THE RAMSI MODEL: RISK ASSESSMENT FOR SYSTEMIC INSTITUTIONS

The views expressed in this presentation do not necessarily represent those of the Bank of England, members of the Financial Stability Executive Board, or members of the Monetary Policy Committee.

Bank of England
24 January 2011

Piergiorgio Alessandri
Risk Assessment Division, Bank of England
Plan

- Motivation and background
- Model overview
- Key model components
- Application: predictive distributions
- Conclusions and discussion
Motivation

- Develop a **unified quantitative framework** to guide and sharpen the BoE’s risk assessment work

- Provide an **internally consistent view** of key risks to the UK banking sector
 - Modular approach to integrate different sources of risk.
 - Adding-up constraints from BS and P&L identities
Motivation

RAMSI could be used in internal risk assessment to:

- Track overall risks in the financial system over time
- Produce a ranking of banks (in terms of overall vulnerability, and vulnerability to particular risks);
- Stress testing;
- Identify structural vulnerabilities (what are the sources of tail risk?);
- Simulate policy exercises.
Plan

- Motivation and background
- Model overview
- Key model components
- Application: predictive distributions
- Conclusions and discussion
Devleop a unified quantitative framework to guide and sharpen the BoE’s risk assessment work

Provide an internally consistent view of key risks to the UK banking sector by:
- describing different sources of risk
- capturing correlations across them
- imposing basic BS and P&L constraints
Key features of RAMSI

- Focus on 10-12 major UK banks
- Modular approach to integrate risks
- Emphasis on risks over and above those naturally priced and managed by financial institutions, i.e. feedbacks/externalities across banks.
- Closest model in this spirit is OeNB (2006), but
 - More limited modelling of P&L and feedbacks.
 - Static model (one quarter horizon).
Plan

- Motivation and background
- Model overview
- Key model components
- Application: predictive distributions
- Conclusions and discussion
Structure of the model

Shocks/scenarios
(Macroeconomic/financial)

Credit losses
Available for sale assets
Trading income
Net interest income
Non-interest income and expenses

Feedbacks
Asset-side
("market liquidity risk")
Liability-side
("funding liquidity risk")

Network model of UK banks and LCFIs

Effects on bank lending

System asset / loss distribution
Structure of the model: plain

Shocks/scenarios (Macroeconomic/financial)

- Credit losses
- Available for sale assets
- Trading income
- Net interest income
- Non-interest income and expenses

Effects on bank lending

System asset / loss distribution
Structure of the model: complete

Shocks/scenarios (Macroeconomic/financial)

- Credit losses
- Available for sale assets
- Trading income
- Net interest income
- Non-interest income and expenses

Feedbacks

- Asset-side ("market liquidity risk")
- Liability-side ("funding liquidity risk")

Network model of UK banks and LCFIs

Effects on bank lending

System asset / loss distribution
Balance Sheets

- 10-12 major UK banks (~80% UK lending)
- Each BS includes approx 400 asset and 250 liability classes
- Primarily constructed from published accounts — plus some interpolation

<table>
<thead>
<tr>
<th>Balance sheet dataset dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assets/Liabilities</td>
</tr>
<tr>
<td>Maturity buckets</td>
</tr>
<tr>
<td>Repricing buckets</td>
</tr>
<tr>
<td>Annual data entries per bank</td>
</tr>
</tbody>
</table>
INCOME STATEMENT

- Net interest income
- Fees and commissions
- Trading income
- Other income

Total operating income

- Operating expenses
- Impairments
 - On loan book
 - On AFS book

Profit before tax

- Tax

Profit after tax

- Dividends

Retained earnings
The model includes:

- Credit losses (Credit Risk)
- Net interest income (Interest Rate Risk)
- AFS impairments (Market Risk)
- Feedbacks (Contagion Risk)

We abstract from trading, other income, bank-specific funding spreads, and assume no hedging of interest rate risk.
P&L and Balance Sheet dynamics

- **Net profits:**
 \[NP_t = (\text{Int.Income}_t - \text{Int.Expense}_t) \]
 \[- \text{CreditLoss}_t - \text{Impairments}_t \]

- **Balance sheet evolution:**
 \[\Delta \text{Shareholder Funds}_{t+1} = NP_t \]
 \[\Delta \text{Assets}_{t+1} = f(NP_t) \]
 \[\Delta \text{Liabilities}_{t+1} = g(NP_t) \]
Plan

- Motivation and background
- Model overview
- Key model components
 - Macro-economy and “fundamental” risks
 - Contagion
- Outputs and applications
- Open discussion and Q&A
Macro-model: Bayesian VAR

The variables:

<table>
<thead>
<tr>
<th>US</th>
<th>Euro Area</th>
<th>World</th>
<th>UK</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDP</td>
<td>GDP</td>
<td>Oil price</td>
<td>GDP</td>
</tr>
<tr>
<td>CPI</td>
<td>CPI</td>
<td>Equity price</td>
<td>CPI</td>
</tr>
<tr>
<td>Policy rate</td>
<td>Policy rate</td>
<td>Policy rate</td>
<td>Policy rate</td>
</tr>
<tr>
<td>Yield curve slope</td>
<td>Yield curve slope</td>
<td>Yield curve slope</td>
<td>Yield curve curvature</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Equity price</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Unemployment</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>House price</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Commercial property price</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Income gearing</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lending gap</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10 year corporate spread</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Undrawn equity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HH unsecured debt</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LIBOR spread*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>£ERI*</td>
</tr>
</tbody>
</table>

Variables that potentially could be included in BVAR, but are excluded in the baseline version of the model are denoted by *.
Macro-model: Bayesian VAR

- Sample 1984q1– 2008q4.

- Bayesian estimation to cope with the large number of variables. Our priors (a variation of Minnesota):
 - Random walks
 - Small open economy
 - Taylor rule

 ➔ Intuitively appealing, better forecasting performance.

The model captures ‘macro risk’ in a plausible way – up to a point.
Predicting recessions: early 90s

UK GDP growth
Predicting recessions: 2008-9

UK GDP growth
Exposures are split by
- Region: UK, US, EA, RoW
- Type: mortgages, credit cards, other unsecured, corporate

For each type of exposure, we model:
- An aggregate default probability (PD)
- An aggregate credit loss rate (ACL)
- A bank-specific credit loss rate (CL)

ACL captures variation in recovery rates.
CL is introduced (and calibrated) to capture bank heterogeneity.
Example: UK mortgages

\[PD_{t}^{\text{Sec}} = 7.97 + 0.26 \text{INCGEAR}_{t-4} - 14.6 \text{UNDRAWN}_{t-2} + 0.19 \text{UNEMP}_{t-2} \]

\[ACL_{t}^{\text{sec}} = 0.003 + 0.06 PD_{t-2}^{\text{sec}} - 0.02 \left(\frac{P_{t}^{\text{res. prop}}}{P_{t-8}^{\text{res. prop}}} - 1 \right) \]

- PD\(_t\) = percentage of UK mortgages in arrears by six months or more.
- UNDRAWN\(_t\) = UK undrawn equity level (housing wealth minus debt).
- UNEMP\(_t\) = UK unemployment rate
- INCGEAR\(_t\) = UK income gearing (%)
- ACL\(_t\) = average credit loss rate at major UK banks, reported by MFSD.
Example: UK mortgage PD
Net Interest Income and AFS

Based on Drehmann-Sorensen-Stringa (2010)

- A and L priced as bullet bonds under risk-neutral measure.
- The implied coupons are riskless yields for L and default-adjusted yields for A:
 \[C_i^L = r \]
 \[C_i^A = f(r, ACL) \quad \text{s.t.} \quad A = EV(A) \]

One-period example:
\[A = EV(A) \Rightarrow A = \frac{1}{1+r} \left(1+C\right)(1-ACL)A \Rightarrow C = \frac{r + ACL}{1 - ACL} \]
Key features of the NII/AFS model

- Spreads are set to cover expected credit losses (based on model-consistent forecasts for PD and ACL)

- But rates are sticky: only a subset of the balance sheet can be repriced at any time; hence:

- Unexpected changes in \((r, PD, ACL)\) generate
 - **Income risk**: volatility in interest income flows
 - **Market risk**: volatility in AFS values
AFS composition

- AFS include seven asset classes:
 - Equity
 - Treasury bonds and bills
 - Investment grade government securities
 - Investment grade mortgage securities
 - Investment grade corporate securities
 - Investment grade certificates of deposit
 - Investment grade other (ABS, etc)

- In all cases, we model the Economic Value of the exposures and obtain impairments as ΔEV
Reinvestment

- Balance sheets are rebalanced at each t using a set of reinvestment rules:
 - **Tier 1 ratio**: banks aim to achieve/maintain a predefined, bank-specific Tier 1 capital ratio
 - **Portfolio allocation**: Subject to the first rule, banks aim to maintain a constant portfolio composition
 - **Liability generation**: when assets and capital grow, all liabilities grow in proportion to their initial balance sheet shares

- The algorithm generates plausible “equilibrium” paths, but relies on strong assumptions, e.g.
 - No active disinvestment
 - No reshuffling of existing exposures
Implied Tier 1 capital ratios

Central forecast

Data

Maximum-minimum range
Interquartile range
Median
Plan

- Motivation and background
- Model overview
- Key model components
 - Macro-economy and “fundamental” risks
 - Contagion
- Application: predictive distributions
- Conclusions and discussion
Feedbacks overview

Three interlinked feedback mechanisms:

1. Interbank lending
 - Standard network model

2. Market liquidity
 - Reduced-form empirical equations

3. Funding liquidity
 - A ‘danger zone’ approach based on case studies
1. Interbank network

- Banks suffer interbank losses when counterparties fail, and may themselves default as a result.

- Network includes core banks, smaller UK banks, foreign banks and other LCFIs. These cannot generate contagion but can transmit it.

- Data and estimation:
 - Large exposure data
 - Missing exposures estimated by Maximum Entropy.
2. Asset Fire Sales

- Defaulting banks liquidate their AFS → asset prices fall → other banks may incur mark-to-market losses.

- Fire-sales affect three broad AFS exposures: equities, corporate bonds, ABS.

- Price responses are estimated using a simple non-linear (concave) equation.

- The impact is temporary: prices assumed recover at the end of each quarter (could be relaxed).

Note: serious data limitations and measurement issues
3. Funding Liquidity: ‘Danger Zones’

We model the closure of funding markets using a scoring system:

- At every t, banks are scored using a set of indicators:
 - solvency concerns (e.g. expected future capital)
 - liquidity position (e.g. wholesale maturity mismatch)
 - confidence (e.g. unanticipated profit shock)

- A bank accumulates “DZ points” as its position deteriorates.

- When the score crosses a predefined threshold, funding markets close and the bank goes in default.

Note: calibration based on case studies (inc. US, Japan); highly judgmental.
Plan

- Motivation and background
- Model overview
- Key model components
 - Macro-economy and “fundamental” risks
 - Contagion
- Application: predictive distributions
- Conclusions and discussion
Why predictive densities?

The object of interest is the future distribution of x given today’s information:

$$p\left(x_{t+k} \mid X_t\right)$$

- Distributions are obviously central to FS issues
- They may offer a better way to evaluate systemic risk models (compared to central forecasts)
- They can shed an interesting light on “interconnectedness”
Generating predictive densities

\[
p(x_{t+1} | X_t) = \int p(x_{t+1} | X_t, \theta) p(\theta | X_t) d\theta
\]

- Out of sample prediction
 - No hindsight incorporated in estimation/calibration
 - No conditioning information on future \(x \) (unlike stress tests)

- “Parameter uncertainty” explicitly taken into account
 - Predicted probability do not depend on model parameters

Caveat: \(\theta \) is huge in RAMSI, and it includes calibrated parameters. We treat these as fixed.
Case study: 2008

Pre-Tax Profits for five large UK banks (Dec 2010 FSR, £bn)

In RAMSI, ΔCapital \approx Profits (no new equity, no recapitalisations).
Hence, we can compare predicted ΔC to observed profits.
PD for Core Tier 1 Capital

Predicted change in aggregate capital (%)
PD for the aggregate CT1 ratio

Data

Predicted aggregate CT1 ratio in 2008Q4 (%)
System-wide VaR and ES

<table>
<thead>
<tr>
<th></th>
<th>0.1%</th>
<th>1%</th>
<th>5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VaR</td>
<td>-17.3</td>
<td>-13.38</td>
<td>-8.83</td>
</tr>
<tr>
<td>ES</td>
<td>-17.8</td>
<td>-15.02</td>
<td>-11.44</td>
</tr>
<tr>
<td>T1 Ratio</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VaR</td>
<td>5.97</td>
<td>6.25</td>
<td>6.57</td>
</tr>
<tr>
<td>ES</td>
<td>5.94</td>
<td>6.14</td>
<td>6.38</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0.1%</th>
<th>1%</th>
<th>5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VaR</td>
<td>-22.67</td>
<td>-16.40</td>
<td>-10.08</td>
</tr>
<tr>
<td>T1 Ratio</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VaR</td>
<td>5.28</td>
<td>5.72</td>
<td>6.12</td>
</tr>
<tr>
<td>ES</td>
<td>5.11</td>
<td>5.51</td>
<td>5.88</td>
</tr>
</tbody>
</table>

- Capital ~0.1% percentile, T1 ratio ~25% percentile
- All indicators predict a worsening compared to 2007
- The implied bank PD increases from 2.12% to 6.86%

... but is the signal strong enough?
PDs and interdependence (1)

Bank A vs Bank B:

- B is relatively safer
- Stable correlation

(→ common exposures)
PDs and interdependence (2)

Bank A vs Bank C:

- A is relatively safer

What is the correlation?
PDs and interdependence (2)

Bank A vs Bank C:

- A is relatively safer
- Good times: \(\rho \approx 0 \)

What is the correlation?
PDs and interdependence (2)

Change in Capital (%)

Bank A vs Bank C:

- A is relatively safer
- What is the correlation?
 - Good times: $\rho \approx 0$
 - Bad times: $\rho \approx 1$
Bank A vs Bank C:

- A is relatively safer
- Good times: $\rho \approx 0$
- Bad times: $\rho \approx 1$

What is the correlation?

Which distribution would VaR/CoVaR estimates refer to?
Plan

- Motivation and background
- Model overview
- Key model components
 - Fundamental (1st round) risks
 - Contagion (2nd round) risks
- Application: predictive distributions
- Conclusions and discussion
RAMSI provides a quantitative framework for assessing systemic risk. The model:

- captures various sources of risk and key inter-risk correlations
- Emphasises feedbacks and externalities across institutions

Possible applications include:

- Stress testing
- Forecasting – distributions as well as central cases
- Policy experiments?
Conclusion

Application: predictive densities

- 2008 as a 0.1% probability event
- The model predicts worse tail outcomes for 2008
 \(\text{(But would a policy-maker act on that information?)}\)
- A useful way of exploring banks’ interdependence
 \(\text{(Is dependence more complex than you -or your model- think?)}\)

Next step: combining predictive densities from alternative, complementary models (e.g. VAR+RAMSI)