 

The decomposition method relies on coefficient estimates from a multiple linear regression 

analysis. It is assumed that expected emissions of household 𝑖 in any year 𝑚 = 1996,… ,2009 

have a linear form in 𝑘 covariates: 

 

yuv = 𝛽wx + 𝛽&x𝑥&"x +⋯+ 𝛽Qx𝑥Q"x + 𝜀"x 

 

The difference in means between two years, 2009 and 1996, can then be expressed as: 

 

𝑦{ − 𝑦| = 𝛽w{ − 𝛽w| + 𝛽&{𝑥&{ − 𝛽&|𝑥&| + ⋯+ 𝛽Q{𝑥Q{ − 𝛽Q|𝑥Q| 	

= 𝐺w + 𝐺& +⋯+ 𝐺Q 

 

Here, then 𝐺Q is the contribution to the difference in means by the kth covariate. The 

contribution by each covariate 𝑘 can then be further decomposed into three effects: 

 

𝐺Q = 𝛽Q{𝑥Q{ − 𝛽Q|𝑥Q| = 𝛽Q{ − 𝛽Q| 𝑥Q{ + 𝛽Q|(𝑥Q{ − 𝑥Q|)	

= ∆𝛽Q𝑥Q{ + 𝛽Q|∆𝑥Q	

= ∆𝛽Q𝑥Q| + 𝛽Q|∆𝑥Q + ∆𝛽Q∆𝑥Q	

= 𝐶 + 𝐸 + 𝐶𝐸 

 

Here, C represents the difference due to changes in the coefficient of the kth covariate, E 

represents the difference due to the difference in covariate means, and CE represents the 

interaction effect. 

  



 

Appendix A.3: Factor decomposition of inequality 

 

In this paper, we decompose the inequality in household carbon budgets using the regression-

based approach suggested by Fields (2003) and building on factor decomposition initiated by 

Shorrocks (1982). 

 

It is assumed that the expected carbon budget of household 𝑖 in year 𝑚, 𝑦"x, is linear in 𝑘 

covariates: 

yuv = 𝛽wx + 𝛽&x𝑥&"x +⋯+ 𝛽Qx𝑥Q"x + 𝜀"x  

 

The variance of household carbon budgets, 𝜎)(𝑦), can then be written as: 

𝜎) 𝑦 = 𝑐𝑜𝑣[𝛽Q𝑥Q, 𝑦]
Q

8I&

 

We then define the relative factor inequality weight of covariate 𝑘, 𝑠Q(𝑦), as: 

𝑠Q(𝑦) =
𝑐𝑜𝑣[𝛽Q𝑥Q, 𝑦]

𝜎) 𝑦  

This weight describes the contribution of the variation in the covariate 𝑘, in the variance of 

household emission budgets, 𝜎) 𝑦 . 

 

Shorrocks (1982) has shown that under a number of assumptions, this decomposition will not 

only hold for the variance, but for any inequality measure 𝐼(𝑦) that is continuous, symmetric, 

and has 𝐼 𝜇, 𝜇, … , 𝜇 = 0.  

 

The decomposition is carried out using the STATA module from Fiorio and Jenkins (2007). 

 


