Michael Stirnimann

Best Dissertation Prize Winner

MSc Comparative Politics 2019/20

Issue Ownerships and Party Polarisation:

Does the Effect of Issue Ownership Considerations on the Vote Choice Depend on the (Relevant) Party Polarisation in an Individual's Consideration Set?

A dissertation submitted by Michael Stirnimann to the Department of Government, the London School of Economics and Political Science, in part completion of the requirements for the MSc in Comparative Politics.

August 2020

10 '494 words

- ABSTRACT -

Existing applications of the issue ownership (IO) theory have produced highly contradictory results regarding the question whether IO considerations matter more or less in polarised party systems. While some researchers found stronger effects in less polarised systems, others found the exact opposite. Accordingly, the aim of this paper is to help clarify some conceptual issues surrounding the theory, and to specifically address these contradictory findings by introducing a new concept that I call 'relevant party polarisation'. I first suggest analysing IO considerations (competence and commitment perceptions) as additional, although interrelated aspects of a general issue voting framework with three components: proximity, competence, and commitment. And second, I argue that the contradictory findings are mainly a result of using aggregate measures of party system polarisation to explain individual vote choices, respectively that such measures do not well capture the situation in which a voter is deciding. Inspired by recent evidence suggesting that individual decision-making processes could be more accurately described by a two-step process (see Oscarsson and Rosema 2019), I thus develop a new polarisation measure focusing on the party polarisation in an individual's consideration set (CS), respectively on the positional spectrum between the parties a voter considers. In line with the first literature camp, I finally argue that IO considerations should become more relevant when the considered parties offer increasingly similar positions. Empirical evidence from the Swiss national elections 2015 also reveals strong support for the hypotheses. Both IO considerations have an independent effect on the vote choices and their impact is conditioned by the issue similarities in an individual's CS. The closer the considered party positions, the stronger the impact of IO considerations on the vote choice. The results have important implications for party strategies and the wider polarisation literature.

Table of Contents

1. Introduction 1
2. Literature review 3
2.1. The issue ownership theory 3
2.2. Existing applications and criticism 4
2.3. Academic debate 7
3. Potential resolution and hypotheses 10
3.1. Basic framework: Three issue voting components 10
3.2. Interaction: Relevant party polarisation 13
4. Data, operationalisations, and model 18
4.1. Data 18
4.2. Operationalisations 19
4.3. Model 28
5. Results 31
5.1. Basic framework 31
5.2. Interactions 39
5.3. Robustness 45
6. Conclusion 46
Bibliography 49
Appendix 57

1. INTRODUCTION

In view of the diminishing explanatory power of socio-structural factors (Dalton 1984; Dalton and Wattenberg 2002), scholars have increasingly shifted their attention to is-sue-specific determinants of vote choices (Bellucci 2006, 548-49). Especially the issue ownership (IO) theory has thereby gained much prominence recently (Lefevere, Tresch, and Walgrave 2015). Its basic idea on the individual-level states that voters perceive certain parties as particularly competent in and/or committed to a policy area and are therefore more likely to vote for them (Walgrave and Lefevere 2017, 484). The parties are then said to "own" these issues. Previous studies have shown that IO considerations affect individual vote choices and that parties benefit from emphasising their issues during campaigns (see Walgrave, Tresch, and Lefevere 2015 for a review). Until today, however, the multidimensional definition of the theory and its uneasy relationship with issue proximity considerations - mainly due to an often implicit reliance on a questionable distinction developed by Stokes (1963) - are causing confusion in the literature. Existing applications have moreover produced highly contradictory findings concerning the question whether IO considerations matter more or less in polarised party systems. "Party system polarisation" is here defined as the "degree of ideological differentiation among political parties in a system" (Dalton 2008, 900). A first camp argued that when parties/candidates converge ideologically (i.e. when polarisation decreases), a voter's focus should shift to who is better able to deliver on the issue, i.e. to IO considerations (Buttice and Stone 2012; Franchino and Zucchini 2015; Green 2007; Green and Hobolt 2008). A second camp, however, argued that IOs, like all aspects of electoral competition, should receive more attention in polarised systems and thus be more relevant (Clark and Leiter 2014; Lanz 2014; Pardos-Prado 2012).

Accordingly, the aim of this paper is to help clarify some conceptual issues surrounding the theory, and to address these contradictory findings by introducing a new concept that I call 'relevant party polarisation'. The research question is: Do IO considerations (competence and commitment perceptions) have an independent effect on individual vote choices and is it dependent on the party polarisation in an individual's consideration set (CS)? I will first suggest analysing IO considerations as regular, although interrelated aspects of a general issue framework with three components: proximity, competence, and commitment. And second, I will argue that the contradictory findings are mainly a result of using an aggregate measure of party system polarisation to explain individual vote choices, respectively that such measures do not well capture the situation in which a voter decides. Inspired by recent evidence suggesting that individual decision-making processes could be more accurately described by a two-step process with a consideration and decision stage (Oscarsson and Rosema 2019), I develop a new polarisation measure focusing on the party polarisation in an individual's CS, respectively on the positional spectrum between the parties a voter considers. Simply speaking, if voters only consider a subset of parties, it should also be the polarisation in this subsystem that is relevant to them. In line with the first literature camp, I then argue that IO considerations should become more relevant when the considered parties offer increasingly similar positions. When voters cannot base their decision on issue positions, their focus shift to other components of the issue voting framework.

To test the hypotheses, I use an online panel survey from the Swiss election study carried out during the national elections in 2015. The results from conditional logit models reveal that competence and commitment perceptions have an independent effect on the individual vote choice, also when controlling for issue proximities and partisanship. The commitment effects are, however, generally smaller than the competence effects, and about half of the former's coefficients lose their significance in the
combined single-issue models. The analysis further reveals strong evidence for the interaction effects. The more similar the considered issue positions are, the stronger is the effect of competence and commitment perceptions on the vote choice. These findings also hold for a single-issue and cumulative IO approach.

I start by presenting the IO theory, its previous applications, and the relevant academic debate. I then discuss general difficulties associated with the theory, present the issue voting framework, and introduce my new party polarisation concept. Next, I describe the applied statistical method and subsequently interpret the results of the analysis. Finally, I draw conclusions for the wider literature.

2. LITERATURE REVIEW

2.1. THE ISSUE OWNERSHIP THEORY

The origins of the IO theory are usually traced back to the studies by Budge and Farlie (1983) and Petrocik (1996). Already in the 1980s, Budge and Farlie (1983) argued that parties would selectively emphasise those issues (during a campaign) where they had a particularly good public reputation. The simple rationale behind this strategy would be that increasing the salience of "their" issues should help them win the elections. Based on this argument, Petrocik (1996) later developed the "issue ownership theory" with a clear focus on competence perceptions. According to him (1996, 825), parties would strategically emphasise those issues where they had a "performance based reputation for greater competence on handling the issue[s]" than all the other parties. More precisely, Petrocik $(1996,826)$ defined this "handling competence" as "the ability to resolve a problem of concern to voters. It is a reputation for policy and program interest, produced by a history of attention, initiative, and innovation toward these problems, which leads voters to believe that one of the parties [...] is more sincere and committed to doing something about them [...]". Parties are then said to "own" an issue when they
managed to establish this positive competence perception. Applied to the voters' perspective, this also means that individuals are more likely to vote for a party they perceive as the most competent in an issue area they care about (Petrocik 1996, 825). The theory has consequently been used to explain both party and voter behaviour (see Walgrave, Tresch, and Lefevere 2015). I will, however, focus on voter behaviour.

2.2. EXISTING APPLICATIONS AND CRITICISM

While the theory has been largely neglected during the 1990s, it has seen a remarkable rise since the early 2000s (Lefevere, Tresch, and Walgrave 2015). This renaissance, however, also raised awareness about the rather undertheorized multidimensionality of Petrocik (1996)'s original conceptualisation. Walgrave, Lefevere and Tresch (2012) therefore introduced a first differentiation by dividing the concept into a "competence" and "associative" dimension. They $(2012,772)$ defined "associative issue ownership" as the "spontaneous identification of parties with issues in the minds of voters" and showed empirically that the two dimensions represent distinct aspects.

The multidimensional IO concept is, however, still dominantly operationalised in terms of competence (Walgrave, Tresch, and Lefevere 2015). And many studies have thus shown that people are more likely to vote for a party they perceive as competent in an area they care about, on both the individual (Bellucci 2006; Lachat 2014b; Lanz and Sciarini 2016; Lutz and Sciarini 2016; Meyer and Müller 2013; Nadeau et al. 2001; Wagner and Meyer 2015; Walgrave, Lefevere, and Tresch 2012) and aggregate level (Budge and Farlie 1983; Green and Jennings 2012; Meyer and Müller 2013; Petrocik 1996; Petrocik, Benoit, and Hansen 2003; Wagner and Meyer 2015). Surprisingly, only few studies have explicitly analysed the interaction with issue salience. But Bélanger and Meguid (2008) could, for example, show that IOs do not matter when the voter does not care about the issue (see also Green and Hobolt 2008).

Regarding the associative dimension, existing studies indicate that its direct effect on the vote is far more limited (Lachat 2014b; Lutz and Sciarini 2016; Walgrave, Lefevere, and Tresch 2012). This is not surprising given its definition as a mere party-issue-association. However, only few studies explicitly asked about the association. Most studies exploit a question about a party's commitment to an issue, which is not necessarily the same as the association. Commitment perceptions probably represent a stronger reason to vote for a party, provided one shares its position as well (Lachat 2014b, 731). Another, highly relevant question has been whether the two $I O$ perceptions can be influenced. While Petrocik (1996) assumed high stability, recent evidence suggests that substantial short-term changes on the individual-level go along with more stable aggregate numbers (Kleinnijenhuis and Walter 2014; Lanz and Sciarini 2016; Meyer and Müller 2013; Seeberg 2017; Walgrave, Lefevere, and Nuytemans 2009). Not only media coverage (Aalberg and Jenssen 2007; De Bruycker and Walgrave 2014; Seeberg 2017; Tresch and Feddersen 2019; Walgrave and Soontjens 2019), but also party communication (Dahlberg and Martinsson 2015; Tresch, Lefevere, and Walgrave 2015; Walgrave and De Swert 2007) can significantly affect IO perceptions. And those voters who change their perceptions are also more likely to change their party support (Petitpas and Sciarini 2018, 2020). Particularly interesting is also Stubager and Seeberg (2016)'s study which showed that not all messages are equally effective at influencing competence assessments. They found that not the messages about a party's position or attention to an issue influenced them, but the messages about a party's ties to a relevant constituency or its past performance.

The theory has, however, also faced more serious criticism than just the lack of attention given to its definition and operationalisation. Scholars have soon pointed out that competence assessments could be strongly influenced by positional agreement and
partisanship (e.g. van der Brug 2004, 213). For instance, people might see a party as the most competent because it promotes the position they themselves prefer, or because they identify with a party and thus perceive the world through a partisan lens (cf. Campbell et al. 1960). Subsequent research has also confirmed that competence assessments are informed by positional agreement (Craig and Cossette 2020; Stubager and Slothuus 2013; Therriault 2009, 2015; Wagner and Zeglovits 2014; Walgrave et al. 2016; Zakharova and Warwick 2014) and partisanships (Feddersen and Lanz 2015; Stubager and Slothuus 2013; Vliegenthart and Lefevere 2017; Walgrave, Lefevere, and Tresch 2014; Walgrave and Soontjens 2019). Accordingly, competence perceptions are, at least to some degree, endogenous to vote choices, respectively to (strong) partisanship. And the dependence on positional agreement questions whether IO models are really that different from spatial models, such as the proximity model developed by Downs (1957) where people vote for the party with the "most proximate" position. This last implication becomes even more problematic when we next consider that the theory has always been explicitly or implicitly linked to Stokes (1963)' critique of Downs (1957)' spatial approach (van der Brug 2017).

Stokes (1963) argued that spatial models are not always useful for analysing vote decisions, as on many issues all parties would offer the same position. For example, all parties would agree that reducing unemployment is a good thing. Therefore, Stokes (1963) differentiated between "valence" and "positional" issues. On positional issues, parties would disagree upon the goals and consequently offer different positions. On valence issues, by contrast, every party would pursue the same goal and therefore offer the same position. Hence, people could not base their vote decision on positional differences on the latter issues. And this would lead to assessing competence (Stokes 1963, 373). Not every party is equally good at reducing unemployment. So, voters would vote for the party they think is best able to do it. Accordingly, many studies only
applied the concept to (supposed) valence issues (e.g. Bellucci 2006; van der Brug 2004; Clarke et al. 2004; Meyer and Müller 2013) or accounted for positional directions (e.g. Bélanger and Meguid 2008). Petrocik (1996, 829-30) even argued that people would generally not care about positions and just wanted issues to be fixed, i.e. that only competence assessments - independent of positional considerations - would matter. Evidence about the dependence on positional agreement is thus not the best news for a theory that was supposed to be a real alternative to spatial approaches.

2.3. ACADEMIC DEBATE

Green (2007) was the first scholar to investigate the relationship between party polarisation and IO considerations. Her study also shows how intertwined the IO theory and Stokes (1963)'s valence framework often are. Green (2007) argued that the British electoral competition has become increasingly competence-based because the two major parties converged over time on the dominant left-right dimension. The idea behind this argument was that the increasing positional convergence (respectively the decreasing party polarisation) indicated that a once clearly positional issue turned into a valence issue. And when parties stop campaigning on a positional issue, the electoral competition must become about "valence". Note that this term was equated here with competence, which is in line with a much broader literature using it to emphasise various characteristics that all refer to the "quality" of a party/candidate.

It was not until a year later, however, that Green (2007)'s main hypothesis was tested by Green and Hobolt (2008). Their argumentative focus also changed to a more voterfocused explanation as to why competence should matter more when parties converge. More specifically, they argued that a voter's focus should shift to which party is best able to deliver on an issue when they offer more or less the same positions. They also did this within Green (2007)'s utility framework where voters, in a highly consensual system, would derive the same position-based utility from both parties but not the
same from competence considerations. Empirically, they could show that the competence effect increased as the two major British parties converged over time.

Pardos-Prado (2012) criticised this "zero-sum assumption" (as he called it) of the previous studies by pointing out that a growing impact of competence must not necessarily be the result of less polarisation. These trends could have happened independently of each other, and it would be perfectly possible to think that competence considerations became more important as polarisation increases. To justify his reasoning, he first argued that positional and competence considerations are not mutually exclusive, respectively that both can matter independently of each other. For instance, a party could offer a very distinct position that many people like, and still be seen as not competent. Second, polarisation could even strengthen the impact of competence consideration as polarisation is likely to increase attention to all aspects of competition. Much evidence suggests that positional considerations matter more in polarised system because any differences would be more visible and thus easier to access (e.g. Alvarez and Nagler 2004; Dalton 2008; van der Eijk, Schmitt, and Binder 2005; Lachat 2008, 2011). So, why should this not be the case for differences in competence assessments? Especially since they are also informed by positions. Third, he questioned Stokes (1963)'s issue distinction by referring to an older critique in the literature; parties might agree upon the goals in an issue area, but this agreement would almost always disappear if one reframed the question in terms of the means to reach it (e.g. van der Eijk and Franklin 2009). For instance, while some parties prefer government interventions to reintegrate unemployed people, others prefer liberalising labour markets. And as long as it is not clear whether valence and positional issues can be distinguished, it would also be an excessively strong assumption that voting is about competence when parties campaign on valence issues, and about positions when it is about positional issues (Pardos-Prado 2012, 344). The author further demonstrated that the level of
valence/competence voting is not associated with consensus across 21 political systems, but with some forms of policy dispersion, such as polarisation.

Lanz (2014) used practically the same arguments. First, it would be less costly, respectively cognitively easier to access information about parties' positions and competence in polarised systems, which should increase their influence. And second, when positional considerations in polarised systems become more relevant, this should also increase the effect of competence due to their interdependence. His results from 25 European countries showed that competence considerations are strong determinants of vote choice, and that their level is higher in more polarised party systems.

The very same arguments and contradictory results also exist in the literature about valence/competence voting in candidate elections. Buttice and Stone (2012) analysed congressional elections in the US and found that the effect of candidate quality - measured with factors such as personal integrity, ability to find solutions to problems, educational background etc. - increased with reduced ideological differences between the two candidates. Furthermore, Franchino and Zucchini (2015) conducted a conjoint analysis experiment where respondents were asked to choose between two candidates whose profiles differed on five aspects. They found that valence/competence effects were indeed conditional on the candidates' policies. A higher educational background mattered, for example, when the candidates offered the same policies, but not when they proposed different positions. They even found that positions trump valence/competence considerations as the respondents preferred corrupt candidates with similar positions over honest candidates with different views.

Clark and Leiter (2014), however, found again the exact opposite by analysing elections in nine Western European countries between 1976 and 2003. Based on the IO theory and Stokes (1963)'s valence framework, they argued that character-based
valence attributes of candidates should matter more when their parties offered similar positions. But to their own surprise, they found that character-based valence attributes had a greater effect on parties' vote shares when they were ideologically dispersed.

Before we can discuss the potential reasons for these contradictory findings, however, we first need to specify the basics of a new model with IO considerations, and clarify its relation to Stokes (1963)' distinction that has caused much confusion so far.

3. POTENTIAL RESOLUTION AND HYPOTHESES

3.1. BASIC FRAMEWORK: THREE ISSUE VOTING COMPONENTS

 Based on van der Brug (2017)'s reasoning and in line with Walgrave, Lefevere, and Tresch (2020)'s suggestion, I reject Stokes (1963)' distinction and view IO considerations as additional, although interrelated components of a standard issue proximity model. Van der Brug (2017) argued very comprehensively that the existence of a consensus 'on an issue' crucially depends on the level of abstraction. While on the highest level, all parties could, for example, agree upon the goal of creating a just society, large difference would occur when they were asked about how such a society should look like or how it could be achieved. Accordingly, genuine valence issues would only be those issues where all parties shared the same goal definition and agreed upon the same means. And since such issues would hardly exist, the usefulness of Stokes (1963)'s distinction must be questioned (van der Brug 2017, 532-33). Empirical evidence that IO effects do not differ depending on the (a priori) type of issue analysed further supports this reasoning (Franchino and Zucchini 2015; Pardos-Prado 2012).In standard issue proximity models (Downs 1957), a voter's utility from choosing a party can be described as a function of the spatial proximity between a voter's preferred position and the party's offered position on an issue. Simply speaking, the closer the two positions are, the more utility a voter would receive from choosing that party. Voters
can, however, also receive utility from IO considerations because some parties might be better able or more committed to implement an issue. Accordingly, I will distinguish between a competence and commitment component and - analogous to the classical reasoning - argue that voters are more likely to vote for a party they perceive as the most component in and/or most committed to an issue. Given the previous findings, however, I expect competence to have a stronger effect than commitment. Note that I also call it a commitment component to distinguish it from the associative dimension that is used in the literature but often measured with commitment. Given the widespread confusion around the concept's multidimensionality, I think it is crucial to make these clear distinctions. Studying these three components in a general issue voting framework was also recently suggest by Walgrave, Lefevere, and Tresch (2020). They argued that if voters cared about an issue, it would be reasonable to assume that they also consider all dimensions that relate to it. The utility function is then:

$$
U_{i j p}=P X_{i j p}+C P_{i j p}+C T_{i j p}
$$

where an individual is utility U from choosing party p depends on the utility from proximity $P X$, competence $C P$, and commitment $C T$ considerations on each issue j.

Of course, when analysing IO considerations in this framework, one needs to consider all potential interrelations between the components and the studied issues. Given the dependence of competence on positional agreement, one could even question whether competence really represent a new factor. However, all of the above-cited authors (that analysed this relationship) also mentioned that their analyses clearly revealed that competence assessments are much more than just an expression of positional agreement and partisanship. For instance, several studies found that past performance evaluations affect competence assessments (Craig and Cossette 2020; Stubager and Slothuus 2013; Wagner and Meyer 2015) or that a party's ties to a constituency matter as they could signal the party's knowledge of the problems facing the
constituency (Stubager and Slothuus 2013). Accordingly, if we control for positional agreement, the competence component should actually come quite close to the original idea of a party's qualification or ability to deal with an issue. The hypotheses are:

H1a: If a person perceives a party as the most competent in an issue area, she is more likely to vote for that party.

H1b: If a person perceives a party as the most committed to an issue area, she is more likely to vote for that party.

Some studies have also found that people sometimes use commitment perceptions to assess competence (Feddersen and Lanz 2015; Wagner and Zeglovits 2014; Walgrave and Soontjens 2019). People may believe that a party is competent in an area simply because it devotes much attention to it. Accordingly, it would be no surprise to observe an association between the two factors.

Endogeneity could be an issue for all components, and not just for competence. If partisanships work like "perceptual lenses" (Campbell et al. 1960), they should affect all assessments. Vegetti (2014), for example, showed that partisans tend to see their own and their favourite party's position as more proximate than they are. Proximity assessments are thus also not free of partisan bias (see also Milazzo, Adams, and Green 2012) and controlling for partisanship will be important in any case.

Interestingly, although many studies about (competence) IO effects exist, only two (Lachat 2014b; Walgrave, Lefevere, and Tresch 2020) have included all three components together to test whether all have an independent effect. Many studies did not even control for proximity. More recent studies have also started to criticise the singleissue approach ("which party is best able to handle the most important issue") of IOstudies (Karlsen and Aardal 2016; Petitpas and Sciarini 2018, 2020). They argued that voters considered several issues, respectively the whole policy package offered by a
party. Karlsen and Aardal (2016) thus introduced the concept of "cumulative ownerships" where all IO are combined in an additive scale. In line with my utility function with j issues, I will additionally test all hypotheses in the cumulative way.

H 2 a : The higher the level of cumulative competence attributions to a party, the more likely is the respective person to vote for that party.

H2b: The higher the level of cumulative commitment attributions to a party, the more likely is the respective person to vote for that party.

3.2. INTERACTION: RELEVANT PARTY POLARISATION

Let us now take a closer look at the possible reasons for the contradictory results. Vegetti (2014) has been the only scholar so far explicitly trying to clear up the puzzle by emphasising that partisanship could have been a confounding factor. He argued that higher levels of polarisation could trigger existing party loyalty feelings, which then leads to more biased perceptions of party competence and party positionings among partisans. While he also found support for his argument, the study actually fell short of resolving the puzzle. The results merely indicate a more endogenous relationship in polarised systems among partisans and cannot explain why some studies also found stronger competence effects in less polarised system.

I thus take a completely different approach to help resolve these contradictory findings by arguing that the main problem in the literature is that aggregate measures of party system polarisation are used to explain individual vote choices, respectively that these measures do not well capture what they actually should in this context. Let me start explaining this by focusing on the polarisation formulas. Empirical studies typically use the average of all absolute interparty distances or the variance/standard deviation around an artificially created centre to measure party system polarisation (see Stanig 2011). As intended, they all capture (with some variation) how distant, on average, all
parties are from each other. Or how far away all party positions are from a system's centre of gravity (Lachat 2014a, 3). The critical point here is, however, that they all measure a system-specific feature that captures something different than just the indi-vidual-specific choice situation. This can already be demonstrated by simply looking at the different concepts these measures are supposed to capture: They were not only used to measure the overall "degree of ideological differentiation among political parties in a system" (Dalton 2008, 900), but also the level of political conflict (Vegetti 2014) or the general competitiveness of elections (Lachat 2011). If we want to analyse individual vote choices, however, we also need a measure that accurately captures the situation in which a voter is taking a decision - and not an overall system-level measure that could be strongly influenced by one or two extreme parties, for which an individual would never have voted. Or in other words, party system polarisation measures do not (automatically) capture the positional spectrum a single voter considers. Even in highly polarised systems, it is still possible that some voters are deciding between very similar party positions. Hence, there could be many different "party-subsystem" within the same system whose internal policy differentiation is much more relevant to a voter.

At the most basic level, my argument thus questions whether really every party position in a system matters for describing an individual's 'decision space'. I define 'decision space' as that section on an issue dimension that includes all party positions that are considered as potential options, i.e. that are not categorically rejected by a voter. Imagine a voter who holds social liberal values and therefore considers voting for a leftwing or centrist party. Would the existence of a far-right party really change the positional situation in which she is going to decide? Of course, the decision itself could be influenced by additional, strategic voting considerations. But the point here is merely that if our voter has never viewed that party as an option, if choosing that party's position has never even occurred to her, than it should also not be relevant for describing
her decision space. A social liberal person will not suddenly consider voting for a farright party just because it exists. But is there any evidence backing this argument?

First, this reasoning perfectly corresponds to a rapidly growing research strand which argues that individual decision-making processes could be more accurately described by a two-step-process (see Oscarsson and Rosema 2019 for an introduction). These so-called 'consideration set models' posit that voters first exclude all parties they do not see as viable options, and then choose one of the remaining parties out of their 'consideration set'. Accordingly, these CSs are used to describe the subgroup of all parties a person could imagine voting for. To justify this two-step-process, Oscarsson and Rosema (2019) argued very convincingly that it would be unrealistic to assume that people consider all party characteristics of all available parties for every election. This would not only contradict well-proven psychological theories, but also our intuition that voters do not approach elections neutrally. People have pre-existing beliefs about certain parties and no longer pay equal attention to all of them. Recent studies also showed that people form such CSs, and that the modelling makes a difference when explaining vote choices (Oscarsson and Oskarson 2019; Steenbergen, Hangartner, and de Vries 2011). Dejaeghere and van Erkel (2017) even showed that people were better able to place a party's position when they considered voting for it. A clear sign that people focus on a subgroup of parties and that not all are equally relevant to them. Second, the argument that system-level measures do not automatically capture the individual-specific situation is almost by definition true if we analyse multi-party systems with different constituencies. The Swiss national elections, for example, are held in 26 cantons that differ in terms how many and which (of the seven main) parties compete. If we simply display the exogenously given party constellations in Table 1, we can already see that the decision space cannot be the same for all. Almost 20% of
the electorate is restricted in their choice because of where they live. And eleven very different party constellations result solely as a consequence of the constituencies.

Table 1: Tabulation of exogenously given party constellations

Available party constellation	Frequency	Percent	Cum. Percent
BDP CVP FDP GLP GPS SP SVP	9.018	81.44	81.44
BDP CVP FDP GLP SP SVP	259	2.34	83.78
BDP SP	38	0.34	84.12
CVP FDP GLP GPS SP SVP	852	7.69	$91-82$
CVP FDP GPS SP SVP	525	4.74	96.56
CVP GPS SVP	46	0.42	96.97
CVP SP	25	0.23	97.20
CVP SVP	43	0.39	97.59
FDP GPS SP SVP	111	1.00	98.59
FDP SP SVP	74	0.67	99.26
SP SVP	82	0.74	100.00
Total	$11^{\prime} 073$	100.00	

And third, my argument resonates well with an important difference between the two opposing literature camps; All studies that found stronger IO effects in less polarised systems analysed a single country with a two-party-dominated system (Green 2007; Green and Hobolt 2008) or a voter's choice between two candidates (Buttice and Stone 2012; Franchino and Zucchini 2015). By contrast, all studies that found stronger IO effects in more polarised systems conducted cross-country studies with several multiparty systems (Clark and Leiter 2014; Lanz 2014; Pardos-Prado 2012). So, while the used polarisation measures probably still quite well captured the individual-specific situation in two-party/candidate systems - as (almost) all voters decide between the positions of the two parties that also determine the polarisation value -, they did not so well in multi-party systems. It is exactly in multi-party systems where CS become crucial (Oscarsson and Rosema 2019, 257) and where there are many party positions influencing the polarisation value that are not relevant to many voters.

In sum, I argue that if we want to analyse whether ideological differentiation among parties moderates the IO-effects, we also need a measure that accurately captures the
individual-specific choice situation in every political system. And I will do this by measuring the positional spectrum in an individual's CS. Only if a voter considers voting for a party, its position should be relevant for describing his decision space. I call this new concept 'relevant party polarisation' because it only captures the positional spectrum that is actually relevant to an individual when taking a decision.

In line with the first literature camp, I ultimately argue that IO considerations should become more important for an individual's vote choice when the considered party offer increasingly similar positions. The simple rationale behind this is that positional considerations should become less useful to base a decision on when the considered parties offer the same ones. And this, in return, should give IOs more weight in the deci-sion-making process. Or expressed in the utility framework; If two parties offer more or less the same position, the (expected) utility from the proximity component cannot make the difference. But the utility from the competence or commitment components can. The hypotheses for the single-issue and cumulative approach are:

H3a\&4a: The more similar the considered party positions are, the stronger is the relationship between (cumulative) competence perceptions and the vote choice.

H3b\&4b: The more similar the considered party positions are, the stronger is the relationship between (cumulative) commitment perceptions and the vote choice.

4. DATA, OPERATIONALISATIONS, AND MODEL

4.1. DATA

To test my hypotheses, I exploit an online four-wave panel survey from the Swiss election study (Selects) carried out during the national elections in 2015 (Lutz 2016). The sample includes 11,073 individuals that were randomly drawn from the official Swiss population register. The analysis uses variables from the first three waves. The first wave that took place during the pre-campaign phase (starting on June 15). The second wave during the campaign (August 17-October 17) and the third after Election Day (October 18, 2015). 7,581 respondents participated in all three waves. When the same questions were asked multiple times, I used the latest information available to best reflect the situation before Election Day.

Switzerland was selected for two main reasons. First, Selects is particularly suitable for studying IO effects because it includes questions about a voter's position, competence, and commitment perceptions on five issues. Second, the Swiss multi-party system is one of the most polarised worldwide (Bochsler, Hänggli, and Häusermann 2015, 478) and still features parties that offer very similar policies. Especially the Green and Social-Democratic Party are known for offering almost identical policies (cf. Bochsler and Sciarini 2010). This means that there should be enough (positional) variation in the resulting CS-variables to study their moderating impact.

The largest party is the Swiss People's Party (SVP), a conservative right-wing party that generally takes the most extreme positions of all major parties. Together with the Liberals (FDP), the Conservative Democratic Party (BDP), and the Christian Democratic People’s Party (CVP), it forms the so-called "bourgeois bloc". With the CVP being a centrist-party, the bloc represents quite dispersed preferences. The Green Liberal Party (GLP) positions itself on the left and right depending on the issue. The typical left
consists of the Social Democratic (SP) and Green (GPS) Party. I focus on these seven major parties due to data availability. This means, however, that we lose 6% of the available vote choices (which is slightly less than their actual 8% vote share), and that we are only explaining the vote choice among major parties. Given that the survey was conducted online, some bias to people with internet access will also exist.

4.2. OPERATIONALISATIONS

The dependent variable is the individual vote choice in the National Council elections. 5'648 individuals said that they voted for one of the seven main parties. The binary variable takes a value of 1 if a person voted for the respective party, and a 0 if not.

The main independent variables are the two IO considerations. They were measured with the questions: "In your opinion, which party is the most competent in the following issues?" And "which party is the most committed to the following issues?". The survey then showed five policy areas - environment, social, economy, EU, and migration and for each of them, the respondent could pick one party that they perceived as the most competent or most committed. Accordingly, (single-issue) IO considerations are binary variables. For the cumulative approach, I added the number of issue areas in which a respondent perceived a party as the most competent/committed, for each party (cf. Karlsen and Aardal 2016). The variables thus range from 0 to 5 . Strictly speaking, they are ordinal scaled. But I will treat them as interval scaled to ease interpretation.

Fig. 1 shows the frequency distribution of all (IO-)answers and reveals some interesting patterns. First, environment, social, economy, and migration are all - overall - clearly owned by one party (migration, however, only on the commitment dimension). Over 60% of the respondents see the GPS as the most committed to environmental protection, the SP to social policy, and almost 60% the FDP to economic policy and the SVP to migration. EU policy is the most disputed issue and also the only one where not the
same party holds both overall ownerships. Note, however, that I defined IOs on the individual-level, i.e. I assume that only the individual perceptions matter, regardless of the overall distribution. Second, while the two dimensions show many similarities, they also reveal clear differences. Commitment is much more clearly attributed to one single party than competence. The numbers drop from over 60\% to around 40% for environment, social and economy. And from 50% to below 30% on migration. These differences may indicate that the questions indeed measure two distinct dimensions/concepts, that competence assessments depend more on positional agreement, or that competence is simply more difficult to assess than commitment. The proportion of "Don't Know" answers is, for example, clearly higher on the competence variables.

Fig. 1: Competence and commitment perceptions (source: Selects 2015)

Before we can turn to the issue similarity variables, we need to know how issue positions are measured. Directly after the IO-questions, the survey asked a typical opinionquestion for each issue area. Concretely, the survey asked whether respondents are in favour or against a) an increase in environmental protection, b) an increase in social spending, c) measures to strengthen the economy, d) Switzerland joining the EU, and e) limiting immigration. The respondents could then pick one of five answers: "Strongly against", "rather against", "neither", "rather in favour" and "strongly in favour" (0-4). For the cumulative models, I use the left-right dimension, i.e. the respondents' self-placements on a 11-point-scale (0-10). The left-right dimension is understood as a 'superissue' (cf. van der Eijk, Schmitt, and Binder 2005) that, at least approximately, summarises all issues. Fig. 2 shows the frequency distribution of all positions/placements.

Note that all five questions are framed in positional terms, i.e. they all ask whether one is in favour or against a proposition. In the case of environmental and economic policy, however, one could argue that they represent valence issues as not many respondents would oppose a healthy environment or a stronger economy. A total of 2,938 (i.e. 27\% of all surveyed) and 3,479 (32\%) respondents stated, however, that they are not in favour of more environmental protection or measures to strengthen the economy, respectively. Also when looking at the skewness of the distributions, we can observe that the ones from the environmental and economic issue are indeed a bit more skewed (to a single position) than the positional issues (social policy and migration), but that the most pronounced skew nevertheless occurs on EU policy, a clearly positional issue. In sum, it does not seem that the positional distributions are inherently linked to the 'character' of an issue, which supports my decision to treat all issues in the same way.

Fig. 2: Positions on all issues and on the left-right dimension (source: Selects 2015)

To determine issue proximities, we first need to calculate the party positions on each issue. I do this - similar to Lachat (2014b, 733) - by calculating the mean of all issue positions of the respondents who stated that they voted for the respective party and also generally identify with it. I added the last criterium to limit the impact of party switchers. Determining the party positions via voters is, of course, not ideal but it was the preferred option as it allows comparing the two positions on the exact same issues.

Already minor question-wording differences can affect how people answer. To calculate proximity, I used the following equation:

$$
\mathrm{PX}_{\mathrm{ijp}}=4-\mid \text { Position }_{\mathrm{jp}}-\text { Position }_{\mathrm{ij}} \mid
$$

where first the absolute distances between a party p 's position (Position ${ }_{j p}$) and each individual is position (Position ${ }_{i j}$) on the same issue j are calculated. These distances are then subtracted from 4 (or 10), the highest possible value on all issues (on the leftright dimension), to obtain issue proximities. The variables thus range from 0-4 (0-10) whereby higher values indicate higher positional agreement.

To measure issue similarities within the CS, we first need a suitable variable to decide whether a party is in the CS or not. Most studies exploit the vote choice and the vote propensities that are also available in Selects (cf. Oscarsson and Rosema 2019). Concretely, each respondent indicated on a 11-point-scale (0-10) how likely they are to ever vote for one of the seven main parties, seperately for each party. Next, we need to define suitable cut-off points. An intuitive way would be to argue that respondents consider all parties with a value ≥ 5. However, I opt for a different approach that also accommodates different "overall" levels. For example, if a voter gave one party a 5 and two parties a 4, the latter two would be treated as irrelevant with the >5 criterion. I thus suggest using the highest value attributed to any of the parties and include all other parties that are within 3-points of this maximum value. Accordingly, if a voter gave one party the highest assigned value of 9 , all parties with a value ≥ 6 would be in the CS.

To measure the party polarisation within the CS, I take the highest absolute interparty distance between all considered party position, separately for each issue. I argue that this value - which substantively corresponds to the range of all considered party positions - best captures the situation in which a voter is deciding, respectively the positional spectrum a voter considers. But again, one could also argue for other
measurements, such as taking the mean of all absolute party-pair-distances in the CS. Since this concept is the main contribution of this paper, I will test different approaches in the robustness section. But I now focus on my substantively preferred option. The resulting ranges are subtracted from 4 (or 10) to indicated similarity.

Fig. 3 displays the frequency distribution of the measured issue similarities in the CSs. First, we can clearly see that there is much variation as to how similar or different the individual CSs are. Some people consider voting for parties that are not even 0.2-units apart, while others evaluate a positional spectrum of more than 2-units, which is a lot considering that no parties are placed at the ideological extremes. Second, the largest group - which is always between $25-30 \%$ of the electorate - does not consider voting for several parties. They have only one party in mind and thus got a value of 4(10). A share of this size is, however, not surprising in an (overall) highly polarised system, which is expected to strengthen partisanships. To ensure that our results are not distorted by these cases, I additionally run all models with only 'undecided' voters.

Fig. 3: Issue similarities in the individuals' consideration sets (source: Selects 2015)

As discussed, it is also useful to briefly check all interrelations in our framework. I did this by calculating a Cramér's V-matrix to assess the strength of all association between the (mostly categorical) components, separately for all parties (Appendix: Fig. $7-13$). Fig. 4 shows the Cramér's V-matrix for the Green Party whose numbers are representative for the overall pattern found. Cramér's V values range from -1 to 1 , whereby more positive (more negative) values indicate a stronger positive (negative) association. While the precise number can be seen in the appendix, the depicted circles should help grasp the overall pattern. First, endogeneity can be an issue for all components (see last column). But as expected, the highest associations occur between partisanship - measured with the question whether a respondent generally feels close to a party - and competence perceptions, and they are followed by the associations between partisanship and issue proximity. Commitment perceptions, however, appear to be largely independent of partisanship. Second, the highest associations exist, as expected, between competence and commitment perceptions (see the more pronounced diagonal line in the middle). The numbers are all between $0.35-0.43$, which indicates a moderately strong association. This could be seen as evidence for an IO concept with a common core or as evidence that commitment perceptions are used to assess competence (or vice versa). And third, issue opinions are also to some degree associated with each other. This can, however, be better seen in the correlation matrix that looks at the positions themselves (Appendix: Fig. 6). The correlation coefficients range from 0.04 to (-)0.41, whereby the latter value - observed between the EU and migration - was clearly the highest. High correlations indicate that there is probably a latent opinion affecting both positions.

I also control for socio-structural variables, such as gender, age, education, household income, religiosity, and urban-rural. Moreover, I add a dummy-variable for political interest. Research has shown that political sophistication can impact the degree to which
voters rely on positional and/or IO considerations (Singh and Roy 2014; Stubager, Seeberg, and So 2018). Since I am interested in analysing the differing impact of IO considerations due to a contextual factor, it is useful to control for decision criteria heterogeneity among the individuals. A short variable description and all summary statistics can be found in the appendix (Tables 9-13).

Fig. 4: Cramér's V Matrix - All three components for GPS (source: Selects 2015)

4.3. MODEL

In line with the binary dependent variable, I use a conditional logit model (CLM) (also known as McFadden (1974)'s discrete choice model). CLMs exploit a stacked dataset matrix, which means that every respondent is included (in the dataset) as many times as there are party alternatives available to him/her, and that the unit of analysis consequently becomes the respondent-party-dyad. The major advantage of this structure
is that not only individual-specific, but also alternative-specific variables can be analysed. Standard logit models only incorporate individual-specific variables/characteristics, such as age or income, that vary across individuals. Alternative-specific variables, by contrast, vary across alternatives (and individuals) and can thus include individual perceptions in relation to each party alternative, respectively alternative-specific characteristics. Issue proximity, competence and commitment are all examples of such variables because they vary across alternatives, respectively within the same respondent; One party is perceived as the most competent, while all others are not. Individualspecific variables can still affect the probability of choosing each alternative differently. So, there will be p-1 coefficients estimated (one baseline category). But there will be a single coefficient for alternative-specific variables that exploits the differences between the alternatives (cf. Train 2009). CLMs can also handle varying numbers of available alternatives per individual, which allows modelling the exact party availabilities in each canton. And lastly, CLMs are usually derived in a utility framework where each voter is assumed to choose that alternative that maximises his/her utility, which perfectly fits to our model. The utility function for an individual i choosing party alternative p is:

$$
U_{i p}=x_{i p} \beta+z_{i} \alpha_{p}+\varepsilon_{i p}
$$

where $x_{i p}$ is a vector of alternative-specific variables (such as PX, CP, and CT) with β parameters and z_{i} a vector with individual-specific variables and α_{p} parameters for the alternatives. The issue dimensions j are omitted for simplicity.

In the following sections, I will first present all baseline models, then successively add all IO considerations, and finally repeat these steps with the interactions. Finding positive coefficients would support the hypotheses. Due to the high number of coefficients, I only show the main coefficients. The full models are in the appendix (Table 14-21). Since the same respondent is included multiple times, not all observations are independent of each other. I thus calculate robust standard errors clustering around the
individuals. The used CLM equations are shown in Fig. 5. Пip stands for an individual is probability π of choosing party alternative p, and $\Pi_{i k}$ for the probability of not choosing that alternative (i.e. $k \neq p$). The left side consequently describes the log odds of voting for a party versus not voting for it. PartyID ${ }_{\text {ip }}$ represents partisanship and $\delta_{[\ldots]}$ * X_{T}^{i} is a matrix containing all other individual-specific controls.

Fig. 5: CLM equations

5. RESULTS

5.1. BASIC FRAMEWORK

Table 2 shows the estimated regression coefficients and the corresponding odds ratios for all baseline models. As in each of the following tables, models M1-5 introduce each issue dimension separately, M6 includes all together, and M7 shows the left-right 'su-per-issue' with the cumulative approach. Unsurprisingly, partisanship has a very strong effect in every model. All coefficients are highly significant and correspond to substantial changes in odds ratios. M6, for example, indicates that the odds of voting for a party p for an individual that generally feels close to that party are 12.056 times the odds of someone who does not feel close to it, ceteris paribus. A similar story can be told about the issue proximity. All coefficients are highly significant and consistently indicate positive associations. For each one-unit increase in positional agreement with a party while the agreement with all other parties remains unchanged, the odds of voting for that party are multiplied by 1.631 (EU) or 2.158 (economy), on average, i.e. they are increased by 63.1% or 115.8%, respectively (M6, smallest-highest values). Such a one-unit increase corresponds, for example, to changing one's opinion from "neither against nor in favour" to "rather in favour".

Tables 3-4 seperately add the IO considerations. We can clearly see that competence and commitment perceptions exert an independent effect on vote choices, respectively that they have an effect on top of partisanship and issue proximity. All IO coefficients are highly significant ($p<0.001 \%$) and consistently indicate positive associations. For example in M6, the odds of voting for a party p for an individual that perceives that party as the most competent in (or committed to) migration policy are 2.348 (1.551) times the odds of a person who does not perceive that party as the most competent (committed), ceteris paribus, i.e. the former's odds are 134.8\% (55.1\%) higher. The
same is true for the cumulative approaches in M7. With each additional competence (commitment) attribution to a party (while the other IO attributions remain unchanged), the odds of voting for that party (rather than voting for another party) are multiplied by 2.034 (1.730), i.e. they are increased by 103.4% (73%), on average, ceteris paribus. Note that the effects in M6 are generally smaller than the ones in M1-5. This is not surprising given the associations between the issues. Moreover, commitment effects seem to be generally smaller than the ones from competence. Whether this is really the case, however, can only be answered with Table 5.

Table 2: Conditional Logit Models: Baseline models (only control variables)

Variable	M1		M2		M3		M4		M5		M6		M7	
	β (SE)	$\operatorname{Exp} \beta$ (SE)												
Partisanship	$\begin{gathered} 2.820^{* * *} \\ (0.041) \end{gathered}$	$\begin{array}{r} 16.781^{* * *} \\ (0.681) \end{array}$	$\begin{gathered} 2.778^{* * *} \\ (0.041) \end{gathered}$	$\begin{array}{r} 16.095^{* * *} \\ (0.663) \end{array}$	$\begin{gathered} 2.864^{\star * *} \\ (0.040) \end{gathered}$	$\begin{array}{r} 17.529^{* * *} \\ (0.709) \end{array}$	$\begin{gathered} 2.767^{* * *} \\ (0.041) \end{gathered}$	$\begin{array}{r} 15.912^{* * *} \\ (0.657) \end{array}$	$\begin{gathered} 2.761^{* * *} \\ (0.041) \end{gathered}$	$\begin{array}{r} 15.817^{* * *} \\ (0.654) \end{array}$	$\begin{array}{r} 2.490^{* * *} \\ (0.041) \end{array}$	$\begin{array}{r} 12.056^{* * *} \\ (0.528) \end{array}$	$\begin{gathered} 2.499 " \cdots " \\ (0.044) \end{gathered}$	$\begin{array}{r} 12.170^{* * *} \\ (0.539) \end{array}$
Env. Prox.	$\begin{gathered} 0.739^{* * *} \\ (0.063) \end{gathered}$	$\begin{gathered} 2.094^{* * *} \\ (0.131) \end{gathered}$									$\begin{gathered} 0.624^{* * *} \\ (0.075) \end{gathered}$	$\begin{gathered} 1.867^{* * *} \\ (0.140) \end{gathered}$		
Social Prox.			$\begin{gathered} 0.678^{* * *} \\ (0.039) \end{gathered}$	$\begin{gathered} 1.969^{* * *} \\ (0.076) \end{gathered}$							$\begin{gathered} 0.529^{* * *} \\ (0.045) \end{gathered}$	$\begin{gathered} 1.696^{* * *} \\ (0.077) \end{gathered}$		
Eco. Prox.					$\begin{gathered} 0.809^{* * *} \\ (0.069) \end{gathered}$	$\begin{array}{r} 2.246^{* * *} \\ (0.155) \end{array}$					$\begin{gathered} 0.769^{* * *} \\ (0.087) \end{gathered}$	$\begin{gathered} 2.158^{* * *} \\ (0.188) \end{gathered}$		
EU Prox.							$\begin{gathered} 0.675^{* * *} \\ (0.037) \end{gathered}$	$\begin{array}{r} 1.964^{* * *} \\ (0.073) \end{array}$			$\begin{gathered} 0.489 * * * \\ (0.044) \end{gathered}$	$\begin{gathered} 1.631^{* * *} \\ (0.071) \end{gathered}$		
Mig. Prox									$\begin{gathered} 0.661^{* * *} \\ (0.037) \end{gathered}$	$\begin{gathered} 1.938^{* * *} \\ (0.072) \end{gathered}$	$\begin{gathered} 0.529^{* * *} \\ (0.044) \end{gathered}$	$\begin{gathered} 1.698^{* * *} \\ (0.074) \end{gathered}$		
Left-Right Prox.													$\begin{array}{r} 0.417^{* * *} \\ (0.016) \\ \hline \end{array}$	$\begin{array}{r} 1.517^{* * *} \\ (0.025) \\ \hline \end{array}$
Statistics														
N		30001		30001		29972		30010		29993		29838		9501
AIC		1.128		31.488		67.520		07.387		19.346		45.009	680	. 583
Log Likelihood	-366	3.564		03.744		71.760		91.693		97.673	-335	56.504	-334	1.292

Table 3: Conditional logit models: Models with competence considerations

Variable	M1		M2		M3		M4		M5		M6		M7	
	β (SE)	$\operatorname{Exp} \beta$ (SE)												
Partisanship	$\begin{array}{r} 2.717^{* * *} \\ (0.046) \end{array}$	$\begin{array}{r} 15.140^{* * *} \\ (0.691) \end{array}$	$\begin{gathered} 2.639^{* * *} \\ (0.048) \end{gathered}$	$\begin{array}{r} 14.001^{* * *} \\ (0.666) \end{array}$	$\begin{array}{r} 2.793^{* * *} \\ (0.048) \end{array}$	$\begin{array}{r} 16.333^{\star * *} \\ (0.787) \end{array}$	$\begin{gathered} 2.607^{* * *} \\ (0.053) \end{gathered}$	$\begin{array}{r} 13.557^{* * *} \\ (0.723) \end{array}$	$\begin{array}{r} 2.531^{* * *} \\ (0.052) \end{array}$	$\begin{array}{r} 12.562^{* * *} \\ (0.658) \end{array}$	$\begin{aligned} & 2.086^{* * *} \\ & (0.067) \end{aligned}$	$\begin{array}{r} 8.056^{* * *} \\ (0.537) \end{array}$	$\begin{array}{r} 2.046^{* * *} \\ (0.048) \end{array}$	$\begin{array}{r} 7.734^{\star \star *} \\ (0.374) \end{array}$
Env. Prox. Env. Comp.	$\begin{array}{r} 0.748^{* * *} \\ (0.073) \\ 1.250^{* * *} \\ (0.100) \end{array}$	$\begin{array}{r} 2.113^{* * *} \\ (0.154) \\ 3.492^{* * *} \\ (0.349) \end{array}$									$\begin{array}{r} 0.598^{* * *} \\ (0.106) \\ 0.840^{* *} \\ (0.122) \end{array}$	$\begin{array}{r} 1.819^{* * *} \\ (0.194) \\ 2.315^{* * *} \\ (0.282) \end{array}$		
Social Prox. Social. Comp.			$\begin{array}{r} 0.635^{* * *} \\ (0.045) \\ 1.068^{* * *} \\ (0.081) \end{array}$	$\begin{array}{r} 1.887^{* * *} \\ (0.085) \\ 2.909^{* * *} \\ (0.236) \end{array}$							$\begin{array}{r} 0.439^{* *} \\ (0.067) \\ 0.551^{* *} \\ (0.110) \end{array}$	$\begin{array}{r} 1.551^{* * *} \\ (0.104) \\ 1.734^{* * *} \\ (0.191) \end{array}$		
Eco. Prox. Eco. Comp.					$\begin{array}{r} 0.777^{* * *} \\ (0.084) \\ 1.290^{* * *} \\ (0.101) \end{array}$	$\begin{array}{r} 2.174^{* * *} \\ (0.183) \\ 3.633^{* * *} \\ (0.366) \end{array}$					$\begin{array}{r} 0.549^{* * *} \\ (0.127) \\ 0.630^{* *} \\ (0.120) \end{array}$	$\begin{array}{r} 1.732^{* * *} \\ (0.220) \\ 1.878^{* * *} \\ (0.225) \end{array}$		
EU Prox. EU Comp.							$\begin{array}{r} 0.572^{* * *} \\ (0.049) \\ 1.200^{* * *} \\ (0.074) \end{array}$	$\begin{array}{r} 1.773^{* * *} \\ (0.086) \\ 3.320^{* * *} \\ (0.246) \end{array}$			$\begin{array}{r} 0.305^{* * *} \\ (0.067) \\ 0.715^{* *} \\ (0.088) \end{array}$	$\begin{array}{r} 1.357^{* * *} \\ (0.090) \\ 2.044^{* * *} \\ (0.180) \end{array}$		
Mig. Prox. Mig. Comp.									$\begin{array}{r} 0.531^{* * *} \\ (0.048) \\ 1.302^{* * *} \\ (0.064) \end{array}$	$\begin{array}{r} 1.701^{* * *} \\ (0.081) \\ 3.675^{* * *} \\ (0.234) \end{array}$	$\begin{gathered} 0.402^{* * *} \\ (0.068) \\ 0.854^{* *} \\ (0.081) \end{gathered}$	$\begin{array}{r} 1.494^{\star * *} \\ (0.102) \\ 2.348^{\star * *} \\ (0.189) \end{array}$		
Left-right Prox. Cum. Comp.													$\begin{array}{r} 0.353^{* * *} \\ (0.018) \\ 0.710^{\star * *} \\ (0.030) \\ \hline \end{array}$	$\begin{array}{r} 1.423^{* * *} \\ (0.025) \\ 2.034^{* * *} \\ (0.061) \\ \hline \end{array}$
Statistics N AIC Log Likelihood	2 5896 -2885	301	$\begin{array}{r} 24 \\ 5721 \\ -2797 \end{array}$			720 654 327	2 4674 -2274	129	- 486	158 079 040		$\begin{aligned} & 18135 \\ & 39.020 \\ & 35.510 \end{aligned}$		$\begin{array}{r} 29501 \\ 68.204 \\ 71.102 \end{array}$

Table 4: Conditional logit models: Models with commitment considerations

Variable	M1		M2		M3		M4		M5		M6		M7	
	β (SE)	$\operatorname{Exp} \beta$ (SE)												
Partisanship	$\begin{array}{r} 2.774^{* * *} \\ (0.042) \end{array}$	$\begin{array}{r} 16.030^{* * *} \\ (0.680) \end{array}$	$\begin{gathered} 2.725^{* * *} \\ (0.043) \end{gathered}$	$\begin{array}{r} 15.260^{* * *} \\ (0.659) \end{array}$	$\begin{array}{r} 2.838^{* * *} \\ (0.043) \end{array}$	$\begin{array}{r} 17.090^{* * *} \\ (0.739) \end{array}$	$\begin{gathered} 2.729^{* * *} \\ (0.047) \end{gathered}$	$\begin{array}{r} 15.320^{* * *} \\ (0.718) \end{array}$	$\begin{gathered} 2.736^{* * *} \\ (0.044) \end{gathered}$	$\begin{array}{r} 15.419^{* * *} \\ (0.675) \end{array}$	$\begin{gathered} 2.356^{* * *} \\ (0.053) \end{gathered}$	$\begin{array}{r} 10.552^{* * *} \\ (0.555) \end{array}$	$\begin{gathered} 2.332^{* * *} \\ (0.045) \end{gathered}$	$\begin{gathered} 10.29^{* * *} \\ (0.467) \end{gathered}$
Env. Prox. Env. Commit.	$\begin{array}{r} 0.769^{* * *} \\ (0.066) \\ 1.096^{* * *} \\ (0.122) \end{array}$	$\begin{array}{r} 2.157^{* * *} \\ (0.143) \\ 2.992^{* * *} \\ (0.366) \end{array}$									$\begin{array}{r} 0.659^{* * *} \\ (0.088) \\ 0.901^{* * *} \\ (0.135) \end{array}$	$\begin{array}{r} 1.932^{* * *} \\ (0.170) \\ 2.463^{* * *} \\ (0.332) \end{array}$		
Social Prox. Social Commit.			$\begin{gathered} 0.681^{* * *} \\ (0.040) \\ 0.616^{* * *} \\ (0.101) \end{gathered}$	$\begin{gathered} 1.975^{* * *} \\ (0.079) \\ 1.851^{* * *} \\ (0.188) \end{gathered}$							$\begin{array}{r} 0.539^{* * *} \\ (0.054) \\ 0.402^{* * *} \\ (0.119) \end{array}$	$\begin{gathered} 1.714^{* * *} \\ (0.092) \\ 1.495^{* * *} \\ (0.178) \end{gathered}$		
Eco. Prox. Eco. Commit.					$\begin{array}{r} 0.789^{* * *} \\ (0.074) \\ 0.772^{* * *} \\ (0.108) \end{array}$	$\begin{array}{r} 2.200^{* * *} \\ (0.162) \\ 2.165^{* * *} \\ (0.235) \end{array}$					$\begin{gathered} 0.737^{* * *} \\ (0.104) \\ 0.681^{* * *} \\ (0.133) \end{gathered}$	$\begin{array}{r} 2.090^{* * *} \\ (0.217) \\ 1.976^{* * *} \\ (0.263) \end{array}$		
EU Prox. EU Commit.							$\begin{gathered} 0.657^{* * *} \\ (0.042) \\ 0.543^{\star * *} \\ (0.063) \end{gathered}$	$\begin{array}{r} 1.930^{* * *} \\ (0.081) \\ 1.721^{* * *} \\ (0.109) \end{array}$			$\begin{array}{r} 0.414^{* * *} \\ (0.054) \\ 0.415^{* * *} \\ (0.070) \end{array}$	$\begin{array}{r} 1.513^{* * *} \\ (0.082) \\ 1.515^{* * *} \\ (0.105) \end{array}$		
Mig. Prox. Mig. Commit.									$\begin{gathered} 0.649^{* * *} \\ (0.039) \\ 0.593^{* * *} \\ (0.079) \end{gathered}$	$\begin{array}{r} 1.913^{* * *} \\ (0.075) \\ 1.809^{* * *} \\ (0.143) \end{array}$	$\begin{array}{r} 0.522^{* * *} \\ (0.055) \\ 0.439^{* * *} \\ (0.095) \end{array}$	$\begin{array}{r} 1.685^{* * *} \\ (0.092) \\ 1.551^{* * *} \\ (0.148) \end{array}$		
Left-right Prox. Cum. Commit.													$\begin{array}{r} 0.407^{* * *} \\ (0.017) \\ 0.548^{* * *} \\ (0.037) \end{array}$	$\begin{array}{r} 1.502^{* * *} \\ (0.025) \\ 1.730^{* * *} \\ (0.064) \\ \hline \end{array}$
Statistics N AIC Log Likelihood	680 -334	7750		7822 .919 .960	27 6598 -3236	022 755 377	2 5843 -2858	862 513 756	2 6571 -3222	$\begin{aligned} & 478 \\ & .335 \\ & .668 \end{aligned}$	22 4929 -2393	$\begin{array}{r} 2545 \\ .592 \\ .596 \end{array}$	- 655	$\begin{aligned} & 9501 \\ & .398 \\ & \hline 199 \end{aligned}$

The models in Table 5 now analyse both IO considerations together and thus contribute to the scarce literature investigating all three issue voting components. The results largely support what we have observed in the previous models. Again, all proximity and competence coefficients are highly significant ($p<0.001$) and have the expected sign. A first difference occurs, however, when we look at the commitment coefficients. While almost all of them (except one, insignificant coefficient in M6) still point in the right direction, only two of the five single-issue coefficients (in M1-5 or M6) remained significant. Considering that the strongest associations occurred between competence and commitment perceptions, this finding is not that surprising. Additional model estimations without issue proximities (Appendix: Table 18) also support this suspicion. Potential explanations for the associations were that people either use one perception to assess the other or that both considerations simply share a conceptual core.

What can be derived from it with more confidence is, however, that competence perceptions have a larger effect than commitment perceptions. Table 3-4 had already indicated this circumstance, but Table 5 now provides direct evidence. All competence coefficients and thus all odds ratio changes are clearly higher than the ones from commitment. While the odds ratios in the single-issue competence models vary between 2.734 and 3.408 , the ones for commitment vary between 1.198 and 1.929 (or in M6 between 1.765-2.182, and 0.941-1.697, respectively). The same can be said about the cumulative approach. With each additional competence attribution, the odds of voting for that party are multiplied by 1.933 , i.e. increased by 93.3%, on average, ceteris paribus. For an additional commitment attribution, however, the odds are only multiplied by 1.165 , i.e. increased by 16.5%. Or expressed with multiple issues, each three-unit change in competence attributions would multiply the odds by $\mathrm{e}^{3^{*} 0.659}=7.221$, i.e. increase them by 622.1%, while the same change in commitment attributions would only multiply the odds by $\mathrm{e}^{3^{*} 0.153}=1.582$, i.e. increase them by 114.9%, ceteris paribus.

This is not to say, however, that commitment perceptions cannot make a difference. There is more variation across the issues, but two out of five coefficients were still significant in the model with all issues and components included (M6). They indicate an additional effect on top of proximity and competence. In particular, being perceived as the party most committed to environmental policy multiplies the odds of receiving that person's vote by 1.697 , i.e. increases them by 69.7%. And just like the cumulative competence and left-right proximity coefficients in M7, also the cumulative commitment coefficient is highly significant ($p<0.001$), which again indicates an additional effect. In sum, Tables 3-5 clearly support the hypotheses $\mathrm{H} 1 \mathrm{a}-2 \mathrm{~b}$. People are more likely to vote for a party they perceive as the most competent in and/or committed to an issue - also when controlling for issue proximities and partisanship. The commitment effects, however, appear to be smaller than the competence effects. Next, we analyse whether these effects are actually moderated by the party polarisation in an individual's CS.

Table 5: Conditional logit models: Models with competence and commitment considerations

Variable	M1		M2		M3		M4		M5		M6		M7	
	β (SE)	$\operatorname{Exp} \beta$ (SE)												
Partisanship													$\begin{array}{r} 2.032^{* * *} \\ (0.048) \end{array}$	$\begin{gathered} 7.626^{* * *} \\ (0.370) \end{gathered}$
Env. Prox.-														
Env. Comp.														
Env. Commit.														
Social Prox. _														
Social Comp.														
Social Commit.														
Eco. Prox.														
Eco Comp.														
Eco. Commit.														
EU Prox. _														
EU Comp.														
EU Commit.														
Mig. Prox.														
Mig. Comp.														
Mig. Commit.														
Left-right Prox.													$\begin{gathered} 0.353^{\star * *} \\ (0.018) \end{gathered}$	$\begin{gathered} 1.423^{\star * *} \\ (0.025) \end{gathered}$
Cum. Comp._													0.659 ***	$1.933 * * *$
Cum. Commit.													(0.033)	$\begin{gathered} (0.064) \\ 1.165^{* * *} \end{gathered}$
													(0.044)	(0.051)
Statistics														
N													$\begin{array}{r} 29501 \\ 6056.977 \\ -2964.489 \end{array}$	
AIC														
Log Likelihood														

5.2. INTERACTIONS

Table 6 shows the regression coefficients for all models with the interaction between competence perceptions and issue similarities in an individual's CS. If we focus on the interaction term coefficients, we can see that in M1-5 and M7 all of them are highly significant and positive. For the first time, however, not all competence-effect-related coefficients are significant in M6. All of the interaction coefficients have the expected sign, but only two are significant. But again, finding weaker results in M6 is not too surprising given the inter-issue-associations, the automatically reduced number of observations, and the increased complexity of the model with - by now - 97 estimated coefficients and 5 interactions. Moreover, and somewhat surprising, in M6 of Table 8, where both IO considerations are again analysed together, three of the five interaction terms are significant (in addition to all of them being significant in $\mathrm{M} 1-5$ \& 7).

The pattern in Table 7, which contains all interactions between commitment perceptions and CS issue similarities, looks almost identical. In M2-5 and M7, all interaction term coefficients are statistically significant and positive. The only exception is M1 where the positive coefficient does not reach the 5%-significance-level. In M6, all interaction term coefficients are positive and three of them significant.

To interpret effect-sizes, one has to be cautious when using the estimates in Tables 68. The IO-variables are now dependent on a second variable, respectively they show their effects when the CS issue similarity is zero. While this is theoretically possible (at least in a very hypothetical case), it does not exist in our data. To avoid extrapolations, I thus focus on the observed issue similarity values, which generally lie between 2-4 (see Fig. 4). Having said that, one can nicely demonstrate how the interactions work. For example, if individuals consider voting for parties with rather different EU positions (i.e. positions that range over two-units on the EU-scale), the odds of voting for a party
p for a person that perceives that party as the most competent in (or committed to) EU policy are $\mathrm{e}^{-1.136+2^{*} 0.569}=1.002\left(\mathrm{e}^{-0.482+2^{*} 0.266}=1.051\right)$ times the odds of a person who does not see that party as the most competent (or committed), ceteris paribus (see M6, Tables 6-7). In other words, the former's odds are 0.2% (5.1\%) higher than the latter's, which essentially means that IO considerations are irrelevant in this case. By contrast, if people consider voting for parties with the exact same EU position, the odds of voting for a party p for a person that perceives that party as the most competent in (or committed to) EU policy are $\mathrm{e}^{-1.136+4^{*} 0.569}=3.126\left(\mathrm{e}^{-0.482+4^{*} 0.266}=1.789\right)$ times the odds of a person who does not see that party as the most competent (committed), ceteris paribus. The former's odds are thus $212,6 \%$ (78.9\%) higher than the latter's. And this means that IO considerations can make a real difference here. ${ }^{1}$

[^0]Table 6: CLM: Models with competence x issue similarity interactions

Variable	M1	M2	M3	M4	M5	M6	M7
	β (SE)						
Partisanship	$\begin{array}{r} 2.693^{* * *} \\ (0.047) \end{array}$	$\begin{array}{r} 2.614^{* * *} \\ (0.049) \end{array}$	$\begin{array}{r} 2.748^{* * *} \\ (0.049) \end{array}$	$\begin{array}{r} 2.591^{* * *} \\ (0.054) \end{array}$	$\begin{array}{r} 2.500^{* * *} \\ (0.053) \end{array}$	$\begin{gathered} 1.974^{* * *} \\ (0.070) \end{gathered}$	$\begin{array}{r} 2.037^{* * *} \\ (0.049) \end{array}$
Env. Prox.	$\begin{gathered} 0.697^{* * *} \\ (0.075) \end{gathered}$					$\begin{array}{r} 0.527^{* * *} \\ (0.116) \end{array}$	
Env. Comp.	$\begin{array}{r} -1.257 \\ (0.801) \end{array}$					$\begin{array}{r} -0.579 \\ (0.847) \end{array}$	
Env. Comp. x CS Sim.	$\begin{aligned} & 0.708^{* *} \\ & (0.219) \end{aligned}$					$\begin{array}{r} 0.406 \\ (0.245) \end{array}$	
Social Prox.		$\begin{array}{r} 0.626^{* * *} \\ (0.045) \end{array}$				$\begin{gathered} 0.425^{* * *} \\ (0.071) \end{gathered}$	
Social Comp.		$\begin{array}{r} -0.740 \\ (0.546) \end{array}$				$\begin{array}{r} -0.575 \\ (0.645) \end{array}$	
Social Comp. x CS Sim.		$\begin{gathered} 0.524^{* * *} \\ (0.149) \end{gathered}$				$\begin{array}{r} 0.351 \\ (0.184) \end{array}$	
Eco. Prox.			$\begin{array}{r} 0.778^{* * *} \\ (0.086) \end{array}$			$\begin{array}{r} 0.481^{* * *} \\ (0.133) \end{array}$	
Eco. Comp.			$\begin{aligned} & -2.088^{*} \\ & (1.039) \end{aligned}$			$\begin{array}{r} 0.022 \\ (1.041) \end{array}$	
Eco. Comp. x CS Sim.			$\begin{gathered} 0.938^{* * *} \\ (0.285) \end{gathered}$			$\begin{array}{r} 0.170 \\ (0.291) \end{array}$	
EU Prox.				$\begin{gathered} 0.575^{* * *} \\ (0.050) \end{gathered}$		$\begin{aligned} & 0.202^{* *} \\ & (0.076) \end{aligned}$	
EU Comp.				$\begin{array}{r} -1.735^{\star * *} \\ (0.505) \end{array}$		$\begin{aligned} & -1.136^{*} \\ & (0.537) \end{aligned}$	
EU Comp. x CS Sim.				$\begin{array}{r} 0.878^{* * *} \\ (0.144) \end{array}$		$\begin{array}{r} 0.569^{* * *} \\ (0.154) \end{array}$	
Mig. Prox.					$\begin{gathered} 0.508^{\star * *} \\ (0.049) \end{gathered}$	$\begin{aligned} & 0.250^{\star *} \\ & (0.083) \end{aligned}$	
Mig. Comp.					$\begin{array}{r} -0.349 \\ (0.408) \end{array}$	$\begin{array}{r} -0.300 \\ (0.469) \end{array}$	
Mig. Comp. x CS Sim.					$\begin{gathered} 0.486^{* * *} \\ (0.114) \end{gathered}$	$\begin{gathered} 0.326^{*} \\ (0.134) \end{gathered}$	
Left-right Prox.							$\begin{array}{r} 0.344^{* * *} \\ (0.018) \end{array}$
Cum. Comp.							$\begin{aligned} & -0.102 \\ & (0.128) \end{aligned}$
Cum. Comp. x CS Sim.							$\begin{array}{r} 0.104^{* * *} \\ (0.015) \end{array}$
Statistics							
N	24801	24732	23720	22129	23158	18048	29501
AIC	5845.411	5666.552	5353.047	4620.546	4834.689	3142.607	6015.464
Log Likelihood	-2852.706	-2763.276	-2606.524	-2240.273	-2347.344	-1468.304	-2937.732

Significance levels: * $\mathrm{p}<0.05,{ }^{* *} \mathrm{p}<0.01,{ }^{* * *} \mathrm{p}<0.001$

Table 7: CLM: Models with commitment x issue similarity interactions

Variable	M1	M2	M3	M4	M5	M6	M7
	β (SE)						
Partisanship	$\begin{array}{r} 2.742^{\star * *} \\ (0.043) \end{array}$	$\begin{array}{r} 2.700^{* * *} \\ (0.044) \end{array}$	$\begin{array}{r} 2.799^{* * *} \\ (0.044) \end{array}$	$\begin{array}{r} 2.727^{* * *} \\ (0.047) \end{array}$	$\begin{array}{r} 2.719^{* * *} \\ (0.044) \end{array}$	$\begin{array}{r} 2.251^{* * *} \\ (0.056) \end{array}$	$\begin{array}{r} 2.328^{* * *} \\ (0.046) \end{array}$
Env. Prox.	$\begin{array}{r} 0.717^{* * *} \\ (0.068) \end{array}$					$\begin{array}{r} 0.561^{* * *} \\ (0.094) \end{array}$	
Env. Commit.	$\begin{array}{r} 0.037 \\ (1.016) \end{array}$					$\begin{array}{r} 0.301 \\ (0.957) \end{array}$	
Env. Commit. x CS Sim.	$\begin{array}{r} 0.303 \\ (0.275) \end{array}$					$\begin{array}{r} 0.165 \\ (0.267) \end{array}$	
Social Prox.		$\begin{gathered} 0.678^{* * *} \\ (0.041) \end{gathered}$				$\begin{array}{r} 0.513^{* * *} \\ (0.058) \end{array}$	
Social Commit.		$\begin{array}{r} -1.974^{* *} \\ (0.614) \end{array}$				$\begin{array}{r} -2.312^{* *} \\ (0.705) \end{array}$	
Social Commit. X CS Sim.		$\begin{gathered} 0.765^{* * *} \\ (0.170) \end{gathered}$				$\begin{gathered} 0.818^{* * *} \\ (0.199) \end{gathered}$	
Eco. Prox.			$\begin{array}{r} 0.790^{* * *} \\ (0.075) \end{array}$			$\begin{array}{r} 0.703^{* * *} \\ (0.108) \end{array}$	
Eco. Commit.			$\begin{array}{r} -1.262 \\ (1.072) \end{array}$			$\begin{array}{r} 0.256 \\ (1.115) \end{array}$	
Eco. Commit. x CS Sim.			$\begin{gathered} 0.562^{*} \\ (0.287) \end{gathered}$			$\begin{array}{r} 0.121 \\ (0.299) \end{array}$	
EU Prox.				$\begin{array}{r} 0.655^{* * *} \\ (0.042) \end{array}$		$\begin{array}{r} 0.305^{* * *} \\ (0.062) \end{array}$	
EU Commit.				$\begin{array}{r} -0.523 \\ (0.437) \end{array}$		$\begin{array}{r} -0.482 \\ (0.455) \end{array}$	
EU Commit. x CS Sim.				$\begin{aligned} & 0.315^{* *} \\ & (0.120) \end{aligned}$		$\begin{gathered} 0.266^{*} \\ (0.127) \end{gathered}$	
Mig. Prox.					$\begin{gathered} 0.622^{* * *} \\ (0.040) \end{gathered}$	$\begin{array}{r} 0.354^{* * *} \\ (0.065) \end{array}$	
Mig. Commit.					$\begin{aligned} & -0.662 \\ & (0.503) \end{aligned}$	$\begin{array}{r} -0.841 \\ (0.627) \end{array}$	
Mig. Commit \times CS Sim.					$\begin{aligned} & 0.372^{\star *} \\ & (0.139) \end{aligned}$	$\begin{gathered} 0.385^{*} \\ (0.174) \end{gathered}$	
Left-right Prox.							$\begin{array}{r} 0.402^{* * *} \\ (0.017) \end{array}$
Cum. Commit.							$\begin{array}{r} -0.240 \\ (0.167) \end{array}$
Cum. Commit. x CS Sim.							$\begin{gathered} 0.098^{* * *} \\ (0.019) \end{gathered}$
Statistics							
N	27750	27822	27022	24862	27478	22545	29501
AIC	6755.264	6689.525	6528.829	5825.204	6526.016	4679.549	6519.267
Log Likelihood	-3307.632	-3274.763	-3194.414	-2842.602	-3193.008	-2233.774	-3189.634

Significance levels: * $p<0.05$, ** $p<0.01,{ }^{* * *} p<0.001$

Moreover, Table 8 provides evidence that competence effects are again larger than commitment effects, respectively that this previous finding still holds. It is the (singleissue) commitment coefficients that lose more of their size and mostly also their statistical significance, while all the competence coefficients are still significant in M1-5 and M7, and in three out of five cases in M6. The same overall conclusion can be drawn from M7. Both coefficients have the expected sign and are statistically significant, but the moderated cumulative competence effect is larger. If individuals consider voting for rather ideologically dispersed parties (e.g. parties that range over 5 -units on the leftright dimension), each additional competence (or commitment) attribution to a party multiplies the odds of voting for that party by $\mathrm{e}^{-0.033+5^{*} 0.088}=1.502\left(\mathrm{e}^{-0.201+5^{*} 0.046}=1.029\right)$, i.e. increases them by 50.2% (2.9\%), ceteris paribus. By contrast, if individuals consider only parties with the same left-right positioning, each additional competence (commitment) attribution multiplies the odds by $\mathrm{e}^{-0.033+10^{*} 0.088}=2.332\left(\mathrm{e}^{-0.201+10^{*} 0.046}=\right.$ 1.295), i.e. increases them by 133.2% (or 12.9%), ceteris paribus.

In sum, the analysis reveals strong support for $\mathrm{H} 3 \mathrm{a}-4 \mathrm{~b}$. (Cumulative) IO considerations become more important when the considered party positions are increasingly similar.

Table 8: CLM: Models with competence \& commitment x issue similarity interactions

Variable	M1	M2	M3	M4	M5	M6	M7
	β (SE)						
Partisanship	$\begin{array}{r} 2.688^{* * *} \\ (0.047) \end{array}$	$\begin{array}{r} 2.605^{* * *} \\ (0.049) \end{array}$	$\begin{gathered} 2.741^{* * *} \\ (0.050) \end{gathered}$	$\begin{array}{r} 2.586^{* * *} \\ (0.056) \end{array}$	$\begin{array}{r} 2.499 * * * \\ (0.054 \end{array}$	$\begin{array}{r} 1.980^{* * *} \\ (0.073) \end{array}$	$\begin{array}{r} 2.022^{* * *} \\ (0.049) \end{array}$
Env. Prox.	$\begin{aligned} & 0.704^{* * *} \\ & (0.076) \end{aligned}$					$\begin{array}{r} 0.539^{* * *} \\ (0.118) \end{array}$	
Env. Comp.	$\begin{aligned} & -1.612 \\ & (0.864) \end{aligned}$					$\begin{array}{r} -1.383 \\ (0.967) \end{array}$	
Env. Commit.	$\begin{array}{r} 1.027 \\ (1.192) \end{array}$					$\begin{array}{r} 1.929 \\ (1.200) \end{array}$	
Env. Comp. x CS Sim.	$\begin{aligned} & 0.761^{* *} \\ & (0.236) \end{aligned}$					$\begin{gathered} 0.608^{*} \\ (0.277) \end{gathered}$	
Env. Commit x CS Sim.	$\begin{array}{r} -0.105 \\ (0.324) \end{array}$					$\begin{array}{r} -0.415 \\ (0.343) \end{array}$	
Social Prox.		$\begin{aligned} & 0.632^{* * *} \\ & (0.046) \end{aligned}$				$\begin{gathered} 0.410^{* * *} \\ (0.075) \end{gathered}$	
Social Comp.		$\begin{gathered} -0.267 \\ (0.606) \end{gathered}$				$\begin{array}{r} 0.135 \\ (0.712) \end{array}$	
Social Commit.		$\begin{array}{r} -2.173^{* *} \\ (0.772) \end{array}$				$\begin{array}{r} -2.514^{* *} \\ (0.908) \end{array}$	
Social Comp. x CS Sim.		$\begin{gathered} 0.368^{*} \\ (0.166) \end{gathered}$				$\begin{array}{r} 0.141 \\ (0.203) \end{array}$	
Social Commit. x CS Sim.		$\begin{aligned} & 0.700^{* *} \\ & (0.215) \end{aligned}$				$\begin{aligned} & 0.765^{* *} \\ & (0.267) \end{aligned}$	
Eco. Prox.			$\begin{array}{r} 0.771^{* * *} \\ (0.087) \end{array}$			$\begin{array}{r} 0.565^{* * *} \\ (0.135) \end{array}$	
Eco. Comp.			$\begin{aligned} & -2.394^{*} \\ & (1.213) \end{aligned}$			$\begin{array}{r} -0.189 \\ (1.329) \end{array}$	
Eco. Commit.			$\begin{array}{r} 0.797 \\ (1.428) \end{array}$			$\begin{array}{r} 1.710 \\ (1.704) \end{array}$	
Eco. Comp. x CS Sim.			$\begin{aligned} & 0.987^{* *} \\ & (0.331) \end{aligned}$			$\begin{array}{r} 0.222 \\ (0.370) \end{array}$	
Eco. Commit. x CS Sim.			$\begin{array}{r} -0.156 \\ (0.383) \end{array}$			$\begin{array}{r} -0.424 \\ (0.469) \end{array}$	
EU Prox.				$\begin{array}{r} 0.546^{* * *} \\ (0.052) \end{array}$		$\begin{array}{r} 0.135 \\ (0.080) \end{array}$	
EU Comp.				$\begin{array}{r} -1.868^{* *} \\ (0.638) \end{array}$		$\begin{aligned} & -1.443^{*} \\ & (0.704) \end{aligned}$	
EU Commit.				$\begin{array}{r} 0.583 \\ (0.620) \end{array}$		$\begin{array}{r} 0.547 \\ (0.678) \end{array}$	
EU Comp. x CS Sim.				$\begin{array}{r} 0.928^{* * *} \\ (0.182) \end{array}$		$\begin{aligned} & 0.664^{* *} \\ & (0.203) \end{aligned}$	
EU Commit. x CS Sim.				$\begin{array}{r} -0.174 \\ (0.176) \end{array}$		$\begin{array}{r} -0.161 \\ (0.198) \end{array}$	
Mig. Prox.					$\begin{array}{r} 0.498^{* * *} \\ (0.050) \end{array}$	$\begin{aligned} & 0.255^{* *} \\ & (0.087) \end{aligned}$	
Mig. Comp.					$\begin{array}{r} -0.257 \\ (0.450) \end{array}$	$\begin{array}{r} -0.326 \\ (0.540) \end{array}$	
Mig. Commit.					$\begin{array}{r} -0.592 \\ (0.596) \end{array}$	$\begin{aligned} & -1.012 \\ & (0.714) \end{aligned}$	
Mig. Comp. x CS Sim					$\begin{array}{r} 0.437^{* * *} \\ (0.126) \end{array}$	$\begin{gathered} 0.315^{*} \\ (0.154) \end{gathered}$	
Mig. Commit. x CS Sim.					$\begin{array}{r} 0.253 \\ (0.167) \end{array}$	$\begin{array}{r} 0.390 \\ (0.203) \end{array}$	
Left-right Prox.							$\begin{array}{r} 0.344^{* * *} \\ (0.018) \end{array}$
Cum. Comp.							$\begin{array}{r} -0.033 \\ (0.150) \end{array}$
Cum. Commit.							$\begin{array}{r} -0.201 \\ (0.192) \end{array}$
Cum. Comp. x CS Sim.							$\begin{array}{r} 0.088^{* * *} \\ (0.018) \end{array}$
Cum. Commit. x CS Sim.							$\begin{gathered} 0.046^{*} \\ (0.023) \\ \hline \end{gathered}$
Statistics							
N	24303	24237	23110	20923	22587	16635	29501
AIC	5724.956	5577.098	5247.976	4379.662	4731.256	2922.009	6001.545
Log Likelihood	-2790.478	-2716.549	-2551.988	-2117.831	-2293.628	-1357.004	-2928.772

5.3. ROBUSTNESS

To check the robustness of the findings, I re-run all the models with different measurement strategies; First, to decide whether a party is in the CS, one could alternatively use the more direct question whether a respondent also considered voting for another party than they did. I used the vote propensities above because the latter question is often criticised for post-election biases (cf. Oscarsson and Rosema 2019, 260). But it is certainly useful for an additional test. Second, when using the vote propensities, one could also apply the above-discussed ≥ 5 cut-off-point. And third, instead of using the range, one could calculate the mean of all absolute interparty distances to capture the CS polarisation. Based on these three points, it was possible to measure the issue similarities in twelve different ways. The resulting frequency distributions can be seen in the appendix (Fig. 14-16). In order to ensure that our estimations are not distorted by the people with only one party in the CS, I also re-run all twelve specification with only 'undecided' people, i.e. people that consider at least two parties. ${ }^{2}$ Encouragingly, the overall interpretation did not change. The single-issue models looked very similar and there was only some variation in the number of significant coefficients in the M6s. Finally, as this study is based on observational data, it cannot provide causal evidence. One could therefore question whether the people with smaller CSs are not generally different than the people with larger CSs, and that this is why we found differing IO effects. Of course, one cannot completely rule out this possibility. But there are at least four arguments that make it less plausible: First, one would generally expect that people with larger CSs care less about positions (as they consider much more ideologically dispersed parties in the first place) and thus base their decisions more on other factors, such as IO considerations. Our analysis revealed, however, the exact opposite effect;

[^1]people with smaller CSs relied more on IOs. Second, issue similarities in a CS are largely exogenously given. A voter's positions influence what parties one considers (Rekker and Rosema 2019), but they do not influence the positional differentiation among them. This largely depends on other factors, such as the overall voter distribution or party strategies. Third, all models include various socio-structural controls. Political interest was explicitly included to account for potential decision criteria heterogeneity among individuals. And fourth, first experimental evidence - from a choice experiment between two candidates - points in the same direction as this study (cf. Franchino and Zucchini 2015).

6. CONCLUSION

Existing applications of the IO theory have produced highly contradictory results concerning the question whether IO considerations matter more or less in polarised party systems. While some authors found stronger effects in less polarised systems (Buttice and Stone 2012; Franchino and Zucchini 2015; Green 2007; Green and Hobolt 2008), others found the exact opposite (Clark and Leiter 2014; Lanz 2014; Pardos-Prado 2012). The aim of this paper was thus to help clarify some conceptual issues surrounding the theory, and to address these contradictory findings by introducing a new concept that I call 'relevant party polarisation'. The research question was: Do IO considerations (competence and commitment perceptions) have an independent effect on the vote choices and is it dependent on the party polarisation in an individual's CS?

Based on van der Brug (2017)'s reasoning, I first suggested viewing IO considerations as additional, although interrelated aspects of a general issue voting framework with three components: proximity, competence, and commitment. Second, I argued that the contradictory findings are mainly a result of using aggregate party system polarization measures to explain individual vote choices. Especially in multi-party systems, voters
do not consider all positions of all parties and they should thus not all be equally relevant to an individual's decision-making. Accordingly, I developed a new concept focusing on the 'relevant' party polarisation in an individual's CS, respectively on the positional spectrum between the parties a voter considers.

Analysing the Swiss national elections of 2015 revealed strong evidence for the hypotheses. People were more likely to vote for a party they perceived as the most competent in and/or committed to an issue area - also when controlling for issue proximity and partisanship. The commitment effects were, however, generally smaller than the competence effects, and about half of the former's coefficients lost their significance in the combined single-issue models. In the cumulative models, the commitment effect was also smaller, but always significant like the competence effect. Regarding the interaction effects, the analysis consistently showed that IO considerations do not really matter when people are deciding between ideologically dispersed parties, but that they can make a real difference when the considered parties offer similar positions. A voter's focus might thus shift to who is better qualified or more willing to implement a policy when the considered parties offer the same position.

Overall, the results support the first literature camp in the sense that IOs matter more when parties converge ideologically. My reasoning differs, however, from them as I argue that it is not the prevalence of a positional or valence issue or the overall party system polarisation, but the party polarisation in an individual's CS that makes that difference. Moreover, the results support the finding - by the two so far only two studies considering all three issue voting components - that commitment perceptions have an independent, but more limited effect than competence perceptions (cf. Lachat 2014b; Walgrave, Lefevere, and Tresch 2020). And the results clearly support Karlsen and

Aardal (2016)'s argument that voters consider several issue dimensions, respectively the whole policy package that parties offer, and not just the most important issue.

The results have important implications. From a practical perspective, the analysis suggests that not all parties in a political system can equally profit from strategically emphasising IOs and, consequently, that not all parties should use the same party messages. For parties that face close ideological competitors, using messages that emphasise their past performance on an issue or their links to a constituency (cf. Stubager and Seeberg 2016) to strategically strengthen their competence and/or commitment perceptions could be a decisive tool to set them apart and win important votes. Parties with extreme or unique issue positions, however, seem to benefit much less from emphasising such messages. From a theoretical perspective, the analysis not only helps to resolve the contradictory findings in the IO-literature, it also adds a completely new way of thinking about party polarisation to the political science literature. And this could have far-reaching consequences for other individual-level studies about polarisation. To my knowledge, this is the first paper that suggest measuring party polarisation not on a system-specific, but on an individual-specific level.

Future studies could analyse the effect-size-differences across the issues by including issue salience or investigating whether the overall IO "strength" or "clarity" in the electorate interacts with the impact of individual-level perceptions (cf. Lachat 2014b, 739).

BIBLIOGRAPHY

Aalberg, Toril, and Anders T. Jenssen. 2007. "Do Television Debates in Multiparty Systems Affect Viewers? A Quasi-Experimental Study with First-Time Voters." Scandinavian Political Studies 30(1): 115-35.

Alvarez, R. Michael, and Jonathan Nagler. 2004. "Party System Compactness: Measurement and Consequences." Political Analysis 12(1): 46-62.

Bélanger, Éric, and Bonnie M. Meguid. 2008. "Issue Salience, Issue Ownership, and Issue-Based Vote Choice." Electoral Studies 27: 477-91.

Bellucci, Paolo. 2006. "Tracing the Cognitive and Affective Roots of 'Party Competence': Italy and Britain, 2001." Electoral Studies 25: 548-69.

Bochsler, Daniel, Regula Hänggli, and Silja Häusermann. 2015. "Introduction: Consensus Lost? Disenchanted Democracy in Switzerland." Swiss Political Science Review 21(4): 475-90.

Bochsler, Daniel, and Pascal Sciarini. 2010. "So Close But So Far: Voting Propensity and Party Choice for Left-Wing Parties." Swiss Political Science Review 16(3): 373-402.
van der Brug, Wouter. 2004. "Issue Ownership and Party Choice." Electoral Studies 23: 209-33.
2017. "Issue Ownership: An Ambiguous Concept." In The SAGE Handbook of Electoral Behaviour, eds. Kai Arzheimer, Jocelyn Evans, and Michael S. LewisBeck. London: SAGE Publications, 521-37.

De Bruycker, Iskander, and Stefaan Walgrave. 2014. "How a New Issue Becomes an Owned Issue. Media Coverage and the Financial Crisis in Belgium (2008-2009)." International Journal of Public Opinion Research 26(1): 86-97.

Budge, Ian, and Dennis J. Farlie. 1983. Explaining and Predicting Elections: Issue Effects and Party Strategies in Twenty-Three Democracies. London: George Allen
\& Unwin.
Buttice, Matthew K., and Walter J. Stone. 2012. "Candidates Matter: Policy and Quality Differences in Congressional Elections." The Journal of Politics 74(3): 870-87.

Campbell, Angus, Philip E. Converse, Warren E. Miller, and Donald E. Stokes. 1960. The American Voter. Chicago: The University of Chicago Press.

Clark, Michael, and Debra Leiter. 2014. "Does the Ideological Dispersion of Parties Mediate the Electoral Impact of Valence? A Cross-National Study of Party Support in Nine Western European Democracies." Comparative Political Studies 47(2): 171-202.

Clarke, Harold D., David Sanders, Marianne C. Stewart, and Whiteley Paul. 2004. "Electoral Choice in 2001." In Political Choice in Britain, eds. Harold D. Clarke, David Sanders, Marianne C. Stewart, and Paul Whiteley. Oxford: Oxford University Press, 79-130.

Craig, Stephen C., and Paulina S. Cossette. 2020. "Who Owns What, and Why? The Origins of Issue Ownership Beliefs." Politics and Policy 48(1): 107-34.

Dahlberg, Stefan, and Johan Martinsson. 2015. "Changing Issue Ownership through Policy Communication." West European Politics 38(4): 817-38.

Dalton, Russell J. 1984. "Cognitive Mobilization and Partisan Dealignment in Advanced Industrial Democracies." The Journal of Politics 46(1): 264-84.
—__. 2008. "The Quantity and the Quality of Party Systems. Party Systems, Its Measurement, and Its Consequences." Comparative Political Studies 41(7): 899920.

Dalton, Russell J, and Martin P Wattenberg. 2002. Parties Without Partisans: Political Change in Advanced Industrial Democracies. Oxford: Oxford University Press.

Dejaeghere, Yves, and Patrick van Erkel. 2017. "The Importance of Issue-Ownership and Salience for Voters' Knowledge of Parties' Issue Positions." Electoral Studies

46: 15-25.
Downs, Anthony. 1957. "An Economic Theory of Political Action in a Democracy." Journal of Political Economy 65(2): 135-50.
van der Eijk, Cees, and Mark N. Franklin. 2009. Elections and Voters. Basingstoke: Palgrave Macmillan.
van der Eijk, Cees, Hermann Schmitt, and Tanja Binder. 2005. "Left-Right Orientations and Party Choice." In The European Voter. A Comparative Study of Modern Democracies, ed. Jacques Thomasson. Oxford: Oxford University Press, 166-90.

Feddersen, Alexandra, and Simon Lanz. 2015. Issue Ownership : More than Just Party Identification? *.

Franchino, Fabio, and Francesco Zucchini. 2015. "Voting in a Multi-Dimensional Space: A Conjoint Analysis Employing Valence and Ideology Attributes of Candidates." Political Science Research and Methods 3(2): 221-41.

Green, Jane. 2007. "When Voters and Parties Agree: Valence Issues and Party Competition." Political Studies 55(3): 629-55.

Green, Jane, and Sara B. Hobolt. 2008. "Owning the Issue Agenda: Party Strategies and Vote Choices in British Elections." Electoral Studies 27(3): 460-76.

Green, Jane, and Will Jennings. 2012. "The Dynamics of Issue Competence and Vote for Parties in and out of Power: An Analysis of Valence in Britain, 1979-1997." European Journal of Political Research 51: 469-503.

Karlsen, Rune, and Bernt Aardal. 2016. "Political Values Count but Issue Ownership Decides? How Stable and Dynamic Factors Influence Party Set and Vote Choice in Multiparty Systems." International Political Science Review 37(2): 261-76.

Kleinnijenhuis, Jan, and Annemarie S. Walter. 2014. "News, Discussion, and Associative Issue Ownership: Instability at the Micro Level versus Stability at the Macro Level." The International Journal of Press/Politics 19(2): 226-45.

Lachat, Romain. 2008. "The Impact of Party Polarization on Ideological Voting." Electoral Studies 27(4): 687-98.
___ 2011. "Electoral Competitiveness and Issue Voting." Political Behavior 33(4): 645-63.
—__. 2014a. Electoral Competition and Issue Voting: The Effects of Polarization and Party Characteristics on the Voting Decision Process.

2014b. "Issue Ownership and the Vote: The Effects of Associative and Competence Ownership on Issue Voting." Swiss Political Science Review 20(4): 727-40.

Lanz, Simon. 2014. Issue Ownership Voting in Polarized Party Systems *. Paper prepared for the ECPR General Conference, University of Glasgow, 3-6 September 2014 (unpublished).

Lanz, Simon, and Pascal Sciarini. 2016. "The Short-Time Dynamics of Issue Ownership and Its Impact on the Vote." Journal of Elections, Public Opinion and Parties 26(2): 212-31.

Lefevere, Jonas, Anke Tresch, and Stefaan Walgrave. 2015. "Introduction: Issue Ownership." West European Politics 38(4): 755-60.

Lutz, Georg. 2016. Eidgenössische Wahlen 2015. Wahlteilnahme Und Wahlentscheid. Lausanne.

Lutz, Georg, and Pascal Sciarini. 2016. "Issue Competence and Its Influence on Voting Behavior in the Swiss 2015 Elections." Swiss Political Science Review 22(1): 514.

McFadden, Daniel. 1974. "Conditional Logit Analysis of Qualitative Choice Behavior." In Frontiers of Econometrics, ed. Paul Zarembka. New York and London: Academic Press, Inc., 105-42.

Meyer, Thomas M., and Wolfgang C. Müller. 2013. "The Issue Agenda, Party

Competence and Popularity: An Empirical Analysis of Austria 1989-2004." Journal of Elections, Public Opinion and Parties 23(4): 484-500.

Milazzo, Caitlin, James Adams, and Jane Green. 2012. "Are Voter Decision Rules Endogenous to Parties' Policy Strategies? A Model with Applications to Elite Depolarization in Post-Thatcher Britain." Journal of Politics 74(1): 262-76.

Nadeau, Richard, André Blais, Elisabeth Gidengil, and Neil Nevitte. 2001. "Perceptions of Party Competence in the 1997 Election." In Party Politics in Canada, eds. Hugh G. Thorburn and Alan Whitehorn. Toronto: Prentence-Hill, 413-30.

Oscarsson, Henrik, and Maria Oskarson. 2019. "Sequential Vote Choice: Applying a Consideration Set Model of Heterogeneous Decision Processes." Electoral Studies 57: 275-83.

Oscarsson, Henrik, and Martin Rosema. 2019. "Consideration Set Models of Electoral Choice: Theory, Method, and Application." Electoral Studies 57: 256-62.

Pardos-Prado, Sergi. 2012. "Valence beyond Consensus: Party Competence and Policy Dispersion from a Comparative Perspective." Electoral Studies 31: 342-52. Petitpas, Adrien, and Pascal Sciarini. 2018. "Short-Term Dynamics in Issue Ownership and Electoral Choice Formation." Swiss Political Science Review 24(4): 423-41.
___ 2020. "The More the Better? Cumulative Issue Ownership and Intra-Campaign Party Switching." Electoral Studies 64: 102-18.

Petrocik, John R. 1996. "Issue Ownership in Presidential Elections, with a 1980 Case Study." American Journal of Political Science 40(3): 825-50.

Petrocik, John R., William L. Benoit, and Glenn J. Hansen. 2003. "Issue Ownership and Presidential Campaigning, 1952-2000." Political Science Quarterly 118(4): 599-626.

Rekker, Roderik, and Martin Rosema. 2019. "How (Often) Do Voters Change Their Consideration Sets?" Electoral Studies 57: 284-93.

Seeberg, Henrik B. 2017. "How Stable Is Political Parties’ Issue Ownership? A CrossTime, Cross-National Analysis." Political Studies 65(2): 475-92.

Singh, Shane P., and Jason Roy. 2014. "Political Knowledge, the Decision Calculus, and Proximity Voting." Electoral Studies 34: 89-99.

Stanig, Piero. 2011. Measuring Political Polarization in Comparative Perspective.
Steenbergen, Marco R., Dominik Hangartner, and Catherine E. de Vries. 2011. Choice under Complexity: A Heuristic-Systematic Model of Electoral Behavior.

Stokes, Donald E. 1963. "Spatial Models of Party Competition." American Political Science Review 57(2): 368-77.

Stubager, Rune, and Henrik B. Seeberg. 2016. "What Can a Party Say? How Parties' Communication Can Influence Voters' Issue Ownership Perceptions." Electoral Studies 44: 162-71.

Stubager, Rune, Henrik Bech Seeberg, and Florence So. 2018. "One Size Doesn’t Fit All: Voter Decision Criteria Heterogeneity and Vote Choice." Electoral Studies 52(December 2017): 1-10.

Stubager, Rune, and Rune Slothuus. 2013. "What Are the Sources of Political Parties' Issue Ownership? Testing Four Explanations at the Individual Level." Political Behavior 35(3): 567-88.

Therriault, Andrew. 2009. Issue Ownership, Party Reputations, and Policy Positions. Where Issue Ownership Comes From, and Why the Answer Matters. New York.
—_. 2015. "Whose Issue Is It Anyway? A New Look at the Meaning and Measurement of Issue Ownership." British Journal of Political Science 45: 92938.

Train, Kenneth E. 2009. Discrete Choice Methods with Simulation. 2nd Editio. Cambridge: Cambridge University Press.

Tresch, Anke, and Alexandra Feddersen. 2019. "The (In)Stability of Voters'

Perceptions of Competence and Associative Issue Ownership: The Role of Media Campaign Coverage." Political Communication 36(3): 394-411.

Tresch, Anke, Jonas Lefevere, and Stefaan Walgrave. 2015. "Steal Me If You Can!' The Impact of Campaign Messages on Associative Issue Ownership." Party Politics 21(2): 198-208.

Vegetti, Federico. 2014. "From Political Conflict to Partisan Evaluations: How Citizens Assess Party Ideology and Competence in Polarized Elections." Electoral Studies 35: 230-41.

Vliegenthart, Rens, and Jonas Lefevere. 2017. "Disentangling the Direction of Causality Between Competence Issue Ownership and Party Preference." International Journal of Public Opinion Research: 1-12.

Wagner, Markus, and Thomas M. Meyer. 2015. "Negative Issue Ownership." West European Politics 38(4): 797-816.

Wagner, Markus, and Eva Zeglovits. 2014. "Survey Questions about Party Competence: Insights from Cognitive Interviews." Electoral Studies 34: 280-90.

Walgrave, Stefaan, Kirsten Van Camp, Jonas Lefevere, and Anke Tresch. 2016.
"Measuring Issue Ownership with Survey Questions. A Question Wording Experiment." Electoral Studies 42: 290-99.

Walgrave, Stefaan, and Jonas Lefevere. 2017. "Long-Term Associative Issue Ownership Change: A Panel Study in Belgium." Journal of Elections, Public Opinion and Parties 27(4): 484-502.

Walgrave, Stefaan, Jonas Lefevere, and Michiel Nuytemans. 2009. "Issue Ownership Stability and Change: How Political Parties Claim and Maintain Issues Through Media Appearances." Political Communication 26(2): 153-72.

Walgrave, Stefaan, Jonas Lefevere, and Anke Tresch. 2012. "The Associative Dimension of Issue Ownership." Public Opinion Quarterly 76(4): 771-82.
2014. "The Limits of Issue Ownership Dynamics: The Constraining Effect of Party Preference." Journal of Elections, Public Opinion and Parties 24(1): 1-19.

Walgrave, Stefaan, Jonas Lefevere, and Anke Daniela Tresch. 2020. "Position, Competence, and Commitment: Three Dimensions of Issue Voting." International Journal of Public Opinion Research 32(1): 165-75.

Walgrave, Stefaan, and Karolin Soontjens. 2019. "How Voters Form Associative Issue Ownership Perceptions. An Analysis of Specific Issues." Electoral Studies 59: 136-44.

Walgrave, Stefaan, and Knut De Swert. 2007. "Where Does Issue Ownership Come From? From the Party or from the Media? Issue-Party Identifications in Belgium, 1991-2005." Harvard International Journal of Press/Politics 12(1): 37-67.

Walgrave, Stefaan, Anke Tresch, and Jonas Lefevere. 2015. "The Conceptualisation and Measurement of Issue Ownership." West European Politics 38(4): 778-96.

Zakharova, Maria, and Paul V. Warwick. 2014. "The Sources of Valence Judgments: The Role of Policy Distance and the Structure of the Left-Right Spectrum." Comparative Political Studies 47(14): 2000-2025.

APPENDIX

Fig. 6: Pearson's correlation matrix - All positions

Fig. 7: Cramer's V matrix - All issue voting components (GPS)

Fig. 8: Cramer's V matrix - All issue voting components (SP)

Fig. 9: Cramer's V matrix - All issue voting components (GLP)

Fig. 10: Cramer's V matrix - All issue voting components (CVP)

Fig. 11: Cramer's V matrix - All issue voting components (BDP)

Fig. 12: Cramer's V matrix - All issue voting components (FDP)

Fig. 13: Cramer's V matrix - All issue voting components (SVP)

Table 9: Description of used Selects 2015 variables

Variable	Question (shortened)	Original Cod.	Recoding
Dependent variable			
Vote choice '15, 7 main parties	"Which party did you choose in the National Council elections?" (W2_3_f11800main7)	simple choice	dichotomous, chosen party $=1$, not chosen $=$ 0
Independent variables			
Position: Environment	"For/against increased environmental protection?"(f15340d)	$\begin{aligned} & \text { 5-point-scale } \\ & 1-5 \end{aligned}$	$\begin{aligned} & \text { 5-point-scale } \\ & 0-4 \end{aligned}$
Position: Social	"For/against increased social spending?" (f15340c)	$\begin{aligned} & \text { 5-point-scale } \\ & 1-5 \end{aligned}$	$\begin{aligned} & \text { 5-point-scale } \\ & 0-4 \end{aligned}$
Position: Economy	"For/against measures that strengthen the economy?" (f15340e)	$\begin{aligned} & \text { 5-point-scale } \\ & 1-5 \end{aligned}$	$\begin{aligned} & 5 \text {-point-scale } \\ & 0-4 \end{aligned}$
Position: Migration	"For/against limiting immigration?" (f15340b)	$\begin{aligned} & \text { 5-point-scale } \\ & 1-5 \end{aligned}$	$\begin{aligned} & \text { 5-point-scale } \\ & 0-4 \end{aligned}$
Position: EU	"For/against joining the EU?" (f15340a)	$\begin{aligned} & \text { 5-point-scale } \\ & 1-5 \end{aligned}$	$\begin{aligned} & \text { 5-point-scale } \\ & 0-4 \end{aligned}$
Position: Left/Right	In politics one sometimes speaks of "left" and "right". Where would you classify your political position on a scale of 0 to 10? (f15201)	11-point-scale 0-10	
Competence IO/ Perception, for each issue separately	"And which party, in your opinion, is most competent in the following issues?" (f15330a, b, c, d, e, \& W2 f15330a, b, c, d, e)	simple choice	dichotomous, chosen party $=1$, not chosen party $=0$, only main 7 parties
Commitment IO/ Perception, for each issue separately	"And which party, in your opinion, is most committed to the following issues?"(f15320a, b, c, d, e, \& W2 f15320a, b, c, d, e)	simple choice	dichotomous, chosen party $=1$, not chosen party $=0$, only main 7 parties
Control variables			
Sex	"Please state your sex." (sex)	"female", "male"	
Age	«Please state your age» (age)	"age number"	
Household income	"What is the total monthly income of your household?" (f28910)	15 income categories	"low", "middle", and "high" income
education	"What is your highest completed education?" (f21310)	15 education categories	"low", "middle", and "high" education
religious	«Do you belong to a denomination or religious community? (f20750)	"Yes", "No"	
Urban / rural	«City according to Federal Statistical Office» (citybfs)	"Yes", "No"	
Partisanship	«Do you generally feel close to a political party?" (f14010main7)	simple choice	dichotomous, indicated party $=1$, not indicated $=0$, only 7 main parties
Political interest	How interested are you in politics in general? (f10100 \& W2 f10100)	$\begin{aligned} & \text { 4-point-scale } \\ & 1-4 \end{aligned}$	"not interested", "interested"
Additional variables			
Vote propensity, 7 main parties	"What are the chances that you would ever vote for Party X?" (f14400a, b, c, d, e, f, g, \& W2 f14400a, b, c, d, e, f, g)	$\begin{aligned} & \text { 11-point-scale } \\ & 0-10 \end{aligned}$	
Considered parties, 7 main parties	"Did you consider voting for another party?" (W3_f12340a, b, c, d, e, f, g)	Multiple simple choice	dichotomous, indicated party $=1$, not indicated $=0,7$ main parties
Canton	"In which canton do you live?" (canton)	simple choice	

Table 10: Measures of central tendency, plus minimum \& maximum (Selects variables)

Variable	level	mode	median	mean	minimum	maximum
Dependent variable						
Vote choice '15, 7 main parties	nominal	2 (SP)				
Independent variables						
Position: Environment	interval	3	3	2,8	0	4
Position: Social	interval	2	2	1,85	0	4
Position: Economy	interval	3	2,8	0	4	4
Position: Migration	interval	3	3	2,52	0	4
Position: EU	interval	0	1	0,99	0	4
Position: Left/Right	interval	5	5	5,34	0	10
Competence IO: Environment	nominal	1 (GPS)				
Competence IO: Social	nominal	2 (SP)				
Competence IO: Economy	nominal	6 (FDP)				
Competence IO: Migration	nominal	7 (SVP)				
Competence IO: EU	nominal	6 (FDP)				
Commitment IO: Environment	nominal	1 (GPS)				
Commitment IO: Social	nominal	2 (SP)				
Commitment IO: Economy	nominal	6 (FDP)				
Commitment IO: Migration	nominal	7 (SVP)				
Commitment IO: EU	nominal	7 (SVP)				
Control variables						
Sex	nominal	0 (male)				
Age	ratio	51	50	48,87	17	96
Household income	ordinal	1	1		0	2
Education	ordinal	1	1		0	2
Religion	nominal	1				
Urban / rural	nominal	0				
Partisanship	nominal	7 (SVP)				
Political interest	nominal	2	2		0	3
Additional variables						
Vote Prop. GPS	ratio	0	3	3,79	0	10
Vote Prop. SP	ratio	0	4	4,44	0	10
Vote Prop. GLP	ratio	0	3	3,61	0	10
Vote Prop. CVP	ratio	0	4	3,99	0	10
Vote Prop. BDP	ratio	0	2	3,04	0	10
Vote Prop. FDP	ratio	0	5	4,87	0	10
Vote Prop. SVP	ratio	0	2	3,65	0	10
GPS considered	nominal	0				
SP considered	nominal	0				

GLP considered	nominal	0				
CVP considered	nominal	0				
BDP considered	nominal	0				
FDP considered	nominal	1				
SVP considered	nominal	0				
Canton	nominal					

Table 11: Measures of dispersion (Selects variables)

Variable	Var. Ratio	25% quartile	75% quartile	IQR	range	variance	Std. deviation
Dependent variable							
Vote choice '15, 7 main parties	0,75						
Independent variables							
Position: Environment	0,55	2	4	2	4	0,91	0,95
Position: Social	0,72	1	3	2	4	1,3	1,14
Position: Economy	0,52	2	3	1	4	0,78	0,88
Position: Migration	0,68	1	4	3	4	1,65	1,28
Position: EU	0,53	0	2	2	4	1,38	1,18
Position: Left/Right	0,82	4	7	3	10	6,23	2,5
Competence IO: Environment	0,44						
Competence IO: Social	0,4						
Competence IO: Economy	0,37						
Competence IO: Migration	0,62						
Competence IO: EU	0.61						
Commitment IO: Environment	0,21						
Commitment IO: Social	0,19						
Commitment IO: Economy	0,26						
Commitment IO: Migration	0,32						
Commitment IO: EU	0,64						
Control variables							
Sex	0,49						
Age	0,97	36	61	25	79	276,13	16,62
Household income	0,52	1	2	1			
Education	0,49	1	2	1			
Religion	0,29						
Urban / rural	0,45						
Partisanship	0,75						
Political interest	0,48	1	2	1	3		
Additional variables							
Vote Prop. GPS	0,74	0	6	6	10	10,98	3,31

Vote Prop. SP	0,76	1	8	7	10	13,4	3,66
Vote Prop. GLP	0,74	0	6	6	10	9,54	3,09
Vote Prop. CVP	0,79	1	6	5	10	9,2	3,03
Vote Prop. BDP	0,69	0	5	5	10	8,35	2,89
Vote Prop. FDP	0,84	2	8	6	10	11,15	3,34
Vote Prop. SVP	0,61	0	7	7	10	14,91	3,86
GPS considered	0,34						
SP considered	0,44						
GLP considered	0,35						
CVP considered	0,33						
BDP considered	0,25						
FDP considered	0,49						
SVP considered	0,36						
Canton	1						

Table 12: Issue similarities - Measures of central tendency, plus minimum \& maximum

Variable	level	mode	median	mean	minimum	maximum
Issue similarity: Env, CS 0 Avrg.	ratio	4	3,56	3,63	2,68	4,00
Issue similarity: Env, CS 1 Avrg.	ratio	4	3,56	3,62	2,68	4,00
Issue similarity: Env, CS 2 Avrg.	ratio	4	3,66	3,66	2,68	4,00
Issue similarity: Env, CS 0 Rng.	ratio	4	3,49	3,46	2,68	4,00
Issue similarity: Env, CS 1 Rng.	ratio	4	3,49	3,4	2,68	4,00
Issue similarity: Env, CS 2 Rng.	ratio	4	3,49	3,47	2,68	4,00
Issue similarity: So, CS 0 Avrg.	ratio	4	3,67	3,55	2,45	4,00
Issue similarity: So, CS 1 Avrg.	ratio	4	3,51	3,51	2,45	4,00
Issue similarity: So, CS 2 Avrg.	ratio	4	3,67	3,56	2,45	4,00
Issue similarity: So, CS 0 Rng.	ratio	4	3,51	3,33	2,45	4,00
Issue similarity: So, CS 1 Rng.	ratio	2,45	3,51	3,23	2,45	4,00
Issue similarity: So, CS 2 Rng.	ratio	4	3,51	3,32	2,45	4,00
Issue similarity: Eco, CS 0 Avrg.	ratio	4	3,64	3,68	2,54	4,00
Issue similarity: Eco, CS 1 Avrg.	ratio	4	3,64	3,67	2,54	4,00
Issue similarity: Eco, CS 2 Avrg.	ratio	4	3,64	3,7	2,87	4,00
Issue similarity: Eco, CS 0 Rng.	ratio	4	3,61	3,53	2,54	4,00
Issue similarity: Eco, CS 1 Rng.	ratio	4	3,59	3,47	2,54	4,00
Issue similarity: Eco, CS 2 Rng.	ratio	4	3,59	3,53	2,54	4,00
Issue similarity: EU, CS 0 Avrg.	ratio	4	3,45	3,47	2,05	4,00
Issue similarity: EU, CS 1 Avrg.	ratio	4	3,44	3,47	2,05	4,00
	4	4				

Issue similarity: EU, CS 2 Avrg.	ratio	4	3,47	3,51	2,05	4,00
Issue similarity: EU, CS 0 Rng.	ratio	4	3,17	3,24	2,05	4,00
Issue similarity: EU, CS 1 Rng.	ratio	4	3,16	3,17	2,05	4,00
Issue similarity: EU, CS 2 Rng.	ratio	4	3,19	3,25	2,05	4,00
Issue similarity: Mig, CS 0 Avrg.	ratio	4	3,49	3,46	1,93	4,00
Issue similarity: Mig, CS 1 Avrg.	ratio	4	3,49	3,47	1,93	4,00
Issue similarity: Mig, CS 2 Avrg.	ratio	4	3,51	3,51	1,93	4,00
Issue similarity: Mig, CS 0 Rng.	ratio	4	3,11	3,24	1,93	4,00
Issue similarity: Mig, CS 1 Rng.	ratio	4	3,11	3,17	1,93	4,00
Issue similarity: Mig, CS 2 Rng.	ratio	4	3,22	3,25	1,93	4,00
Issue similarity: LR, CS 0 Avrg.	ratio	10	8,72	8,49	4,5	10,0
Issue similarity: LR, CS 1 Avrg.	ratio	10	8,32	8,42	4,5	10,0
Issue similarity: LR, CS 2 Avrg.	ratio	10	8,72	8,57	4,5	10,0
Issue similarity: LR, CS 0 Rng.	ratio	10	8,08	7,77	4,5	10,0
Issue similarity: LR, CS 1 Rng.	ratio	10	7,97	7,5	4,5	10,0
Issue similarity: LR, CS 2 Rng.	ratio	10	8,08	7,79	4,5	10,0

Table 13: Issue similarities - Measures of dispersion

Variable	Var. Ratio	$\mathbf{2 5 \%}$ quartile	$\mathbf{7 5 \%}$ quartile	IQR	range	variance	Std. deviation
Issue similarity: Env, CS 0 Avrg.	0,72	3,39	4,00	0,61	1,32	0,1	0,31
Issue similarity: Env, CS 1 Avrg.	0,75	3,38	3,95	0,57	1,32	0,09	0,3
Issue similarity: Env, CS 2 Avrg.	0,69	3,39	4,00	0,61	1,32	0,09	0,31
Issue similarity: Env, CS 0 Rng.	0,72	3,12	4,00	0,88	1,32	0,24	0,49
Issue similarity: Env, CS 1 Rng.	0,75	2,81	3,95	1,14	1,32	0,26	0,51
Issue similarity: Env, CS 2 Rng.	0,69	3,12	4,00	0,88	1,32	0,26	0,51
Issue similarity: So, CS 0 Avrg.	0,72	3,19	4,00	0,81	1,55	0,18	0,43
Issue similarity: So, CS 1 Avrg.	0,75	3,19	3,93	0,74	1,55	0,17	0,41
Issue similarity: So, CS 2 Avrg.	0,69	3,21	4,00	0,79	1,55	0,18	0,42
Issue similarity: So, CS 0 Rng.	0,72	2,52	4,00	1,48	1,55	0,41	0,64
Issue similarity: So, CS 1 Rng.	0,73	2,45	3,93	1,48	1,55	0,42	0,65

Issue similarity: So, CS 2 Rng.	0,69	2,52	4,00	1,48	1,55	0,43	0,66
Issue similarity: Eco, CS 0 Avrg.	0,81	3,51	3,82	0,31	1,46	0,05	0,22
Issue similarity: Eco, CS 1 Avrg.	0,81	3,51	3,8	0,29	1,46	0,05	0,22
Issue similarity: Eco, CS 2 Avrg.	0,75	3,52	4,00	0,48	1,13	0,05	0,22
Issue similarity: Eco, CS 0 Rng.	0,81	3,23	3,77	0,54	1,46	0,14	0,37
Issue similarity: Eco, CS 1 Rng.	0,81	3,23	3,77	0,54	1,46	0,16	0,4
Issue similarity: Eco, CS 2 Rng.	0,75	3,23	4,00	0,77	1,46	0,16	0,4
Issue similarity: EU, CS 0 Avrg.	0,81	3,19	3,74	0,55	1,95	0,15	0,39
Issue similarity: EU, CS 1 Avrg.	0,81	3,24	3,74	0,5	1,95	0,14	0,38
Issue similarity: EU, CS 2 Avrg.	0,75	3,24	4,00	0,76	1,95	0,16	0,4
Issue similarity: EU, CS 0 Rng.	0,81	2,88	3,74	0,86	1,95	0,33	0,57
Issue similarity: EU, CS 1 Rng.	0,81	2,86	3,74	0,88	1,95	0,37	0,61
Issue similarity: EU, CS 2 Rng.	0,75	2,88	4,00	1,12	1,95	0,41	0,64
Issue similarity: Mig, CS 0 Avrg.	0,8	3,14	3,99	0,85	2,07	0,23	0,48
Issue similarity: Mig, CS 1 Avrg.	0,8	3,14	3,99	0,85	2,07	0,2	0,45
Issue similarity: Mig, CS 2 Avrg.	0,74	3,15	4,00	0,85	2,07	0,22	0,47
Issue similarity: Mig, CS 0 Rng.	0,8	2,83	3,99	1,16	2,07	0,43	0,66
Issue similarity: Mig, CS 1 Rng.	0,8	2,71	3,99	1,28	2,07	0,48	0,69
Issue similarity: Mig, CS 2 Rng.	0,74	2,83	4,00	1,17	2,07	0,53	0,73
Issue similarity: LR, CS 0 Avrg.	0,81	7,55	9,75	2,2	5,5	1,55	1,25
Issue similarity: LR, CS 1 Avrg.	0,81	7,51	9,75	2,24	5,5	1,45	1,2
Issue similarity: LR, CS 2 Avrg.	0,75	7,55	10,00	2,45	5,5	1,58	1,26
Issue similarity: LR, CS 0 Rng.	0,81	5,70	9,75	4,05	5,5	3,59	1,9
Issue similarity: LR, CS 1 Rng.	0,81	5,45	9,75	4,3	5,5	3,9	1,98
Issue similarity: LR, CS 2 Rng.	0,75	5,7	10,0	4,3	5,5	4,13	2,03

Fig. 14: Frequency distribution issue similarity variables - CS 1-3 with average

4a) Environment: issue similarity in CS 1

3a) Social: issue similarity in CS 1

5a) Economy: issue similarity in CS 1

1a) EU: issue similarity in CS 1

2a) Migration: issue similarity in CS 1

4b) Environment: issue similarity in CS 2

3b) Social: issue similarity in CS 2

5b) Economy: issue similarity in CS 2

1b) EU: issue similarity in CS 2

2b) Migration: issue similarity in CS 2

4c) Environment: issue similarity in CS 3

3c) Social: issue similarity in CS 3

5c) Economy: issue similarity in CS 3

1c) EU: issue similarity in CS 3

2c) Migration: issue similarity in CS 3

Fig. 15: Frequency distribution issue similarity variables - CS 1-3 with range

4a) Environment: issue similarity in CS 1

3a) Social: issue similarity in CS 1

5a) Economy: issue similarity in CS 1

1a) EU: issue similarity in CS 1

2a) Migration: issue similarity in CS 1

4b) Environment: issue similarity in CS 2

3b) Social: issue similarity in CS 2

5b) Economy: issue similarity in CS 2

1b) EU: issue similarity in CS 2

2b) Migration: issue similarity in CS 2

4c) Environment: issue similarity in CS 3

3c) Social: issue similarity in CS 3

5c) Economy: issue similarity in CS 3

1c) EU: issue similarity in $\operatorname{CS} 3$

2c) Migration: issue similarity in CS 3

Fig. 16: Frequency distribution left-right issue similarity variables - CS 1-3 with average and range

6a) Left-Right Dim.: overall similarity in CS 1

6a) Left-Right Dim.: overall similarity in CS 1

6b) Left-Right Dim.: overall similarity in CS 2

6b) Left-Right Dim.: overall similarity in CS 2

6c) Left-Right Dim.: overall similarity in CS 3

6c) Left-Right Dim.: overall similarity in CS 3

Table 14: Full baseline CLM

Variable	Model1aEnv	Model1aSo	Model1aEco	Model1aEu	Model1aMig	Model1aAll	Model1aLr
partyalt							
partisan	$2.820 * * *$	$2.778^{* * *}$	$2.864^{* * *}$	$2.767^{* * *}$	$2.761^{* * *}$	$2.490^{* * *}$	$2.499^{* * *}$
en-	0.739***					$0.624^{* * *}$	
vProx							
soProx_		$0.678^{* * *}$				$0.529 * * *$	
ecoProx			0.809***			$0.769^{* * *}$	
euProx_				$0.675^{* * *}$		$0.489^{* * *}$	
mig-					$0.661^{* * *}$	0.529***	
Prox_							
IrProx							$0.417^{* * *}$
BDP							
interest_fd							
inter-	0.332	0.429	0.434	0.305	0.330	0.338	0.313
age	0.010	0.014	0.011	0.018*	0.008	0.012	0.008
$\begin{aligned} & \text { gen- } \\ & \text { der_f } \end{aligned}$							
female	-0.274	-0.310	-0.322	-0.373	-0.353	-0.084	-0.197
in- come_f							
middle	0.330	0.348	0.356	0.487	0.394	0.205	0.648
income							
high income	-0.254	-0.270	-0.281	-0.038	-0.090	-0.442	-0.100

educa- tion_f							
middle	-0.331	-0.494	-0.472	-0.467	-0.610	-0.542	-0.393
educa-							
tion							
high ed-	-1.240	-1.518*	-1.375	-1.262	-1.407	-1.265	-1.318
ucation							
gion_f							
religious	-0.180	-0.155	-0.156	-0.049	-0.066	-0.199	-0.268
urban_f							
urban	-0.426*	-0.419*	-0.465*	-0.438*	-0.383*	-0.422	-0.331
	1.877*	1.706*	1.578*	0.558	1.670*	1.098	1.709*
stant							
Statis-							
tics							
NN							
aic	7451.128	7331.488	7467.520	7307.387	7319.346	6845.009	6806.583
bic	7966.285	7846.645	7982.617	7822.562	7834.486	7393.042	7320.698
II	-3663.564	-3603.744	-3671.760	-3591.693	-3597.673	-3356.504	
							3341.292

Table 15: Full CLM with competence

Variable	Model1bEnv	Model1bSo	Model1bEco	Model1bEu	Model1bMig	Model1bAll	Model1bCum
partyalt							
partisan	$2.717^{* * *}$	$2.639^{* * *}$	$2.793^{* * *}$	$2.607^{* * *}$	$2.531^{* * *}$	$2.086^{* * *}$	$2.046^{* * *}$
envProx_	$0.748^{* * *}$					0.598***	
envComp	1.250***					0.840***	
soProx_		$0.635^{* * *}$				0.439***	
soComp		1.068***				0.551***	
ecoProx_			$0.777^{* *}$			0.549***	
ecoComp			1.290***			0.630***	
euProx_				$0.572^{* * *}$		0.305***	
euComp				$1.200 * * *$		$0.715^{* * *}$	
migProx_					$0.531^{* * *}$	$0.402^{* * *}$	
migComp					$1.302^{* * *}$	0.854***	
IrProx_							$0.353^{* * *}$
CumCom							$0.710^{* * *}$
BDP							
interest_fd							
interested	0.511	0.524	0.211	0.261	0.407	0.277	0.314
age	0.013	0.019*	0.017	0.021*	0.020*	0.014	0.015
gender_f							
female	-0.046	-0.191	0.146	-0.217	-0.129	0.239	-0.094
income_f							

middle in-	0.117	0.307	0.362	0.380	0.374	-0.064	0.696
come							
high income	-0.454	-0.298	-0.259	-0.220	-0.306	-0.993	-0.081
education_f							
middle ed-	-0.244	-0.547	-0.662	-0.748	-1.962		-0.914
ucation							
high education	-0.814	-1.133	-1.085	-0.985	-2.208*		-1.400
religious	-0.064	0.003	-0.202	-0.272	-0.223	-0.821^{*}	-0.036
urban_f							
urban	-0.448	-0.510	-0.619*	-0.673*	-0.770**	-0.698*	-0.599*
Constant	0.645	-0.664	-0.265	-0.400	0.721	0.062	-0.109
CVP							
interest_fd							
interested	0.426	0.404	0.162	0.131	0.288	-0.025	0.214
age	0.014	0.018*	0.018*	0.014	0.013	0.014	0.009
gender_f							
female	-0.008	-0.307	-0.168	-0.255	-0.305	0.282	-0.008
income_f							
middle in-	0.054	0.063	0.015	0.030	0.105	-0.548	0.337
come							
high in-	-0.381	-0.421	-0.359	-0.382	-0.196	-0.925*	-0.147
come							
education_f							

middle ed-	-0.630	-0.699	-0.802	-1.193	-2.153*		-0.895
high edu-	-0.894	-1.121	-1.004	-1.437	-2.434^{*}		-1.275
religion_f religious	$1.035^{* * *}$	$1.156^{* * *}$	0.920**	1.049**	$1.078^{* * *}$	0.342	$1.103^{* *}$
urban_f							
urban	-0.266	-0.224	-0.326	-0.419	-0.587*	-0.538	-0.182
Constant	0.307	-1.077	-0.517	-0.022	0.769	-0.183	-0.457
FDP							
interest_fd							
interested	0.345	0.417	0.144	0.041	0.269	0.145	0.290
age	$0.022^{* *}$	$0.027^{* * *}$	$0.024^{* * *}$	0.020**	$0.025^{* * *}$	0.016	0.016*
female	0.048	-0.078	0.093	-0.351	-0.092	0.249	0.237
income_f							
middle income	-0.067	-0.086	-0.006	0.153	0.154	-0.163	0.285
high income	0.108	-0.037	0.184	0.233	0.433	-0.179	0.122
education_f							
middle education	-0.326	-0.640	-0.530	-1.223	-1.828		-0.601
high education	-0.322	-0.773	-0.534	-1.064	-1.906		-0.651
religion_f							
religious	0.389	0.451*	0.278	0.251	0.424	-0.211	0.383

interested	0.314	0.289	0.026	0.098	0.180	0.127	0.206
age	0.020**	0.022**	0.026***	0.016*	0.027***	$0.023^{* *}$	0.018**
gender_f female	0.201	0.007	0.221	-0.188	-0.240	0.046	0.059
income_f							
middle in-	-0.161	-0.116	-0.059	-0.239	-0.220	-0.641	-0.037
high in-	-0.431	-0.305	-0.189	-0.494	-0.450	-0.734	-0.203
educa-							
middle ed-	-0.350	-0.553	-0.599	-1.139	-1.789		-0.630
high edu-	-0.637	-0.926	-0.893	-1.201	-2.203*		-0.995
religion_f							
religious	-0.437	-0.414	-0.477	-0.492	-0.321	-0.684*	-0.306
urban_f							
urban	0.138	0.040	-0.003	-0.179	-0.229	-0.316	-0.103
Constant	1.487	-0.126	0.498	1.542	1.361	0.222	0.282
SVP							
interest_fd							
interested	0.172	0.114	0.011	0.025	0.083	0.007	-0.004
age	0.014	0.019**	0.020**	0.025***	0.020**	0.020*	0.010
gender_f							
female	-0.161	-0.340	-0.324	-0.348	-0.230	0.195	-0.121
income_f							

Table 16: Full CLM with commitment

Variable	Model1cEnv	Model1cSo	Model1cEco	Model1cEu	Model1cMig	Model1cAll	Model1cCum
partyalt							
partisan	$2.774^{* * *}$	$2.725^{* * *}$	$2.838^{* * *}$	$2.729^{* * *}$	$2.736^{* * *}$	$2.356^{* * *}$	$2.332^{* * *}$
en-	$0.769^{* * *}$					$0.659^{* * *}$	
vProx							
envCom-	$1.096 * * *$					$0.901 * * *$	
soProx		$0.681^{* * *}$				0.539***	
soCom-		$0.616^{* * *}$				$0.402^{* * *}$	
ecoProx			$0.789^{* * *}$			$0.737^{* * *}$	
ecoCom-			$0.772^{* * *}$			$0.681^{* * *}$	
euProx				$0.657^{* * *}$		$0.414^{* * *}$	
eu-				$0.543^{* * *}$		$0.415^{* * *}$	
Commit							
mig-					0.649***	$0.522^{* * *}$	
Prox							
migCom-					0.593 ***	$0.439^{* * *}$	
IrProx							$0.407^{* * *}$
CumCo							$0.548^{* * *}$
mmit							
BDP							

inter- est_f inter- ested age	0.415	0.421	0.383	0.419	0.328	0.344

age	0.008	0.011	0.011	0.019**	0.007	0.010	0.007
gender_f female	-0.213	-0.254	-0.300	-0.263	-0.305	0.036	-0.167
income_f							
middle	0.094	0.094	0.033	0.128	0.131	-0.375	0.376
income							
	-0.300	-0.313	-0.372	-0.183	-0.144	$-0.990^{* *}$	-0.141
educa-							
tion_f							
	-0.551	-0.591	-0.809	-0.488	-1.155	-1.404	-0.728
educa-							
tion							
high ed-	-0.951	-1.072	-1.142	-0.732	-1.474	-1.259	-1.130
religious	$1.114^{* * *}$	$1.116^{* * *}$	$1.128^{* * *}$	$1.055^{* * *}$	$1.066^{* * *}$	0.662*	$1.042^{* * *}$
urban_f							
urban	-0.376	-0.392	-0.296	$-0.622^{* *}$	-0.404	-0.513*	-0.164
Constant	0.778	-0.434	-0.257	-0.876	0.362	1.645	-0.117
FDP							
inter- est_fd							
inter-	0.182	0.282	0.336	0.108	0.126	0.105	0.183
age	0.017*	$0.021^{* *}$	0.020**	$0.029^{* *}$	$0.018^{* *}$	0.015	0.014*
gender_f							
female	-0.166	-0.172	-0.161	-0.296	-0.197	0.080	0.059

Table 17: Full CLM with competence and commitment

Variable	Model1dEnv	Model1dSo	Model1dEco	Model1dEu	Model1dMig	Model1dAll	Model1dCum
partyalt							
partisan	$2.710^{* * *}$	$2.629^{* * *}$	$2.786^{* * *}$	$2.602^{* * *}$	$2.529^{* * *}$	$2.072^{* * *}$	$2.032^{* * *}$
envProx_	$0.751^{* * *}$					0.579***	
envComp	1.079***					0.718***	
envCom-	$0.657^{* * *}$					0.529**	
soProx_		$0.634^{* * *}$				0.426***	
soComp		1.006***				0.593***	
soCommit		0.181				-0.061	
ecoProx_			$0.762^{* * *}$			0.593***	
ecoComp			$1.161^{* * *}$			0.568***	
ecoCom-			0.239			0.197	
euProx_				0.540 ***		0.258***	
euComp				$1.222^{* * *}$		0.702***	
euCommit				0.022		0.035	
migProx_					0.519***	0.391***	
migComp					1.226***	0.780***	
migCom-					0.261**	0.251*	
IrProx_							$0.353^{* * *}$
CumCom							0.659***
CumCom-							$0.153^{* * *}$
mit_							

female	-0.020	-0.315	-0.197	-0.221	-0.347	0.172	-0.010
income_f							
middle in-	0.015	-0.014	-0.078	-0.111	0.043	-0.561	0.323
come							
high in-	-0.399	-0.503	-0.448	-0.431	-0.268	-0.901*	-0.157
educa-							
	-0.660	-0.678	-0.708	-0.956	-2.137*	$-13.568^{* * *}$	-0.884
ucation							
	-0.880	-1.075	-0.886	-1.137	-2.380*	$-13.441^{* * *}$	-1.252
religion_f							
religious	1.000**	$1.094^{* * *}$	0.938**	0.982**	0.990**	0.469	$1.107^{* * *}$
urban_f							
urban	-0.292	-0.259	-0.316	-0.516*	-0.613*	-0.704*	-0.184
Constant	0.837	-0.845	-0.483	-0.017	0.982	13.781***	-0.365
FDP							
interest_fd							
interested	0.351	0.408	0.109	-0.024	0.256	0.019	0.297
age	0.021**	$0.025^{* * *}$	0.023**	0.017*	$0.025^{* * *}$	0.015	0.015*
female	0.028	-0.084	0.065	-0.391	-0.123	0.161	0.239
income_f							
middle in-	-0.039	-0.097	0.011	0.181	0.145	-0.194	0.264
come							
high in-	0.142	-0.075	0.168	0.315	0.392	-0.324	0.098

religion_f religious	-0.162	-0.098	-0.159	-0.393	-0.016	-0.710	-0.020
urban_f							
urban	0.040	-0.018	-0.003	-0.168	-0.228	-0.349	-0.073
Constant	1.257	0.115	0.207	0.689	1.902	$14.034^{* * *}$	0.639
SP							
interest_fd							
interested	0.333	0.294	-0.020	0.049	0.152	-0.018	0.220
age	0.020**	0.021**	0.025***	0.016*	0.027***	0.021*	0.018**
gender_f							
female	0.206	0.016	0.189	-0.141	-0.260	-0.003	0.066
income_f							
middle in-	-0.165	-0.124	-0.099	-0.283	-0.257	-0.660	-0.043
come							
high in-	-0.443	-0.317	-0.281	-0.437	-0.514	-0.808*	-0.206
educa-							
middle ed-	-0.355	-0.530	-0.549	-1.073	-1.779	$-12.793^{* * *}$	-0.618
ucation							
high edu-	-0.630	-0.924	-0.828	-1.115	-2.155*	-12.616***	-0.970
religion_f							
religious	-0.445	-0.442	-0.504	-0.470	-0.405	-0.634	-0.312
urban_f							
urban	0.122	0.006	0.008	-0.214	-0.297	-0.366	-0.098
Constant	1.969*	-0.161	0.616	1.483	1.477	13.510***	0.237

SVP								
interest_fd								
interested	0.195	0.104	-0.040	-0.040	0.071	-0.160	0.017	
age	0.013	0.018**	0.019**	$0.026^{* * *}$	$0.021^{* *}$	0.022*	0.011	
gender_f								
female	-0.189	-0.345	-0.330	-0.289	-0.215	0.101	-0.101	
income_f								
middle in-	-0.177	-0.233	-0.107	-0.040	-0.170	-0.493	0.129	
high in-	-0.584	-0.708*	-0.439	-0.136	-0.378	-0.663	-0.449	
educa-								
middle ed-	-0.194	-0.298	-0.349	-0.884	-1.524	$-12.915^{* * *}$	-0.383	
cation								
religion_f								
religious	-0.146	-0.087	-0.301	-0.128	-0.141	-0.425	-0.030	
urban_f								
urban	-0.212	-0.228	-0.256	-0.365	-0.508*	-0.313	-0.367	
Constant	$2.687^{* * *}$	1.064	0.955	0.377	1.192	$13.342^{* * *}$	0.910	
Statistics								
NN								
aic	5770.383	5641.492	5328.323	4421.180	4760.632	3070.220	6056.977	
bic	6288.677	6159.613	5843.396	4929.890	5274.240	3656.540	6587.677	
\\|	-2821.191	-	-2600.161	-	-2316.316	-	-2964.489	
		2756.746		2146.590		1459.110		

Table 18: Full CLM with competence and commitment but without proximity

Variable	Model1eEnv	Model1eSo	Model1eEco	Model1eEu	Model1eMig	Model1eAll	Model1eCum
partyalt							
partisan	$2.802^{* * *}$	$2.745^{* * *}$	$2.837^{* * *}$	$2.699^{* * *}$	$2.602^{* * *}$	$2.295^{* * *}$	$2.305^{* * *}$
envComp	$1.114^{* * *}$					$0.767^{* * *}$	
envCom-	$0.651^{* * *}$					0.495**	
mit							
soComp		$1.097^{* * *}$				$0.630 * * *$	
soCommit		0.159				-0.027	
ecoComp			1.175***			0.655***	
ecoCom-			0.236			0.195	
mit euComp				$1.356^{* * *}$		$0.786^{* * *}$	
euCommit				0.031		0.043	
migComp					$1.374^{* * *}$	0.955***	
migCom-					$0.314^{* * *}$	0.315**	
CumCom							$0.753^{* * *}$
p_{-}							
CumCom-							$0.145^{* * *}$
mit_							
BDP							
interest_fd							
interested	0.583	0.460	0.132	0.318	0.378	0.205	0.373
age	0.015	0.016	0.017	0.016	0.023*	0.019	0.017*
gender_f							
female	-0.195	-0.287	0.005	-0.208	-0.223	-0.020	-0.319
income_f							

Table 19: Full CLM with competence x issue similarity interactions

CumCompXCS2si mR_							$0.104^{* * *}$
interest_fd							
interested	0.507	0.492	0.269	0.186	0.331	0.116	0.255
age	0.012	0.020*	0.015	0.024*	0.023*	0.015	0.017
gender_f							
female	-0.047	-0.194	0.169	-0.212	-0.150	0.202	-0.095
income_f							
middle income	0.172	0.328	0.396	0.285	0.381	-0.117	0.695
high income	-0.392	-0.267	-0.216	-0.290	-0.285	-0.987	-0.091
education_f							
middle education	-0.219	-0.567	-0.701	-0.825	-1.959	$-14.207^{* *}$	-0.944
high education	-0.807	-1.160	-1.157	-1.041	-2.184^{*}	$-14.024^{* * *}$	-1.393
religion_f							
religious	-0.012	0.046	-0.183	-0.263	-0.249	-0.904*	-0.008
urban_f							
urban	-0.462	-0.512	-0.637^{*}	-0.645*	$-0.763^{* *}$	-0.563	-0.599*
CS2sim_so		-0.205				$-2.546^{* *}$	
CS2sim_eco			0.655			6.466***	
CS2sim_eu				$-0.735^{* *}$		-2.874	
CS2sim_mig					$-0.700^{* *}$	0.313	
CS2sim_Ir							-0.069
Constant	-2.100	-0.011	-2.454	2.020	3.033*	6.594*	0.378
CVP							
CS2sim_env	$1.208^{* * *}$					1.228	
interest_fd							

interested
age
gender_f

female $|$| 0.470 | 0.416 | 0.250 | 0.135 | 0.253 | -0.097 |
| :--- | :--- | :--- | :--- | :--- | :--- |

$\left.\begin{array}{rlllllll}\text { urban } \\ \text { CS2sim_so } \\ \text { CS2sim_eco } \\ \text { CS2sim_eu }\end{array}\right)$

Constant	-4.088**	-1.122	$-5.538^{* * *}$	3.533**	5.010***	4.991	1.342
Statistics							
NN							
aic	5845.411	5666.552	5353.047	4620.546	4834.689	3142.607	6015.464
bic	6413.716	6234.662	5918.232	5180.871	5398.195	3946.089	6595.916
II	-		-	-	-		-2937.732
	2852.706	2763.276	2606.524	2240.273	2347.344	1468.304	

Table 20: Full CLM with commitment x issue similarity interactions

income_f							
middle income	0.115	0.112	0.083	0.123	0.119	-0.328	0.359
high income	-0.263	-0.307	-0.305	-0.187	-0.162	-0.866*	-0.156
education_f							
middle educa-	-0.549	-0.572	-0.812	-0.497	-1.178	-1.404	-0.686
tion							
high education	-0.948	-1.056	-1.167	-0.752	-1.497	-1.205	-1.071
religion_f							
religious	$1.128^{* * *}$	$1.112^{* * *}$	$1.116^{* * *}$	$1.046^{* * *}$	$1.053^{* *}$	0.600	$1.013^{* * *}$
urban_f							
urban	-0.379	-0.390	-0.301	$-0.613^{* *}$	-0.395	-0.419	-0.165
CS2sim_so		0.005				-1.938**	
CS2sim_eco			$0.908^{* *}$			$6.652^{* * *}$	
CS2sim_eu				-0.126		$-3.557^{* *}$	
CS2sim_mig					-0.185	1.081	
CS2sim_Ir							0.045
Constant	-2.037	-0.458	-3.377^{*}	-0.430	1.050	$-7.419^{* * *}$	-0.468
FDP							
CS2sim_env	$1.224 * * *$					1.201*	
interest_fd							
interested	0.271	0.349	0.439	0.118	0.090	0.133	0.201
age	0.014	0.018**	0.015*	0.027***	0.019**	0.013	0.011
gender_f							
female	-0.128	-0.132	-0.102	-0.314	-0.217	0.197	0.089
income_f							
middle income	0.093	0.095	0.034	0.262	0.077	-0.024	0.312
high income	0.268	0.177	0.131	0.517	0.356	-0.151	0.225
education_f							
middle educa-	-0.348	-0.484	-0.368	-0.793	-1.137	-0.999	-0.468
tion							
high education	-0.399	-0.675	-0.441	-0.737	-1.167	-0.684	-0.549

religion_f religious	0.388	0.421*	0.298	0.241	0.401	-0.243	0.229
urban_f urban	-0.194	-0.260	-0.133	-0.250	-0.188	-0.183	-0.134
CS2sim_so		$0.517^{* * *}$				-0.474	
CS2sim_eco			0.859*			2.885*	
CS2sim_eu				-0.038		-1.035	
CS2sim_mig					-0.254	-1.104	
CS2sim_ır							0.079
Constant	-3.330 *	-2.089*	-3.982^{*}	-0.598	1.225	-4.293	-0.963
GLP							
CS2sim_env	0.042					-1.003	
interest_fd							
interested	0.503	0.356	0.435	0.266	0.316	0.215	0.356
age	-0.005	-0.005	-0.004	0.007	-0.006	-0.004	-0.008
female	-0.529	-0.519*	-0.529	-0.554^{*}	-0.472	-0.301	-0.448
income_f							
middle income	-0.394	-0.302	-0.457	-0.392	-0.378	-0.696	-0.073
high income	-0.368	-0.378	-0.532	-0.233	-0.312	-0.912*	-0.213
education_f							
tion							
high education	-0.254	-0.170	-0.175	-0.536	-0.868	-0.519	-0.406
religion_f							
religious	0.052	0.078	-0.004	-0.146	0.067	-0.564	-0.081
urban_f							
urban	-0.120	-0.143	0.040	-0.125	-0.058	-0.016	0.016
CS2sim_so		-0.473*				$-3.475^{* *}$	
CS2sim_eco			-0.066			7.197**	

Table 21: Full CLM with competence \& commitment x issue similarity interactions

Variable	Model2cEnv	Model2cSo	Model2cEco	Model2cEu	Model2cMig	Model2cAll	Model2cCu
							m
partyalt							
partisan	$2.688^{* * *}$	$2.605^{* * *}$	$2.741^{* * *}$	$2.586^{* * *}$	$2.499^{* * *}$	$1.980^{* * *}$	$2.022^{* * *}$
envProx_	$0.704^{* * *}$					0.539***	
envComp	-1.612					-1.383	
envCommit	1.027					1.929	
en-	$0.761^{* *}$					0.608*	
vCompXCS2simR							
envCom-	-0.105					-0.415	
mitXCS2simR_							
soProx_		$0.632^{* * *}$				0.410***	
soComp		-0.267				0.135	
soCommit		$-2.173^{* *}$				$-2.514^{* *}$	
so-		$0.368 *$				0.141	
CompXCS2simR							
soCom-		0.700**				0.765**	
mitXCS2simR_							
ecoProx_			$0.771^{* * *}$			$0.565^{* * *}$	
ecoComp			-2.394*			-0.189	
ecoCommit			0.797			1.710	
eco-			$0.987^{* *}$			0.222	
CompXCS2simR							
ecoCom-			-0.156			-0.424	
mitXCS2simR_							
euProx_				0.546***		0.135	
euComp				-1.868**		-1.443*	
euCommit				0.583		0.547	

eu-				$0.928^{* * *}$	0.664**			
CompXCS2simR								
eu-					-0.174		-0.161	
CommitXCS2sim								
R_								
migProx					$0.498^{* * *}$	0.255**		
migComp					-0.257	-0.326		
migCommit					-0.592	-1.012		
migCompXCS2si					$0.437^{* * *}$	0.315*		
mR_								
migCom-					0.253	0.390		
mitXCS2simR_								
IrProx							$0.344^{* * *}$	
CumComp_							-0.033	
CumCommit_							-0.201	
CumCompXCS2s							$0.088 * *$ *	
imR_								
CumCom-							0.046*	
mitXCS2simR_								
BDP								
CS2sim_env	0.771					-0.220		
interest_fd								
interested	0.519	0.465	0.225	0.243	0.293	-0.029	0.244	
age	0.012	0.018	0.015	0.024*	0.022*	0.014	0.016	
gender_f								
female	-0.064	-0.186	0.115	-0.208	-0.212	0.123	-0.086	
income_f								
middle income	0.217	0.411	0.391	0.268	0.433	-0.097	0.671	
high income	-0.332	-0.209	-0.219	-0.247	-0.315	-0.934	-0.112	
education_f								
middle education	-0.252	-0.571	-0.664	-0.734	-1.980		-0.909	
high education	-0.827	-1.170	-1.127	-0.965	-2.207*		-1.357	

religion_f religious	-0.005	-0.008	-0.180	-0.268	-0.330	-0.900*	-0.001
urban_f urban	-0.462	-0.523	-0.592*	-0.608*	-0.776**	-0.607	-0.597*
CS2sim_so		-0.160				-2.875***	
CS2sim_eco			0.767			7.660***	
CS2sim_eu				-0.629*		-3.187	
CS2sim_mig					$-0.653^{* *}$	0.891	
CS2sim_Ir							-0.039
Constant	-1.596	-0.080	-2.815	1.575	2.999	$-7.761^{* *}$	0.239
CVP							
CS2sim_env	1.157**				0.325		
interest_fd							
interested	0.499	0.394	0.207	0.108	0.189	-0.222	0.172
age	0.012	0.014	0.015	0.015	0.013	0.010	0.008
gender_f							
female	-0.010	-0.282	-0.147	-0.203	-0.373	0.252	0.004
income_f							
middle income	0.053	0.000	-0.020	-0.121	0.025	-0.661	0.300
high income	-0.360	-0.491	-0.364	-0.446	-0.305	-0.994*	-0.205
education_f							
middle education	-0.590	-0.694	-0.726	-1.035	-2.202*		-0.909
high education	-0.800	-1.114	-0.927	-1.208	-2.431*		-1.240
religion_f							
religious	1.011**	$1.097^{* * *}$	0.887**	0.966**	0.959**	0.298	$1.071^{* * *}$
urban_f							
urban	-0.298	-0.253	-0.343	-0.484	-0.626*	-0.538	-0.182
CS2sim_so		-0.112				$-3.153^{* * *}$	
CS2sim_eco			$1.324^{* * *}$			$7.914^{* * *}$	
CS2sim_eu				-0.345		-3.679*	

CS2sim_mig					-0.472*	1.228	
CS2sim_Ir							-0.022
Constant	-3.243	-0.412	$-5.004^{* * *}$	1.132	2.675	-9.394***	-0.100
FDP							
CS2sim_env	$1.406^{* * *}$					1.303	
interest_fd							
interested	0.419	0.462*	0.215	-0.014	0.215	-0.046	0.314
age	0.018*	$0.023 * * *$	0.018*	0.015*	$0.027^{* * *}$	0.013	0.013
gender_f							
female	0.038	-0.055	0.138	-0.413	-0.148	0.123	0.250
income_f							
middle income	0.023	-0.044	0.073	0.213	0.154	-0.068	0.295
high income	0.192	-0.037	0.229	0.297	0.387	-0.153	0.085
education_f							
middle education	-0.183	-0.616	-0.387	-1.118	-1.750		-0.590
high education	-0.162	-0.754	-0.413	-1.007	-1.840		-0.602
religion_f							
religious	0.364	0.418	0.173	0.180	0.317	-0.440	0.351
urban_f							
urban	-0.001	-0.035	-0.110	-0.245	-0.263	-0.131	-0.156
CS2sim_so		0.358*				-1.767*	
CS2sim_eco			0.866			3.887**	
CS2sim_eu				-0.600*		-1.027	
CS2sim_mig					-0.457*	-0.903	
CS2sim_Ir							-0.021
Constant	-4.227*	-1.880	-4.473*	1.974	1.989	-5.378*	-0.755
GLP							
CS2sim_env	0.039					-0.780	
interest_fd							
interested	0.785*	0.665*	0.461	0.404	0.508	0.335	0.417
age	-0.001	0.003	0.004	0.006	0.006	0.001	-0.004

CS2sim_eco	$2.001^{* * *}$					6.503***	
CS2sim_eu				$-0.846^{* * *}$		-0.344	
CS2sim_mig					-1.255***	$-3.371 *$	
CS2sim_lr						-0.053	
Constant	-3.288*	-1.077	-6.060***	3.159*	$5.364^{* * *}$	$-9.248^{* *}$	1.355
Statistics							
NN							
aic	5724.956	5577.098	5247.976	4379.662	4731.256	2922.009	6001.545
bic	6308.037	6159.983	5827.433	4951.961	5309.065	3724.812	6598.582
II		-	-	-	-	-	
	2790.478	2716.549	2551.988	2117.831	2293.628	1357.004	2928.772

[^0]: ${ }^{1}$ Calculating marginal effects/predicted probabilities would be an additional, useful way to interpret interactions. Unfortunately, the software could/did not produce any output, also after hours of waiting.

[^1]: ${ }^{2}$ I did not include the countless outputs in the appendix. They are, however, available upon request.

