Abstract:
We propose a speculative attack model in which agents receive multiple public signals. It is characterised by its focus on an informational structure, which sets free from the strict separation between public information and private information. Diverse pieces of public information can be taken into account differently by players and are likely to lead to different appreciations \textit{ex post}. This process defines players’ private value. The main result is to show that equilibrium uniqueness depends on two conditions: (i) signals are sufficiently dispersed (ii) private beliefs about the relative precision of these signals sufficiently differ. We derive some implications for information dissemination policy. Transparency in this context is multi-dimensional: it concerns the publicity of announcements, the number of signals disclosed as well as their precision. Especially, it seems that the central bank has better not publishing its forecast errors in order to maintain stability. An illustration to our analysis is the recent debate concerning the optimal monetary policy committee structure of central banks.

Keywords:

JEL Classification:
F31 – D82.

1 – Introduction

Speculative attacks are based on information which is in parts publicly available or provided by media and agencies that are recognised by all major traders on foreign exchange markets. Public information is not just helpful in predicting the future course of an economy, but also induces higher order beliefs that allow for crises occurring out of self-fulfilling beliefs. In this paper, we analyze the question whether multiple sources of public information prevent self-fulfilling prophecies.

Second generation speculative attack models in the tradition of Obstfeld (1986, 1996) can be modelled as coordination games with multiple equilibria. Whether a central bank devaluates a currency depends on market pressures that arise from traders’ beliefs about the probability of devaluation. If traders believe in devaluation and speculate against a currency, market pressure may force a central bank to abandon a peg that it would have kept without the additional pressure generated by speculators. Applying the global-game approach, Morris and Shin (1998) have shown that this kind of coordination games has a unique equilibrium, if traders’ information is private instead of public.\(^1\) Morris and Shin (2003) and Hellwig (2002) show that equilibrium uniqueness requires that agents attach a sufficiently large weight to private information when both, private and public signals are available. Bayesian rationality requires that weights are positively related to the precision of information, which is the inverse of the variance of the respective signals. Thus, uniqueness relies on private signals being sufficiently precise in comparison to public signals. In the real world, however, the most precise information is provided publicly by transparent central banks and well-informed agencies. This raises concerns about whether economic transparency may lead the inclination to self-fulfilling prophecies. A counterargument to this view is provided by Lindner (2005) who defines transparency as providing detailed public information. The details may be viewed as different signals, each of which can only be used for Bayesian updating in combination with some agents’ private information. Thereby, public signals are actually improving the precision of traders’ private information. Greater precision of private information, however, stabilizes the economy by preventing multiple equilibria. Hence public announcements may actually contribute to stabilizing an economy.

In this paper, we develop another counterargument: even if central banks’ announcements are publicly observable and may be thought of being common knowledge, their precision is not. In the presence of multiple signals, Bayesian updating requires to attach some weight to each signal that is related to the signals’ relative precision. If agents have different beliefs about the precision of signals, they arrive at different posterior expectations. In the paper we show that sufficient dispersion of posterior beliefs leads to a unique continuation equilibrium. In other words: with sufficient

\(^1\) A signal is private information if it is received by a single agent and public information if it is received by all agents, all agents know that all agents received the same signal, and so on.
dispersion of beliefs, the actions that are chosen by traders are uniquely determined. Whether or not this condition holds depends on the number and precision of signals provided by the central bank. We derive some conclusions for the optimal dissemination of information and show that a central bank can reduce the probability of multiple equilibria by providing multiple imprecise signals and withholding information about the relative precision of these signals.

Our starting point is that different agents deal the same information differently and posterior beliefs are private information even if all information about economic fundamentals is publicly available. Agents arrive at different posterior beliefs if they receive several signals of unknown precision. While many figures about an economy are provided publicly and become common knowledge (at least in theory), the precision of these figures is usually not public information. A rare exception is the report by the Bank of England that publishes “fan charts” in addition to inflation forecasts. Also committees rather than individuals more and more take decisions in central banks and although decisions are very often consensual, committee members might express their own view either informally or by voting. This is especially the case for the Bank of England (with the publication of the minutes of monetary policy committee discussions). With multiple public signals, beliefs about the relative precision of these signals may differ between agents and lead to different posterior beliefs about the state of the world.

We introduce multiple sources of public information in the currency-attack model by Morris and Shin (1998, 2003). Agents receive noisy public signals and have different opinions about the relative precision of these signals. We analyze conditions for uniqueness of the equilibrium. The model has a unique equilibrium, if there are sufficiently many or strong announcements that hint at states at which either attacking or not-attacking are dominant strategies. In addition, there must be a sufficient mass of agents who attribute enough weight to these signals, so that attacking or not-attacking, respectively, are dominant strategies given their posterior beliefs.

We restrict our formal analysis to three cases distinguished by the number of public signals. Each of the three cases gives an additional insight for the intuition that carries over to more general cases. If there are just two signals and agents’ beliefs about the relative precision of these signals have a uniform distribution, there is a unique equilibrium if and only if at least one of the signals indicates a state at which either attacking nor not-attacking is a dominant strategy. With more than two signals or with a uni-modal distribution of beliefs about their precision, uniqueness may require that signals are sufficiently different and agents put a sufficiently strong weight on the most extreme signals. When the number of agents approaches infinity, the distribution of posterior beliefs becomes common knowledge. This turns the private-information game into a private-value game, for which we know that it has a unique equilibrium, provided that there is a sufficient mass of agents for whom either

2 Fan charts indicate estimated probabilities for future inflation rates. These probabilities account for estimated forecast errors, but not for possible errors in the model underlying these estimates.
action is a dominant strategy (Dönges and Heinemann, 2001). In our model, this requires that the average precision of public signals is sufficiently low.

In terms of economic policy, we conclude that the central bank should benefit from at least two tools: if used appropriately, number and precision of public announcements can be effective at stabilising the economy in situations where it might be prone to self-fulfilling crises otherwise. The provision of different specialized data about the fundamentals of an economy reduces the inclination to self-fulfilling prophecies in comparison to the provision of just one compound announcement. With a sufficiently large number of public signals, the probability that an economy is hit by a crisis due to self-fulfilling beliefs can be reduced to almost zero, provided that these signals are not too precise.

Section 2 introduces the model. In Section 3 we give conditions for equilibrium uniqueness. In section 4 we draw some lessons for the optimal modes of information dissemination and discuss how these considerations can be understood for the conduct of monetary policy, especially via committee structure. Section 5 concludes the paper by summing up main results.

2 – Model

The model builds on the reduced form of a currency-attack game introduced by Morris and Shin (1998, 2003). It deals with an open economy in which the central bank has anchored its exchange rate on a fixed parity. Our main innovation is the introduction of multiple public signals of unknown precision.

2.1. Reduced form game

There is a continuum of risk neutral agents (speculators) \(i \in [0,1] \) who decide simultaneously whether or not to attack a currency peg by short selling one unit of domestic currency. An attack is associated with transaction costs \(t > 0 \) that are linked to the differential of interest rates between domestic and foreign currency. The fundamentals of the economy are summarized by an aggregate state variable \(\theta \).

If the proportion of agents who decide for attacking the currency exceeds \(\theta \), the central bank devaluates the currency and attacking agents earn an amount \(R > t \). If the proportion of attacking agents is less than or equal to \(\theta \), the central bank keeps the peg and attacking agents just loose transaction costs. A high (low) value of \(\theta \) represents a good (respectively bad) fundamental state. If \(\theta \geq 1 \), the economy is in a sound condition where the central bank can always defend the currency against an attack. If \(\theta < 0 \), the currency must be devaluated even without the additional market pressure from speculating traders. The aggregate state \(\theta \) may be interpreted as a measure of the
additional market pressure from speculation that is needed to enforce devaluation. We assume that θ has a normal distribution with mean y_0 and variance σ^2.

If a speculator knows that $\theta < 0$, attacking is a dominant strategy, because it leads to a positive payoff independent of the other traders’ actions. If a trader knows that $\theta \geq 1$, it is a dominant strategy not to attack, because an attack cannot be successful. If it is common knowledge amongst traders that $0 \leq \theta < 1$ there are two equilibria in pure strategies: either all traders believe in devaluation and attack the currency. In this case, the central bank gives in and beliefs turn out to be correct. Or, traders do not believe in devaluation and abstain from an attack. In this case, the central bank keeps the peg and beliefs are also fulfilled. In addition, there are mixed-strategy equilibria in which the probability that the proportion of attacking traders exceeds θ equals t / R.

2.2. Different informational assumptions

Morris and Shin (2003) distinguish private and public information by assuming that each agent i receives two signals, x^i and y, that differ from θ by independent noise terms with normal distributions. The variances of $x^i - \theta$ are the same for all i. Signal x^i is private information of agent i, while the public signal y is commonly observed by all agents.\(^3\)

If the variance of private signals is sufficiently small in comparison to the variance of the public signal, so that

$$\text{Var}(y - \theta) > \sqrt{\frac{\text{Var}(x^i - \theta)}{2\pi}},$$

the game has a unique Bayesian equilibrium with a threshold function $x^*(y)$, such that for a given public signal y all agents with signals $x^i < x^*(y)$ attack the currency, while agents with higher signals do not attack. Otherwise, the game has multiple equilibria, so that for some realizations of y, the threshold to attack is not uniquely determined. Here, an attack can be triggered by events that are unrelated to economic fundamentals (sunspots), because traders’ beliefs are self-fulfilling. In this light, transparency can have destabilizing effects: if central banks provide accurate information about their foreign currency reserves and publish their statistics and predictions about the future course of the economy, the high precision of this information raises the danger of sudden currency crises triggered by unpredicted shifts of beliefs.

\(^3\) Morris and Shin assume that the prior distribution of θ is common knowledge, so that $y = y_0$. But, the results are not affected by assuming that the prior distribution is unknown and agents receive some other public signal instead.
Metz (2002) and Bannier and Heinemann (2005) analyze the comparative statics of the equilibrium with respect to signals’ precisions, provided that the condition for uniqueness holds. Heinemann and Illing (2002) suggest that public information should be intermediated by private agencies to prevent agents from exactly inferring which information other agents possess. The idea is that each agent gets information on demand without knowing whether other agents possess the same information as to avoid common knowledge. All of these papers assume that there is a single public signal.

The approach of deriving uniqueness by assuming that public information is less precise than private information has been criticized, because in reality the most relevant information is publicly available. Romer and Romer (2000) provide evidence that economic forecasts, published by the Federal Reserve System are more accurate than private forecasts. The means of disclosing information by central banks are designed to achieve the highest possible publicity. Even if these means are changed, strategic complementarity provides incentives for private agents to share their information with others, so that all information may be publicly available.

On the other hand, public information is not homogeneous. There is a plurality of channels via which information is provided to the public and even central banks publish different kinds of information that may be more or less relevant for predicting future exchange rates. Central bank committee members express their own views, which are sometimes conflicting with the decisions taken by the committee as a whole. Private agents may spread their information to induce other traders taking the same position, but they also have incentives to misrepresent their own information, which limits credibility of public signals from private sources. Available public signals differ in their relevance for predicting the aggregate state summarized by θ. While public signals themselves may be thought of being common knowledge, relevance and precision of these signals are in general not commonly known. Hence, traders may disagree on the relative importance of these signals for predicting θ. In the absence of a commonly agreed model (or a common prior) agents may even be aware about their different evaluations and agree to disagree. Consequently, agents may hold different posterior beliefs even if they all receive the same signals about the state of the economy. This raises the question whether multiple sources of public information with unknown precisions are sufficient to guarantee a unique equilibrium.

2.3. Multiple public signals

We extend the model by introducing $K > 1$ public signals received by speculators. Each signal y_k differs from the fundamental state θ by a noise term with a normal distribution, i.e. $y_k = \theta + \varepsilon_k$, with $\varepsilon_k \sim N(0, \tau_k^2)$. Noise terms ε_j and ε_k are independent for all $j \neq k$. Denote the vector of public
signals by \(Y = (y_1, y_2, \ldots, y_K) \). We interpret each \(k \) as one source of public information. The prior mean \(y_0 \) is not observed. Each agent takes into account the whole vector of \(K \) commonly observable signals. But, agents do not know the true variances and attribute subjective weights to each of these signals.

The posterior expectation associated with a vector of normally distributed signals \(Y \) is a weighted average of these signals, \(E(\theta | Y) = \sum_{k=1}^{K} q_k y_k \), where the weights are given by the relative precision (inverse variance) of these signals, \(q_k = \frac{1}{\tau_k} \). The posterior variance is given by

\[
V(\theta | Y) = \frac{1}{\sum_{k=1}^{K} \frac{1}{\tau_k^2}}.
\]

If the variances of public signals were known, all agents would agree in their posterior expectation, and the model would be indistinguishable from a model with a single public signal. To avoid this, we assume that agents do not know the true variances and have private beliefs about the signals’ precisions, instead. To keep the model tractable, we assume that agents agree on the aggregate level of uncertainty in the economy. In particular, we assume that \(V(\theta | Y) \) is common knowledge. Thus, agents differ only in their beliefs about the relative precisions of public signals that determine the weights \(q_k \) attributed to signals in the posterior expectation of the fundamental state.

We denote the weights that agent \(i \) attaches to public signals by \(q^i = (q^i_1, \ldots, q^i_K) \). Of course, these weights must sum up to one, so that they are contained in a \(K \)-dimensional simplex,

\[
q^i \in \Delta^K = \left\{ q \in \mathbb{R}^K \mid 0 \leq q_k \leq 1, \quad \sum_k q_k = 1 \right\}.
\]

An agent who believes that relative precisions are given by \(q^i \) has a posterior subjective belief about \(\theta \) that is described by a normal distribution with \(E^i(\theta | Y) = \sum_k q^i_k y_k \) and \(V^i(\theta | Y) = V(\theta | Y) \).
2.4. Dominant strategies

Because of strategic complementarities, the expected payoff from an attack by some agent \(i \) rises in the proportion of other agents who are attacking. Suppose no other agent attacks. Then, the currency will be devaluated if and only if \(\theta < 0 \). The payoff that agent \(i \) expects from attacking is

\[
R \Pr(\theta < 0 \mid Y, q') - t = R \Phi \left(\frac{0 - E'(\theta \mid Y)}{\sqrt{V(\theta \mid Y)}} \right) - t,
\]

where \(\Pr(\theta < 0 \mid Y, q') \) denotes the subjective probability that an agent with beliefs \(q' \) attributes to the event \(\theta < 0 \). Given the normality of subjective conditional distributions, we can express the expected payoff using the cumulative standard normal distribution \(\Phi \). Thus, agent \(i \) has an incentive to attack, even if no other agent attacks, provided that

\[
R \Phi \left(\frac{0 - E'(\theta \mid Y)}{\sqrt{V(\theta \mid Y)}} \right) > t \iff E'(\theta \mid Y) < -\sqrt{V(\theta \mid Y)} \Phi^{-1}(t/R) = \bar{\theta}.
\]

In other words, it is a dominant strategy for an agent to attack if her subjective posterior belief is below \(\bar{\theta} \).

Suppose now that all agents attack. Then, the currency will be devaluated if and only if \(\theta < 1 \). Now, agent \(i \)'s expected payoff from attacking is positive if

\[
R \Phi \left(\frac{1 - E'(\theta \mid Y)}{\sqrt{V(\theta \mid Y)}} \right) > t \iff E'(\theta \mid Y) < 1 + \bar{\theta} = \bar{\theta}.
\]

In other words, it is a dominant strategy for an agent to abstain from an attack if her subjective posterior belief is above \(\bar{\theta} \).

In the benchmark case with just one public signal \((K=1) \), there are multiple continuation equilibria if and only if the public signal is contained in \([\bar{\theta}, \bar{\theta}] \).

2.5. Bayesian equilibria

Players are distinguished only by their weights on public signals. The vector of weights \(q' \) defines a player's type, and \(\Delta^K \) is the type space. Denote the distribution of types by \(g \) and assume that \(g \) is continuous on \(\Delta^K \). As usual in a Bayesian equilibrium, we assume that the distribution of types is common knowledge.
A strategy is a function \(a : \Delta^K \times \mathbb{R}^K \rightarrow [0,1] \), where \(a(q^i, Y) = a^i(Y) \) denotes the probability that agent \(i \) attacks if she observes the vector of public signals \(Y \). For a given vector of public signals \(Y \), the proportion of attacking speculators is

\[
\int_0^1 a^i(Y) \, dl = \int a(q, Y) \, dg.
\]

The central bank devalues the currency if this proportion exceeds \(\theta \). Thus, for any vector of public announcements \(Y \) and for any strategy \(a \), the currency will be devaluated if and only if

\[
\theta < \theta^*(Y) = \int_0^1 a^i(Y) \, dl.
\]

Thereby, the decision problem of a single agent boils down to attack if and only if the subjective probability for the state being worse than some threshold \(\theta^*(Y) \) is sufficiently large.

The expected payoff from an attack for agent \(i \), given the vector of public signals \(Y \), and the agent’s subjective beliefs \(q^i \), is

\[
R \Pr(\theta < \theta^*(Y) \mid Y, q^i) - t = R \Phi \left(\frac{\theta^*(Y) - E^i(\theta \mid Y)}{\sqrt{V^i(\theta \mid Y)}} \right) - t.
\]

Agent \(i \) attacks the currency if the expected payoff is positive, which is equivalent to

\[
E^i(\theta \mid Y) < \theta^*(Y) - \sqrt{V(\theta \mid Y)} \Phi^{-1} \left(\frac{t}{R} \right) = \theta^*(Y) + \Theta.
\]

Recall that conditional variances are the same for all agents. Equation (1) shows that an agent attacks if her posterior expectation is below some threshold, at which the expected reward from an attack equals its costs. The proportion of attackers is the proportion of all agents with subjective expectations below this threshold. In equilibrium, the marginal state \(\theta^*(Y) \), below which the central bank abandons the currency peg, is given by the proportion of agents who attack if the currency is devaluated for all \(\theta < \theta^*(Y) \). This gives the equilibrium condition.

\[
\theta^*(Y) = \left\lfloor i \in [0,1] \mid E^i(\theta \mid Y) < \theta^*(Y) + \Theta \right\rfloor.
\]

where \(\lfloor \cdots \rceil \) is the Euclidian size of the subset. Note that for a given vector of public signals \(Y \), distribution \(g \) implies a distribution of posterior beliefs \(E^i(\theta \mid Y) \). Denote this distribution by \(f_Y \) and the associated cumulative distribution by \(F_Y \). Formally, this distribution is defined by
\[F_y(\theta) = \Pr\left(\sum_{k=1}^{K} q_{ik} y_k < \theta \right| Y, g) \]

The equilibrium condition can now be rewritten as

\[\theta^*(Y) = F_y(\theta^*(Y) + \theta). \] (3)

The associated equilibrium strategy is \(a^*(Y) = 1 \) if \(E^i(\theta|Y) < \theta^*(Y) + \theta \) and \(a^*(Y) = 0 \) if \(E^i(\theta|Y) > \theta^*(Y) + \theta \). For \(E^i(\theta|Y) = \theta^*(Y) + \theta \), the equilibrium strategy associated with \(\theta^* \) is not uniquely defined. Since \(g \) is continuous, these players have mass zero, so that they do not affect the aggregate outcome.

The described game has two stages: first nature selects realizations of random variables \(\theta \) and \(Y \). Then, players decide on whether or not to attack. It is straightforward to see that equilibrium strategies are not unique, because there exist multiple continuation equilibria in certain subgames, i.e. for certain realizations of \(Y \). Consider, for example, the case where all signals hint at some intermediate state of the economy, that is \(\theta < y_k < \bar{\theta} \) for all \(k \). All agents’ posterior beliefs are a weighted average of these signals, so that \(\theta < y < \bar{\theta} \) for all \(i \). For these posteriors, an attack has a positive expected payoff if all agents attack and a negative expected payoff if almost nobody attacks. Agents agree to disagree in their posterior expectations, but it is common knowledge that everybody believes an attack to be rewarding if everybody attacks, and to fail if almost nobody attacks. The subgame has multiple equilibria as in the benchmark case with just one public signal. There are at least three solutions to equation (3), \(\theta^*(Y) = 0 \), \(\theta^*(Y) = 1 \), and at least one equilibrium with \(0 < \theta^*(Y) < 1 \) where agents with expectations below some interior threshold attack.

We are interested in the conditions on \(Y \) and \(g \), for which subgames starting with \(Y \) have a unique equilibrium. Given that \(Y \) is a random variable, we can then ask how likely it is that there is a unique continuation equilibrium.

It is a necessary condition for a unique continuation equilibrium that at least one of the signals is outside the intermediate region \((\theta, \bar{\theta})\). Whether the equilibrium is unique or not depends on the vector of public announcements \(Y \) and on the distribution of private beliefs \(q^i \). An explicit solution of uniqueness conditions requires special assumptions for the number of signal and the distribution of subjective weights. To get an intuition for general uniqueness conditions, we characterise them for...
particular distributions of private weights q^i and for three special cases for the number of signals, $K = 2$, $K = 3$ and $K \to \infty$. Then, we explain the rationale that carries over to general settings.

3 – Equilibrium uniqueness

In this section, we derive conditions for uniqueness of continuation equilibria. We show that multiple public signals can lead to a unique equilibrium, even if the objective posterior hints at a state at which an attack may occur out of self-fulfilling prophecies.

We start our analysis with the case of $K = 2$ signals and a uniform distribution of beliefs q^i. In this case, a unique equilibrium exists if and only if one signal falls outside the intermediate region. While the two-dimensional case is useful to illustrate the consequences of private information about variances, this result is not robust with respect to the number of signals. By contrast, the game with $K = 3$ public signals has a unique equilibrium if there is sufficient dispersion between the highest signal and the lowest signal. This case yields robust insights in the interaction between the particular signals and the distribution of private beliefs for the determinacy of equilibrium behaviour. Finally, we solve the case for an infinite number of public signals under more general conditions. This case shows how the accuracy of public announcements affects the existence of multiple equilibria: uniqueness requires the precision of public signals to be sufficiently low.

For our formal analysis we assume that subjective weights q^i have a uniform distribution on the K-dimensional unit simplex. The corresponding density function is $g(q^i) = 1/S$, $\forall q^i \in \Delta^K$, where $S = |\Delta^K|$ is the Euclidian size of the K-dimensional unit simplex. Without loss of generality, we assume that $y_1 \leq y_2 \leq \cdots \leq y_K$.

3.1. Equilibrium in the case of two public signals

Suppose there are just two public announcements, y_1 and y_2. We know already that there are multiple equilibria, if both signals are in the interval $(\bar{\theta}, \bar{\theta})$. Now assume, instead, that one signal hints at a particular bad state at which an attack is a dominant strategy, e.g. $y_1 < \bar{\theta}$. Then, there is a positive mass of agents, who believe that attacking is a dominant strategy. Since the distribution of posteriors F_Y is common knowledge, other agents know that there are some agents, for whom attacking is a dominant strategy. Thus, they expect a critical mass of attacking capital that raises their own threshold up to which point an attack appears promising. Agents with higher posteriors attack, because they can deduce that at least a certain fraction of agents attacks. Since other agents know this
as well, some traders with even higher posteriors attack, and so on. Higher order beliefs, expressed by
the iterative elimination of dominated strategies, lead agents to attack up to some threshold that
represents a continuation equilibrium of the subgame starting with the realization of public signals.
But, uniqueness requires that at least one signal is outside the multiplicity region and that the
distribution of beliefs puts sufficient weight on the worst and/or the best realized signals, so that
enough mass is attracted in each step of the elimination procedure.

With one signal in the “attack” region, $y_1 < \theta$, and the other in the multiplicity region,
$\theta < y_2 < \bar{\theta}$, there exists one equilibrium, in which all agents attack. Here, the elimination procedure
may eliminate any other equilibrium. Vice versa, if there is one signal in the “not attack” region,
$y_2 > \bar{\theta}$, and the other is in the multiplicity area: there exists one equilibrium, in which no agent
attacks and it may be the only one. Whether the elimination process stops before the threshold reaches
the other signal and there are multiple equilibria or not, depends on the distribution of private weights
q^i.

If there is one signal in each of the two extreme regions, the elimination procedure reduces the
multiplicity region from both sides and may lead to a unique equilibrium with an intermediate
threshold, such that all agents with pessimistic beliefs (below the threshold) attack, while agents with
more optimistic beliefs refrain from attacking. Whether the elimination from both sides stops at the
same point and yields a unique equilibrium or not, depends once more on the distribution of private
weights.

For a uniform distribution of weights q^i on the simplex Δ^2, we can show that there are multiple
equilibria if and only if both signals are inside the multiplicity region. Suppose (without loss of
generality) that $y_1 < y_2$. Now, the equilibrium condition (3) can be expressed as

$$
\theta^* = \left\{ q \in [0,1] \left| q y_2 + (1 - q) y_1 < \theta^* + \theta \right. \right\} = \left\{ q \in [0,1] \left| q < \frac{\theta^* + \theta - y_1}{y_2 - y_1} \right. \right\}.
$$

An equilibrium with $\theta^* = 0$ exists, whenever $y_1 \geq \theta$. An equilibrium with $\theta^* = 1$ exists,
whenever $y_2 \leq \bar{\theta}$. In an equilibrium with an intermediate threshold the proportion of attacking agents
is given by

$$
\theta^* = \frac{\theta^* + \theta - y_1}{y_2 - y_1} \iff \theta^*(y) = \frac{y_1 - \theta}{1 + y_1 - y_2}.
$$
An equilibrium with an intermediate threshold exists if and only if

\[0 < \theta^* < 1 \iff 0 < \frac{y_1 - \theta}{1 + y_1 - y_2} < 1. \]

For \(y_2 - y_1 < 1 \) this condition is equivalent to \(\theta < y_1 < y_2 < \bar{\theta} \). For these public signals there exist multiple equilibria and \(\theta^* = \frac{y_1 - \theta}{1 + y_1 - y_2} \) is the third one besides those in which either all or no agent attacks.

For \(y_2 - y_1 > 1 \), an equilibrium with \(0 < \theta^* < 1 \) exists, if and only if \(y_1 < \theta < \bar{\theta} < y_2 \), i.e. if the lower signal hints at a state, at which attacking is a dominant strategy and the high signal hints at a state where not-attacking is a dominant strategy. The existence of agents with different dominant strategies rules out equilibria in which all or no agent attack. The game has a unique equilibrium with an interior threshold that arises from the iterative elimination procedure as described above. The argument is illustrated in Figure 1: The bold line is the distribution of posterior beliefs \(F_Y \) as induced by a uniform distribution of the weights that agents attach to signals \(y_1 \) and \(y_2 \). It tells us how many agents have posterior beliefs below its argument. The steep line has slope 1 and should be viewed as an inverse threshold function, telling us up to which posterior belief agents attack the currency if they know that at least \(\theta \) agents attack. For agents with posteriors below \(\underline{\theta} \) it is a dominant strategy to attack. Thus, there are at least \(\theta_1 = F(\underline{\theta}) = (\underline{\theta} - y_1)/(y_2 - y_1) \) agents attacking. This raises the others’ threshold to \(\underline{\theta} + \theta_1 \). Thereby, the proportion of attacking agents rises to at least \(\theta_2 = F(\underline{\theta} + \theta_1) \), and so on. Since the distribution of posteriors \(F_Y \) has a slope smaller than 1, the is a unique equilibrium with an interior threshold and a proportion of attacking agents, given by the solution of \(\theta^* = F(\underline{\theta} + \theta^*) \). If \(y_1 < \underline{\theta} \) and \(\underline{\theta} < y_2 < \bar{\theta} \), there is only one equilibrium, in which all agents attack. If \(y_2 > \bar{\theta} \) and \(\underline{\theta} < y_1 < \bar{\theta} \), there is a unique equilibrium, in which no agent attacks. Combining these results, multiple equilibria exist if and only if all signals are in the intermediate region.

Proposition 1: For a uniform distribution of subjective weights, the game with two public signals has multiple equilibria if and only if \(\underline{\theta} < y_k < \bar{\theta} \) for both \(k \).
This result shows that it makes a crucial difference, whether agents know the variances of public signals or not. For known variances, agents agree on the posterior and multiple equilibria exist, whenever this posterior is in $(\theta, \bar{\theta})$. For unknown variances, multiplicity may require that all signals are in this region.

The simplicity of this result is due to the assumptions that the weights q are uniformly distributed and $K = 2$. However, it is not a general condition for multiplicity that all signals must be contained in the intermediate region. This can be seen by either assuming another distribution of weights or by considering more than two signals. For the case with $K = 2$, suppose that the distribution of subjective weights is uni-modal around 0.5. If the center of the interval $[y_1, y_2]$ is in the multiplicity region, there are less agents with posterior expectations in the dominance regions than for a uniform distribution. The cumulative distribution of posterior beliefs is steeper at the centre and may intersect the threshold function three times, which may give us multiple equilibria even if $y_1 < \theta < \bar{\theta} < y_2$. An example is shown in Figure 2.
3.2. Equilibrium in the case of three public signals

When $K=3$, we get a unimodal distribution of posterior beliefs, even with a uniform distribution of q^i on the unit simplex.

From equation (3) it is clear that there is a unique equilibrium threshold if $f^i_y(\theta) < 1$ for all θ. At the lowest and at the highest equilibrium, the derivative of the right hand side of (3) with respect to θ^* stays below 1. Multiplicity requires that there is an intermediate equilibrium, at which the cumulative distribution of posteriors rises faster than the threshold function. That is

$$f^i_y(\theta^*(Y) + \bar{\theta}) > 1.$$ (4)

For $K = 3$, the equilibrium condition is equivalent to:

$$\theta^* = \left\{ i \in [0,1] \mid q_1^i y_1 + q_2^i y_2 + q_3^i y_3 < \theta^* + \bar{\theta} \right\}.$$

If $\frac{d\|\theta\|}{d\theta^*} < \frac{\sqrt{3}}{2}$, the game has a unique equilibrium.

Proposition 2: For a uniform distribution of subjective weights, the game with three public signals has a unique equilibrium if $y_3 - y_1 > 2$.

Figure 2. Multiple equilibria for a uni-modal distribution of posteriors.
Proof: See appendix.

For more than two public signals, uniqueness or multiplicity depend on the precise interaction between the distribution of signals and subjective weights. If all signals are close to each other and cover the intermediate region \((\theta, \tilde{\theta})\), then there are multiple equilibria, even for a uniform distribution of weights. However, if there is sufficient dispersion between the highest signal and the lowest signal, then uniqueness of the equilibrium is guaranteed independent from the range that is covered by these signals.

In particular, for \(y_3 - y_1 > 2\), the slope of the cumulative distribution of posteriors is smaller than 1. Therefore, it can intersect the hurdle function between \(\theta\) and \(\tilde{\theta}\) only once, so that there is a unique equilibrium. If the distribution of weights is more concentrated on the center of the simplex, then the extreme signals need to be even further away from each other to guarantee uniqueness.

The intuition behind this result is the following. If at least one signal is outside the region \((\theta, \tilde{\theta})\), the equilibrium may be unique and it can be derived by iterative elimination of dominated strategies. The iteration process starts with agents whose posteriors are such that either attacking or not-attacking is a dominated strategy. For the remaining agents with posteriors close to the edges of \((\theta, \tilde{\theta})\), either action loses its appeal, if they know that the proportion of attacking agents is bounded away from zero or one, respectively. This leads to a smaller region for which neither action is dominant strategy. The size of these steps of elimination depends on the mass of agents for whom either action can be predicted from their extreme beliefs. If the number of agents with extreme beliefs is small, then the iteration procedures stop early and the interval for which posterior beliefs are self-fulfilling is reduced only slightly. However, if a sufficiently large mass of agents’ posteriors is in the respective dominance region, the iteration steps are large and converge to a single threshold.

3.3. Equilibrium in the case of an infinite number of public signals

We determine the analytical solution for equilibrium uniqueness in the case where the number of public signals tends to infinity.

To ease the exposition, we assume \(\tau_k^2 = \tau^2\) for all \(k\). That is, all signals have the same precision. However, we keep the assumption that agents have private beliefs about these precisions. While the objective weights are \(q_k = 1/K\) for all \(k\), individuals attach private weights to the signals. When all signals have the same precision, the conditional variance of \(\theta\) is \(\text{Var}(\theta|Y) = \tau^2 / K\). The aggregate uncertainty after realization of signals becomes smaller with an increasing number of signals. With an
infinite number of signals, \(K \to \infty \), the uncertainty vanishes and agents are almost sure that their private posterior coincides with the true state \(\theta \). However, since agents differ in their evaluation of the various signals, they still disagree in their posterior beliefs. With \(\text{Var}(\theta|Y) \to 0 \), the range of posteriors for which there is no dominant strategy converges to the unit interval, \((\hat{\theta}, \bar{\theta}) \to (0,1)\).

Due to the law of large numbers, the distribution of realized signals is almost certainly identical to the prior distribution of signals, \(y_k \sim N(\theta, \tau^2) \). However, the distribution of posterior beliefs, \(E^i(\theta) = \sum_{k=1}^{\infty} q^i_k y_k \), depends also on the distribution of private weights \(q^i \in \Delta^\infty \). Any distribution of weights induces a distribution of posteriors with probability one. Denote the cumulative density function of the distribution of posterior beliefs by \(F \). The equilibrium condition (3) is then equivalent to \(\theta^* = F(\theta^*) \).

Multiplicity of equilibria requires that there is a solution to this equation, at which \(f(\theta^*) > 1 \), where \(f \) is the non-cumulative density of posteriors. For a uniform distribution of weights on the simplex and for any single peaked symmetric distribution on the simplex, the induced density of posteriors \(f \) has its maximum at the true state \(\theta \). This maximum decreases to zero with an increase in \(\tau^2 \to \infty \). Hence, there is a critical level for the variance of public signals, such that for a higher variance there is a unique equilibrium for all realizations of \(\theta \). For lower variances, there may be multiple equilibria for some realizations of \(\theta \in (0,1) \). An example is illustrated in Figure 3.

Multiplicity of equilibria requires that there is a solution to this equation, at which \(f(\theta^*) > 1 \), where \(f \) is the non-cumulative density of posteriors. For a uniform distribution of weights on the simplex and for any single peaked symmetric distribution on the simplex, the induced density of posteriors \(f \) has its maximum at the true state \(\theta \). This maximum decreases to zero with an increase in \(\tau^2 \to \infty \). Hence, there is a critical level for the variance of public signals, such that for a higher variance there is a unique equilibrium for all realizations of \(\theta \). For lower variances, there may be multiple equilibria for some realizations of \(\theta \). An example is illustrated in Figure 3.

Figure 3. Multiple equilibria may exist for some \(\theta \in (0,1) \), if \(\tau^2 \) is sufficiently small.
The higher τ^2, the flatter is the distribution of posteriors.

Proposition 3: For any single-peaked symmetric distribution of weights on the simplex Δ^∞, multiplicity of equilibria requires that τ^2 is sufficiently small.

For multiple equilibria, the cumulative distribution of posteriors must have a slope exceeding one (bold curve on Figure 3). Consider, for example that each agent attaches weight $q_k^i = 1$ to one of the signals, and assume that the aggregate distribution of weights is uniform on $k = 1, 2, \ldots, \infty$. Then, the posterior distribution of beliefs coincides with the distribution of signals. It is normal with mean θ and variance τ^2. The (non-cumulative) distribution is given by

$$
 f(E'(\theta)|Y) = \phi\left(\frac{E'(\theta) - \bar{\theta}}{\tau}\right) = \frac{1}{\tau \sqrt{2\pi}} \exp\left(-\frac{(E'(\theta) - \bar{\theta})^2}{2 \tau^2}\right) \leq \frac{1}{\tau \sqrt{2\pi}}.
$$

Multiplicity requires that $f(\cdot) > 1$. Since f is bounded above, a necessary condition for multiple equilibria is $\tau < \frac{1}{\sqrt{2\pi}}$.

3.4. Intuition for K finite larger than 3

We now give some intuition for a large but finite number of signals. If public signals are rather precise, then most signals are close to the true state θ. Thereby, most agents’ posteriors are close to the true state, even though they differ in their opinion about the relative precision of signals. If the true state happens to be in the interior of the region $(\theta, \bar{\theta})$, then there are multiple equilibria for a sufficiently high precision of public signals. This occurs with some positive probability. The lower the precision of public signals, the wider the dispersion of posterior beliefs and the smaller is the region of states, for which multiple equilibria exist. Therefore, the probability that the economy is endangered by self-fulfilling beliefs gets smaller. If the precision of public signals is sufficiently small, then there is a unique equilibrium for all states θ.

This shows that the precision of public signals is related to the prior probability of an economy being endangered by crises out of self-fulfilling beliefs. In this sense, our results lead to a similar conclusion as the global-game approach by Morris and Shin (2003): uniqueness requires that public information is not too precise. However, our results differ from those by Morris and Shin, because we did not rely on the existence of rather precise private information. Instead, all that we need for uniqueness is a sufficient dispersion of public signals and private beliefs about their relative importance. These private beliefs are common knowledge in our model: all agents know the
distribution of these weights, and in an economy with a finite number of agents, our results would still hold, if agents know the actual weights of all other agents. Therefore, posterior beliefs are common knowledge, while uniqueness in the global-game approach requires that posterior beliefs are not only different, but private information as well.

4 – The effect of public announcements: some implications for economic policy

Our analysis of the currency-attack model with multiple public signals has some consequences in terms of economic and informational policies. The model contributes to shed light on the current debate on the effects of reinforced transparency. Indeed, the fact that central banks and newspapers release information publicly raises concerns of whether economic transparency may be destabilising, by rendering the economy prone to self-fulfilling crashes. Nevertheless, our model suggests a counterargument to the traditional view: agents deal the same information differently and posterior beliefs may differ even if all information is publicly disclosed, as soon as there are multiple public signals of unknown precision.

We first evoke the policy instruments derived from the model, especially the role of signals’ precision and the number of announcements. We then illustrate our results with some considerations about the committee structure of central banks.

4.1. Policy instruments within the model: precision of signals, uncertainty on precision and number of announcements

We have shown that there may be a unique equilibrium if there is at least one public signal that hints at a state at which either attacking or not-attacking is a dominant strategy. With multiple public signals, multiplicity of equilibria requires that (i) signals are not too dispersed and (ii) private beliefs about the relative precision of these signals do not differ too much. These two conditions interact: if signals are dispersed over a wide range, there may still be multiple equilibria if most agents attach the same weights to these signals and vice versa.

With a large number of public signals, the probability of the economy being prone to self-fulfilling beliefs depends on the average precision of signals. If signals get very precise, we approach the case with perfect information. The lower the precision of public signals, the smaller gets the set of states with multiple equilibria and the smaller is the prior probability that the true state falls in this region. For a sufficiently low precision, the equilibrium is always unique.
The economic policy implications of these results require distinguishing three dimensions of transparency: transparent central banks provide more information, i.e. a larger number of public signals. Another dimension of transparency is the precision of the information provided to markets. A third dimension concerns information about the precision of statements, for example reliable figures on expected forecast errors. A larger number of signals (or more frequent provision of information) helps to avoid overreactions to any single announcement. A higher precision is useful for markets in determining the consequences of actions. But, it also raises the probability that most signals are in the multiplicity region. Finally, if agents agree on the precision of signals, their posteriors coincide, which leads to the same effects as providing a summary statistic as a single public signal. It induces high common weights to the announcements that may lead to crises out of self-fulfilling beliefs if the common posterior indicates a critical situation.

We have shown that agents do not always over-react to public information. Indeed, when there are multiple public signals -whose precisions are not common knowledge- agents do not always have self-fulfilling beliefs. In the case where \(K=1 \), the result is completely different from \(K>1 \). There is a place for equilibrium uniqueness under certain conditions (whereas this is impossible when agents receive only one public signal because of common knowledge). As a consequence, the economy should be relatively more stable with \(K > 1 \). This gives a role to the precision of signals: apart from its degree, uncertainty on it can represent an effective tool for the central bank to control for the beliefs of the agents. This gives a rationale for central banks not to publish forecast errors. The number of signals is also essential; especially having two (appropriate) public signals instead of one on the market can prevent from self-fulfilling equilibria by avoiding common posterior beliefs.

However, when \(K>1 \), then increasing the number of public signals \(K \) beyond two might not be helpful (in terms of stabilisation) insofar as equilibrium uniqueness requires (from \(K>2 \)) a sufficient mass on the “extreme” values (i.e. external to the interval \([\theta, \bar{\theta}]\)). For example, if the new disclosed signals accumulate in the intermediate region, it can be worse for the central bank to give more announcements even if they are more precise. The content of announcements is also very important. Suppose agents receive two public signals. If some additional announcements (say two) cross either border, the equilibria switch to another regime, as represented on the next figure.
This effect can be reinforced if signals are of high precision: increasing the number of too precise public signals can lead to a situation equivalent to common knowledge and damage the stability of the economy.

Finally, the number of signals is also ambiguous. Two intertwined effects go in opposite directions: with a large number of signals, there is a higher chance of getting signals in extreme areas while with a higher dimension, there might be some amplifying effects due to higher order beliefs.

We thus make the case that public information is not per se (automatically) destabilising. Our model is less deterministic than second generation models that always give multiple equilibria in the intermediate zone and private information models that always find some conditions for uniqueness (as soon as private information is sufficiently precise). Providing multiple public signals does not exclude multiple equilibria, but reduces the likelihood that conditions for multiplicity are met.

4.2. Illustration: communication policy of central banks and committee structure

One of the major recent trends in central banking practice has been the formal adoption of decision-making by Monetary Policy Committees (MPCs) rather than by individual central bank heads.\footnote{See Blinder et al. (2001) and Blinder and Wyplosz (2005) for reviews on this issue.} However, committee structures remain highly various. Blinder et al. (2001) provide a detailed typology of these committees. They especially distinguish collegial committees, where decision is
taken by consensus from individualistic MPCs (e.g., the Bank of England), where each member not only expresses his opinion verbally but also acts by voting; in such a case, unanimity is not necessary.

Which committee structure is better suited for the conduct of monetary policy? This issue has recently been under discussion. In an experiment, Blinder and Morgan (2004) argue that diversification pays off in the form of better decisions. Therefore an individualistic committee, which takes full advantage of the committee’s diversity, would seem to have a clear edge over a collegial committee, which exploits diversity much less. However, as pointed by Blinder and Wyplosz (2005, p.11), several voices potentially create confusion: “The danger arises if an individualistic committee is undisciplined and speaks with too many voices, especially if those disparate voices carry conflicting messages. In that case, central bank transparency can degenerate into central bank cacophony, leaving outside observers more befuddled than enlightened.” One argument that goes against such an argumentation is that the talk that emanates from the Bank of England’s MPC, and which is the expression of many voices, does seem to inform markets much more than it confuses them.

Our framework provides some useful insights to this debate arguing that several point of views expressed by members of a committee could be stabilizing as market participants may not all favor the information given by the same member and rather have different preferences about who to believe in. It therefore makes a case for an individualistic monetary policy committee in economies that may be threatened by self-fulfilling prophecies like in particular emerging market economies.

5 – Conclusion

This paper sheds light on the difficulties linked with the dichotomy between public information on the one hand and private information on the other. How increasing public information without increasing private information, and vice versa? Those two notions should be linked although theory clearly distinguishes them. In the literature, there typically lacks a model that could show how diverse sources of information or differences in the treatment of information could avoid common posterior beliefs, thus creating sufficient differences in the evaluation of publicly available information to prevent self-fulfilling beliefs equilibria. Here, we try to fill in the theoretical gap between public and private information, by proposing a private value game applied to the traditional speculative-attack model.

It is well known that common knowledge is difficult to establish in practice. However, financial markets are very transparent and many informational signals are disclosed by the central bank, or any other institution. On the exchange rate market, there is a plurality of channels (media), which disclose

5 There is also a variety of collegial committees, with two polar cases being the “autocratically-collegial MPC” where the chairman dictates the consensus and the “genuinely collegial MPC” where members argue for their own points but finally compromise on a group decision. The Federal Reserve System is a good example of the former, while the European System of Central Banks can represent the latter.

6 Indeed, the Bank of England publishes the minutes (of MPC discussions) where differences in opinions are an essential part of the information that should be conveyed to the markets.
more or less precise (but “objectively mistaken”) public information. Central bank committee
members themselves can sometimes express diverging views about the conduct of monetary policy.
Hence, any information is observed by all the agents; as agents are rational, they are aware of that.
Common knowledge of posterior beliefs does not only require that all agents share the same
information, it also requires that agents share the beliefs about the conditional distribution of the
revealed information, given the fundamentals. As a consequence, even if all agents share the same
information, agents may differ in their evaluation of these signals, and thus in their posterior beliefs.
This does not require private information. Agents may agree to disagree. By creating disparities
between agents’ posterior beliefs, multiple sources of public information can avoid self-fulfilling
beliefs equilibria. Such a model can help to explain why and how attacks are determined, even when
the most relevant information about fundamentals is publicly disclosed.

6 – References

BANNIER C., HEINEMANN F. [2005], “Optimal Transparency and Risk Taking to Avoid Currency
BLINDER A.S., GOODHART C., HILDEBRAND P., LIPTON D., WYPLOSZ C. [2001], “How Do
Monetary and Banking Studies.
BLINDER A.S., MORGAN J. [2005], “Are Two Heads Better than One?: Monetary Policy by
Committee,” Journal of Money, Credit, and Banking, 37(5), pp. 789-812.
BLINDER A.S., WYPLOSZ C. [2005], “Central Bank Talk: Committee Structure and Communication
Policy,” paper prepared for the session “Central Bank Communication” at the ASSA meetings,
DÖNGES J., HEINEMANN F. [2001], “Competition for Order Flow as a Coordination Game,”
Goethe Universität Frankfurt am Main working paper, 64, January 25.
http://www.sfm.vwl.uni-muenchen.de/heinemann/download/Cn-12(SSRN).pdf
HEINEMANN F., ILLING G. [2002], “Speculative Attacks: Unique Sunspot Equilibrium and
HELLWIG C. [2002], “Public Information, Private Information and the Multiplicity of Equilibria in
Coordination Games,” Journal of Economic Theory, 107, pp. 191-222.
LINDNER A. [2005], “Does Transparency of Central Banks Produce Multiple Equilibria on Currency
METZ C. [2002], “Private and Public Information in Self-Fulfilling Currency Crises,” Journal of
MORRIS S., SHIN H.S. [1998], “Unique Equilibrium in a Model of Self-fulfilling Currency Attacks,”
MORRIS S., SHIN H.S. [2003], “Global Games: Theory and Applications,” in Mathias Dewatripont,
Lars Peter Hansen and Stephen J. Turnovsky (eds), Advances in Economics and Econometrics:
Theory and Applications, Volume One (pp.56-114), Cambridge University Press, London.
OBSTFELD M. [1986], “Rational and Self-Fulfilling Balance-of-Payments Crises,” American

7 – Appendix: PROOF of Proposition 2

First, note that \(\left| \Delta^3 \right| = \sqrt{3} / 2 \). For \(K = 3 \) and uniform distribution of weights, equilibrium condition (3) is equivalent to

\[
\vartheta^* = \frac{2}{\sqrt{3}} \left\{ q \in \Delta^3 \left| q_1 y_1 + q_2 y_2 + q_3 y_3 \leq \vartheta^* + \vartheta \right. \right\}. \tag{4}
\]

With a uniform distribution of weights on the simplex, there is a positive mass of agents, who believe strongly in the worst signal and a positive mass of agents who believe strongly in the best signal. An equilibrium with \(\vartheta^* = 1 \), in which all agents attack, exists, if and only if \(y_k \leq \bar{\vartheta} \) for all \(k \). An equilibrium with \(\vartheta^* = 0 \), in which no agent attacks, exists if and only if \(y_k \geq \underline{\vartheta} \) for all \(k \).

Multiple equilibria require the existence of at least one interior equilibrium, \(0 < \vartheta^* < 1 \), at which the derivative of the right hand side of (4) with respect to \(\vartheta^* \) exceeds 1.

For any equilibrium with interior threshold,

\[
\vartheta^* = \frac{2}{\sqrt{3}} \left\{ q \in \Delta^3 \left| q_1 y_1 + q_2 y_2 + q_3 y_3 = \vartheta^* + \vartheta \right. \right\}. \tag{5}
\]

Hence, an interior equilibrium requires that \(y_1 < \vartheta^* + \vartheta < y_3 \). So, there exists a linear combination of \(y_1 \) and \(y_3 \) with \((1 - q_d) y_1 + q_d y_3 = \vartheta^* + \vartheta \), which is equivalent to

\[
q_d = \frac{\vartheta^* + \vartheta - y_1}{y_3 - y_1}.
\]

In Figures 3a and 3b this point is given by A. Now we distinguish two cases: If \(y_2 \geq \vartheta^* + \vartheta \), then there also exists a linear combination of \(y_1 \) and \(y_2 \) that equals \(\vartheta^* + \vartheta \). This is indicated by point B in Figure 6a. Any combination of weights on the straight line between A and B is associated with the
same expected state. In an equilibrium of this type, the area on the simplex below the line AB divided by the total size of the simplex equals θ^*.

If $y_2 < \theta^* + \theta$, then there exists a linear combination of y_2 and y_3 that equals $\theta^* + \theta$. This is indicated by point B in Figure 6b. Again, any combination of weights on the straight line between A and B is associated with the same expected state. In an equilibrium of this type, θ^* equals the area on the simplex below the line AB divided by the total size of the simplex.

If $y_2 \geq \theta^* + \theta$, the coordinates of B are \(\left(\frac{y_3 - \theta^* - \theta}{y_2 - y_1}, \frac{\theta^* + \theta - y_1}{y_2 - y_1}, 0 \right) \). Basic rules of trigonometry enable us to calculate the area below AB; it has the size \(\frac{\sqrt{3}}{2} \left(\frac{(\theta^* + \theta - y_1)^2}{(y_3 - y_1)(y_2 - y_1)} \right) \). Thus, the condition for an interior equilibrium threshold (5) is equivalent to \(\theta^* = \frac{(\theta^* + \theta - y_1)^2}{(y_3 - y_1)(y_2 - y_1)} \). The right-hand side is increasing and concave in θ^*. So, the derivative of the right-hand side is maximal at
the highest θ^* at which the condition $y_2 \geq \theta^* + \theta$ applies, i.e. at $\theta^* = y_2 - \theta$. Here the derivative is

$$\frac{2}{(y_3 - y_1)}.$$

If $y_2 < \theta^* + \theta$, the coordinates of B are

$$\left(0, \frac{y_3 - \theta^* - \theta}{y_3 - y_2}, \frac{\theta^* + \theta - y_2}{y_3 - y_2}\right)$$

and the area below AB has the size

$$\frac{\sqrt{3}}{2} \left[1 - \frac{(y_3 - \theta^* - \theta)^2}{(y_3 - y_2)(y_3 - y_1)}\right].$$

Thus, the condition for an interior equilibrium threshold (5) is equivalent to

$$\theta^* = 1 - \frac{(y_3 - \theta^* - \theta)^2}{(y_3 - y_2)(y_3 - y_1)}.$$ The right-hand side is increasing and convex in θ^*.

So, the derivative of the right-hand side is maximal at the lowest θ^* at which the condition $y_2 < \theta^* + \theta$ applies, i.e. at $\theta^* = y_2 - \theta$. Here the derivative is also

$$\frac{2}{(y_3 - y_1)}.$$

Combining the two cases, we see that for any interior equilibrium the derivative of the right-hand side of (4) is smaller than 1 if $y_3 - y_1 > 2$.

Thus, we conclude that $y_3 - y_1 > 2$ is a sufficient condition for a unique equilibrium.

QED