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Abstract

We theoretically analyze the interactions between asset prices, financial speculation, and

macroeconomic outcomes when output is determined by aggregate demand. If the interest rate

is constrained, a decline in risky asset valuations generates a demand recession. This reduces

earnings and generates a negative feedback loop between asset prices and aggregate demand.

In the recession phase, beliefs matter not only because they a§ect asset valuations but also

because they determine the strength of the amplification mechanism. In the ex-ante boom phase,

belief disagreements (or heterogeneous asset valuations) matter because they induce investors to

speculate. This speculation exacerbates the crash by reducing high-valuation investors’ wealth

when the economy transitions to recession. Macroprudential policy that restricts speculation in

the boom can Pareto improve welfare by increasing asset prices and aggregate demand in the

recession.
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1. Introduction

Prices of risky assets, such as stocks and houses, fluctuate considerably without meaningful changes

in underlying payo§s. These fluctuations, which are due to a host of rational and behavioral

mechanisms, are generically described as the result of a “time-varying risk premium” (see, Cochrane

(2011); Shiller et al. (2014) and Campbell (2014) for recent reviews). While fluctuations in risky

asset prices a§ect the macroeconomy in a multitude of ways, a growing empirical literature suggests

that aggregate demand plays a central role and therefore interest rate policy can mitigate the impact

of asset price shocks (see Pflueger et al. (2018) for evidence that prices of volatile stocks have high

predictive power for economic activity and interest rates).1 A current policy concern is that, with

interest rates close to their e§ective lower bound in much of the developed world, interest rate

policy will be unable to respond to future large negative asset price shocks.

This connection between risky asset prices and aggregate demand highlights that speculation–a

pervasive feature of financial markets driven by heterogeneous asset valuations–can lead to more

severe downturns. There is in fact an old tradition in macroeconomics that emphasizes speculation

as a central feature of asset prices in boom-bust cycles (see, e.g., Minsky (1977); Kindleberger

(1978)). In recent empirical work, Mian and Sufi (2018) argue that speculation also played a key

role in the U.S. housing cycle. However, speculation and its interaction with aggregate demand

are largely missing from the modern macroeconomic theory connecting asset prices with economic

activity, which mostly focuses on financial frictions (see Gertler and Kiyotaki (2010) for a review).

This omission is especially important in the current low interest rates environment, as monetary

policy has little space to mop up a sharp decline in risky asset prices following a speculative episode.

In this paper, we build a risk-centric macroeconomic model–that is, a model in which risky asset

prices play an important role–with the two key features highlighted above. First, we emphasize

the role of the aggregate demand channel and interest rate frictions in causing recessions driven by

a rise in the “risk premium”–our catchall phrase for shocks to asset valuations. Second, we study

the impact of financial speculation on the severity of these recessions and derive the implications

for macroprudential policy. In order to isolate our insights, we remove all financial frictions.

Our model is set in continuous time with di§usion productivity shocks and Poisson shocks that

move the economy between high and low risk premium states. The supply side is a stochastic

endowment economy with sticky prices (which we extend to an endogenous growth model when

we add investment). The demand side has risk-averse consumer-investors who demand goods and

risky assets. We focus on “interest rate frictions” and “financial speculation.” By interest rate

frictions, we mean factors that might constrain or delay the adjustment of the risk-free interest

rate to shocks. For concreteness, we work with a zero lower bound on the policy interest rate, but

our mechanism is also applicable with other interest rate constraints such as a currency union or a

fixed exchange rate. By financial speculation, we mean the trading of risky financial assets among

investors that have heterogeneous valuations for these assets. We capture speculation by allowing

1Cieslak and Vissing-Jorgensen (2017) conduct a textual analysis of FOMC minutes and show that the Fed pays
attention to stock prices and cuts interest rates after stock price declines (“the Fed put”).
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Figure 1: Output-asset price feedbacks during a risk-centric demand recession.

investors to have belief disagreements with respect to the transition probabilities between high and

low risk premium states.

To fix ideas, consider an increase in perceived volatility (equivalently, an increase in average

pessimism). This is a “risk premium shock” that exerts downward pressure on risky asset prices

without a change in current productivity (the supply-determined output level). If the monetary

authority allows asset prices to decline, then low prices induce a recession by reducing aggregate

demand through a wealth e§ect. Consequently, monetary policy responds by reducing the interest

rate, which stabilizes asset prices and aggregate demand. However, if the interest rate is constrained,

the economy loses its natural line of defense. In this case, the rise in the risk premium reduces

asset prices and generates a demand recession.

Dynamics play a crucial role in this environment, as the recession is exacerbated by feedback

mechanisms. In the main model, when investors expect the higher risk premium to persist, the

decline in future demand lowers expected earnings, which exerts further downward pressure on

asset prices. With endogenous investment, there is a second mechanism, as the decline in current

investment lowers the growth of potential output, which further reduces expected earnings and asset

prices. In turn, the decline in asset prices feeds back into current consumption and investment,

generating scope for severe spirals in asset prices and output. Figure 1 illustrates these dynamic

mechanisms. The feedbacks are especially powerful when investors are pessimistic and think the

higher risk premium will persist. Hence, beliefs matter in our economy not only because they have

a direct impact on asset prices but also because they determine the strength of the amplification

mechanism.
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In this environment, speculation during the low risk premium phase (boom) exacerbates the

recession when there is a transition to the high risk premium phase. With heterogeneous asset

valuations, which we capture with belief disagreements about state transition probabilities, the

economy’s degree of optimism depends on the wealth share of optimists (or high-valuation in-

vestors). During recessions, the economy benefits from wealthy optimists because they raise asset

valuations, increasing aggregate demand. However, disagreements naturally lead to speculation

during booms, which depletes optimists’ wealth during recessions. Specifically, optimists take on

risk by selling insurance contracts to pessimists that enrich optimists if the boom persists but lead

to a large reduction in their wealth share when there is a transition to recession. This reallocation

of wealth lowers asset prices and leads to a more severe recession.

These e§ects motivate macroprudential policy that restricts speculation during the boom. We

show that macroprudential policy that makes optimistic investors behave as-if they were more pes-

simistic (implemented via portfolio risk limits) can generate a Pareto improvement in social welfare.

This result is not driven by paternalistic concerns–the planner respects investors’ own beliefs, and

the result does not depend on whether optimists or pessimists are closer to the truth. Rather, the

planner improves welfare by internalizing aggregate demand externalities. The depletion of opti-

mists’ wealth during a demand recession depresses asset prices and aggregate demand. Optimists

(or more broadly, high-valuation investors) do not internalize the e§ect of their risk taking on as-

set prices and aggregate demand during the recession. This leads to excessive risk taking that is

corrected by macroprudential policy. Moreover, our model supports procyclical macroprudential

policy. While macroprudential policy can be useful during the recession, these benefits can be

outweighed by its immediate negative impact on asset prices. This decline can be o§set by the

interest rate policy during the boom but not during the recession.

While there is an extensive empirical literature supporting the components of our model (see

Section 7 for a brief summary), we extend this literature by presenting empirical evidence consistent

with our results. We focus on three implications. First, our model predicts that shocks to asset

valuations generate a more severe demand recession when the interest rate is constrained. Second,

the recession reduces firms’ earnings and leads to a further decline in asset prices. Third, the

recession is more severe when the shock takes place in an environment with more speculation.

To investigate these predictions, we assemble a quarterly panel data set of 21 advanced countries

between 1990 and 2017, and subdivide the panel into countries that are part of the Eurozone or

the European Exchange Rate Mechanism (the Euro/ERM sample) and those that have their own

currencies (the non-Euro/ERM sample). Countries in the first group have a constrained interest

rate with respect to local asset price shocks, since they share a common monetary policy. The

second group has a less constrained interest rate. We find that a negative house price shock in

a non-Euro/ERM country is associated with an initial decline in economic activity, followed by

a decline in the policy interest rate and output stabilization. In contrast, a similar shock in a

Euro/ERM country is associated with no interest rate response (compared to other Euro/ERM

countries), which is followed by a more persistent and larger decline in economic activity. We also
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find that the house price shock is followed by a larger decline in earnings and stock prices of publicly

traded firms in the Euro/ERM sample (although the standard errors are larger for these results).

Finally, we find that past bank credit expansion–which we use as a proxy for speculation on house

prices–is associated with more severe outcomes following the house price shock in the Euro/ERM

sample (but not in the other sample).

Literature review. Our paper is related to three main literatures: two in macroeconomics and

one in finance. On the macroeconomics side, a large body of work emphasizes the links between

asset prices and macroeconomic outcomes. Our model contributes to this literature by establishing

a relationship between asset prices and aggregate demand even without financial frictions. This

relates our paper to strands of the New-Keynesian literature that emphasize demand shocks that

might drive business cycles while also a§ecting asset prices, such as “news shocks” (Beaudry and

Portier (2006)), “noise shocks” (Lorenzoni (2009); Blanchard et al. (2013)), “confidence shocks”

(Ilut and Schneider (2014)), “uncertainty shocks” (Basu and Bundick (2017); Fernández-Villaverde

et al. (2015)), and “disaster shocks” (Isoré and Szczerbowicz (2017)). Aside from the modeling

novelty (ours is a continuous time macrofinance model), we provide an integrated treatment of these

and related forces. We refer to them as “risk premium shocks” to emphasize their close connection

with asset prices and the finance literature on time-varying risk premia. Accordingly, we make asset

prices the central object in our analysis, breaking with convention in the New-Keynesian literature

without financial frictions.2 More substantively, we show that heterogeneity in asset valuation

matters in these environments. This heterogeneity matters because it leads to speculation that

exacerbates demand recessions and provides a distinct rationale for macroprudential regulation.

Another important macroeconomics literature focuses on uncertainty and its role in driving

macroeconomic fluctuations (e.g., Bloom (2009); Baker et al. (2016); Bloom et al. (2018)). We

contribute to this literature by showing how uncertainty a§ects aggregate activity through asset

prices and their impact on aggregate demand. We also illustrate how uncertainty shocks have

stronger e§ects when monetary policy is constrained, consistent with recent empirical evidence

(e.g., Plante et al. (2018)). Finally, we show that ex-ante financial speculation amplifies the damage

from uncertainty shocks.

On the finance side, a large literature emphasizes investors’ beliefs as a key driver of finan-

cial boom-bust cycles (see, e.g., Gennaioli and Shleifer (2018) for the role of beliefs in the recent

crisis). A strand of this literature argues that heterogeneity in the degree of optimism combined

with short-selling constraints can lead to speculative asset price bubbles that substantially amplify

the financial cycle (e.g., Harrison and Kreps (1978); Scheinkman and Xiong (2003); Geanakoplos

(2010); Simsek (2013a); Barberis et al. (2018)). Related contributions emphasize that disagree-

ments exacerbate asset price fluctuations more broadly–even without short-selling constraints or

bubbles–because they create endogenous fluctuations in agents’ wealth distribution (e.g., Basak

(2000, 2005); Detemple and Murthy (1994); Zapatero (1998); Cao (2017); Xiong and Yan (2010);

2For an exception, see Galí (2018) who develops an OLG variant of the New-Keynesian model with rational bubbles
(see also Biswas et al. (2018)).
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Kubler and Schmedders (2012); Korinek and Nowak (2016)). Our paper features similar forces but

explores them in an environment where output is not necessarily at its supply-determined level. We

show that speculation during the boom not only worsens the asset price bust but also exacerbates

the demand recession. Consequently, and unlike much of this literature, macroprudential policy

that restricts speculation can improve welfare even if the planner is not paternalistic and respects

investors’ (heterogeneous and possibly over-optimistic) beliefs. Adding paternalistic concerns would

reinforce our normative conclusions (see Section 6).3

The interactions between heterogeneous valuations, risk-premia, and interest rate lower bounds

are central themes of the literature on structural safe asset shortages and safety traps (see, for

instance, Caballero and Farhi (2017); Caballero et al. (2017b)). Aside from emphasizing a broader

set of factors that can drive the risk premium (in addition to safe asset scarcity), we contribute to

this literature by focusing on dynamics. We analyze the connections between boom and recession

phases of recurrent business cycles driven by risk premium shocks. We show that speculation

between “optimists” and “pessimists” during the boom exacerbates a future risk-centric demand

recession, and derive the implications for macroprudential policy. In contrast, Caballero and Farhi

(2017) show how “pessimists” can create a demand recession in otherwise normal times and derive

the implications for fiscal policy and unconventional monetary policy.4

At a methodological level, our paper belongs to the new continuous time macrofinance literature

started by the work of Brunnermeier and Sannikov (2014, 2016a) and summarized in Brunnermeier

and Sannikov (2016b) (see also Basak and Cuoco (1998); Adrian and Boyarchenko (2012); He and

Krishnamurthy (2012, 2013); Di Tella (2017, 2019); Moreira and Savov (2017); Silva (2016)). This

literature highlights the full macroeconomic dynamics induced by financial frictions. While the

structure of our economy shares many features with theirs, our model has no financial frictions,

and the macroeconomic dynamics stem not from the supply side (relative productivity) but from

the aggregate demand side.

Our results on macroprudential policy are related to recent work that analyzes the implications

of aggregate demand externalities for the optimal regulation of financial markets. For instance,

Korinek and Simsek (2016) show that, in the run-up to deleveraging episodes that coincide with a

zero-lower-bound on the interest rate, policies targeted at reducing household leverage can improve

welfare (see also Farhi and Werning (2017)). In these papers, macroprudential policy works by

reallocating wealth across agents and states so that agents with a higher marginal propensity to

consume hold relatively more wealth when the economy is depressed due to deficient demand. The

mechanism in our paper is di§erent and works through heterogeneous asset valuations. The policy

operates by transferring wealth to optimists during recessions, not because optimists spend more

3More broadly, our paper is part of a large finance literature that investigates the e§ect of belief disagreements
and speculation on financial markets (e.g., Lintner (1969); Miller (1977); Varian (1989); Harris and Raviv (1993);
Chen et al. (2002); Fostel and Geanakoplos (2008); Simsek (2013b); Iachan et al. (2015)).

4Our paper is also related to an extensive literature on liquidity traps that has exploded since the Great Recession
(see, for instance, Tobin (1975); Krugman (1998); Eggertsson and Woodford (2006); Guerrieri and Lorenzoni (2017);
Werning (2012); Hall (2011); Christiano et al. (2015); Rognlie et al. (2018); Midrigan et al. (2016); Bacchetta et al.
(2016)).
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than other investors, but because they raise asset valuations and induce all investors to spend more

(while also increasing aggregate investment).5

The macroprudential literature beyond aggregate demand externalities is mostly motivated by

the presence of pecuniary externalities that make the competitive equilibrium constrained ine¢cient

(e.g., Caballero and Krishnamurthy (2003); Lorenzoni (2008); Bianchi and Mendoza (2018); Jeanne

and Korinek (2018)). The friction in this literature is market incompleteness or collateral constraints

that depend on asset prices (see Davila and Korinek (2016) for a detailed exposition). We show

that a decline in asset prices is damaging not only for the reasons emphasized in this literature,

but also because it lowers aggregate demand.

The rest of the paper is organized as follows. In Section 2 we present an example that illustrates

the main mechanism and motivates the rest of our analysis. Section 3 presents the general environ-

ment and defines the equilibrium. Section 4 characterizes the equilibrium in a benchmark setting

with common beliefs and homogeneous asset valuations. This section shows how risk premium

shocks can lower asset prices and induce a demand recession, and how the recession is exacerbated

by feedback loops between asset prices and aggregate demand. Section 5 characterizes the equilib-

rium with belief disagreements and heterogeneous asset valuations, and illustrates how speculation

exacerbates the recession. Section 6 shows the aggregate demand externalities associated with op-

timists’ risk taking and establishes our results on macroprudential policy. Section 7 presents our

empirical analysis and summarizes supporting evidence from the related literature. Section 8 con-

cludes. The (online) appendices contain the omitted derivations and proofs as well as the details

of our empirical analysis.

2. A stepping-stone example

Here we present a simple (largely static) example that serves as a stepping stone into our main

(dynamic) model. We start with a representative agent setup and illustrate the basic aggregate

demand mechanism. We then consider belief disagreements and illustrate the role of speculation.

A two-period risk-centric aggregate demand model. Consider an economy with two dates,

t 2 {0, 1}, a single consumption good, and a single factor of production–capital. For simplicity,
capital is fixed (i.e., there is no depreciation or investment) and it is normalized to one. Potential

output is equal to capital’s productivity, zt, but the actual output can be below this level due to a

shortage of aggregate demand, yt ≤ zt. For simplicity, we assume output is equal to its potential at
the last date, y1 = z1, and focus on the endogenous determination of output at the previous date,

y0 ≤ z0. We assume the productivity at date 1 is uncertain and log-normally distributed so that,

log y1 = log z1 ∼ N
(
g −

σ2

2
,σ2
)
. (1)

5See Farhi and Werning (2016) for a synthesis of some of the key mechanisms that justify macroprudential policies
in models that exhibit aggregate demand externalities.
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We also normalize the initial productivity to one, z0 = 1, so that g captures the (log) expected

growth rate of productivity, and σ captures its volatility.

There are two types of assets. There is a “market portfolio” that represents claims to the output

at date 1 (which accrue to production firms as earnings), and a risk-free asset in zero net supply.

We denote the price of the market portfolio with Q, and its log return with,

rm (z1) = log
z1
Q
. (2)

We denote the log risk-free interest rate with rf .

For now, the demand side is characterized by a representative investor, who is endowed with the

initial output as well as the market portfolio (we introduce disagreements at the end of the section).

At date 0, she chooses how much to consume, c0, and what fraction of her wealth to allocate to

the market portfolio, !m (with the residual fraction invested in the risk-free asset). When asset

markets are in equilibrium, she will allocate all of her wealth to the market portfolio, !m = 1, and

her portfolio demand will determine the risk premium.

We assume the investor has Epstein-Zin preferences with the discount factor, e−ρ, and the

relative risk aversion coe¢cient (RRA), γ. For simplicity, we set the elasticity of intertemporal

substitution (EIS) equal to 1. Later in this section, we will show that relaxing this assumption

leaves our conclusions qualitatively unchanged. In the dynamic model, we will simplify the analysis

further by setting RRA as well as EIS equal to 1 (which leads to time-separable log utility).

The supply side of the economy is described by New-Keynesian firms that have pre-set fixed

prices. These firms meet the available demand at these prices as long as they are higher than their

marginal cost (see Appendix B.1.2 for details). These features imply that output is determined by

the aggregate demand for goods (consumption) up to the capacity constraint,

y0 = c0 ≤ z0. (3)

Since prices are fully sticky, the real interest rate is equal to the nominal interest rate, which is

controlled by the monetary authority. We assume that the interest rate policy attempts to replicate

the supply-determined output level. However, there is a lower bound constraint on the interest rate,

rf ≥ 0. Thus, the interest rate policy is described by, rf = max
(
rf∗, 0

)
, where rf∗ is the natural

interest rate that ensures output is at its potential, y0 = z0.

To characterize the equilibrium, first note that there is a tight relationship between output and

asset prices. Specifically, the assumption on the EIS implies that the investor consumes a fraction

of her lifetime income,

c0 =
1

1 + e−ρ
(y0 +Q) . (4)

Combining this expression with Eq. (3), we obtain the following equation,

y0 = e
ρQ. (5)
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We refer to this equation as the output-asset price relation–generally, it is obtained by combining

the consumption function (and when there is investment, also the investment function) with goods

market clearing. The condition says that asset prices increase aggregate wealth and consumption,

which in turn leads to greater output.

Next, note that asset prices must also be consistent with equilibrium in risk markets. In

Appendix A.1, we show that, up to a local approximation, the investor’s optimal weight on the

market portfolio is determined by,

!mσ '
1

γ

E [rm (z1)] +
σ2

2 − r
f

σ
. (6)

In words, the optimal portfolio risk (left side) is proportional to “the Sharpe ratio” on the market

portfolio (right side). The Sharpe ratio captures the reward per risk, where the reward is determined

by the risk premium: the (log) expected return in excess of the (log) risk free rate. This is the

standard risk-taking condition for mean-variance portfolio optimization, which applies exactly in

continuous time. It applies approximately in the two-period model, and the approximation becomes

exact when there is a representative household and the asset markets are in equilibrium (!m = 1).

In particular, substituting the asset market clearing condition, !m = 1, and the expected return

on the market portfolio from Eqs. (1) and (2), we obtain the following equation,

σ =
1

γ

g − logQ− rf

σ
. (7)

We refer to this equation as the risk balance condition–generally, it is obtained by combining

investors’ optimal portfolio allocations with asset market clearing and the equilibrium return on

the market portfolio. It says that, the equilibrium level of the Sharpe ratio on the market portfolio

(right side) needs to be su¢ciently large to convince investors to hold the risk generated by the

productive capacity (left side).

Next, consider the supply-determined equilibrium in which output is equal to its potential,

y0 = z0 = 1. Eq. (5) reveals that this requires the asset price to be at a particular level, Q∗ = e−ρ.

Combining this with Eq. (7), the interest rate also needs to be at a particular level,

rf∗ = g + ρ− γσ2. (8)

Intuitively, the monetary policy needs to set the interest rate to a low enough level to induce

su¢ciently high asset prices and aggregate demand to clear the goods market.

Now suppose the initial parameters are such that rf∗ > 0, so that the equilibrium features

Q∗, rf∗ and supply-determined output, y0 = z0 = 1. Consider a “risk premium shock” that raises

the volatility, σ, or risk aversion, γ. The immediate impact of this shock is to create an imbalance

in the risk balance condition (7). The economy produces too much risk (left side) relative to what

investors are willing to absorb (right side). In response, the monetary policy lowers the risk-free

interest rate (as captured by the decline in rf∗), which increases the risk premium and equilibrates
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the risk balance condition (7). Intuitively, the monetary authority lowers the opportunity cost of

risky investment and induces investors to absorb risk.

Next suppose the shock is su¢ciently large so that the natural interest rate becomes negative,

rf∗ < 0, and the actual interest rate becomes constrained, rf = 0. In this case, the risk balance

condition is re-established with a decline in the price of the market portfolio, Q. This increases the

expected return on risky investment, which induces investors to absorb risk. However, the decline

in Q reduces aggregate wealth and induces a demand-driven recession. Formally, we combine Eqs.

(5) and (7) to obtain,

log y0 = ρ+ logQ where logQ = g − γσ2. (9)

Note also that, in the constrained region, asset prices and output become sensitive to beliefs about

future prospects. For instance, a decrease in the expected growth rate, g (pessimism)–rational or

otherwise–decreases asset prices and worsens the recession. In fact, while we analyzed shocks that

raise σ or γ, Eqs. (8) and (9) reveal that shocks that lower g lead to the same e§ects.

More general EIS. Now consider the same model with the di§erence that we allow the EIS,

denoted by ", to be di§erent than one. Appendix A.2 analyzes this case and shows that the analogue

of the output-asset price relation is given by [cf. Eq. (5)],

y0 = e
ρ"
(
RCE

)1−"
Q. (10)

Here, RCE denotes the investor’s certainty-equivalent portfolio return that we formally define in

the appendix. The expression follows from the fact that consumption is not only influenced by a

wealth e§ect, as in the baseline analysis, but also by substitution and income e§ects. When " > 1,

the substitution e§ect dominates. All else equal, a decline in the attractiveness of investment

opportunities captured by a reduction in RCE tends to reduce savings and increase consumption,

which in turn increases output. Conversely, when " < 1, the income e§ect dominates and a decline

in RCE tends to increase savings and reduce consumption and output.

We also show that the risk balance condition (7) remains unchanged (because the EIS does

not a§ect the investor’s portfolio problem). Furthermore, we derive the equilibrium level of the

certainty-equivalent return as,

logRCE = g − logQ−
1

2
γσ2. (11)

As expected, RCE decreases with the volatility, σ, and the risk aversion, γ.

These expressions illustrate that a risk premium shock that increases σ or γ (or lowers g)

a§ects consumption and aggregate demand through two channels. As before, it exerts a downward

influence on asset prices, which reduces consumption through a wealth e§ect. But in this case

it also exerts a downward influence on the certainty-equivalent return, which a§ects consumption
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further depending on the balance of income and substitution e§ects. When " > 1, the second

channel works against the wealth e§ect because investors substitute towards consumption. When

" < 1, the second channel reinforces the wealth e§ect.

In Appendix A.2, we complete the characterization of equilibrium and show that the net e§ect

on aggregate demand is qualitatively the same as in the baseline analysis regardless of the level

of EIS. In particular, a risk premium shock that increases γ or σ (or lowers g) reduces rf∗ (see

Eq. (A.9)).6 When the interest rate is constrained, rf = 0, the shock reduces the equilibrium

level of output y0, as well as the asset price, Q (see Eq. (A.10)). When " > 1, the substitution

e§ect mitigates the magnitude of these declines but it does not overturn them–that is, the wealth

e§ect ultimately dominates. Since the purpose of our model is to obtain qualitative insights, in the

dynamic model we assume " = 1 and isolate the wealth e§ect.7

Belief disagreements and speculation. Let us go back to the baseline case with " = 1 and

illustrate the role of speculation. Suppose that there are two types of investors with heterogeneous

beliefs about productivity growth. Specifically, there are optimists and pessimists that believe

log z1 is distributed according to, respectively, N
(
go − σ2

2 ,σ
2
)
and N

(
gp − σ2

2 ,σ
2
)
. We assume

go > gp so that optimists perceive greater growth. Beliefs are dogmatic, that is, investors know

each others’ beliefs and they agree to disagree (and it does not matter for our mechanism whether

any of them is closer to truth than the other). Optimists are endowed with a fraction α of the

market portfolio and of date 0 output (and pessimists are endowed with the remaining fraction).

Hence, α denotes the wealth share of optimists. The rest of the model is unchanged.

Following similar steps to those as in the baseline case, we solve for “rstar” as follows (see

Appendix A.3),

rf∗ ' αgo + (1− α) gp + ρ− γσ2. (12)

When rf∗ < 0, the interest rate is constrained and rf = 0, so we have a demand recession with,

log y0 = ρ+ logQ, where logQ ' αgo + (1− α) gp − γσ2. (13)

Hence, equilibrium prices and output depend on optimists’ wealth share, α. During the recession,

increasing α improves outcomes because optimists increase asset prices, which increases aggregate

wealth and everyone’s spending. In our dynamic model, α will be endogenous because investors

will (ex-ante) speculate on their di§erent beliefs. Moreover, speculation will reduce α during the

recession because optimists think the risk premium shock is unlikely. This will exacerbate the

recession and motivate macroprudential policy. Next, we turn to a formal analysis of dynamics.

6The e§ect of this risk premium shock on Q∗ is more subtle (see Eq. (A.8)). When " > 1, Q∗ declines, which
means that rf∗ does not need to fully accommodate the risk premium shock. The reason is that the substitution
e§ect supports current consumption and reduces the burden on wealth to support aggregate demand. The opposite
happens when " < 1, where the substitution e§ect is dominated by the income e§ect. In this case Q∗ needs to rise
to support aggregate demand, which is achieved by a larger decline in rf∗ following the risk premium shock.

7We further simplify the dynamic model by setting γ = 1 (which leads to log utility), because γ 6= 1 creates
additional dynamic hedging motives that are not central for our analysis (see, e.g., Di Tella (2017)).
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3. Dynamic environment and equilibrium

In this section we first introduce our general dynamic environment and define the equilibrium. We

then describe the optimality conditions and provide a partial characterization of equilibrium. In

subsequent sections we will further characterize this equilibrium in various special cases of interest.

Throughout, we simplify the analysis by abstracting away from investment. In Appendix D.1, we

extend the environment to introduce investment and endogenous growth. We discuss additional

results related to investment at the end of Section 4.

Potential output and risk premium shocks. The economy is set in infinite continuous time,

t 2 [0,1), with a single consumption good and a single factor of production, capital. Let kt,s
denote the capital stock at time t and in the aggregate state s 2 S. Suppose that, when fully
utilized, kt,s units of capital produce Akt,s units of the consumption good. Hence, Akt,s denotes

the potential output in this economy. Capital follows the process,

dkt,s
kt,s

= gdt+ σsdZt. (14)

Here, g denotes the expected productivity growth, which is an exogenous parameter in the main

text (it is endogenized in Appendix D.1 that introduces investment). The term, dZt, denotes the

standard Brownian motion, which captures “aggregate productivity shocks.”8

The states, s 2 S, di§er only in terms of the volatility of aggregate productivity, σs. For

simplicity, there are only two states, s 2 {1, 2}, with σ1 < σ2. State s = 1 corresponds to a

low-volatility state, whereas state s = 2 corresponds to a high-volatility state. At each instant, the

economy in state s transitions into the other state s0 6= s according to a Poisson process. We use
these volatility shocks to capture the time variation in the risk premium due to various unmodeled

factors (see Section 2 for an illustration of how risk, risk aversion, or beliefs play a similar role in

our analysis).

Transition probabilities and belief disagreements. We let λis > 0 denote the perceived

Poisson transition probability in state s (into the other state) according to investor i 2 I. These
probabilities capture the degree of investors’ (relative) optimism or pessimism. For instance, greater

λi2 corresponds to greater optimism because it implies the investor expects the current high-risk-

premium conditions to end relatively soon. Likewise, smaller λi1 corresponds to greater optimism

because it implies the investor expects the current low-risk-premium conditions to persist longer.

Belief disagreements provide the only exogenous source of heterogeneity in our model. We first ana-

lyze the special case with common beliefs (Section 4) and then investigate belief disagreements and

8Note that fluctuations in kt,s generate fluctuations in potential output, Akt,s. We introduce Brownian shocks to
capital, kt,s, as opposed to total factor productivity, A, since this leads to a slightly more tractable analysis when
we extend the model to include investment (see Appendix D). In the main text, we could equivalently introduce the
shocks to A and conduct the analysis by normalizing all relevant variables with At,s as opposed to kt,s.
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speculation (Section 5). When investors disagree, they have dogmatic beliefs (formally, investors

know each others’ beliefs and they agree to disagree).

Menu of financial assets. There are three types of financial assets. First, there is a market

portfolio that represents a claim on all output (which accrues to production firms as earnings as we

describe later). We let Qt,skt,s denote the price of the market portfolio, so Qt,s denotes the price

per unit of capital. We let rmt,s denote the instantaneous expected return on the market portfolio

conditional on no transition. Second, there is a risk-free asset in zero net supply. We denote its

instantaneous return by rft,s. Third, in each state s, there is a contingent Arrow-Debreu security

that trades at the (endogenous) price ps
0

t,s and pays 1 unit of the consumption good if the economy

transitions into the other state s0 6= s. This security is also in zero net supply and it ensures that
the financial markets are dynamically complete.

Price and return of the market portfolio. Absent transitions, the price per unit of capital

follows an endogenous but deterministic process,9

dQt,s
Qt,s

= µQt,sdt for s 2 {1, 2} . (15)

Combining Eqs. (14) and (15), the price of the market portfolio (conditional on no transition)

evolves according to,
d (Qt,skt,s)

Qt,skt,s
=
(
g + µQt,s

)
dt+ σsdZt.

This implies that, absent state transitions, the volatility of the market portfolio is given by σs, and

its expected return is given by,

rmt,s =
yt,s

Qt,skt,s
+ g + µQt,s. (16)

Here, yt,s denotes the endogenous level of output at time t. The first term captures the “dividend

yield” component of return. The second and third terms capture the (expected) capital gain

conditional on no transition, which reflects the expected growth of capital as well as of the price

per unit of capital.

Eqs. (15− 16) describe the prices and returns conditional on no state transition. If there is a
transition at time t from state s into state s0 6= s, then the price per unit of capital jumps from Qt,s
to a potentially di§erent level, Qt,s0 . Therefore, investors that hold the market portfolio experience

instantaneous capital gains or losses that are reflected in their portfolio problem.

9 In general, the price follows a di§usion process and this equation also features an endogenous volatility term,
σQt,sdZt. In this model, we have σQt,s = 0 because we work with complete financial markets, constant elasticity
preferences, and no disagreements aside from the probability of state transitions. These features ensure that investors
allocate identical portfolio weights to the market portfolio (see Eq. (25) later in the section), which ensures that
their relative wealth shares are not influenced by dZt. The price per capital can be written as a function of investors’
wealth shares so it is also not a§ected by dZt.

12



Consumption and portfolio choice. There is a continuum of investors denoted by i 2 I, who
are identical in all respects except for their beliefs about state transitions, λis. They continuously

make consumption and portfolio allocation decisions. Specifically, at any time t and state s, investor

i has some financial wealth denoted by ait,s. She chooses her consumption rate, c
i
t,s; the fraction

of her wealth to allocate to the market portfolio, !m,it,s ; and the fraction of her wealth to allocate

to the contingent security, !s
0,i
t,s . The residual fraction, 1 − !m,it,s − !s

0,i
t,s , is invested in the risk-free

asset. For analytical tractability, we assume the investor has log utility. The investor then solves a

relatively standard portfolio problem that we formally state in Appendix B.1.1.

Equilibrium in asset markets. Asset markets clear when the total wealth held by investors is

equal to the value of the market portfolio before and after the portfolio allocation decisions,

Z

I
ait,sdi = Qt,skt,s and

Z

I
!m,it,s a

i
t,sdi = Qt,skt,s. (17)

Contingent securities are in zero net supply, which implies,

Z

I
ait,s!

s0,i
t,s di = 0. (18)

The market clearing condition for the risk-free asset (which is also in zero net supply) holds when

conditions (17) and (18) are satisfied.

Nominal rigidities and the equilibrium in goods markets. The supply side of our model

features nominal rigidities similar to the standard New Keynesian model. We relegate the details to

Appendix B.1.2. There is a continuum of monopolistically competitive production firms that own

the capital stock and produce intermediate goods (which are then converted into the final good).

For simplicity, these production firms have pre-set nominal prices that never change (see Remark

1 below for the case with partial price flexibility). The firms choose their capital utilization rate,

ηt,s 2 [0, 1], which leads to output, yt,s = ηt,sAkt,s. We assume firms can increase factor utilization

for free until ηt,s = 1 and they cannot increase it beyond this level.

As we show in Appendix B.1.2, these features imply that output is determined by aggregate

demand for goods up to the capacity constraint. Combining this with market clearing in goods,

output is determined by aggregate consumption (up to the capacity constraint),

yt,s = ηt,sAkt,s =

Z

I
cit,sdi, where ηt,s 2 [0, 1] . (19)

Moreover, all output accrues to production firms in the form of earnings.10 Hence, the market

portfolio can be thought of as a claim on all production firms.

10 In this model, firms own the capital so the division of earnings in terms of return to capital and monopoly profits
is indeterminate. Since there is no investment, this division is inconsequential. When we introduce investment in
Appendix D, we make additional assumptions to determine how earnings are divided between return to capital and
monopoly profits.
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Interest rate rigidity and monetary policy. Our assumption that production firms do not

change their prices implies that the aggregate nominal price level is fixed. The real risk-free interest

rate, then, is equal to the nominal risk-free interest rate, which is determined by the interest rate

policy of the monetary authority. We assume there is a lower bound on the nominal interest rate,

which we set at zero for convenience,

rft,s ≥ 0. (20)

The zero lower bound is motivated by the presence of cash in circulation (which we leave unmodeled

for simplicity).

We assume that the interest rate policy aims to replicate the level of output that would obtain

without nominal rigidities subject to the constraint in (20). Without nominal rigidities, capital is

fully utilized, ηt,s = 1 (see Appendix B.1.2). Thus, we assume that the interest rate policy follows

the rule,

rft,s = max
(
0, rf,∗t,s

)
for each t ≥ 0 and s 2 S. (21)

Here, rf,∗t,s is recursively defined as the (instantaneous) natural interest rate that obtains when

ηt,s = 1 and the monetary policy follows the rule in (21) at all future times and states.

Definition 1. The equilibrium is a collection of processes for allocations, prices, and returns such

that capital evolves according to (14), price per unit of capital evolves according to (15), its in-

stantaneous return is given by (16), investors maximize expected utility (cf. Appendix B.1.1), asset

markets clear (cf. Eqs. (17) and (18)), production firms maximize earnings (cf. Appendix B.1.2),

goods markets clear (cf. Eq. (19)), and the interest rate policy follows the rule in (21).

Remark 1 (Partial Price Flexibility). Our assumption of a fixed aggregate nominal price is extreme.
However, allowing nominal price flexibility does not necessarily circumvent the bound in (20). In

fact, if monetary policy follows an inflation targeting policy regime, then partial price flexibility leads

to price deflation during a demand recession. This strengthens the bound in (20) and exacerbates the

recession (see Werning (2012); Korinek and Simsek (2016); Caballero and Farhi (2017) for further

discussion, and Footnote 14 for a discussion of how partial price flexibility would also strengthen

our results with belief disagreements).

In the rest of this section, we provide a partial characterization of the equilibrium.

Investors’ optimality conditions. We derive these optimality conditions in Appendix B.1.1.

In view of log utility, the investor’s consumption is a constant fraction of her wealth,

cit,s = ρait,s. (22)

Moreover, the investor’s weight on the market portfolio is determined by,

!m,it,s σs =
1

σs

 

rmt,s − r
f
t,s + λ

i
s

1/ait,s0

1/ait,s

Qt,s0 −Qt,s
Qt,s

!

. (23)
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That is, she invests in the market portfolio up to the point at which the risk of her portfolio (left side)

is equal to the “Sharpe ratio” of the market portfolio (right side). This is similar to the optimality

condition in the two period model (cf. Eq. (6)) with the di§erence that the dynamic model also

features state transitions. Our notion of the Sharpe ratio accounts for potential revaluation gains

or losses from state transitions (the term,
Qt,s0−Qt,s

Qt,s
) as well as the adjustment of marginal utility

in case there is a transition (the term,
1/ai

t,s0

1/ait,s
).11

Finally, the investor’s optimal portfolio allocation to the contingent securities implies,

ps
0

t,s

λis
=
1/ait,s0

1/ait,s
. (24)

The portfolio weight, !s
0,i
t,s , is implicitly determined as the level that ensures this equality. The

investor buys contingent securities until the price-to-(perceived)probability ratio of a state (or the

state price) is equal to the investor’s relative marginal utility in that state.

Substituting (24) into (23) shows that investors allocate identical portfolio weights to the market

portfolio, !m,it,s = !mt,s. Intuitively, investors express their di§erences in beliefs through their holdings

of contingent securities. Combining this observation with Eq. (17), we further obtain that, in

equilibrium, these identical portfolio weights are equal to one,

!m,it,s = 1 for each i. (25)

Output-asset price relation. We next show that there is a tight relationship between output

and asset prices as in the two period model. Combining Eqs. (22) and (17) implies that aggregate

consumption is a constant fraction of aggregate wealth,

Z

I
cit,sdi = ρQt,skt,s. (26)

Combining this with Eq. (19), we obtain the output-asset price relation,

Aηt,s = ρQt,s. (27)

As before, full factor utilization, ηt,s = 1, obtains only if the price per unit of capital is at a

particular level Q∗ ≡ A/ρ. This is the e¢cient price level that ensures the implied consumption

clears the goods market. Likewise, the economy features a demand recession, ηt,s < 1, if and only

if the price per unit of capital is strictly below Q∗.

Using the output-asset price relation (and yt,s = Aηt,skt,s), we can rewrite Eq. (16) as,

rmt,s = ρ+ g + µQt,s. (28)

11The presence of state transitions makes the Sharpe ratio in our model slightly di§erent than its common definition,
which corresponds to the expected return in excess of the risk-free rate normalized by volatility.
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In equilibrium, the dividend yield on the market portfolio is equal to the consumption rate ρ.

Combining the output-asset price relation with the interest rate policy in (21), we also summa-

rize the goods market with,

Qt,s ≤ Q∗, r
f
t,s ≥ 0, where at least one condition is an equality. (29)

In particular, the equilibrium at any time and state takes one of two forms. If the natural interest

rate is nonnegative, then the interest rate policy ensures that the price per unit of capital is at

the e¢cient level, Qt,s = Q∗, capital is fully utilized, ηt,s = 1, and output is equal to its potential,

yt,s = Akt,s. Otherwise, the interest rate is constrained, r
f
t,s = 0, the price is at a lower level,

Qt,s < Q
∗, and output is determined by aggregate demand according to Eq. (27).

For future reference, we also characterize the first-best equilibrium without interest rate rigidi-

ties. In this case, there is no lower bound constraint on the interest rate, so the price per unit of

capital is at its e¢cient level at all times and states, Qt,s = Q∗. Combining this with Eq. (28), we

obtain

rmt,s = ρ+ g. (30)

Substituting this into Eq. (23) and using Eq. (25), we solve for “rstar” as,

rf∗s = ρ+ g − σ2s for each s 2 {1, 2} . (31)

Hence, in the first-best equilibrium the risk premium shocks are fully absorbed by the interest rate.

Next, we characterize the equilibrium with interest rate rigidities.

4. Common beliefs benchmark and amplification

In this section, we analyze the equilibrium in a benchmark case in which all investors share the

same belief. That is, λis ≡ λs for each i. We also normalize the total mass of investors to one so

that individual and aggregate allocations are the same. We use this benchmark to illustrate how

the spirals between asset prices and output exacerbate the recession, and how pessimism amplifies

these spirals.

Because the model is linear, we conjecture that the price and the interest rate will remain

constant within states, Qt,s = Qs and r
f
t,s = rfs (in particular, there is no price drift, µ

Q
t,s = 0).

Since the investors are identical, we also have !mt,s = 1 and !
s0
t,s = 0. In particular, the representative

investor’s wealth is equal to aggregate wealth, at,s = Qt,skt,s. Combining this with Eq. (23) and

substituting for rmt,s from Eq. (28), we obtain the following risk balance conditions,

σs =
ρ+ g + λs

(
1− Qs

Qs0

)
− rfs

σs
for each s 2 {1, 2} . (32)

These equations are the dynamic counterpart to Eq. (7) in the two-period model. They say that,
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in each state, the total risk in the economy (the left side) is equal to the Sharpe ratio perceived by

the representative investor (the right side). Note that the Sharpe ratio accounts for the fact that

the aggregate wealth (as well as the marginal utility) will change if there is a state transition.12

The equilibrium is then characterized by finding four unknowns,
(
Q1, r

f
1 , Q2, r

f
2

)
, that solve

the two equations (32) together with the two goods market equilibrium conditions (29). We solve

these equations under the following parametric restriction.

Assumption 1. σ22 > ρ+ g > σ21.

In view of this restriction, we conjecture an equilibrium in which the low-risk-premium state 1

features positive interest rates, e¢cient asset prices, and full factor utilization, rf1 > 0, Q1 = Q
∗ and

η1 = 1, whereas the high-risk-premium state 2 features zero interest rates, lower asset prices, and

imperfect factor utilization, rf2 = 0, Q2 < Q
∗ and η2 < 1. In particular, the analysis with common

beliefs reduces to finding two unknowns,
(
Q2, r

f
1

)
, that solve the two risk balance equations (32)

(after substituting Q1 = Q∗ and r
f
2 = 0).

Equilibrium in the high-risk-premium state. After substituting rf2 = 0, the risk balance

equation (32) for the high-risk-premium state s = 2 can be written as,

σ2 =
ρ+ g + λ2

(
1− Q2

Q∗

)

σ2
. (33)

In view of Assumption 1, if the price were at its e¢cient level, Q2 = Q∗, the risk (the left side)

would exceed the Sharpe ratio (the right side). As in the two period model, the economy generates

too much risk relative to what the investors are willing to absorb at the constrained level of the

interest rate. As before, the price per unit of capital, Q2, needs to decline to equilibrate the risk

markets. Rearranging the expression, we obtain a closed form solution,

Q2 = Q
∗
(
1−

σ22 − (ρ+ g)
λ2

)
. (34)

As this expression illustrates, we require a minimum degree of optimism to ensure an equilibrium

with positive price and output.

Assumption 2. λ2 > σ22 − (ρ+ g).

This requirement is a manifestation of an amplification mechanism that we describe next.

Amplification from endogenous output and earnings. In the two period model of Section

2, the future payo§ from the market portfolio is exogenous (z1). Therefore, a decline in the price

12To see this, observe that the term,
Qt,s0−Qt,s

Qt,s0
, in the equation is actually equal to, Qt,s

Qt,s0

Qt,s0−Qt,s
Qt,s

. Here,
Qt,s0−Qt,s

Qt,s

denotes the capital gains and Qt,s
Qt,s0

denotes the marginal utility adjustment when there is a representative investor

(see (23)).
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of capital (Q) increases the dividend yield and the market return, rm (z1) = z1/Q [cf. Eq. (2)].

In contrast, in the current model the instantaneous payo§ from the market portfolio is endogenous

and given by yt,2 = ρQ2kt,2. Therefore, a decline in the price of the market portfolio does not

a§ect the dividend yield ( yt,2
ρQ2kt,2

= ρ) and leaves the market return absent transitions unchanged,

rm = ρ + g [cf. Eq. (28)]. Unlike in the two period model, a decline in asset prices does not

increase the market return any more (aside from state transitions). The intuition is that a lower

price reduces output and economic activity, which reduces firms’ earnings and leaves the dividend

yield constant. Thus, asset price declines no longer play a stabilizing role, leaving the economy

susceptible to a spiraling decline.

In view of this amplification mechanism, one might wonder how the risk market ever reaches

equilibrium once the price, Q2, starts to fall below its e¢cient level, Q∗. The stabilizing force is

captured by the last term in Eq. (33), λ2
(
1− Q2

Q∗

)
. A decline in the price increases the expected

capital gain from transition into the recovery state s = 1, which increases the expected return

to capital as well as the Sharpe ratio. The stabilizing force is stronger when investors are more

optimistic and perceive a higher transition probability into the recovery state, λ2. Assumption 2

ensures that the stabilizing force is su¢ciently strong to counter the impact of the risk premium

shock. If this assumption were violated, a risk premium shock would trigger a downward price

spiral that would lead to an equilibrium with zero asset prices and zero output.

Finally, consider the comparative statics of the equilibrium price with respect to the exogenous

shifter of the risk premium, σ22 [cf. (31)]. Using Eq. (34), we obtain
d(Q2/Q∗)
dσ22

= − 1
λ2
. Hence,

risk premium shocks reduce asset prices (and output) by a greater magnitude when investors are

more pessimistic about recovery (lower λ2). These observations illustrate that beliefs matter in

this environment not only because they have a direct impact on asset prices but also because they

determine the strength of the amplification mechanism.

Equilibrium in the low-risk-premium state. Following similar steps for the low-risk-premium

state s = 1, we also obtain a closed form solution for the interest rate in this state,

rf1 = ρ+ g − σ21 − λ1
(
Q∗

Q2
− 1
)
. (35)

Intuitively, given the expected return on capital, the interest rate adjusts to ensure that the risk

balance condition is satisfied with the e¢cient price level, Q1 = Q∗. For our conjectured equilibrium,

we also assume an upper bound on λ1 which ensures that the implied interest rate is positive.

Assumption 3. λ1 <
(
ρ+ g − σ21

)
/ (Q∗/Q2 − 1), where Q∗/Q2 is given by Eq. (34).

Note also that Eq. (35) implies rf1 is decreasing in the transition probability, λ1, as well as in

the asset price drop conditional on transition, Q∗/Q2. Intuitively, interest rates are kept relatively

low by the fact that investors fear a recession triggered by an increase in the risk premium and

constrained interest rate (an endogenous “disaster”).

The following result summarizes the characterization of equilibrium in this section. The testable
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predictions regarding the e§ect of risk premium shocks on consumption and output follow from

combining the characterization with Eqs. (26) and (27).

Proposition 1. Consider the model with two states, s 2 {1, 2}, with common beliefs and Assump-
tions 1-3. The low-risk-premium state 1 features a positive interest rate, e¢cient asset prices and

full factor utilization, rf1 > 0, Q1 = Q∗ and η1 = 1. The high-risk-premium state 2 features zero

interest rate, lower asset prices, and a demand-driven recession, rf2 = 0, Q2 < Q
∗, and η2 < 1, as

well as a lower level of consumption and output, ct,2/kt,2 = yt,2/kt,2 = ρQ2. The price in state 2

and the interest rate in state 1 are given by Eqs. (34) and (35).

Equilibrium with investment and endogenous growth. In Appendix D.1, we extend the

baseline environment to incorporate investment. This leads to two main changes. First, the growth

rate in (14) becomes endogenous, gt,s = ' (ιt,s) − δ, where ιt,s =
it,s
kt,s

denotes investment rate per

capital, ' (·) denotes a neoclassical production technology for capital, and δ denotes the depreciation
rate. Second, under the simplifying assumption that output accrues to agents in the form of return

to capital (i.e., no monopoly profits), optimal investment is an increasing function of the price per

unit of capital, Qt,s.13 Moreover, using a convenient functional form for ' (·), we obtain a linear
relation between the investment rate and the price, ι (Qt,s) =  (Qt,s − 1) for some  > 0.

In this setting, aggregate demand consists of the sum of consumption and investment. Using

the expression for optimal investment, we also generalize the output-asset price relation (27) to,

Aηt,s = ρQt,s +  (Qt,s − 1) . (36)

Hence, output is increasing in asset prices not only because asset prices generate a wealth e§ect on

consumption but also because they increase investment through a marginal-Q channel. Substituting

optimal investment into the endogenous growth expression, we further obtain,

gt,s =  qt,s − δ, where qt,s = logQt,s. (37)

Hence, this setting also features a growth-asset price relation: lower asset prices reduce investment,

which translates into lower endogenous growth and lower potential output in future periods. The

rest of the model is unchanged (see Appendix D.1 for details).

In Appendix D.2, we characterize the equilibrium in this extended environment and generalize

Proposition 1. We find that risk premium shocks–captured by a transition to state 2–generate

a decline in investment (and endogenous growth) as well as consumption and output as in the

baseline version of the model. We test these predictions in Section 7. We also find that the

decline in investment generates a second amplification mechanism that reinforces the mechanism

we described earlier. Specifically, the recession lowers asset prices further not only by reducing

13Without this assumption, investment would be a function of Q̃t,s ≤ Qt,s, which represents a claim on the rental
rate of capital in future periods (excluding monopoly profits). The di§erence, Qt,s − Q̃t,s, captures the price of a
claim on monopoly profits. Hence, allowing for profits would have a quantitative impact on investment, though we
believe it would leave our qualitative results unchanged. We leave an investigation of this issue for future research.
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output and earnings but also by reducing investment and growth (in potential output and earnings).

Figure 1 in the introduction presents a graphical illustration of the two amplification mechanisms.

5. Belief disagreements and speculation

Going back to the baseline model, we next investigate the e§ect of belief disagreements. We show

that speculation induced by belief disagreements exacerbates recessions and motivates macropru-

dential policy.

We restrict attention to two types of investors, optimists and pessimists, with beliefs denoted

by,
{(
λi1,λ

i
2

)}
i2{o,p}. We normalize the mass of each belief type to one so that i = o and i = p

denote, respectively, the representative optimist and pessimist. We assume the beliefs satisfy the

following:

Assumption 4. λo2 > λp2 and λ
o
1 ≤ λp1.

When the economy is in the high-risk-premium state, optimists find the transition into the low-

risk-premium state relatively likely (λo2 > λp2); when the economy is in the low-risk-premium state,

optimists find the transition into the high-risk-premium state relatively unlikely (λo1 ≤ λp1). Hence,

optimism and pessimism are relative: an optimist is someone who is optimistic relative to a pes-

simist. In fact, we do not need to specify the “objective distribution” for our theoretical results

(including the welfare results). We do, however, need the relative optimism and pessimism to be

persistent across the two risk premium states (see Remark 2 at the end of this section).

To characterize the equilibrium, we define the wealth-weighted average transition probability,

λt,s ≡ λs (αt,s) ≡ αt,sλ
o
s + (1− αt,s)λ

p
s, where α

o
t,s =

aot,s
kt,sQt,s

. (38)

Here, αt,s denotes optimists’ wealth share, and it is the payo§-relevant state variable in this econ-

omy. The notation, λs (αt,s), describes the wealth-weighted average belief in state s as a function

of optimists’ wealth share, and λt,s denotes the belief at time t and state s. This belief is central to

the analysis because the following analogue of the risk balance condition (32) holds in this setting

(see Appendix B.3),

σs =
1

σs

(
ρ+ g + µQt,s + λt,s

(
1−

Qt,s
Qt,s0

)
− rft,s

)
for each s 2 {1, 2} . (39)

In particular, the equilibrium in risk markets is determined according to the wealth-weighted aver-

age belief. When αt,s is greater, optimists exert a greater influence on asset prices. Note also that

the expected return to the market portfolio features the price drift term, µQt,s [cf. (28)], which is

not necessarily zero in this section because optimists’ wealth share changes over time.

We must now characterize the dynamics of optimists’ wealth share, αt,s (and thus, the dynamics

of λt,s). Eq. (25) implies investors’ weights on the market portfolio satisfy !
m,o
t,s = !m,pt,s = 1. In
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Figure 2: A simulation of the dynamics of optimists’ wealth share over time.

Appendix B.3, we also solve for investors’ weights on the contingent securities,

!s
0,o
t,s = λos − λt,s = (λ

o
s − λ

p
s) (1− αt,s) . (40)

Thus, investors settle their disagreements on the jump risk by trading the contingent securities.

Optimists take a positive position on a contingent security whenever their belief for the transi-

tion probability exceeds the weighted average belief. This implies that their wealth share evolves

according to [cf. Eqs. (B.13) and (B.14)],

(
α̇t,s = (λ

p
s − λ

o
s)αt,s (1− αt,s) , if there is no state change,

αt,s0/αt,s = λos/λt,s, if there is a state change to s0.
(41)

Here, α̇t,s =
dαt,s
dt denotes the derivative with respect to time. As long as the economy remains in

the boom state, optimists’ wealth share drifts upwards (since λo1 < λp1), because they make profits

from selling insurance–contingent contracts that pay in the recession state. If there is a jump to

the recession state, optimists’ wealth share makes a downward jump. Conversely, optimists’ wealth

share drifts downwards in the recession state, and it makes an upward jump if there is a transition

to the boom state. Figure 2 illustrates the dynamics of optimists’ wealth share for a particular

parameterization (described subsequently) and realization of uncertainty.

These observations also imply that the weighted average belief in (38) (that determines asset

prices) is e§ectively extrapolative in the sense that good realizations increase e§ective optimism

whereas bad realizations reduce it. Specifically, as the boom state persists, optimists’ wealth share

increases and the aggregate belief becomes more optimistic. After a transition to the recession state,

the aggregate belief becomes less optimistic. Similarly, the aggregate belief becomes less optimistic
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as the recession persists, and it becomes more optimistic after a transition into the boom.

Eq. (41) determines the evolution of optimists’ wealth share (and thus, the weighted average

belief) regardless of the level of asset prices and output. The equilibrium is determined by jointly

solving this expression together with the risk balance condition (39) and the goods market equi-

librium condition (29). To make progress, we suppose Assumptions 1-3 from the previous section

hold according to both belief types. This ensures that, regardless of the wealth shares, the low-

risk-premium state 1 features a positive interest rate, e¢cient price level, and full factor utilization,

rft,1 > 0, Qt,1 = Q
∗, ηt,1 = 1, and the high-risk-premium state 2 features a zero interest rate, a lower

price level, and insu¢cient factor utilization, rft,2 = 0, Qt,2 < Q∗, ηt,2 < 1. We next characterize

this equilibrium starting with the high-risk-premium state. In this as well as the next section, we

also find it convenient to work with the log of the price level, qt,s ≡ logQt,s.

Equilibrium in the high-risk-premium state. Consider the risk balance equation (39) for

state s = 2. Using µQt,2 =
dQt,2/dt
Qt,2

= q̇t,2, we obtain the following analogue of Eq. (33),

σ2 =
1

σ2

(
ρ+ g + q̇t,2 + λt,2

(
1−

Q2
Q∗

))
. (42)

Combining this with Eq. (41), we obtain a di§erential equation system that describes the joint

dynamics of the log price and optimists’ wealth share, (qt,2,αt,2), conditional on no transition.

In Appendix B.3, we show that this system is saddle path stable: for any initial wealth share,

αt,2 2 (0, 1), there exists a unique equilibrium price level, qt,2 2 [q
p
2 , q

o
2), such that the solution

satisfies limt!1 αt,2 = 0 and limt!1 qt,2 = q
p
2 . Here, q

i
2 denotes the log price level with common

beliefs characterized in Section 4 corresponding to type i investors’ belief. The system is also

stationary, which implies that the price can be written as a function of optimists’ wealth share.

The price function, q2 (α), is characterized as the solution to the following di§erential equation in

α-domain,

q02 (α) (λ
o
2 − λ

p
2)α (1− α) = ρ+ g + λ2 (α)

(
1−

exp (q2 (α))

Q∗

)
− σ22, (43)

with boundary conditions, q2 (0) = qp2 and q2 (1) = qo2. We further show that q2 (α) is strictly

increasing in α. As in the previous section, greater optimism increases the asset price in the

high-risk-premium state.14

Equilibrium in the low-risk-premium state. Following similar steps for the risk balance

condition for the low-risk-premium state s = 1, we obtain,

rf1 (α) = ρ+ g − λ1 (α)
(

Q∗

exp (q2 (α0))
− 1
)
− σ21 where α

0 =
αλo1
λ1 (α)

. (44)

14 Introducing partial nominal price flexibility along the lines discussed in Remark 1 would create a second channel
by which increasing optimists’ wealth share would increase real asset prices. In that environment, pessimists would
perceive lower expected inflation than optimists (because they believe the economy is more likely to stay in recession),
which would lead to a greater perceived real interest rate and lower real asset valuations.
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Figure 3: Equilibrium price and interest rate functions with heterogeneous beliefs.

Here, rf1 (α) denotes the interest rate when optimists’ wealth share is equal to α. The term, α
0,

denotes optimists’ wealth share after an immediate transition into the high-risk-premium state [cf.

Eq. (41)]. The interest rate depends on (among other things) the weighted average transition

probability into the high-risk-premium state, λ1 (α), as well as the price level that would obtain

after transition, q2 (α0). It is easy to check that r
f
1 (α) is increasing in α, since, as in the previous

section, greater optimism increases asset prices.

The following proposition summarizes the characterization of equilibrium. The last part, which

follows by combining the characterization with Eqs. (26) and (27), shows that greater optimists’

wealth share in the high-risk-premium state mitigates the severity of the recession.

Proposition 2. Consider the model with two belief types. Suppose Assumptions 1-3 hold for each
belief, and that beliefs are ranked according to Assumption 4. Then, optimists’ wealth share evolves

according to Eq. (41). The equilibrium log-price and interest rate can be written as a function of

optimists’ wealth share, q1 (α) , r
f
1 (α) , q2 (α) , r

f
2 (α). In the low-risk-premium state, q1 (α) = q∗,

and rf1 (α) is an increasing function of α given by Eq. (44). In the high-risk-premium state, r
f
2 (α) =

0, and q2 (α) is an increasing function of α that solves the di§erential equation (43) with q2 (0) = q
p
2

and q2 (1) = qo2. Greater optimists’ wealth share in the high-risk-premium state, αt,2, increases the

price per capital, Qt,2, as well as consumption and output, ct,2/kt,2 = yt,2/kt,2 = ρQt,2.

Numerical illustration. We next illustrate the equilibrium using a simple parameterization (see

Appendix B.4 for details). For the baseline parameters, we set g = 5%, ρ = 4%,σ21 = 5%,σ
2
2 = 10%.

For investors’ beliefs about transition probabilities, we set λo1 = 1/10,λ
p
1 = 1/3 for the boom state

and λo2 = 1/3,λ
p
2 = 1/10 for the recession state.

Figure 3 illustrates the corresponding equilibrium. The left panel illustrates the price of capital

in the recession (normalized by the e¢cient price level) as a function of optimists’ wealth share.

When pessimists dominate the economy, the price of capital and output decline by 10%. In contrast,
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Figure 4: A simulation of the equilibrium variables over time with belief disagreements (solid red
line), with common beliefs (dashed red line), and the first-best benchmark (circled blue line).

when optimists dominate, they decline by only 3%. The right panel of Figure 3 illustrates the

interest rate in the boom as a function of optimists’ wealth share. The risk-free rate during the

boom is close to 4% when optimists dominate the economy but it is close to 0% when pessimists

dominate.

Amplification from speculation. We next use our numerical example to illustrate how spec-

ulation further amplifies the business-cycle driven by risk premium shocks. To this end, we fix

investors’ beliefs and simulate the equilibrium for a particular realization of uncertainty over a 30-

year horizon. We choose the (objective) simulation belief to be in the “middle” of optimists’ and

pessimists’ beliefs in terms of the relative entropy distance.15 Figure 4 illustrates the dynamics of

equilibrium variables (except for optimists’ wealth share, which we plot in Figure 2). For compari-

15This ensures that there is a non-degenerate long-run wealth distribution in which neither optimists nor pessimists
permanently dominate, which helps to visualize the destabilizing e§ects of speculation without taking a stand on
whether optimists and pessimists are “correct.” Our welfare results in the next section do not require this assumption
since we evaluate investors’ expected utilities according to their own beliefs.
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son, the dashed red line plots the equilibrium that would obtain in the common-beliefs benchmark

if all investors shared the “middle” simulation belief, and the circled blue line plots the first-best

equilibrium that would obtain without interest rate rigidities.

The figure illustrates two points. First, consistent with our baseline analysis in the previous

section, the price per unit of capital is more volatile and the interest rate is more compressed

than in the first-best equilibrium. In the high-risk-premium state, the interest rate cannot decline

su¢ciently to equilibrate the risk balance condition, which leads to a drop in asset prices and

a demand recession. In the low-risk-premium state, the fear of transition into the recessionary

high-risk-premium state keeps the interest rate lower than in the first-best benchmark.

Second, risk-centric recessions are more severe when investors have belief disagreements (and

this also leads to more compressed interest rates). The intuition follows from Figures 2 and 3.

Speculation in the low-risk-premium state decreases optimists’ wealth share once the economy

transitions into the high-risk-premium state, as illustrated by Figure 2, which translates into lower

asset prices and a more severe demand recession, as illustrated by Figure 3 and Proposition 2.

Speculation also increases optimists’ wealth share if the boom continues, but this e§ect does not

translate into higher asset prices or output since it is (optimally) neutralized by the interest rate

response. The adverse e§ects of speculation on demand recessions motivates the analysis of macro-

prudential policy, which we analyze in the next section.

Remark 2 (Interpretation of Belief Disagreements). As this discussion suggests, what matters for
our results on speculation is persistent heterogeneous valuations for risky assets that ensure: (i)

during the boom, high-valuation investors absorb relatively more of the recession risks, and (ii) dur-

ing the recession, greater wealth share of high-valuation investors increases the (relative) price of

risky assets. Belief disagreements generate these features naturally, under the mild assumption that

optimists and pessimists do not flip roles across booms and recessions,16 but other sources of hetero-

geneous valuations would lead to similar results. For example, with heterogeneity in risk aversion,

more risk tolerant agents take on more aggregate risk (i.e., they insure less risk tolerant agents),

which reduces their wealth share and the (relative) price of risky assets following negative shocks

to fundamentals (see, for instance, Garleanu and Pedersen (2011); Longsta§ and Wang (2012)).

From this perspective, belief disagreements can also capture institutional reasons for heterogeneous

valuations such as capacity or mandates for handling risk. Investment banks, for example, have far

larger capacity to handle and lever risky positions than pensioners and money market funds.

Formally, given two probability distributions (p (s̃))s̃2S and (q (s̃))s̃2S , relative entropy of p with respect to q is

defined as
P

s̃ p (s̃) log
(
p(s̃)
q(s̃)

)
. Blume and Easley (2006) show that, in a setting with independent and identically

distributed shocks (and identical discount factors), only investors whose beliefs have the maximal relative entropy
distance to the true distribution survive. Since our setting features Markov shocks, we apply their result state-by-state
to pick the simulation belief that ensures conditional transition probabilities satisfy the necessary survival condition
for optimists as well as pessimists.
16This assumption is supported by recent survey evidence that shows belief heterogeneity is largely explained

by persistent individual heterogeneity (Giglio et al. (2019)). The assumption is also consistent with an extensive
psychology literature that documents the prevalence of optimism, as well as its heterogeneity and persistence, since
it is largely a personal trait (see Carver et al. (2010) for a review).
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6. Welfare analysis and macroprudential policy

Since our model features constrained monetary policy, most of the aggregate demand boosting

policies that have been discussed in the New Keynesian literature are also e§ective in our envi-

ronment. We skip a discussion of these policies for brevity (our results would still apply as long

as these policies are imperfect). Instead, we focus on macroprudential policy interventions that

impose restrictions on risk market participants with the objective of obtaining macroeconomic ben-

efits. In practice, most macroprudential policies restrict risk taking by banks–especially large

ones. Interpreting banks as relatively high-valuation investors (see Remark 2) or as lenders to such

investors (see Section 7), we capture these policies in reduced form by imposing portfolio risk limits

on relatively optimistic investors.

Our model features heterogeneous beliefs, which makes the welfare analysis challenging. We

adopt the standard Pareto criterion in which the planner evaluates investors’ expected utility

according to their own beliefs. We adopt the standard criterion to highlight that our results

are not driven by paternalistic concerns. Rather, the planner improves welfare by internalizing

aggregate demand externalities. The standard criterion is also appropriate if we interpret belief

disagreements as a modeling device to capture heterogeneous valuations due to other factors (see

Remark 2). However, if we interpret belief disagreements literally, then a paternalistic criterion

such as the belief-neutral welfare criterion developed by Brunnermeier et al. (2014) could be more

appropriate. Adopting this belief-neutral criterion would reinforce our normative conclusions: in

that case, macroprudential policy would not only improve macroeconomic outcomes but it would

also mitigate the microeconomic costs associated with speculation (see, e.g., Simsek (2013b); Dávila

(2017); Heimer and Simsek (2019)).

Using the standard welfare criterion also helps to simplify the theoretical analysis. Since our

model features complete markets and no frictions other than interest rate rigidities, aggregate

demand externalities constitute the only source of ine¢ciency. Therefore, the first-best benchmark

that also corrects for these ine¢ciencies is Pareto e¢cient. This enables us to isolate the aggregate

demand externalities by defining investors’ gap values: the di§erence between their expected value

in equilibrium relative to the expected value in the first-best benchmark. The gap value captures

the present discounted value of the investor’s utility losses due to demand recessions. Focusing

on the gap value simplifies the analysis considerably because, up to a first order, macroprudential

policies a§ect social welfare only through their impact on investors’ gap values (in view of the fact

that the first-best benchmark is Pareto e¢cient).

The formal analysis in this section proceeds as follows. Using the model with two belief types

from the previous section, we first characterize investors’ value functions in equilibrium accord-

ing to their own beliefs. We define the gap value functions and illustrate the aggregate demand

externalities. We then show that macroprudential policy that induces optimists to act more pes-

simistically (via appropriate portfolio risk limits), but that otherwise does not distort allocations,

can generate a Pareto improvement of social welfare. We focus on macroprudential policy in the

boom (low-risk-premium) state and provide a brief discussion of the macroprudential policy in the
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recession (high-risk-premium) state.

Value function in equilibrium. Because the model is linear, investors’ expected utility can be

written as (see Appendix B.1.1),

V it,s
(
ait,s
)
=
log
(
ait,s/Qt,s

)

ρ
+ vit,s. (45)

Here, vit,s denotes the normalized value function per unit of capital stock. In Appendix C.1, we

further characterize it as the solution to the following di§erential equation system,

ρvit,s −
@vit,s
@t

= log ρ+ qt,s +
1

ρ

0

@
g − 1

2σ
2
s

−
(
λis − λt,s

)
+ λis log

(
λis
λt,s

)

1

A+ λis
(
vit,s0 − v

i
t,s

)
. (46)

The equilibrium price, qt,s, a§ects investors’ welfare since it determines output and consumption

[cf. Eqs. (26) and (27)]. Consumption growth, g, and volatility, σ2s, also a§ect welfare. Finally,

speculation a§ects investors’ (perceived) welfare. This is captured by the term, −
(
λis − λt,s

)
+

λis log
(
λis
λt,s

)
, which is zero with common beliefs, and strictly positive with disagreements.

Gap value function. To facilitate the policy analysis, we break down the value function into

two components,

vit,s = v
i,∗
t,s + w

i
t,s. (47)

Here, vi,∗t,s denotes the first-best value function that would obtain if there were no interest rate

rigidities. It is characterized by solving Eq. (46) with the e¢cient price level, qt,s = q∗, for each

t, s. The residual, wit,s = v
i
t,s− v

i,∗
t,s , denotes the gap value function, which captures the loss of value

due to interest rate rigidities and demand recessions. As we will see below, the first-order impact of

macroprudential policy on social welfare depends only on the gap value function. Using Eq. (46),

we characterize the gap value function as the solution to the following system,

ρwit,s = qt,s − q
∗ +

@wit,s
@t

+ λis
(
wit,s0 − w

i
t,s

)
. (48)

This illustrates that, in view of the output-asset price relation (27), the gap value function depends

on the asset prices relative to the e¢cient level. Recall also that the equilibrium features qt,1 = q∗

and qt,2 < q∗. Thus, the key objective of policy interventions in this environment is to increase the

asset price in the high-risk-premium state (so as to mitigate the demand recession).

Aggregate demand externalities. In Appendix C.1, we show that the gap value function can

be written as a function of optimists’ wealth share, wis (α). Combining Eqs. (48) and (41), we also
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characterize this function as the solution to the following system in α-domain,

ρwis (α) = qs (α)− q
∗ − (λos − λ

p
s)α (1− α)

@wis (α)

@α
+ λis

(
wis0
(
α0
)
− wis (α)

)
, (49)

where α0 = αλos/λs (α). Recall that the price function in the high-risk-premium state, q2 (α), is

increasing in optimists’ wealth share [cf. Figure 3]. This leads to the following result.

Lemma 1. The gap value function satisfies, dw
i
s(α)
dα > 0 for each s, i and α 2 (0, 1).

Intuitively, optimists’ wealth share is a scarce resource that brings asset prices and output in the

high-risk-premium state closer to its first-best level. Thus, the gap value function in the high-risk-

premium state is increasing in optimists’ wealth share. The gap value function in the other state

is also increasing, because the economy can always transition into the high-risk-premium state,

where optimists’ wealth share is useful (see Lemma 2 below for a ranking of the marginal value of

optimists’ wealth share across the two states).

The result also illustrates the aggregate demand externalities. Optimists’ wealth share is an

endogenous variable that fluctuates due to investors’ portfolio decisions [cf. Figure 2]. Individual

optimists that take positions in contingent markets–and pessimists that take the other side of

these positions–do not take into account the impact of their decisions on asset prices and social

welfare. This leads to ine¢ciencies that can be corrected by macroprudential policy.

Equilibrium and gap value functions with macroprudential policy. To evaluate the di-

rection of the ine¢ciency, we consider a constrained policy exercise where the planner can induce

optimists to choose allocations as if they have less optimistic beliefs.17 Specifically, optimists are

constrained to choose allocations as-if they have the beliefs, λo,pl ≡
(
λo,pl1 ,λo,pl2

)
, that satisfy,

λo,pl1 ≥ λo1 and λ
o,pl
2 ≤ λo2. Pessimists continue to choose allocations according to their own beliefs.

Throughout, we use λi,pls to denote investors’ as-if beliefs and λis to denote their actual beliefs

(for pessimists, the two beliefs coincide). We also use λ
pl
s (α) = αλo,pls + (1− α)λps to denote the

weighted average as-if belief.

In Appendix C.2, we show that the planner can implement this policy by imposing inequality re-

strictions on optimists’ portfolio weights, while allowing them to make unconstrained consumption-

savings decisions. Specifically, when the risk premium is low, the policy constrains optimists from

taking too negative a position on the contingent security that pays if there is a transition to the

high-risk-premium state, !2,ot,1 ≥ !2,ot,1 (restrictions on selling “put options”). When the risk premium

is high, the policy constrains optimists from taking too large a position on the contingent security

that pays if there is a transition to the low-risk-premium state, !1,ot,2 ≤ !1,ot,2 (restrictions on buying

“call options”). Finally, in either state, the policy also constrains optimists’ weight on the market

portfolio not to exceed the market average, !m,ot,s ≤ 1 (since otherwise optimists start to speculate
by increasing their exposure to the market portfolio).
17For simplicity, we restrict attention to time-invariant policies. The planner commits to a policy at time zero,(
λo,pl1 ,λo,pl2

)
, and implements it throughout.
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The characterization of equilibrium with policy is then the same as in Section 5. In particular,

Eqs. (41) and (42) still hold with the only di§erence that investors’ beliefs are replaced with their

as-if beliefs, λi,pls . We denote the resulting price functions with qpls (α) to emphasize that they are

determined by as-if beliefs (as opposed to actual beliefs). On the other hand, the equation system

that characterizes the gap value function is given by,

ρwis (α) = q
pl
s (α)− q

∗ −
(
λo,pls − λps

)
α (1− α)

@wis (α)

@α
+ λis

(
wis0
(
α0,pl

)
− wis (α)

)
(50)

where α0,pl = αλo,pls /λ
o,pl
s (α). Comparing this with Eq. (49) illustrates that the macroprudential

policy can a§ect the gap value through two potential channels. First, it might a§ect the equilibrium

asset prices (captured by the term, qpls (α)). Second, the policy a§ects the dynamics of optimists’

wealth share, which in turn influence the gap value. For example, in the low-risk-premium state

s = 1, the policy increases λo,pl1 , which induces optimists to increase their position on the contingent

security that pays if there is a transition into the high-risk-premium state [cf. Eq. (40)]. This

increases optimists’ wealth share after a transition (captured by the term, α
0,pl) at the expense of

reducing optimists’ wealth share in case there is no transition (captured by the term, −
(
λo,pls − λps

)
).

Planner’s Pareto problem. To trace the Pareto frontier, we allow the planner to make a one-

time wealth transfer among the investors at time zero. In Appendix C.2, we show that the planner’s

Pareto problem can then be reduced to,

max
λo,pl

vpl0,s = α0,sv
o
0,s + (1− α0,s) v

p
0,s. (51)

Hence, the planner maximizes a wealth-weighted average of investors’ normalized values (where the

wealth shares correspond to Pareto weights). We also decompose the planner’s value function into

first-best and gap value components, vpl0,s = v
pl,∗
0,s + w

pl
0,s.

A key observation is that, since the first-best benchmark does not feature any frictions, it

satisfies the First Welfare Theorem and therefore it is Pareto e¢cient. This in turn implies that the

marginal impact of the policy on the planner’s first-best value function is zero,
@vpl,∗0,s

@λo,pl

∣∣∣∣
λo,pl=λo

= 0.

18 Consequently, the first order impact of the policy is characterized by its impact on the planner’s

gap value function,

wpl0,s = α0,sw
o
0,s + (1− α0,s)w

p
0,s. (52)

Macroprudential policy in the low-risk-premium state. Now suppose the economy is in

the low-risk-premium state s = 1. The planner can use macroprudential policy in the current state,

λo,pl1 ≥ λo1 (she can induce optimists to act as if transition into the recession is more likely), but

not in the other state λo,pl2 = λo2 (she cannot influence optimists’ actions in the recession state).

18 If this wasn’t the case, the first-best allocations could be Pareto improved by appropriately changing optimists’
as-if beliefs.
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E§ectively, this policy induces optimists to sell less of the contingent security that pays in case

there is a transition to the high-risk-premium state, while also preventing optimists from increasing

their position in the market portfolio.

For small changes, this policy does not a§ect the price function in the current state, qpl1 (α) = q
∗

(since we assume beliefs in the boom state are su¢ciently optimistic that the interest rate is not

constrained–see Assumption 3). Hence, the policy a§ects the gap value only through its impact on

optimists’ wealth dynamics and the associated aggregate demand externalities. Di§erentiating Eq.

(50) (for s = 1) with respect to optimists’ as-if beliefs and evaluating at the no-policy benchmark

(λo,pl1 = λo1), we obtain,

(
ρ+ λi1

) @wi1 (α)
@λo,pl1

= α (1− α)
[
−
@wi1 (α)

@α
+

λi1
λ1 (α)

λp1
λ1 (α)

@wi2 (α
0)

@α

]
+ λi1

@wi2 (α)

@λo,pl1

, (53)

where α0 = αλo1/λ1 (α). Here, the two terms inside the brackets capture the direct impact of the

policy on welfare through aggregate demand externalities. The second term illustrates that the

policy generates positive aggregate demand externalities–because it increases optimists’ wealth

share if there is a transition into the high-risk-premium state. On the other hand, the first term

illustrates that the policy also generates negative aggregate demand externalities–because it re-

duces optimists’ wealth share in case there is no transition. Eq. (53) describes the balance of these

externalities when optimists are required to purchase the contingent security at equilibrium prices.

This illustrates that, in a dynamic setting, macroprudential policy in the low-risk-premium state

is associated with some costs as well as benefits. The costs emerge from the fact that the policy

prevents optimists from accumulating wealth that could be useful in a future recession. However,

intuition suggests the benefits should outweigh the costs as long as future recessions are not too

di§erent from an imminent recession. The following lemma verifies this for the special case, λo1 = λp1.

Lemma 2. When λo1 = λp1, the gap value function satisfies
dwi2(α

0)
dα >

dwi1(α)
dα for each i and α 2 (0, 1).

That is, optimists’ wealth share increases the gap value more when there is an immediate

transition into the high-risk-premium state, in which case the benefits appear immediately. Any

delay in such transition reduces the benefits by postponing them. Combining this lemma with Eq.

(53) provides a heuristic derivation of our main result in this section (see Appendix C.2 for the

proof).

Proposition 3. Consider the model with two belief types that satisfy λo1 = λp1. Consider the

macroprudential policy in the boom state, λo,pl1 ≥ λo1 (and suppose λ
o,pl
2 = λo2). The policy increases

the planner’s gap value (and thus, also the total value),

@vpl1 (α)

@λo,pl1

∣∣∣∣∣
λo,pl1 =λo1

=
@wpl1 (α)

@λo,pl1

∣∣∣∣∣
λo,pl1 =λo1

> 0 for each α 2 (0, 1) .

In particular, regardless of the planner’s Pareto weight, there exists a Pareto improving macropru-

dential policy.
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What happens when we relax the assumption, λo1 = λp1? This is largely a technical assumption.

We conjecture that Proposition 3 also holds when λo1 < λp1 (under appropriate technical assump-

tions) but we are unable to provide a proof. There are two distinct challenges. First, we cannot

generalize Lemma 2, although the ranking is intuitive and should hold unless there are strong non-

linearities in the gap value function.19 Second, in the more general case pessimists and optimists

disagree about the benefits of macroprudential policy (captured by λi1 in the bracketed terms of

(53)). The planner takes a weighted average of these perceptions, which complicates the analysis.20

Figure 5 illustrates the result for our earlier parameterization (that features λo1 < λp1). We fix

the optimists’ wealth share at a particular level (α = 1
2) and calculate the e§ect of macroprudential

policy on the planner’s value function as well as on its components. The policy reduces the plan-

ner’s first-best value function, since it distorts investors’ allocations according to their own beliefs.

However, for small policy changes, the magnitude of this decline is small (due to the First Wel-

fare Theorem). The policy also generates a relatively sizeable increase in the planner’s gap value

function. This increase is su¢ciently large that the policy increases the actual value function and

generates a Pareto improvement. As the policy becomes larger, the gap value continues to increase

whereas the first-best value decreases. Moreover, the decline in the first-best value is negligible for

small policy changes but it becomes sizeable for large policy changes. The (constrained) optimal

macroprudential policy obtains at an intermediate level.

The result is reminiscent of the analysis in Korinek and Simsek (2016), in which macroprudential

policy improves outcomes by increasing the wealth of high marginal propensity to consume (MPC)

households when there is a demand-driven recession. While both results are driven by aggregate

demand externalities, the mechanism here is di§erent and operates via asset prices. In fact, in our

setting, all investors have the same MPC equal to ρ. Optimists improve aggregate demand in the

high-risk-premium state not because they spend more than pessimists, but because they increase

asset prices and induce all investors to spend more.

Macroprudential policy in the high-risk-premium state. The analysis so far concerns

macroprudential policy in the low-risk-premium state and maintains the assumption that λo,pl2 = λo2.

In Appendix C.2, we also analyze the polar opposite case when the economy is in the high-risk-

premium state s = 2, and the planner can apply macroprudential policy in this state, λo,pl2 ≤ λo2 (she

19Specifically, the proof of Lemma 2 establishes,

@wi1 (b0,1)

@b
=

λi1
λi1 + ρ

Z 1

0

e−(ρ+λ
i
1)t
(
ρ+ λi1

) @wi2 (bt,2)
@b

dt,

where b0,1 denotes a transformed version of α at the initial state, and bt,2 denotes the same variable after a transition
into the high-risk-premium state after a period of length t. When λo1 = λp1, we also have bt,2 = b0,1 (since there is

no speculation in the low-risk state), which yields
@wi1(b0,1)

@b
=

λi1
λi1+ρ

@wi2(b0,1)
@b

<
@wi2(b0,1)

@b
. When λo1 < λp1, the same

result holds and the ranking remains unchanged if the value function is linear in the transformed variable b. Hence,
the ranking can fail only if there are su¢ciently large nonlinearities in the gap value function.
20When λo1 = λp1, we actually have the stronger result that

@wi1(α)

@λ
o,pl
1

> 0 for each i, that is, the policy increases

the gap value according to optimists and pessimists (see Eq. (C.18)). We state the weaker version of the result in
Proposition 3 because the stronger version might conceivably fail according to optimists (e.g., if λo1 is close to zero).
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Figure 5: E§ect of macroprudential policy in the low-risk-premium state on the planner’s value
function and its components.

can induce optimists to act as if the recovery is less likely), but not in the other state, λo,pl1 = λo1.

Proposition 4 in the appendix shows that, in contrast to Proposition 3, this policy can reduce social

welfare. Consider the two counteracting forces. First, similar to before, macroprudential policy

increases the gap value by increasing optimists’ wealth share if the economy stays at the high-risk-

premium state. However, unlike before, macroprudential policy also reduces current asset prices

because the price is below the first-best level, qpl2 (α) < q∗, and it is increasing in optimists’ as-if

optimism, λo,pl2 (see Eq. (34)). This channel reduces the gap value (see Eq. (50)). When optimists’

wealth share is large (α ! 1), the latter channel is dominant and macroprudential policy reduces

the gap value and the social welfare. Even when the latter channel does not dominate, it suggests

that the macroprudential policy in the recession state is less useful than in the boom state (which

we verify in numerical simulations).

It is useful to emphasize that macroprudential policy in the low-risk-premium state does not

lower asset prices due to the monetary policy response. Specifically, while the asset price in this

state is not influenced by policy, qpl1 (α) = q
∗, the interest rate, rf1 (α), is decreasing in optimists’

as-if pessimism, λo,pl1 (see Eq. (35)). Intuitively, as macroprudential policy reduces the demand

for risky assets, monetary policy lowers the interest rate to dampen its e§ect on asset prices and

aggregate demand.

Taken together, our analysis provides support for procyclical macroprudential policy. In states

where output is not demand constrained (in our model, the boom state s = 1), macroprudential

policy that restricts high-valuation investors’ (in our model optimists’) risk taking is desirable.

This policy improves welfare by ensuring that high-valuation investors bring more wealth to the

demand-constrained states, which increases asset prices and output. In states where output is
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demand constrained (in our model, the recession state s = 2), macroprudential policy is less useful

because it has an immediate negative impact on asset prices and aggregate demand.

7. Empirical evidence

Our empirical analysis focuses on three predictions. First, our model predicts that risk premium

shocks generate an interest rate reduction when the interest rate is not constrained, and a more

severe demand recession when the interest rate is constrained. Second, the recession reduces firms’

earnings and leads to a further reduction in asset prices. Third, the recession is more severe when

the shock takes place in an environment with more speculation. To investigate these predictions, we

compare the response to house price shocks in Eurozone countries (which have constrained interest

rates with respect to national shocks) to the response in non-Eurozone developed countries (which

have less constrained interest rates). At the end of the section, we discuss empirical evidence from

the recent literature which suggests that similar results apply for price shocks to other asset classes,

such as stocks, as well as for other constraints on the interest rate, such as the zero lower bound.

While our model relies on the zero lower bound constraint, the mechanisms are more general,

and we find it more convenient to work with the currency-union constraint in our empirical analysis.

The zero lower bound has only recently become a practical constraint, generating data limitations,

and it calls for an asymmetric specification that requires separate responses to positive and negative

price shocks (since the monetary policy can raise the interest rate in response to positive shocks,

especially if the economy is close to full capacity utilization). In contrast, individual Eurozone

countries have had constrained interest rates (with respect to national shocks) for much longer,

and the constraint has been symmetric with respect to the direction of shocks.

A major challenge in this exercise is the identification of the risk premium shock that drives

asset prices. As we clarify in Section 2, the exact source of the shock is not important for our

mechanisms (e.g., risk, risk aversion, or beliefs have similar e§ects). Therefore, our strategy is to

control for factors that do not act as a risk premium shock according to our model. In particular,

we attempt to control for supply shocks and demand shocks that are not specific to house prices–

including monetary policy shocks, and we interpret the residual change in house prices as a plausibly

exogenous risk premium shock. Specifically, our risk premium shock is a surprise change in house

prices in a country after controlling for contemporaneous and recent changes in output and the

policy interest rate (as well as the average house price change in sample countries).21

Our model has a single type of capital, which can be interpreted as a value-weighted average

of housing, stocks, and other assets. We focus on house prices for two reasons. First, housing

wealth is large and its size (relative to output) is comparable between Eurozone and non-Eurozone

developed countries (see Table 3 in Appendix E). In contrast, stock markets in Eurozone countries
21While our controls are imperfect, we also report the di§erential e§ects of these shocks in Eurozone countries

compared to their e§ects outside the Eurozone, which provides additional robustness. For example, our model
illustrates that permanent supply shocks (e.g., an increase in A) shift asset prices and output regardless of whether
the interest rate is constrained (see Sections 3 and 4). This suggests that common omitted supply shocks would lead
to a similar bias inside and outside the Eurozone that is mitigated by focusing on the di§erential responses.
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are typically much smaller than in non-Eurozone developed countries, which makes stocks less

suitable for our empirical strategy (see Table 4). Second, house prices are less volatile and seem

to react to monetary policy shocks with some delay (see Figure 15 in Appendix E). This feature

enables us to control for monetary policy shocks by including contemporaneous and past realization

of policy interest rates. We also interpret the future changes in interest rates as the monetary policy

response to the risk premium shock, which enables us to test a key prediction of our model. This

strategy works less well for stocks, because stock prices react to monetary policy shocks quickly,

which might create a correlation between stock prices and interest rates with the opposite sign

(since stock price declines driven by monetary policy shocks are typically followed by interest rate

hikes–the opposite of risk premium shocks).22

Data sources. We assemble a quarterly cross-country panel data set of financial and economic

variables for advanced economies. We obtain data on house price indices from the quarterly dataset

described in Mack et al. (2011). We obtain data on macroeconomic activity such as GDP, invest-

ment, and consumption from the OECD. We also obtain financial market data such as the policy

interest rate, stock price indices, and earnings (of publicly traded firms) from Global Financial

Data (GFD) and the Bank for International Settlements (BIS). Appendix E describes the details

of data sources and variable construction.

Sample selection. Our sample covers 21 advanced economies from the first quarter of 1990 until

the last quarter of 2017. Our selection of countries is driven by the availability of consistent house

price data. We start the sample in 1990 because monetary policy in most advanced economies had

shifted from focusing on stabilizing inflation to stabilizing output by this time, as in our model.

Our results are robust to alternative sample selections.23

To capture interest rate constraints, we divide the data into two categories. The first category,

which we refer to as the Euro/ERM sample, consists of country-quarters in which the country was

a member of the Euro area or the European Exchange Rate Mechanism (ERM) for most of the

calendar year. The ERM system, which was introduced as a precedent to the Euro, requires the

member countries to keep their exchange rates within a narrow band of a central currency. This

system constrains countries’ relative policy interest rates (albeit imperfectly) and most member

countries eventually adopted the Euro. The countries in the Euro area share the same policy

interest rate (determined by the European Central Bank). The second category, which we refer to

as the non-Euro/ERM sample, consists of the remaining country-quarters. Table 1 in Appendix E

describes the Euro/ERM status by country and year.

22Formally, we assume house prices react to monetary policy shocks with a delay of at least one quarter. Figure 15
in the appendix plots impulse responses to shocks to the policy interest rate and provides support for this assumption.
Specifically, a surprise increase in the policy interest rate is followed by a decline in house prices, but the response
starts after the first quarter and takes several quarters to complete. The same figure also shows that the assumption
is clearly violated for stock prices. A surprise increase in the policy interest rate also reduces stock prices, but all of
the response takes place in the same quarter as the shock.
23Figures 13 and 14 in the appendix show that starting the sample in 1980 leaves our results (except for the e§ect

on inflation) qualitatively unchanged.
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Empirical specification. To describe how the economy behaves after house price shocks, we

follow the local projection method developed by Jordà (2005). In particular, we regress several

outcome variables at various horizons after time t on (residual) house price changes at time t.

Specifically, we estimate equations of the type,

Y hj,t+h − Y
h
j,t−1 = αhj + γ

h
t + β

p,h (−∆ logPj,t) + βc,hcontrolsj,t + "hj,t, (54)

where j denotes the country, t denotes the quarter, h denotes the horizon, Y denotes an outcome

variable, P denotes the (real) house price index, and ∆ logPj,t = logPj,t − logPj,t−1 denotes its
quarterly log change. We include time as well as country fixed e§ects so our “house price shock” is

a decline in house prices in a quarter, after accounting for the average price decline in the sample

countries as well as various other controls within the country. Our control variables include the

contemporaneous value and 12 lags of the first di§erence of log GDP–to control for supply shocks

and demand shocks that are not specific to house prices. Likewise, we include the contemporaneous

value and 12 lags of the policy interest rate–to control for monetary policy shocks. We also include

12 lags of the first di§erence of log house prices–to capture the momentum in house prices, and

12 lags of the first di§erence of the outcome variable–to control for other dynamics that might

influence the outcomes. We weight each regression with countries’ relative GDP, and estimate (54)

for horizons 0 to 12.

To evaluate the responses within and outside the Eurozone, we also include indicator variables

for Euro/ERM and non-Euro/ERM status, and we interact all right-hand-side variables (includ-

ing the fixed e§ects) with these indicators. We let βp,heuro and β
p,h
non denote the coe¢cient on the

interaction of the price shock with the corresponding indicator. Our specification is equivalent

to running the regressions separately within the Euro/ERM and non-Euro/ERM samples.24 We

report the sequence of coe¢cients,
{
βp,heuro

}12
h=0

and
{
βp,hnon

}12
h=0
, which provide an estimate of the

impulse response functions for the respective samples. We also report 95% confidence intervals

calculated according to Newey and West (1987) standard errors with a bandwidth of 20 quarters.

Our outcome variables include terms for which our model makes a clear prediction, such as

the policy interest rate, the unemployment rate (a proxy for factor underutilization), the logs of

GDP, investment, and consumption. We also include the log (core) CPI. Even though it is constant

in our model (by assumption), variants of our model predict that it should decline in a demand

recession. We also analyze public firms’ earnings and log stock prices to investigate spillover and

amplification e§ects, as well as log house prices to investigate the price dynamics following the

initial shock. All relevant variables except for the policy interest rate are adjusted for inflation to

focus on real e§ects, as in our model. For earnings, we use the ratio of earnings to the initial stock

24The point estimates from our regression are identical to those obtained from running separate regressions within
each sample. However, because our standard errors account for autocorrelation of the residuals, the joint regression
will have slightly di§erent standard errors (for example, the joint regression will account for the fact that residuals are
correlated from before and after Greece joined the ERM). The joint regression is preferable to separate regressions,
because it uses more data and thus gives more precise standard errors.
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price level as our dependent variable (which helps to obtain meaningful units).25

Table 2 in Appendix E describes the summary statistics by Euro/ERM status for the vari-

ables that enter our regression analysis. The Euro/ERM sample has 821 country-quarters and

the non-Euro/ERM sample has 1120 country-quarters.26 Both samples are unbalanced because a

few countries have imperfect data coverage in earlier years (and because a few countries transi-

tion between samples). The two samples are comparable except that the non-Euro/ERM sample

experienced slightly faster growth over the sample period.

House price shocks and demand recessions. Figure 6 plots the estimated sequences of co-

e¢cients by Euro/ERM status (see Figure 10 in Appendix E for the di§erenced coe¢cients). The

panels at the top two rows illustrate our main empirical findings. The top left panel shows that,

in the non-Euro/ERM sample (dashed blue line), a decline in house prices is followed by a sizeable

and persistent decline in the policy interest rate. By contrast, in the Euro/ERM sample (solid red

line), a decline in house prices does not lead to an additional decline in the country’s interest rate

relative to other Euro/ERM countries, illustrating the interest rate constraint.27 The remaining

panels in the top two rows illustrate that the shock is followed by a more severe demand recession in

an Euro/ERM country than in a non-Euro/ERM country. In fact, the panels on GDP, investment,

and consumption suggest that the shock initially leads to similar e§ects in both samples but is

eventually followed by milder outcomes in the non-Euro/ERM sample.

These results are consistent with our prediction that risk premium shocks lead to a more severe

demand recession when the interest rate is constrained. From the lens of our model, the interest

rate policy mitigates a demand recession driven by a local risk premium shock outside the Eurozone

but not within the Eurozone.28

25Earnings sometimes take a negative value (e.g., for Greece in recent years) which makes a log transfor-
mation problematic. Instead, we change the specification in (54) slightly so that the dependent variable is
(earningst+h−earningst−1)/(stock pricet−1). Likewise, we adjust the control variables that feature earnings by divid-
ing them with the stock price at quarter t− 1.
26These are the sample sizes for our baseline regression in which the outcome variable is the policy interest rate and

the horizon is 0 (see (54)). For some regressions, the sample size is slightly smaller, because we estimate outcomes at
future horizons (that removes some data from the end of the sample period) and because some variables do not have
complete coverage.
27For the Euro era, the Euro/ERM-wide policy interest rate response is common to all countries and is captured

by our time-fixed e§ects. And during the ERM era, there were severe cross-country monetary policy constraints.
Figure 12 in Appendix E illustrates the results from the same regression without time-fixed e§ects. The figure shows
that a negative house price shock in the Euro/ERM sample leads to a decline in the Euro/ERM-wide policy interest
rate, but the magnitude of this decline is smaller than in the other sample. This is because house price shocks have
a national (or idiosyncratic) component, and the Euro/ERM-wide policy interest rate arguably responds only to the
Euro/ERM-wide (or systematic) component of these shocks.
28 In our model, risk premium shocks generate a less severe recession in unconstrained countries because the interest

rate policy response leads to a smaller decline in asset prices. This suggests that asset price changes might provide an
inaccurate measure of the underlying shock. We believe our analysis is robust to this concern for three reasons. First,
to the extent that this concern is relevant, it biases the empirical analysis against finding support for our mechanisms,
because it implies that an equivalent magnitude of asset price decline corresponds to a larger underlying shock if the
country has unconstrained interest rate. Second, the concern is less relevant in practice than in our model because the
interest rate policy a§ects all assets, which implies that risk-driven price declines in one asset class (such as housing)
are partially absorbed by price increases in other asset classes. Third, the concern is also less relevant for house prices
because they seem to react to interest rate changes with some delay (see Figure 15 in Appendix E). In fact, the panel
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Spillover e§ects and amplification. The panels at the bottom row of Figure 6 illustrate the

e§ect of the house price shock on asset markets. The panels on earnings and stock prices establish

that there are spillover e§ects to the stock market: specifically, earnings as well as stock prices

decline more in the Euro/ERM sample than in the other sample (although the estimates are im-

precise due to the high volatility of earnings and prices). The remaining panel illustrates that,

after the initial shock, house prices decline more persistently and by a greater magnitude in the

Euro/ERM sample.

These results are consistent with our prediction that the demand recession reduces firms’ earn-

ings and leads to a further decline in asset prices. From the lens of the model, stock prices (resp.

house prices) decline less in the non-Euro/ERM sample due to the interest rate response, which not

only increases the price to earnings ratio (resp. price to rent ratio) but also mitigates the recession

and supports earnings (resp. rents).29

Speculation and further amplification. We need a proxy for speculation to test the final pre-

diction of our model. We choose a measure of bank credit, which is a major catalyst of speculation

in housing markets. First, banks can be thought of as the high-valuation investors (“optimists”),

because they have a greater capacity and expertise to handle risk relative to non-institutional in-

vestors, and they have real estate exposures through mortgage loans. Under this interpretation,

bank credit provides a measure of banks’ exposure to the housing market. Second, banks also

lend to other high-valuation investors in the housing markets such as optimistic homebuyers that

use bank credit to purchase larger homes or second homes. When bank credit is easily available,

perhaps because of banks’ optimism about house prices, these high-valuation investors wield a

greater influence in the housing market (see Simsek (2013a) for a formalization). Thus, bank credit

provides a broad proxy for speculation in the housing market.

Our specific measure of bank credit comes from Baron and Xiong (2017), who construct a

variable, “credit expansion”, defined as the change in the bank credit to GDP ratio in the last

three years. They standardize the variable by its mean and standard deviation within each country

so that the measure is high when bank credit expansion in a country has been high in recent years

relative to its historical trends. They show that their standardized measure predicts the likelihood

of a large decline in bank equity prices, and despite the elevated risk, it also predicts lower average

returns on bank equity. Their preferred interpretation is that bank equity investors are excessively

optimistic or neglect crash risk, which in our framework would translate into greater speculation

(by banks or their borrowers).

We use the BIS data on bank credit to households and nonfinancial firms to construct a close

analogue of Baron and Xiong’s standardized credit expansion variable (see Appendix E for details).

We then run the same regressions as in (54), but we also include the interaction of the price shock

of Figure 6 on house prices suggests that the interest rate response only partially stabilizes risk-driven house price
changes and with some delay.
29We cannot test the predictions on rents because we do not have reliable data.
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Figure 6: Results from the regression specification in (54) with the addition of the indicator variables
for Euro/ERM and non-Euro/ERM status as well as the interaction of all right-hand-side variables
with these indicators. The solid red (resp. dashed blue) lines plot the coe¢cients corresponding to
the the negative log house price variable when the Euro/ERM status is equal to 1 (resp. 0). For
the units, “percent” corresponds to 0.01 log units (i.e., it is approximate) and “pp” corresponds to
percentage points. All regressions include time and country fixed e§ects; contemporaneous value
and 12 lags of the first di§erence of log GDP; contemporaneous value and 12 lags of the policy
interest rate; 12 lags of the first di§erence of log house prices; 12 lags of the first di§erence of the
outcome variable. The dotted lines show 95% confidence intervals calculated according to Newey-
West standard errors with a bandwidth of 20 quarters. All regressions are weighted by countries’
PPP-adjusted GDP in 1990. Data is unbalanced quarterly panel that spans 1990Q1-2017Q4. All
variables except for those in the top panel are adjusted for inflation. Earnings are normalized by
the stock price at the quarter before the shock (see Footnote 25). The sources and the definitions
of variables are described in Appendix E.
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with standardized credit expansion. That is, we estimate,

Y hj,t+h − Y
h
j,t−1 = αhj + γ

h
t +

"
βp,h (−∆ logPj,t)

+βpc,h (−∆ logPj,t)× credit expansion-std

#

+ βc,hcontrolsj,t + "j,t.

(55)

In addition to the earlier controls, we include 12 lags of standardized credit expansion to capture

its direct impact. As before, we also interact all right-hand-side variables with the Euro/ERM

and the non-Euro/ERM status indicators. We let βpc,heuro and β
pc,h
non denote the coe¢cient on the

interaction of the shock and credit with these indicators. The sequence of coe¢cients,
{
βpc,heuro

}12
h=0

and
{
βpc,hnon

}12
h=0
, provide an estimate of the additional e§ect of the shock when credit expansion has

been one standard deviation above average (relative to its baseline e§ect with average credit).

Figure 7 plots these sequences and illustrates our findings (see Figure 11 in the appendix for

the di§erenced coe¢cients). The panels on the first two rows show that, in the Euro/ERM sample,

house price shocks lead to a greater decline in economic activity when credit expansion has been

high in recent years. In contrast, credit expansion does not seem to change the e§ect of the house

price shock in the non-Euro/ERM sample. These results support our prediction that risk premium

shocks lead to a more severe demand recession (in constrained economies) when they take place in

an environment with elevated speculation.

On the other hand, the panels at the bottom row of Figure 7 present largely inconclusive results

that do not necessarily support (or refute) our predictions. We do not find meaningful di§erences

for the additional e§ect of house price shocks on earnings or house prices when credit expansion

has been high (in either sample). We do find a negative e§ect on stock prices for the Euro/ERM

sample, but the e§ect is not statistically significantly di§erent from the other sample. That said,

since standard errors are large, we cannot rule out sizeable e§ects either. Hence, while we tentatively

conclude that speculation proxied by credit expansion is associated with deeper risk-centric demand

recessions, further empirical research should verify the robustness of this conclusion as well as the

precise channels by which speculation a§ects the recession.

Other supporting evidence. Our empirical analysis is related to Mian and Sufi (2014, 2018)

who use regional data within the U.S. to provide evidence for the central role played by the house

price cycle and housing speculation in the Great Recession.

Mian and Sufi (2014) argue that house price declines explain much of the job losses between

2007 and 2009. Our results for the Euro/ERM sample suggest that similar results hold in cross-

country data, while the non-Euro/ERM sample suggests that monetary policy can mitigate the

adverse e§ects of house price shocks. Moreover, while Mian and Sufi (2014) emphasize household

deleveraging as the key channel by which house price declines cause damage, some of our empirical

results (e.g., the investment response) suggest there are other mechanisms as well. As our model

demonstrates, house price declines could lower aggregate demand even without household delever-

aging or other financial frictions–although these additional ingredients would naturally amplify

the e§ects.
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Figure 7: Results from the regression specification in (55) with the addition of the indicator variables
for Euro/ERM and non-Euro/ERM status as well as the interaction of all right-hand-side variables
with these indicators. The solid red (resp. dashed blue) lines plot the coe¢cients corresponding to
the interaction of the negative log house price and the standardized credit expansion variables when
the Euro/ERM status is equal to 1 (resp. 0). For the units, “percent” corresponds to 0.01 log units
(i.e., it is approximate) and “pp” corresponds to percentage points. All regressions include time
and country fixed e§ects; contemporaneous value and 12 lags of the first di§erence of log GDP;
contemporaneous value and 12 lags of the policy interest rate; 12 lags of the first di§erence of log
house prices; 12 lags of the first di§erence of the outcome variable; and 12 lags of standardized
credit expansion. The dotted lines show 95% confidence intervals calculated according to Newey-
West standard errors with a bandwidth of 20 quarters. All regressions are weighted by countries’
PPP-adjusted GDP in 1990. Data is unbalanced quarterly panel that spans 1990Q1-2017Q4. All
variables except for those in the top panel are adjusted for inflation. Earnings are normalized by
the stock price at the quarter before the shock (see Footnote 25). The sources and the definitions
of variables are described in Appendix E.
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Mian and Sufi (2018) argue that housing speculation amplified the house price cycle and lead

to a more severe downturn. As in our empirical exercise, they emphasize bank credit expansion as

a major catalyst of speculation. They find that the U.S. areas more exposed to credit expansion in

early 2000s featured greater speculative trading activity (measured from detailed transaction data)

and greater belief disagreements (measured from survey data). They go on to argue that the same

areas experienced a greater housing boom but also a much greater bust so they ended the housing

cycle with lower house prices and economic activity. Our empirical results on speculation (although

much less detailed) suggest similar results hold in cross-country data. Our model illustrates how

greater speculation during the boom naturally leads to lower prices and economic activity once the

economy transitions to recession.

In recent work, Pflueger et al. (2018) present evidence that suggests risk premium shocks in

the stock market also a§ect aggregate demand and interest rates. Specifically, they construct a

measure of risk appetite for the U.S. as the price of high (idiosyncratic) volatility stocks relative to

low volatility stocks. They show that a decrease in their measure of risk appetite is followed by a

slowdown in economic activity as well as a decline in the risk-free rate–similar to our results for

the non-Euro/ERM sample. Pflueger et al. (2018) go on to argue that their risk appetite measure

explains almost half of the variation of the one year risk-free rate in the U.S. since 1970. This

suggests that the time varying risk premium is a quantitatively important driver of the risk-free

rate in practice. Chodorow-Reich et al. (2019) provide further support for the link between the

stock market and aggregate demand. Using regional data within the U.S., they find that a decline in

local stock wealth (driven by aggregate stock prices) decreases local payroll and employment. They

also find stronger e§ects in nontradable industries but no e§ects for tradable industries, consistent

with a consumption wealth e§ect as in our model.

Focusing on a value-weighted average of house and stock prices, Jordà et al. (2019) argue that

low frequency fluctuations in the risk premium in developed economies have been associated with a

collapse of safe asset returns (as opposed to a spike in risky asset returns). In particular, when the

risk premium rises, the risk-free rate tends to fall and the value-weighted average risky asset returns

remain relatively stable, as in our model. Looking at more recent years, Del Negro et al. (2017)

provide a comprehensive empirical evaluation of the di§erent mechanisms that have put downward

pressure on interest rates and show that risk and liquidity considerations played a central role (see

also Caballero et al. (2017a)).

Finally, our mechanisms are supported by a literature that investigates the macroeconomic

impact of “uncertainty shocks.” Using vector autoregressions (VARs), Bloom (2009) shows that an

increase in the volatility index in the U.S. is followed by a slowdown in economic activity. Moreover,

although his model does not emphasize monetary policy, his empirical analysis shows that the shock

is followed by a decline in the federal funds rate. This response suggests the e§ects could be more

severe if the interest rate were constrained. Recent empirical work verifies this intuition and shows

that uncertainty shocks in the U.S. are associated with a greater decline in economic activity when

the federal funds rate is close to zero, arguably because of the zero lower bound constraint on the
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interest rate (see, for instance, Caggiano et al. (2017); Plante et al. (2018)).

8. Final remarks

We develop a risk-centric macroeconomic model to focus on the role of the aggregate demand

channel in causing recessions driven by risky asset price fluctuations, and to study the e§ect of

financial speculation on the severity of these recessions. In our model, when the interest rate

is constrained, a rise in the risk premium lowers asset prices and triggers a demand recession,

which further drives down asset prices. The feedbacks are especially powerful when investors are

pessimistic and think the higher risk premium will persist. Hence, beliefs play a central role in

the recession phase not only because they a§ect asset valuations but also because they determine

the strength of the amplification mechanism. In the ex-ante boom phase, belief disagreements

(and more broadly, heterogeneous valuations) matter because they induce investors to speculate.

This speculation exacerbates the recession because it depletes high-valuation investors’ wealth once

the risk premium rises, which leads to a greater decline in asset prices and economic activity.

Macroprudential policy (in the boom) improves outcomes by restricting speculation and preserving

high-valuation investors’ wealth during the recession. This policy intervention leads to a Pareto

improvement because it internalizes the aggregate demand externalities that result from speculation.

Interest rate cuts in our model improve the market’s Sharpe ratio. From this perspective,

any policy that reduces perceived market volatility and prevents sudden asset price drops should

have similar e§ect, providing support for various policies implemented during the aftermath of the

subprime and European crises.

In our model, we use a lower bound constraint as the interest rate friction, but as we stated

earlier our mechanisms are also applicable if the interest rate is constrained for other reasons. Also,

when the interest rate has an upper bound as well as a lower bound (such as in a currency union or

fixed exchange rate regime), our results often become stronger. In this setting, speculation creates

damage not only by lowering asset prices during the recession but also by raising asset prices

during the boom, when the aggregate demand is stretched above its natural level, which typically

exacerbates the ine¢ciency. Moreover, in this case macroprudential policy during the boom is

beneficial not only because it preserves high-valuation investors’ wealth for a future recession but

also because it immediately contains the excessive rise in asset prices.

In the main text, we did not take a stand on whether optimists or pessimists are right about the

transition probabilities. The core of our analysis does not depend on this. For example, we could

think of optimists as rational agents and pessimists as Knightian agents (see, e.g., Caballero and

Krishnamurthy (2008); Caballero and Simsek (2013)). Absent any direct mechanism to alleviate

Knightian behavior during severe recessions, the key point that reducing optimists’s risk taking

during the boom leads to Pareto improvements survives this alternative motivation.

As we noted earlier, our modeling approach belongs to the literature spurred by Brunnermeier

and Sannikov (2014), although our analysis does not feature financial frictions. However, if we
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were to introduce these realistic frictions in our setting, many of the themes in that literature

would reemerge and be exacerbated by aggregate demand feedbacks. For instance, in an incomplete

markets setting, optimists take leveraged positions on the market portfolio and induce endogenous

volatility in asset prices. In this case, a sequence of negative di§usion shocks that make the economy

deeply pessimistic can lead to extreme tail events.

Finally, while this is mostly an applied theory paper, we also surveyed some of the extensive

empirical evidence supporting our analysis, and provided our own evidence by contrasting the

local response to risk premium shocks (captured by surprise house price changes) of (constrained)

Euro/ERM countries to that of (unconstrained) non-Euro/ERM countries. Our evidence suggests

that risk premium shocks lead to more severe recessions when the interest rate is constrained, as in

our model. The evidence also supports our model’s prediction that recessions reduce firms’ earnings

and lead to a further reduction in asset prices. Finally, we found some evidence consistent with

our prediction that recessions are more severe when the shock takes place in an environment with

high speculation (as measured by the size of the bank credit expansion before the shock).
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Online Appendices: Not for Publication

A. Appendix: Omitted Derivations for the Two Period Model

This appendix presents the derivations and proofs omitted from the main text for the two period model that

we analyze in Section 2. We start by the case analyzed in the main text. We then analyze the case in which

EIS is di§erent than one, as well as the case with belief disagreements. Throughout, recall that the market

portfolio is the claim to all output at date 1. Combining Eqs. (1) and (2), the return on the market portfolio

is also log normally distributed, that is,

rm (z1) = log

(
Q1
z1

)
∼ N

(
g − logQ−

σ2

2
,σ2
)
. (A.1)

A.1. Baseline two period model

For this case, most of the analysis is provided in the main text. Here, we formally state the investor’s problem

and derive the optimality conditions. The investor takes the returns as given and solves the following problem,

max
c0,a0,!m

log c0 + e
−ρ logU1

where U1 =
(
E
h
c1 (z1)

1−γ
i)1/(1−γ)

s.t. c0 + a0 = y0 +Q

and c1 (z1) = a0
(
!m exp (rm (z1)) + (1− !m) exp

(
rf
))
.

Here, c1 (z1) denotes total financial wealth, which equals consumption (since the economy ends at date 1).

Note that the investor has Epstein-Zin preferences with EIS coe¢cient equal to one and the RRA coe¢cient

equal to γ > 0. The case with γ = 1 is equivalent to time-separable log utility as in the dynamic model.

In view of the Epstein-Zin functional form, the investor’s problem naturally splits into two steps. Con-

ditional on savings, a0, she solves a portfolio optimization problem, that is, U1 = RCEa0, where

RCE = max
!m

(
E
h
(Rp (z1))

1−γ
i)1/(1−γ)

(A.2)

and Rp (z1) =
(
!m exp (rm (z1)) + (1− !m) exp

(
rf
))
.

Here, we used the observation that the portfolio problem is linearly homogeneous. The variable, Rp (z1),

denotes the realized portfolio return per dollar, and RCE denotes the optimal certainty-equivalent portfolio

return. In turn, the investor chooses asset holdings, a0, that solve the intertemporal problem,

max
a0

log (y0 +Q− a0) + e−ρ log
(
RCEa0

)
. (A.3)

The first order condition for this problem implies Eq. (4) in the main text. That is, regardless of her

certainty-equivalent portfolio return, the investor consumes and saves a constant fraction of her lifetime

wealth.

It remains to characterize the optimal portfolio weight, !m, as well as the certainty-equivalent return,

RCE . Even though the return on the market portfolio is log-normally distributed (see Eq. (A.1)), the
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portfolio return, Rp (z1), is in general not log-normally distributed (since it is the sum of a log-normal variable

and a constant). Following Campbell and Viceira (2002), we assume the investor solves an approximate

version of the portfolio problem (A.2) in which the log portfolio return is also normally distributed. To

state the problem, let πp ≡ logE [Rp]− rf and (σp)2 ≡ var (logRp) to denote respectively the risk premium
and the variance of the market portfolio (measured in log returns). Then, the approximate portfolio return

satisfies,

πp = !mπk (A.4)

where πk ≡ log (E [exp (rm (z1))])− rf = E [rm (z1)]− rf +
σ2

2
.

Hence, the risk premium on the portfolio return depends linearly on the risk premium on the market portfolio

(measured in log returns). We also have,

σp = !mσ. (A.5)

Thus, the volatility of the portfolio also depends linearly on the volatility of the market portfolio (measured

in log returns). These identities hold exactly in continuous time. In the two period model, they hold

approximately when the period time-length is small. Moreover, they become exact for the level the risk

premium that ensures equilibrium, !m = 1, since in this case the portfolio return is actually log-normally

distributed.

Taking the log of the objective function in problem (A.2), and using the log-normality assumption, the

problem can be equivalently rewritten as,

logRCE − rf = max
!m

πp −
1

2
γ (σp)

2 , (A.6)

where πp and σp are defined in Eqs. (A.4) and (A.5). It follows that, up to an approximation (that becomes

exact in equilibrium), the investor’s problem turns into standard mean-variance optimization. Taking the

first order condition, we obtain Eq. (6) in the main text. Substituting !m = 1 and E [rm (z1)] = g−logQ− σ2

2

[cf. Eq. (A.1)] into this expression, we further obtain Eq. (7) in the main text. Substituting these expressions

into (A.6), we also obtain the closed form solution for the certainty-equivalent return in (11).

A.2. More general EIS

In this case, the representative investor solves the following problem,

max
c0,a0,!m,{c1(z1)}

U0 =
c
1−1/"
0 − 1
1− 1/"

+ e−ρ
U
1−1/"
1 − 1
1− 1/"

where U1 =
(
E
h
c1 (z1)

1−γ
i)1/(1−γ)

s.t. c0 + a0 = y0 +Q

and c1 (z1) = a0
(
!m exp (rm (z1)) + (1− !m) exp

(
rf
))
.

Here, " denotes the elasticity of substitution. The case with " = 1 is equivalent to the earlier problem.

Most of the analysis remains unchanged. As before, the investor’s problem splits into two parts. The

portfolio problem (A.2) as well as its solution remains unchanged. In particular, Eqs. (6), (7), (11) from the

main text continue to apply.
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The main di§erence concerns the intertemporal problem (A.3), which is now given by,

max
a0

(y0 +Q− a0)
1−1/"

+ e−ρ
(
RCEa0

)1−1/"
.

Taking the first order condition and rearranging terms, we obtain the consumption function,

c0 =
1

1 + e−ρ" (RCE)
("−1) (y0 +Q) .

Combining this expression with the aggregate resource constraint, y0 = c0, we obtain the output-asset price

relation (10) in the main text. The main di§erence from the earlier analysis is that consumption (and savings)

also depends on income and substitution e§ects, in addition to the wealth e§ect in the main text. When " > 1,

the substitution e§ect dominates and all else equal an increase in the certainty-equivalent return reduces

consumption (increases savings). This in turn lowers aggregate demand and output. Conversely, when " < 1,

the income e§ect dominates and an increase in certainty-equivalent return increases consumption, aggregate

demand, and output.

The equilibrium is found by jointly solving Eq. (10) together with Eqs. (7) and (11), as well as the

constrained policy interest rate. Collecting the equations together, the equilibrium tuple,
(
y0, Q,R

CE , rf
)
,

is the solution to the following system,

log y0 = ρ"+ (1− ") logRCE + logQ (A.7)

logRCE = g − logQ−
1

2
γσ2

σ =
1

γ

g − logQ− rf

σ

rf = max
(
rf∗, 0

)
where rf∗ ensures y0 = z0.

To characterize the solution further, consider the case in which the equilibrium is supply determined,

y0 = z0 = 1. Substituting this into the first two equations, we solve for the first-best price level of the market

portfolio as,

logQ∗ = −ρ+
("− 1)
"

(
g −

1

2
γσ2

)
. (A.8)

Substituting this into the last equation, we further obtain an expression for “rstar”,

rf∗ = ρ+ g − γσ2 −
("− 1)
"

(
g −

1

2
γσ2

)
(A.9)

= ρ+
g

"
−
1

2
γ

(
1 +

1

"

)
σ2.

Note that setting " = 1 recovers Eq. (8) in the main text. The main di§erence is that “rstar” is now also

influenced by the attractiveness of investment opportunities, captured by the term g − 1
2γσ

2 (that shifts

logRCE). When " > 1, reducing the attractiveness of investment opportunities induces the representative

household to consume more and save less due to a substitution e§ect. This requires an increase in the

risk-free rate to equilibrate the goods market. In this case, a risk premium shock that increases γ or σ (or

lowers g) reduces aggregate wealth, which tends to reduce the interest rate as before, but it also reduces

the attractiveness of investment opportunities, which tends to raise the interest rate. When " < 1, the two

channels work in the same direction. The second line of Eq. (A.9) collects similar terms together and shows
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that the risk shocks lower “rstar” as in the baseline setting regardless of the level of ". When " > 1, the

e§ect is quantitatively weaker due to the substitution channel but it is qualitatively the same.

Now consider the case in which the interest rate is at its lower bound, rf = 0. Substituting this into the

equation system (A.7), we obtain,

logQ = g − γσ2 (A.10)

and log y0 = "

(
ρ+ logQ−

("− 1)
"

(
g −

1

2
γσ2

))

= "

(
ρ+

g

"
−
1

2
γ

(
1 +

1

"

)
σ2
)
.

In this case, the additional e§ect of the changes in the attractiveness of investment opportunities is absorbed

by output, because the interest rate does not respond. An increase in γ or σ (or a decrease in g) tends to

reduce the output by reducing the aggregate wealth, as in the baseline setting, but it also a§ects output

through substitution or income e§ects. The last line in (A.10) illustrates that the wealth e§ect dominates

regardless of the level of ". When " > 1, the substitution e§ect mitigates the quantitative impact of the

wealth e§ect relative to the baseline setting but it does not overturn it. When " < 1, the income e§ect

amplifies the quantitative impact of the wealth e§ect.

A.3. Belief disagreements and speculation

We denote optimists and pessimists respectively with superscript i 2 {o, p}. With a slight abuse of notation,
we also let αo ≡ α and αp ≡ 1− α denote respectively optimists’ and pessimists’ wealth shares. Recall that
investors are identical except possibly their beliefs about aggregate growth. Then, type i investors solve the

following problem,

max
c0,a0,!m,{c1(z1)}

log c0 + e
−ρ logU1 (A.11)

where U1 =
(
Ei
h
c1 (z1)

1−γ
i)1/(1−γ)

s.t. c0 + a0 = αi (y0 +Q)

and c1 (z1) = a0
(
!m exp (rm (z1)) + (1− !m) exp

(
rf
))
.

Note that we set the EIS equal to one as in the baseline setting. Note also that the asset market clearing

condition requires,

!m,oao0 + !
m,pap0 = Q, (A.12)

that is, the total amount of wealth invested in the market portfolio equals the value of the market portfolio.

The rest of the model is the same as in the baseline setting.

In this case, the investor’s portfolio problem (A.2) remains unchanged. Applying the log-normal approx-

imation that we described previously, we obtain Eq. (6) as in the main text, that is,

!m,iσ '
1

γ

Ei [rm (z1)] +
σ2

2 − r
f

σ
.
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Substituting Ei [rm (z1)] = gi − logQ− σ2

2 [cf. Eq. (A.1)] into this expression, we further obtain,

!m,iσ '
1

γ

gi − logQ− rf

σ
. (A.13)

As before, investors choose their share of the market portfolio so that their optimal portfolio risk is propor-

tional to the Sharpe ratio. The di§erence is that the Sharpe ratio is calculated according to investors’ own

beliefs (and it is greater for optimists since go > gp).

The intertemporal problem (A.3) also remains unchanged. Taking the first order condition, we obtain,

ci0 =
1

1 + e−ρ
αi (y0 +Q) (A.14)

Aggregating this equation across investors, and using the aggregate resource constraint (3), shows that the

output-asset price relation (5) continues to apply in this setting. Belief heterogeneity does not a§ect this

equation since investors share the same discount rate, ρ.

Next note that combining (A.12) , (A.14) and (5), the asset market clearing condition can be rewritten

as,

α!m,o + (1− α)!m,p = 1. (A.15)

Investors’ wealth-weighted average portfolio weight on the market portfolio is equal to one. Combining this

with Eq. (A.13), we obtain the following analogue of Eq. (7),

σ '
1

γ

αogo + αpgp − logQ− rf

σ
. (A.16)

Hence, the risk balance condition continues to apply with the di§erence that the expected growth rate is

determined according to a weighted average belief. Another di§erence is that the condition is typically not

exact because investors’ shares of the market portfolio typically deviate from one (and thus, their return is

typically not log-normal). Specifically, the equilibrium portfolio shares satisfy, !o > 1 > !p: optimists’ make

a leveraged investment in the market portfolio by issuing some risk-free debt, whereas pessimists invest only

a fraction of their wealth in the market portfolio (and invest the rest of their wealth in the risk-free asset

issued by optimists).

Next consider the supply-determined equilibrium in which output is equal to its potential, y0 = z0 = 1.

By Eq. (5), this requires the asset price to be at a particular level, Q∗ = e−ρ. Combining this with Eq.

(A.16) we obtain Eq. (12) in the main text that characterizes “rstar.” The level of “rstar” is increasing

in optimists’ wealth share, α. This is because increasing optimists’ wealth share tends to increase asset

prices, aggregate demand, and output. In a supply-determined equilibrium, the monetary policy increases

the interest rate to neutralize the impact of optimists on aggregate demand and output.

Finally, consider the case in which the interest rate is at its lower bound, rf = 0. Substituting this into

the risk balance condition (A.16), and using the output-asset price relation (5), we obtain Eq. (9) in the

main text that characterizes the equilibrium level of output in a demand recession. In this case, increasing

optimists’ wealth share translates into an actual increase in asset prices, aggregate demand, and output,

because the monetary policy cannot neutralize these e§ects due to the constraint on the interest rate.
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B. Appendix: Omitted Derivations for the Dynamic Model

This appendix presents the details of the dynamic model that we present and analyze in Sections 3-5. Sections

B.1-B.3 describe derivations and proofs omitted from the main text for the dynamic model that. Section B.4

describes how we parameterize the model. The subsequent appendix C presents the details of the welfare

analysis for the same model.

B.1. Omitted derivations in Section 3

B.1.1. Portfolio problem and its recursive formulation

The investor’s portfolio problem (at some time t and state s) can be written as,

V it,s
(
ait,s
)
= maxh

c̃t̃,s̃,!̃
m
t̃,s̃
,!̃s̃

0
t̃,s̃

i

t̃≥t,s̃

Eit,s

[Z 1

t

e−ρt̃ log c̃it̃,s̃dt̃

]

s.t.

8
><

>:

dait,s =
(
ait,s

(
rft,s + !̃

m
t,s

(
rmt,s − r

f
t,s

)
− !̃s̃

0

t̃,s̃

)
− c̃t,s

)
dt+ !̃mt,sa

i
t,sσsdZt absent transition,

ait,s0 = a
i
t,s

(
1 + !̃mt,s

Qt,s0−Qt,s

Qt,s
+ !̃s

0

t,s
1
ps
0
t,s

)
if there is a transition to state s0 6= s.

(B.1)

Here, Eit,s [·] denotes the expectations operator that corresponds to the investor i’s beliefs for state transition
probabilities. The HJB equation corresponding to this problem is given by,

ρV it,s
(
ait,s
)
= max
!̃m,!̃s

0
,c̃
log c̃+

@V it,s
@a

(
ait,s

(
rft,s + !̃

m
(
rmt,s − r

f
t,s

)
− !̃s

0
)
− c̃
)

(B.2)

+
1

2

@2V it,s
@a2

(
!̃mait,sσs

)2
+
@V it,s

(
ait,s
)

@t

+ λis

 

V it,s0

 

ait,s

 

1 + !̃m
Qt,s0 −Qt,s

Qt,s
+
!̃s

0

ps
0

t,s

!!

− V it,s
(
ait,s
)
!

.

In view of the log utility, the solution has the functional form in (45), which we reproduce here,

V it,s
(
ait,s
)
=
log
(
ait,s/Qt,s

)

ρ
+ vit,s.

The first term in the value function captures the e§ect of holding a greater capital stock (or greater wealth),

which scales the investor’s consumption proportionally at all times and states. The second term, vit,s, is the

normalized value function when the investor holds one unit of the capital stock (or wealth, ait,s = Qt,s). This

functional form also implies,
@V it,s
@a

=
1

ρait,s
and

@2V it,s
@a2

=
−1

ρ
(
ait,s
)2 .

The first order condition for c̃ then implies Eq. (22) in the main text. The first order condition for !̃m implies,

@V it,s
@a

ait,s

(
rmt,s − r

f
t,s

)
+ λis

@V it,s0
(
ait,s0

)

@a
ait,s

Qt,s0 −Qt,s
Qt,s

= −
@2V it,s
@a2

!mt,s
(
ait,sσs

)2
.

After substituting for
@V i

t,s

@a ,
@V i

t,s0

@a ,
@2V i

t,s

@a2 and rearranging terms, this also implies Eq. (23) in the main text.
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Finally, the first order condition for !̃s
0
implies,

ps
0

t,s

λis
=

@V i
t,s0(a

i
t,s0)

@a

@V i
t,s(ait,s)
@a

=
1/ait,s0

1/ait,s
,

which is Eq. (24) in the main text. This completes the characterization of the optimality conditions.

B.1.2. New Keynesian microfoundation for nominal rigidities

The supply side of our model features nominal rigidities similar to the standard New Keynesian setting.

There is a continuum of measure one of monopolistically competitive production firms denoted by ν. These

firms own the capital stock (in equal proportion) and produce di§erentiated goods, yt,s (ν), subject to the

technology,

yt,s (ν) = Aηt,s (ν) kt,s. (B.3)

Here, ηt,s (ν) 2 [0, 1] denotes the firm’s choice of capital utilization. We assume utilization is free up to
ηt,s (ν) = 1 and infinitely costly afterwards. The production firms sell their output to a competitive sector

that produces the final output according to the CES technology,

yt,s =

(Z 1

0

yt,s (ν)
"−1
" dν

)"/("−1)
, (B.4)

for some " > 1. Thus, the demand for the firms’ goods implies,

yt,s (ν) ≤ pt,s (ν)
−"
yt,s, where pt,s (ν) = Pt,s (ν) /P . (B.5)

Here, pt,s (ν) denotes the firm’s relative price, which depends on its nominal price, Pt,s (ν), as well as the

ideal nominal price index, Pt,s =
(R
Pt,s (ν)

1−"
dν
)1/(1−")

. We write the demand constraint as an inequality

because an individual firm can in principle refuse to meet the demand for its goods.

Without price rigidities, the firm chooses ηt,s (ν) 2 [0, 1] , yt,s (ν) , pt,s (ν) to maximize its earnings,

pt,s (ν) yt,s (ν), subject to the supply constraint in (B.3) and the demand constraint, (B.5). In this case,

the demand constraint holds as equality (because otherwise the firm can always raise its price to keep its

production unchanged and raise its earnings). By combining the constraints, the firm’s problem can be

written as,

max
pt,s(ν),ηt,s(ν)

pt,s (ν)
1−"

yt,s s.t. 0 ≤ ηt,s (ν) =
pt,s (ν)

−"
yt,s

Akt,s
≤ 1.

Inspecting this problem reveals that the solution features full factor utilization, ηt,s (ν) = 1. This is because,

when ηt,s (ν) < 1, the marginal cost of production is zero. Thus, the firm can always lower its price

and increase its demand and production, which in turn increases its earnings. Hence, at the optimum,

the firms set ηt,s (ν) = 1 and yt,s (ν) = Akt,s. To produce at this level, they set the relative price level,

pt,s (ν) =
(
yt,s
Akt,s

)−1/"
. Since all firms are identical, we also have pt,s (ν) = 1 and yt,s = yt,s (ν) = Akt,s. In

particular, output is determined by aggregate supply at full factor utilization.

Now consider the alternative setting in which firms have a preset nominal price that is equal for all

firms, Pt,s (ν) = P . This also implies the relative price of a firm is fixed and equal to one, pt,s (ν) = 1.

The firm chooses the remaining variables, ηt,s (ν) 2 [0, 1] , yt,s (ν), to maximize its earnings, yt,s (ν), subject
to the supply constraint in (B.3) and the demand constraint, (B.5). Combining the constraints and using
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pt,s (ν) = 1, the firm’s problem can be written as,

max
ηt,s(ν)

Aηt,s (ν) kt,s s.t. 0 ≤ ηt,s (ν) ≤ 1 and Aηt,s (ν) kt,s ≤ yt,s.

The solution is given by, ηt,s (ν) = min
(
1,

yt,s
Akt,s

)
. Intuitively, when ηt,s (ν) < 1 and Aηt,s (ν) kt,s < yt,s, the

marginal cost of production is zero and there is some unmet demand for firms’ goods. The firm optimally

increases its production until the supply or the demand constraints bind. Combining this observation with

the production technology for the final output, we also obtain, yt,s ≤ Akt,s. This implies that the demand
constraint holds as equality also in this case. In particular, we have ηt,s (ν) =

yt,s
Akt,s

≤ 1.
In sum, when the firms’ nominal prices are fixed, aggregate output is determined by aggregate demand

subject to the capacity constraint, which verifies Eq. (19) in the dynamic model (and Eq. (3) in the two

period model).

Note also that, in equilibrium, firms’ equilibrium earnings are equal to aggregate output, yt,s. Since firms

own the capital (and there is no rental market for capital), the division of these earnings between return to

capital and monopoly profits is indeterminate. This division does not play an important role in our baseline

model but it matters when we introduce investment. In Appendix D with endogenous investment (that we

present subsequently), we use slightly di§erent microfoundations that ensure earnings accrue to firms in the

form of return to capital, i.e., there are no monopoly profits, which helps to simplify the exposition.

B.2. Omitted derivations in Section 4

Proof of Proposition 1. Provided in the main text.

B.3. Omitted derivations in Section 5

We derive the equilibrium conditions that we state and use in Section 5. First note that, using Eq. (24), the

optimality condition (23) can be written as,

!m,it,s σs =
1

σs

(
rmt,s − r

f
t,s + p

s0

t,s

Qt,s0 −Qt,s
Qt,s

)
. (B.6)

Note also that Eq. (25) implies,

!m,ot,s = !m,pt,s = 1. (B.7)

Next note that by definition, we have

aot,s = αt,sQt,skt,s and a
p
t,s = (1− αt,s)Qt,skt,s for each s 2 {1, 2} .

After plugging these into Eq. (24), using kt,s = kt,s0 (since capital does not jump), and aggregating over

optimists and pessimists, we obtain,

ps
0

t,s = λt,s
Qt,s
Qt,s0

, (B.8)

where λt,s denotes the wealth-weighted average belief defined in (38).

Next, we combine Eqs. (B.6) , (B.7), and (B.8) to obtain

σs =
1

σs

(
rmt,s − r

f
t,s + λt,s

(
1−

Qt,s
Qt,s0

))
for each s 2 {1, 2} . (B.9)
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Substituting for rmt,s from Eq. (28), we obtain the risk balance condition (39) in the main text.

We next characterize investors’ equilibrium positions. Combining Eq. (B.1) with Eqs. (B.7) and (B.8),

investors’ wealth after transition satisfies,

ait,s0

ait,s
=
Qt,s0

Qt,s

 

1 +
!s

0,i
t,s

λt,s

!

. (B.10)

From Eq. (24), we have
ps
0
t,s

λis
=

1/ai
t,s0

1/ait,s
. Substituting this into the previous expression and using Eq. (B.8)

once more, we obtain,

!s
0,i
t,s = λis − λt,s for each i 2 {o, p} . (B.11)

Combining this with Eq. (38) implies Eq. (40) in the main text.

Finally, we characterize the dynamics of optimists’ wealth share. Combining Eqs. (B.10) and (B.11)

implies,

ait,s0

ait,s
=

λis
λt,s

Qt,s0

Qt,s
. (B.12)

Combining this with the definition of wealth shares as well as kt,s = kt,s0 , we further obtain,

αt,s0

αt,s
=

λos
λt,s

. (B.13)

Thus, it remains to characterize the dynamics of wealth conditional on no transition. To this end, we combine

Eq. (B.1) with Eqs. (B.7) , (28) , (22) to obtain,

daot,s
aot,s

=
(
g + µQt,s − !

s0,i
t,s

)
dt+ σsdZt.

After substituting aot,s = αt,sQt,skt,s, and using the observation that
dQt,s

Qt,s
= µQt,sdt and

dkt,s
kt,s

= gdt+ σsdZt,

we further obtain,
dαt,s
αt,s

= −!s
0,o
t,s dt = −

(
λos − λt,s

)
dt. (B.14)

Combining Eqs. (B.13) and (B.14) implies Eq. (41) in the main text.

Proof of Proposition 2. First consider the high-risk-premium state, s = 2. Combining Eqs. (41) and

(42), we obtain the di§erential equation system,

q̇t,2 = −
(
ρ+ g + λ2 (αt,2)

(
1−

exp (q2)

Q∗

)
− σ22

)
, (B.15)

α̇t,2 = − (λo2 − λ
p
2)αt,2 (1− αt,2) .

This system describes the joint dynamics of the price and optimists’ wealth share, (qt,2,αt,2), conditional on

there not being a transition. We next analyze the solution to this system using the phase diagram over the

range α 2 [0, 1] and q2 2 [q
p
2 , q

o
2]. Here, recall that q

i
2 corresponds to the equilibrium log price with common

beliefs characterized in Section 4 corresponding to type i investors’ belief.

First note that the system has two steady states given by, (αt,2 = 0, qt,2 = q
p
2), and (αt,2 = 1, qt,2 = q

o
2).

Next note that the system satisfies the Lipschitz condition over the relevant range. Thus, the vector flows

that describe the law of motion do not cross. Next consider the locus, q̇2 = 0. By comparing Eqs. (42)
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Figure 8: The phase diagram that describes the equilibrium with heterogeneous beliefs.

and (33), this locus is exactly the same as the price that would obtain if investors shared the same wealth-

weighted average belief, denoted by q2 = qh2 (α). Using our analysis in Section 4, we also find that q
h
2 (α) is

strictly increasing in α. Moreover, q2 < qh2 (α) implies q̇t,2 < 0 whereas q2 > q
h
2 (α) implies q̇t,2 > 0. Finally,

note that α̇t,2 < 0 for each α 2 (0, 1).
Combining these observations, the phase diagram has the shape in Figure 8. This in turn implies that

the system is saddle path stable. Given any αt,2 2 [0, 1), there exists a unique solution, qt,2, which ensures
that limt!1 qt,2 = q

p
2 . We define the price function (the saddle path) as q2 (α). Note that the price function

satisfies q2 (α) < qh2 (α) for each α 2 (0, 1), since the saddle path cannot cross the locus, q̇t,2 = 0. Note also
that q2 (1) = qo2, since the saddle path crosses the other steady-state, (αt,2 = 1, qt,2 = q

o
2). Finally, recall that

q2 < q
h
2 (α) implies q̇t,2 < 0. Combining this with α̇t,2 < 0, we further obtain

dq2(α)
dα > 0 for each α 2 (0, 1).

Next note that, after substituting q̇t,2 = q02 (α) α̇t,2, Eq. (B.15) implies the di§erential equation (43) in

α-domain. Thus, the above analysis shows there exists a solution to the di§erential equation with q2 (0) = q
p
2

and q2 (1) = qo2. Moreover, the solution is strictly increasing in α, and it satisfies q2 (α) < qh2 (α) for each

α 2 (0, 1). Note also that this solution is unique since the saddle path is unique. The last part of the
proposition follows from Eqs. (26) and (27).

Next consider the low-risk-premium state, s = 1. In the conjectured equilibrium, we have Qt,1 = Q∗,

which also implies µQt,1 = 0. Substituting these expressions into Eq. (39), we obtain the risk balance condition

in this state,

σ1 =
1

σ1

(
g + ρ− rft,1 + λt,1

(
1−

Q∗

Qt,2

))
.

Writing the equilibrium variables as a function of optimists’ wealth share, we obtain rft,1 = rf1 (α) and

λt,1 = λ1 (α) and Qt,2 = exp (q2 (α
0)), where α0 = αλo1/λ1 (α) denotes optimists’ wealth share after a

transition [cf. Eq. (41)]. Substituting these expressions into the risk balance condition and rearranging

terms, we obtain Eq. (44) in the main text that, which we replicate here,

rf1 (α) = ρ+ g − λ1 (α)
(

Q∗

exp (q2 (α0))
− 1
)
− σ21.

58



Note also that drf1 (α)
dα > 0 because λ1 (α) is decreasing in α (in view of Assumption 4), and q2 (α0) is

strictly increasing in α. The latter observation follows since α0 = αλo1
αλo1+(1−α)λ

p
1
is increasing in α (in view

of Assumption 4) and q2 (·) is a strictly increasing function. Note also that r
f
1 (α) > r

f
1 (0) > 0, where the

latter inequality follows since Assumptions 1-3 holds for the pessimistic belief. Thus, the interest rate in

state 1 is always positive, which verifies our conjecture and completes the proof.

B.4. Details of the parameterization

This section describes the details of the parameterization of the dynamic model that we use to numerically

illustrate our findings. This parameterization is only meant to be reasonable, as its purpose is to give a sense

of potential magnitudes. Throughout, we measure time in years so that the continuous-time rates we choose

correspond to (approximate) yearly rates.

Since we do not explicitly model steady-state inflation (for simplicity), we interpret the growth rate in

our model as g = g̃ + π where g̃ can be thought of as the real growth rate and π ≥ 0 can be thought of

as the steady-state inflation. With this adjustment, we can interpret the returns in our model as capturing

the corresponding nominal returns in the data. In particular, the zero lower bound constraint in the model

(20) becomes a restriction on the nominal risk-free rate (as in the data). We set π = 2% based on the Fed’s

inflation target in recent decades; and g̃ = 3% based on pre-recession estimates for the U.S. trend output

growth, which leads to:

g = 5%.

For the discount rate, we set,

ρ = 4%,

based on the yearly discount rates typically assumed in the literature. This implies a first-best (nominal)

return to capital given by rm,∗ = ρ+ r = 9% [cf. (30)], which is consistent with the historical estimates for

the weighted-average return on stocks and housing in Jordà et al. (2019).

We set the variance in the low-risk-premium state to target the first-best nominal risk-free interest rate

in the boom given by, rf,∗1 = 4% (equivalently, a real risk-free rate given by 2%), which is consistent with

the low interest rates in recent years. Using (31), this leads to:

σ21 = 5%.

We set the variance in the high-risk-premium state to target a first-best interest rate rf,∗2 = −1%, which
leads to:

σ22 = 10%.

These choices (together with the choices of ρ and g) ensure that Assumption 1 holds. For the productivity

level, we set A = 1. This does not play a role as it scales all variables.

It remains to set investors’ beliefs for transition probabilities,
(
λis
)
s2{1,2},i2{o,p}. We set:

λo1 = 1/10 and λo2 = 1/3,

λp1 = 1/3 and λp2 = 1/10.

Hence, optimists think a boom lasts on average 10 years whereas pessimists think it lasts for only three years

(and vice versa for the recession).
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C. Appendix: Omitted Derivations for the Welfare Analysis

This appendix presents the omitted derivations and proofs for the welfare analysis of the dynamic model

that we present in Section 6. Section C.1 establishes the properties of the equilibrium value functions that

are used in the main text. Section C.2 describes the details of the equilibrium with macroprudential policy,

presents the analyses omitted from the main text (e.g., macroprudential policy in the high-risk-premium

state), and presents omitted proofs.

C.1. Value functions in equilibrium

We first derive the HJB equation that describes the normalized value function in equilibrium and derive

Eqs. (46). We then derive the di§erential equations in α-domain that characterize the value function and

its components, and derive Eq. (49). We then prove Lemmas 1 and 2 that are used in the analysis.

Characterizing the normalized value function in equilibrium. Consider the recursive version

of the portfolio problem in (B.2). Recall that the value function has the functional form in Eq. (45). Our

goal is to characterize the value function per unit of capital, vit,s (corresponding to a
i
t,s = Qt,s). To facilitate

the analysis, we define,

ξit,s = v
i
t,s −

logQt,s
ρ

. (C.1)

Note that ξit,s is the value function per unit wealth (corresponding to a
i
t,s = 1), and that the value function

also satisfies V it,s
(
ait,s
)
=

log(ait,s)
ρ + ξit,s. We first characterize ξ

i
t,s. We then combine this with Eq. (C.1) to

characterize our main object of interest, vit,s.

Consider the HJB equation (B.2). We substitute the optimal consumption rule from Eq. (22), the

contingent allocation rule from Eq. (24), and ait,s = 1 (to characterize the value per unit wealth) to obtain,

ρξit,s = log ρ+
1

ρ

(
rft,s + !

m,i
t,s

(
rmt,s − r

f
t,s

)
−
1

2

(
!m,it,s

)2
σ2s − ρ− !

s0,i
t,s

)
(C.2)

+
@ξit,s
@t

+ λis

 
1

ρ
log

 
λis
ps

0

t,s

!

+ ξit,s0 − ξ
i
t,s

!

.

As we describe in Section 5, the market clearing conditions imply the optimal investment in the market

portfolio and contingent securities satisfies, !m = 1 and !̃s
0,i
t,s = λis − λt,s, and the price of the contingent

security is given by, ps
0

t,s = λt,s
1/Qt,s0

1/Qt,s
. Here, λt,s denotes the weighted average belief defined in (38). Using

these conditions, the HJB equation becomes,

ρξit,s = log ρ+
1

ρ

 
rmt,s − ρ−

1
2σ

2
s

−
(
λis − λt,s

)
+ λis log

(
λis
λt,s

)
!

(C.3)

+
@ξit,s
@t

+ λis

(
1

ρ
log

(
Qt,s0

Qt,s

)
+ ξit,s0 − ξ

i
t,s

)
.

After substituting the return to the market portfolio from (28), the HJB equation can be further simplified
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as,

ρξit,s =
log ρ+ 1

ρ

 
g + µQt,s −

1
2σ

2
s

−
(
λis − λt,s

)
+ λis log

(
λis
λt,s

)
!

+
@ξit,s
@t + λis

(
1
ρ log

(
Qt,s0

Qt,s

)
+ ξit,s0 − ξ

i
t,s

) .

Here, the term inside the summation on the second line, −
(
λis − λt,s

)
+λis log

(
λis
λt,s

)
, is zero when there are

no disagreements, and it is strictly positive when there are disagreements. This illustrates that speculation

increases the expected value for optimists as well as pessimists.

We finally substitute vit,s = ξit,s +
logQt,s

ρ (cf. (C.1)) into the HJB equation to obtain the di§erential

equation,

ρvit,s =
log ρ+ log (Qt,s) +

1
ρ

 
g − 1

2σ
2
s

−
(
λis − λt,s

)
+ λis log

(
λis
λt,s

)
!

+
@vit,s
@t + λis (vt,s0 − vt,s)

.

Here, we have canceled terms by using the observation that
@ξit,s
@t =

@vit,s
@t − 1

ρ
@ logQt,s

@t =
@vit,s
@t − 1

ρµ
Q
t,s. We

have thus obtained Eq. (46) in the main text.

Di§erential equations for the value functions in α-domain. The value function and its compo-

nents,
n
vit,s, v

i,∗
t,s , wt,s

o

s,i
, can be written as functions of optimists’ wealth share,

{
vis (α) , v

i,∗
s (α) , ws (α)

}
s,i
,

that solve appropriate ordinary di§erential equations. We next represent the value functions as solutions to

the di§erential equations in α-domain. Recall that the price level in each state can be written as a function

of optimists’ wealth shares, qt,s = qs (α) (where we also have, q1 (α) = q∗). Plugging in these price functions,

and using the dynamics of αt,s from Eq. (41), the HJB equation (46) can be written as,

ρvis (α) =
log ρ+ qs (α) +

1
ρ

 
g − 1

2σ
2
s

−
(
λis − λs (α)

)
+ λis log

(
λis

λs(α)

)
!

−@vis
@α (λ

o
s − λ

p
s)α (1− α) + λ

i
s

(
vis0
(
α

λos
λs(α)

)
− vis (α)

) .

For each i 2 {o, p}, the value functions,
(
vis (α)

)
s2{1,2}, are found by solving this system of ODEs. For i = o,

the boundary conditions are that the values, {vos (1)}s, are the same as the values in the common belief
benchmark characterized in Section 4 when all investors have the optimistic beliefs. For i = p, the boundary

conditions are that the values, {vps (0)}s, are the same as the values in the common belief benchmark when
all investors have the pessimistic beliefs.

Likewise, the first-best value functions,
(
vi,∗s (α)

)
s2{1,2}, are found by solving the analogous system after

replacing qs (α) with q∗ (and changing the boundary conditions appropriately). Finally, substituting the

price functions into Eq. (48), the gap-value functions,
(
wis (α)

)
s,i
, are found by solving the system in (49).

For the proofs in this section (as well as in some subsequent sections), we find it useful to work with the

transformed state variable,

bt,s ≡ log
(

αt,s
1− αt,s

)
, which implies αt,s =

1

1 + exp (−bt,s)
. (C.4)

The variable, bt,s, varies between (−1,1) and provides a di§erent measure of optimism, which we refer to
as “bullishness.” Note that there is a one-to-one relation between optimists’ wealth share, αt,s 2 (0, 1), and
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the bullishness, bt,s 2 R = (−1,+1). Optimists’ wealth dynamics in (41) become particularly simple when
expressed in terms of bullishness,

(
ḃt,s = − (λos − λ

p
s) , if there is no state change,

bt,s0 = bt,s + log λ
o
s − log λ

p
s , if there is a state change.

(C.5)

With a slight abuse of notation, we also let q2 (b) , wis (b), and so on, denote the equilibrium functions in

terms of bullishness. Note also that, since db
dα =

1
α(1−α) , we have the identities,

@q2 (b)

@b
= α (1− α)

@q2 (α)

@b
and

@wis (b)

@b
= α (1− α)

@wis (α)

@α
. (C.6)

Using this observation, the di§erential equation for the price function, Eq. (43), can be written in terms of

bullishness as,

@q2 (b)

@b
(λo2 − λ

p
2) = ρ+ g + λ2 (α)

(
1−

Q2
Q∗

)
− σ22. (C.7)

Likewise, the di§erential equation for the gap value function, Eq. (49), can be written in terms of bullishness

as,

ρwis (b) = qs (b)− q
∗ − (λos − λ

p
s)
@wis (b)

@b
+ λis

(
wis0 (b

0)− wis (b)
)
. (C.8)

Proof of Lemma 1. To show that the gap value function is increasing, consider its representation in terms
of bullishness, wis (b) [cf. (C.4)], which solves the system in (C.8). We will first describe this function as a

fixed point of a contraction mapping. We will then use this contraction mapping to establish the properties

of the function.

Recall that, in the time domain, the gap value function solves the HJB equation (48). Integrating this

equation forward, we obtain,

wis (b0,s) =

Z 1

0

e−(ρ+λ
i
s)t
(
qs (bt,s)− q∗ + λisw

i
s0 (bt,s0)

)
dt, (C.9)

for each s 2 {1, 2} and b0,s 2 R. Here, bt,s denotes bullishness conditional on there not being a transition
before time t, whereas bt,s0 denotes the bullishness if there is a transition at time t. Solving Eq. (C.5) (given

beliefs, λi) we further obtain,

bt,s = b0,s − t (λos − λ
p
s) , (C.10)

bt,s0 = b0,s − t (λos − λ
p
s) + log λ

o
s − log λ

p
s .

Hence, Eq. (C.9) describes the value function as a solution to an integral equation given the closed form

solution for bullishness in (C.10).

Implicitly di§erentiating the integral equation (C.9) with respect to b0,s, and using Eq. (C.10), we also

obtain,
@wis (b0,s)

@b
=

Z 1

0

e−(ρ+λ
i
s)t
(
@qs (bt,s)

@b
+ λis

@wis0 (bt,s0)

@b

)
dt. (C.11)

We next let B
(
R2
)
denote the set of bounded value functions over R2. Given some continuation value
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function,
(
@w̃is(b)
@b

)

s
2 B

(
R2
)
, we define the function,

(
T
@w̃is(b)
@b

)

s
2 B

(
R2
)
, so that

T
@w̃is (b0,s)

@b
=

Z 1

0

e−(ρ+λ
i
s)t
(
@qs (bt,s)

@b
+ λis

@w̃is0 (bt,s0)

@b

)
dt,

for each s and b0,s 2 R. Note also that the resulting value functions are bounded since the derivative of
the price functions,

(
@qs(bt,s)

@b

)

s
, are bounded (see Eq. (C.7)). Thus, Eq. (C.11) describes the derivative

functions,
(
@wis(b0,s)

@b

)

s
, as a fixed point of a corresponding operator T over bounded functions. It can be

checked that this operator is a contraction mapping with respect to the sup norm. Thus, it has a unique

fixed point that corresponds to the derivative functions. Moreover, since @qs(bt,s)
@b > 0 for each b, and λis > 0

for each s, it can further be seen that the fixed point satisfies, @w
i
s(b0,s)
@b > 0 for each b and s 2 {1, 2}. Using

Eq. (C.6), we also obtain @wis(α)
@α > 0 for each α 2 (0, 1) and s 2 {1, 2}, completing the proof.

Proof of Lemma 2. Consider the analysis in Lemma 1 for the special case, λo1 = λp1. Applying Eq. (C.11)

for s = 1, we obtain [since q1 (bt,s) = q∗ is constant],

@wi1 (b0,1)

@b
=

Z 1

0

e−(ρ+λ
i
1)tλi1

@wi2 (bt,2)

@b
dt.

Note also that λo1 = λp1 and Eq. (C.10) imply bt,2 = b0,1 (since there is no speculation). Substituting this

into the displayed equation, we obtain @wi1(b0,1)
@b =

λi1
ρ+λi1

@wi2(b0,1)
@b <

@wi2(b0,1)
@b . Combining this with Eq. (C.6)

completes the proof.

C.2. Equilibrium with macroprudential policy

Recall that macroprudential policy induces optimists to choose allocations as if they have more pessimistic

beliefs, λo,pl ≡
(
λo,pl1 ,λo,pl2

)
, that satisfy, λo,pl1 ≥ λo1 and λ

o,pl
2 ≤ λo2. We next show that this allocation can

be implemented with portfolio restrictions on optimists. We then show that the planner’s Pareto problem

reduces to solving problem (51) in the main text. We also derive the equilibrium value functions that

result from macroprudential policy. We then analyze macroprudential policy in the recession state, which

complements the analysis in the main text (that focuses on the boom state), and present Proposition 4.

Finally, we present the proofs of Propositions 3 and 4.

Implementing the policy with risk limits. Consider the equilibrium that would obtain if optimists

had the planner-induced beliefs, λo,pls . Using our analysis in Section 5, optimists’ equilibrium portfolios are

given by,

!m,o,plt,s = 1 and !s
0,o,pl
t,s = λo,pls − λ

pl

t,s for each t, s. (C.12)

We first show that the planner can implement the policy by requiring optimists to hold exactly these portfolio

weights. We will then relax these portfolio constraints into inequality restrictions (see Eq. (C.14)).

Formally, an optimist solves the HJB problem (B.2) with the additional constraint (C.12). In view of

log utility, we conjecture that the value function has the same functional form (45) with potentially di§erent

normalized values, ξot,s, v
o
t,s, that reflect the constraints. Using this functional form, the optimality condition

for consumption remains unchanged, ct,s = ρaot,s [cf. Eq. (22)]. Plugging this equation and the portfolio

holdings in (C.12) into the objective function in (B.2) verifies that the value function has the conjectured

functional form. For later reference, we also obtain that the optimists’ unit-wealth value function satisfies
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[cf. Eq. (C.1)],

ξot,s = log ρ+
1

ρ

(
rft,s + !

m,o,pl
t,s

(
rmt,s − r

f
t,s

)
− ρ− !s

0,o,pl
t,s

)
(C.13)

−
1

2ρ

(
!m,o,plt,s σs

)2
+
@ξot,s
@t

+ λos

(
1

ρ
log

(
aot,s0

aot,s

)
+ ξot,s0 − ξ

o
t,s

)
.

Here,
ao
t,s0

aot,s
= 1+!m,o,plt,s

Qt,s0−Qt,s

Qt,s
+
!s

0,o,pl
t,s

ps
0
t,s

in view of the budget constraints (B.1). Hence, the value function

has a similar characterization as before [cf. Eq. (C.2)] with the di§erence that optimists’ portfolio holdings

reflect the portfolio constraints.

Since pessimists are unconstrained, their optimality conditions are unchanged. It follows that the equi-

librium takes the form in Section 5 with the di§erence that investors’ beliefs are replaced by their as-if beliefs,

λi,pls . This verifies that the planner can implement the policy using the portfolio restrictions in (C.12). We

next show that these restrictions can be relaxed to the following inequality constraints,

!m,o,plt,s ≤ 1 for each s, (C.14)

!2,o,plt,1 ≥ !2,ot,1 ≡ λo,pl1 − λ
pl

t,1 and !
1,o,pl
t,2 ≤ !1,ot,2 ≡ λo,pl2 − λ

pl

t,2.

In particular, we will establish that all inequality constraints bind, which implies that optimists optimally

choose the portfolio weights in Eq. (C.12). Thus, our earlier analysis continues to apply when optimists are

subject to the more relaxed restrictions in (C.14).

The result follows from the assumption that the planner-induced beliefs are more pessimistic than opti-

mists’ actual beliefs, λo,pl1 ≥ λo1 and λ
o,pl
2 ≤ λo2. To see this formally, note that the optimality condition for

the market portfolio is given by the following generalization of Eq. (23),

!m,o,plt,s σs ≤
1

σs

 

rmt,s − r
f
t,s + λ

o
s

aot,s
aot,s0

Qt,s0 −Qt,s
Qt,s

!

and !m,o,plt,s ≤ 1, (C.15)

with complementary slackness. Note also that,

λos
aot,s
aot,s0

Qt,s0 −Qt,s
Qt,s

= λos
λ
pl

t,s

λo,pls

Qt,s0 −Qt,s
Qt,s0

≥ λ
pl

t,s

Qt,s0 −Qt,s
Qt,s0

for each s.

Here, the equality follows because Eq. (B.12) in Appendix B.3 applies with as-if beliefs. The inequality

follows by considering separately the two cases, s 2 {1, 2}. For s = 2, the inequality holds since Qt,s0−Qt,s >
0 and the beliefs satisfy, λos ≥ λo,pls . For s = 1, the inequality holds since Qt,s0 − Qt,s < 0 and the beliefs

satisfy, λo,pls ≥ λos. Note also that in equilibrium the return to the market portfolio satisfies Eq. (B.9), which

we replicate here,

σs =
1

σs

(
rmt,s − r

f
t,s + λ

pl

t,s

(
1−

Qt,s
Qt,s0

))
.

Combining these expressions implies, σs ≤ 1
σs

(
rmt,s − r

f
t,s + λ

o
s
aot,s
ao
t,s0

Qt,s0−Qt,s

Qt,s

)
, which in turn implies the

optimality condition (C.15) is satisfied with !m,o,plt,s = 1. A similar analysis shows that optimists also choose

the corner allocations in contingent securities, !2,o,plt,1 = !2,ot,1 and !
1,o,pl
t,2 = !1,ot,2 , verifying that the portfolio

constraints (C.12) can be relaxed to the inequality constraints in (C.14).
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Simplifying the planner’s problem. Recall that, to trace the Pareto frontier, we allow the planner to

do a one-time wealth transfer among the investors at time 0. Let V it,s
(
ait,s|

n
λo,plt

o)
denote type i investors’

expected value in equilibrium when she starts with wealth ait,s and the planner commits to implement the

policy,
n
λo,plt

o
. Then, the planner’s Pareto problem can be written as,

max
λ̃
o,pl

,α̃0,s

γoV o0,s

(
α̃0,sQ0,sk0,s|λ̃

o,pl
)
+ γpV p0,s

(
(1− α̃0,s)Q0,sk0,s|λ̃

o,pl
)
. (C.16)

Here, γo, γp ≥ 0 (with at least one strict inequality) denote the Pareto weights, and Q0,s denotes the

endogenous equilibrium price that obtains under the planner’s policy.

Next recall that the investors’ value function with macroprudential policy has the same functional form

in (45) (with potentially di§erent ξot,s, v
o
t,s for optimists that reflect the constraints). After substituting

ait,s = αit,skt,sQt,s, the functional form implies,

V it,s = v
i
t,s +

log
(
αit,s

)
+ log (kt,s)

ρ
.

Using this expression, the planner’s problem (C.16) can be rewritten as,

max
λ̃
o,pl

,α̃0,s

(
γovo0,s + γ

pvp0,s
)
+
γo log

(
α̃o0,s

)
+ γp log

(
1− α̃o0,s

)

ρ
+
(γo + γp) log (k0,s)

ρ
.

Here, the last term (that features capital) is a constant that doesn’t a§ect optimization. The second term

links the planner’s choice of wealth redistribution, αo0,s,α
p
0,s, to her Pareto weights, γ

o, γp. Specifically, the

first order condition with respect to optimists’ wealth share implies γ
o

γp =
α0,s
1−α0,s

. Thus, the planner e§ectively

maximizes the first term after substituting γo and γp respectively with the optimal choice of α0,s and 1−α0,s.
This leads to the simplified problem (51) in the main text.

Characterizing the value functions with macroprudential policy. We first show that the

normalized value functions, vit,s, are characterized as the solution to the following di§erential equation system,

ρvit,s −
@vit,s
@t

= log ρ+ qt,s +
1

ρ

0

@
g − 1

2σ
2
s

−
(
λi,pls − λ

pl

t,s

)
+ λis log

(
λi,pls

λ
pl
t,s

)
1

A+ λis
(
vit,s0 − v

i
t,s

)
. (C.17)

This is a generalization of Eq. (46) in which investors’ positions are calculated according to their as-if beliefs,

λi,pls , but the transition probabilities are calculated according to their actual beliefs, λis.

First consider the pessimists. Since they are unconstrained, their value function is characterized by

solving the earlier equation system (C.13). In this case, equation (C.17) also holds since it is the same as

the earlier equation.

Next consider the optimists. In this case, the analysis in Appendix B.3 applies with as-if beliefs. In

particular, we have [cf. Eqs. (B.12) and (B.13)],

aot,s0

aot,s
=
λo,pls

λ
pl

t,s

Qt,s0

Qt,s
.
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Plugging this expression as well as Eq. (C.12) into Eq. (C.13), optimists’ unit-wealth value function satisfies,

ξot,s = log ρ+
1

ρ

0

@
rmt,s − ρ−

1
2σ

2
s

−
(
λo,pls − λ

pl

t,s

)
+ λos log

(
λo,plt,s

λ
pl
t,s

)
1

A

+
@ξot,s
@t

+ λos

(
1

ρ
log

(
Qt,s0

Qt,s

)
+ ξot,s0 − ξ

o
t,s

)
,

This is the same as Eq. (C.13) with the di§erence that the as-if beliefs, λo,pls , are used to calculate their

positions on (and the payo§s from) the contingent securities, whereas the actual beliefs, λos, are used to

calculate the transition probabilities. Using the same steps after Eq. (C.13), we also obtain (C.17) with

i = o.

We next characterize the first-best and the gap value functions, vi,∗t,s and w
i
t,s, that we use in the main

text. By definition, the first-best value function solves the same di§erential equation (C.17) after substituting

qt,s = q
∗. It follows that the gap value function wit,s = v

i
t,s − v

i,∗
t,s , solves,

ρwit,s −
@wit,s
@t

= qt,s − q∗ + λis
(
wit,s0 − w

i
t,s

)
,

which is the same as the di§erential equation (48) without macroprudential policy. The latter a§ects the

path of prices, qt,s, but it does not a§ect how these prices translate into gap values.

Note also that, as before, the value functions can be written as functions of optimists’ wealth share,
{
vis (α) , v

i,∗
s (α) , ws (α)

}
s,i
. For completeness, we also characterize the di§erential equations that these

functions satisfy in equilibrium with macroprudential policy. Combining Eq. (C.17) with the dynamics of

optimists’ wealth share conditional on no transition, α̇t,s = −
(
λo,pls − λps

)
αt,s (1− αt,s), the value functions,

(
vis (α)

)
s,i
, are found by solving,

ρvis (α) =

2

6666
4

log ρ+ qpls (α) +
1
ρ

0

@
g − 1

2σ
2
s

−
(
λi,pls − λ

pl

t,s

)
+ λis log

(
λi,pls

λ
pl
t,s

)
1

A

−@vis
@α

(
λo,pls − λps

)
α (1− α) + λis

(
vis0

(
α
λo,pls

λ
pl
t,s

)
− vis (α)

)

3

7777
5
,

with appropriate boundary conditions. As in the main text, we denote the price functions with qpls (α) to

emphasize that they are determined by as-if beliefs. Likewise, the first-best value functions,
(
vi,∗s (α)

)
s2{1,2},

are found by solving the analogous system after replacing qs (α) with q∗. Finally, combining Eq. (48) with

the dynamics of optimists’ wealth share, the gap-value functions,
(
wis (α)

)
s,i
, are found by solving Eq. (50)

in the main text

Macroprudential policy in the recession state. The analysis in the main text concerns macro-

prudential policy in the boom state and maintains the assumption that λo,pl2 = λo2. We next consider the

polar opposite case in which the economy is currently in the recession state s = 2, and the planner can

apply macroprudential policy in this state, λo,pl2 ≤ λo2 (she can induce optimists to act as if the recovery is

less likely), but not in the other state, λo,pl1 = λo1. We obtain a sharp result for the special case in which

optimists’ wealth share is su¢ciently large.
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Proposition 4. Consider the model with two belief types. Consider the macroprudential policy in the

recession state, λo,pl2 ≤ λo2 (and suppose λ
o,pl
1 = λo1). There exists a threshold, α < 1, such that if α 2 (α, 1],

then the policy reduces the gap value according to each belief, that is,

@wi2 (α)

@
(
−λo,pl2

)

∣∣∣∣∣∣
λo,pl2 =λo2

< 0 for each i 2 {o, p} .

Thus, for α 2 (α, 1], the policy also reduces the planner’s value, @vpls (α)

@(−λo,pl2 )

∣∣∣∣
λo2

=
@wpls (α)

@(−λo,pl2 )

∣∣∣∣
λo2

< 0.

Thus, in contrast to Proposition 3, macroprudential policy in the recession state can actually reduce

the gap value (and therefore also the social welfare). The intuition can be understood by considering two

counteracting forces. First, as before, macroprudential policy in the recession state is potentially valuable by

reallocating optimists’ wealth from the boom state s = 1 to the recession state s = 2. Intuitively, optimists

purchase too many call options that pay if there is a transition to the boom state but that impoverish them

in case the recession persists. They do not internalize that, if they keep their wealth, they will improve asset

prices if the recession lasts longer.

However, there is a second force that does not have a counterpart in the boom state: Macroprudential

policy in the recession state also a§ects the current asset price level, with potential implications for gap value.

It can be seen that making optimists less optimistic in the recession state shifts the price function downward,
@qpl2 (α)

@(−λo,pl2 )
< 0 (as in the common-belief benchmark we analyzed in Section 4). Hence, the price impact of

macroprudential policy reduces the gap value. Moreover, as optimists dominate the economy, α ! 1, the

price impact of the policy is still first order, whereas the beneficial e§ect from reshuffling optimists’ wealth

is second order. Thus, when optimists’ wealth share is su¢ciently large, the net e§ect of macroprudential

policy on the gap value is negative.

This analysis also suggests that, even when the policy in the recession state exerts a net positive e§ect,

it would typically increase the gap value by a smaller amount than a comparable policy in the boom state.

Figure 9 confirms this intuition. The left panel plots the change in the planner’s gap value function in the

boom state resulting from a small macroprudential policy change. Note that the policy slightly reduces the

planner’s first-best value function but increases the gap value function. The right panel illustrates the e§ect

of the macroprudential policy in the recession state that would generate a similar distortion in the first-best

equilibrium as the policy in the boom state.30 Note that a small macroprudential policy in the recession

state has a smaller positive impact on the gap value when optimists’ wealth share is small, and it has a

negative impact when optimists’ wealth share is su¢ciently large, illustrating Proposition 4.

Proof of Proposition 3. We will prove the stronger result that

@wis (α)

@λo,pl1

∣∣∣∣∣
λo,pl=λo

> 0 for each i, s and α 2 (0, 1) . (C.18)

That is, a marginal amount of macroprudential policy in the low-risk-premium state increases the gap value

according to each investor (and in either state). Combining this with the definition of the planner’s gap

value function in (52) implies @wpls (α)

@λo,pl1

∣∣∣
λo,pl=λo

> 0. Combining this with
@vpl,∗0,s

@λo,pl

∣∣∣∣
λo,pl=λo

= 0 (which follows

30Specifically, we calibrate the policy-induced belief change in the recession state so that the maximum decline in the

planner’s first-best value function is the same in both cases plotted in Figure 9, maxα
∣∣∣∆vpl,∗2 (α)

∣∣∣ = maxα
∣∣∣∆vpl,∗1 (α)

∣∣∣.
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Figure 9: The left (resp. the right) panel illustrates the e§ect of a small change in macroprudential
policy in the boom (resp. the recession) state.

from the First Welfare Theorem) and vpl0,s = v
pl,∗
0,s + w

pl
0,s implies

@wpls (α)

@λo,pl1

∣∣∣
λo,pl=λo

=
@vpls (α)

@λo,pl1

∣∣∣
λo,pl=λo

for each

s and α 2 (0, 1). Applying this result for state s = 1 proves the proposition.
It remains to prove the claim in (C.18). To this end, fix a belief type i and consider the representation

of the gap value function in terms of bullishness, wis (b) [cf. (C.4)]. Following similar steps as in Lemma 1,

we describe this as solution to the integral function,

wis (b0,s) =

Z 1

0

e−(ρ+λ
i
s)t
(
qpls (bt,s)− q

∗ + λisw
i
s0 (bt,s0)

)
dt, (C.19)

for each s 2 {1, 2} and b0,s 2 R, where the bullishness has the closed form solution,

bt,s = b0,s − t
(
λo,pls − λps

)
, (C.20)

bt,s0 = b0,s − t
(
λo,pls − λps

)
+ log λo,pls − log λps .

The main di§erence from the analysis in Lemma 1 is that the dynamics of bullishness is influenced by

policy, as illustrated by the as-if beliefs in (C.10). In addition, we denote the price functions with qpls (b) to

emphasize they are in principle determined by as-if beliefs.

Next note that in this case the price functions qpls (b) are actually not a§ected by the as-if belief, λ
o,pl
1 .

The price function in the low-risk-premium state is not a§ected because qpl1 (b) = q∗ (because the beliefs

continue to satisfy Assumption 3 for small changes). The price function in the high-risk-premium state is

also not a§ected because λo,pl1 does not enter the di§erential equation that characterizes qpl2 (b) [see. Eq.

(43) or Eq. (C.7)].

Using this observation, we implicitly di§erentiate the integral equation (C.19) with respect to λo,pl1 , and
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use Eq. (C.20), to obtain,

@wi1 (b0,1)

@λo,pl1

=

Z 1

0

e−(ρ+λ
i
1)tλi1

 
@wi2 (bt,2)

@λo,pl1

+
@wi2 (bt,2)

@b

dbt,2

dλo,pl1

!

dt,

@wi2 (b0,2)

@λo,pl1

=

Z 1

0

e−(ρ+λ
i
1)tλi2

@wi1 (bt,1)

@λo,pl1

dt.

Note also that, using Eq. (C.20) implies, dbt,2

dλo,pl1

= −t + 1

λo,pl1

. Plugging this into the previous system, and

evaluating the partial derivatives at λo,pl1 = λo1, we obtain,

@wi1 (b0,1)

@λo,pl1

= h (b0,1) +

Z 1

0

e−(ρ+λ
i
1)tλi1

@wi2 (bt,2)

@λo,pl1

dt, (C.21)

@wi2 (b0,2)

@λo,pl1

=

Z 1

0

e−(ρ+λ
i
1)tλi2

@wi1 (bt,1)

@λo,pl1

dt,

where h (b0,1) =

Z 1

0

e−(ρ+λ
i
1)tλi1

@wi2 (bt,2)

@b

(
−t+

1

λo1

)
dt.

Note that the function, h (b), is bounded since the derivative function, @w
i
2(b)
@b , is bounded (see (C.11)). Hence,

Eq. (C.21) describes the partial derivative functions,
(
@wis(b)

@λo,pl1

|λo,pl1 =λo1

)

s
, as a fixed point of a corresponding

operator T over bounded functions. Since h (b) is bounded, it can be checked that the operator T is also a

contraction mapping with respect to the sup norm. In particular, it has a fixed point, which corresponds to

the partial derivative functions.

The analysis so far applies generally. We next consider the special case, λo1 = λp1, and show that it implies

the partial derivatives are strictly positive. In this case, λi1 ≡ λ1 for each i 2 {o, p}. In addition, Eq. (C.10)
implies bt,2 = b0,2. Using these observations, for each b0,1, we have,

h (b0,1) =
@wi2 (b0,2)

@b

Z 1

0

e−(ρ+λ1)tλ1

(
−t+

1

λ1

)
dt

=
@wi2 (b0,2)

@b

(
−

λ1
ρ+ λ1

1

ρ+ λ1
+

1

ρ+ λ1

)
> 0.

Here, the inequality follows since @wi2(b0,2)
@b > 0 [cf. Lemma 1]. Since h (b) > 0 for each b, and λis > 0, it can

further be seen that the fixed point that solves (C.21) satisfies @wis(b)

@λo,pls
> 0 for each b and s 2 {1, 2}. Using

Eq. (C.6), we also obtain@w
i
s(α)

@λo,pl1

> 0 for each s 2 {1, 2} and α 2 (0, 1). Since the analysis applies for any
fixed belief type i, this establishes the claim in (C.18) and completes the proof.

Proof of Proposition 4. A similar analysis as in the proof of Proposition 3 implies that the partial

derivative function, @wis(b)

@(−λo,pl2 )
, is characterized as the fixed point of a contraction mapping over bounded

functions (the analogue of Eq. (C.21) for state 2). In particular, the partial derivative exists and it is

bounded. Moreover, since the corresponding contraction mapping takes continuous functions into continuous

functions, the partial derivative is also continuous over b 2 R. Using Eq. (C.6), we further obtain that the
partial derivative, @wis(α)

@(−λo,pl2 )
, is continuous over α 2 (0, 1).

Next note that wis (1) ≡ limα!1 w
i
s (α) exists and is equal to the value function according to type i beliefs

when all investors are optimistic. In particular, the asset prices are given by qpl1 = q
∗ and qpl2 = q

o, and the
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transition probabilities are evaluated according to type i beliefs. Then, following the same steps as in our

analysis of value functions in Appendix C.1, we obtain,

ρwis (1) = βisq
o
s +

(
1− βis

)
qos0 − q

∗,

where βis =
ρ+ λis0

ρ+ λis0 + λ
i
s

.

Here, βis can be thought of as the expected discount time the investor spends in state s according to type i

beliefs. We consider this equation for s = 2 and take the derivative with respect to
(
−λo,pl2

)
to obtain,

@wi2 (1)

@
(
−λo,pl2

) = βi2
dqo2

d
(
−λo,pl2

) < 0.

Here, the inequality follows since reducing optimists’ optimism reduces the price level in the common belief

benchmark (see Section 4).

Note that the inequality, @wi2(1)

@(−λo,pl2 )
< 0, holds for each belief type i. Using the continuity of the partial

derivative function, @wi2(α)

@(−λo,pl2 )
, we conclude that there exists α such that @wi2(α)

@(−λo,pl2 )

∣∣∣∣
λo,pl2 =λo2

< 0 for each i, s

and α 2 (α, 1), completing the proof.

70



D. Appendix: Extension with investment and endogenous growth

Our baseline setup in the main text assumes there is no investment and the expected growth rate of capital

is exogenous. In this appendix, we analyze a more general environment that relaxes these assumptions.

We first present the environment, define the equilibrium, and provide a partial characterization. We then

characterize this equilibrium when investors have common beliefs and generalize Proposition 1 to this setting.

D.1. Environment and equilibrium with investment

We focus on the components that are di§erent than the baseline setting described in Section 3.

Potential output and endogenous growth. We modify the equation that describes the dynamics

of capital (14) as follows,

dkt,s
kt,s

= gt,sdt+ σsdZt where gt,s ≡ ' (ιt,s)− δ. (D.1)

Here, ιt,s =
it,s
kt,s

denotes the investment rate, ' (ιt,s) denotes a neoclassical production function for capital

(we will work with a special case that will be described below), and δ denotes the depreciation rate. Hence,

the growth of capital is no longer exogenous: it depends on the endogenous level of investment as well as

depreciation.

Investment firms. To endogenize investment, we introduce a new set of firms, which we refer to as

investment firms, that own and manage the aggregate capital stock. These firms rent capital to production

firms to earn the instantaneous rental rate, Rt,s. They also make investment decisions to maximize the value

of capital. Letting Q̃t,s denote the price of capital, the firm’s investment problem can generally be written

as,

max
ιt,s

Q̃t,s' (ιt,s) kt,s − ιt,skt,s. (D.2)

As before, we denote the price of the market portfolio per unit of capital with Qt,s. In this case, the

market portfolio represents a claim on investment firms as well as production firms. Hence, we have the

inequality Q̃t,s ≤ Qt,s, where the residual price, Qt,s − Q̃t,s, corresponds to the value of production firms
per unit of capital. We make assumptions (that we describe below) so that output accrues to the investment

firms in the form of return to capital, yt,s = Rt,skt,s, and there are no monopoly profits. This in turn implies

that the value of the market portfolio is equal to the value of capital (and the value of production firms is

zero), that is,

Qt,s = Q̃t,s. (D.3)

This simplifies the analysis by ensuring that we have only one price to characterize. Considering a di§erent

division of output between return to capital and profits will have a quantitative e§ect on investment, as

illustrated by problem (D.2), but we conjecture that it would leave our qualitative results on investment

unchanged. We leave a systematic exploration of this issue for further research.

Return of the market portfolio. The price of the market portfolio per unit of capital follows the

same equation (15) as in the main text. The volatility of the market portfolio (absent state transitions) is

also unchanged and given by σs. However, the return on the market portfolio conditional on no transition
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is slightly modified and given by,

rmt,s =
yt,s − ιt,skt,s
Qt,skt,s

+
(
gt,s + µ

Q
t,s

)
. (D.4)

Hence, the dividend yield is now net of the investment expenditures the (investment) firms undertake. In

addition, the expected growth of the price of the market portfolio is now endogenous and given by gt,s.

Nominal rigidities and equilibrium in goods markets. As before, the supply side of our model

features nominal rigidities similar to the standard New Keynesian model that ensure output is determined

by aggregate demand. In this case, demand comes from investment as well as consumption so we modify

Eq. (19) as,

yt,s = ηt,sAkt,s =

Z

I

cit,sdi+ kt,sιt,s, where ηt,s 2 [0, 1] . (D.5)

We also modify the microfoundations that we provide in Section B.1.2 so that all output accrues to investment

firms as return to capital and there are no monopoly profits, that is,

Rt,s = Aηt,s and thus yt,s = Rt,skt,s. (D.6)

We relegate a detailed description of these microfoundations to the end of this appendix.

Combining Eqs. (D.5) , (D.4), (22) and (17), we can also rewrite the instantaneous (expected) return to

the market portfolio as,

rmt,s = ρ+ gt,s + µ
Q
t,s.

Hence, as in the main text, the equilibrium dividend yield is equal to the consumption rate ρ.

The rest of the model is the same as in Section 3. We formally define the equilibrium as follows.

Definition 2. The equilibrium with investment and endogenous growth is a collection of processes for al-

locations, prices, and returns such that capital evolves according to (14), the price of market portfolio per

capital evolves according to (15), its instantaneous return (conditional on no transition) is given by (D.4),

investment firms maximize (cf. Eqs. (D.7), investors maximize (cf. Appendix B.1.1), asset markets clear

(cf. Eqs. (17) and (18)), production firms maximize (cf. Appendix D.3), goods markets clear (cf. Eq. (19)),

all output accrues to agents in the form of return to capital (D.6), the price of the market portfolio per unit

of capital is the same as the price of capital (cf. Eq. (D.3)), and the interest rate policy follows the rule in

(21).

We next provide a partial characterization of the equilibrium with investment.

Investors’ optimality conditions. Eqs. (22− 25) in the main text remain unchanged.

Investment firms’ optimality conditions. Under standard regularity conditions for the capital

production function, ' (ι), the solution to problem (D.2) is determined by the optimality condition,

'0 (ιt,s) = 1/Qt,s.
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We will work with the special and convenient case proposed by Brunnermeier and Sannikov (2016b): ' (ι) =

 log
(
ι
 + 1

)
. In this case, we obtain the closed form solution,

ι (Qt,s) =  (Qt,s − 1) . (D.7)

The parameter,  , captures the sensitivity of investment to asset prices.

Growth-asset price relation. Note also that the amount of capital produced is given by,

' (ι (Qt,s)) =  qt,s, where qt,s ≡ log (Qt,s) . (D.8)

The log price level, qt,s, will simplify some of the expressions. Combining Eq. (D.8) with Eq. (14), we obtain

Eq. (37) in the main text, which we replicate here for ease of exposition,

gt,s =  qt,s − δ.

Hence, the expected growth rate of capital (and potential output) is now endogenous and depends on asset

prices. Lower asset prices reduce investment, which translates into lower growth and lower potential output

in future periods. As we will describe, this mechanism provides a new source of amplification.

Output-asset price relation. As in the main text, there is a tight relationship between output and

asset prices as in the two period model. Specifically, Eq. (26) in the main text continues to apply and

implies that aggregate consumption is a constant fraction of aggregate wealth. Plugging this into Eq. (19)

and using the investment equation (D.7), we obtain Eq. (36) in the main text, which we replicate here for

ease of exposition,

Aηt,s = ρQt,s +  (Qt,s − 1) = (ρ+  )Qt,s −  .

In this case, factor utilization (and output) depends on capital not only because consumption depends on

asset prices through a wealth e§ect but also because investment depends on asset prices through a standard

marginal-Q channel. Full factor utilization, ηt,s = 1, obtains only if the price of capital is at a particular

level

Q∗ ≡
A+  

ρ+  
.

This is the e¢cient price level that ensures that the implied consumption and investment clear the goods

market. Likewise, the economy features a demand recession, ηt,s < 1, if and only if the price of capital is

strictly below Q∗.

Combining the output-asset price relation (together with yt,s = Aηt,skt,s) with Eq. (D.7), we obtain
yt,s−ιt,skt,s
Qt,skt,s

= ρ. Using this expression along with Eq. (37), we can rewrite Eq. (16) as,

rmt,s = ρ+  qt,s − δ + µ
Q
t,s. (D.9)

Hence, a version of Eq. (28) in the main text continues to apply. In equilibrium, the dividend yield on the

market portfolio is equal to the consumption rate ρ. Moreover, the growth rate of dividends is endogenous

and is determined by the growth-asset price relation.

Combining the output-asset price relation with the interest rate policy in (21), we also summarize the

goods market side of the economy with (29) as in the main text. In particular, the equilibrium at any time
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and state takes one of two forms. If the natural interest rate is nonnegative, then the interest rate policy

ensures that the price per unit of capital is at the e¢cient level, Qt,s = Q∗, capital is fully utilized, ηt,s = 1,

and output is equal to its potential, yt,s = Akt,s. Otherwise, the interest rate is constrained, r
f
t,s = 0, the

price is at a lower level, Qt,s < Q∗, and output is determined by aggregate demand according to Eq. (27).

As a benchmark, we characterize the first-best equilibrium without interest rate rigidities. In this case,

there is no lower bound constraint on the interest rate, so the price of capital is at its e¢cient level at all

times and states, Qt,s = Q∗. Combining this with Eq. (D.9), we obtain rmt,s = ρ+ q∗−δ, where q∗ = logQ∗.
Substituting this into Eq. (23) and using Eq. (25), we solve for “rstar” as,

rf∗s = ρ+  q∗ − δ − σ2s for each s 2 {1, 2} . (D.10)

Hence, in the first-best equilibrium the risk premium shocks are fully absorbed by the interest rate. We next

characterize the equilibrium with interest rate rigidities for the case in which investors have common beliefs.

D.2. Common beliefs Benchmark with Investment

Suppose investors have common beliefs (that is, λis ≡ λs for each i). Substituting Eq. (D.9) into (23), we

obtain the following analogue of the risk balance conditions (32),

σs =
ρ+  qs − δ + λs

(
1− Qs

Qs0

)
− rfs

σs
for each s 2 {1, 2} . (D.11)

The only di§erence is that the growth rate in each state is endogenous and described by the growth-asset

price relation, gs ≡  qs−δ, where recall that qs = logQs [cf. Eq. (37)]. We also make the following analogue
of Assumption 1.

Assumption 1I. σ22 > ρ+  q∗ − δ > σ21.

With this assumption, we conjecture that the low-risk-premium state 1 features positive interest rates,

e¢cient asset prices, and full factor utilization, rf1 > 0, q1 = q
∗ and η1 = 1, whereas the high-risk-premium

state 2 features zero interest rates, lower asset prices, and imperfect factor utilization, rf2 = 0, q2 < q
∗ and

η2 < 1.

Equilibrium in the high-risk-premium state and amplification from the growth-asset
price relation. Under our conjecture, the risk balance condition (D.11) for the high-risk state s = 2 can

be written as,

σ2 =
ρ+  q2 − δ + λ2

(
1− Q2

Q∗

)

σ2
. (D.12)

As before, this equation illustrates an amplification mechanism: Since the recession reduces firms’ earnings,

a lower price level does not increase the dividend yield (captured by the constant dividend yield, ρ = ρQ2

Q2
).

Unlike before, Eq. (D.12) illustrates a second amplification mechanism captured by the growth-asset price

relation, g2 =  q2 − δ. In particular, a lower price level lowers investment, which reduces the expected

growth of potential output and profits, which in turn lowers the return to capital. The strength of this

second mechanism depends on the sensitivity of investment to asset prices, captured by the term  q2.

Figure 1 in the introduction presents a graphical illustration of the two amplification mechanisms.

The stabilizing force from price declines comes from the expected transition into the low-risk-premium

state captured by the term, λ2
(
1− Q2

Q∗

)
. As before, to ensure that there exists an equilibrium with positive
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prices, we need a minimum degree of optimism, which we capture with the following analogue of Assumption

2.

Assumption 2I. λ2 ≥ λmin2 , where λmin2 is the unique solution to the following equation over the range

λ2 ≥  :

ρ+  q∗ − δ + λmin2 −  +  log
(
 /λmin2

)
= σ22.

This assumption ensures that there exists a unique Q2 2 (0, Q∗) that solves Eq. (D.12) (see the proof at the
end of this section).

Equilibrium in the low-risk-premium state. Under our conjecture, the risk balance condition

(D.11) can be written as,

rf1 = ρ+  q∗ − δ − σ21 + λ1
(
1−

Q∗

Q2

)
(D.13)

As before, the interest rate adjusts to ensure that the risk balance condition is satisfied with the e¢cient

price level, Q1 = Q∗. For our conjectured equilibrium, we also assume an upper bound on λ1 so that the

implied interest rate is positive, rf1 > 0, which we capture with the following analogue of Assumption 3.

Assumption 3I. λ1 <
(
ρ+  q∗ − δ − σ21

)
/ (Q∗/Q2 − 1), where Q2 2 (0, Q∗) solves Eq. (34).

As before, Eq. (D.13) implies that rf1 is decreasing in the transition probability, λ1, as well as in the asset

price drop conditional on transition, Q∗/Q2.

The following result summarizes the characterization of equilibrium and generalizes Proposition 1. The

testable predictions regarding the e§ect of risk premium shocks on consumption, investment, and output

follow by combining the characterization with Eqs. (26) , (D.7) , (36), and .

Proposition 5. Consider the extended model with investment with two states, s 2 {1, 2}, with common
beliefs and Assumptions 1I-3I. The low-risk-premium state 1 features a positive interest rate, e¢cient asset

prices and full factor utilization, rf1 > 0, Q1 = Q∗ and η1 = 1. The high-risk state 2 features zero interest

rate, lower asset prices, and a demand-driven recession, rf2 = 0, Q2 < Q∗, and η2 < 1, as well as a lower

level of consumption, ct,2/kt,2 = ρQ2, investment, it,2/kt,2 =  (Q2 − 1) , output, yt,2/kt,2 = (ρ+  )Q2− ,
and growth, g2 =  q2 − δ. The price of capital in state 2 is characterized as the unique solution to Eq.

(D.12), and the risk-free rate in state 1 is given by Eq. (D.13).

Proof. Most of the proof is provided in the discussion leading to the proposition. The remaining step is to
show that Assumptions 1I-2I ensure there exists a unique solution, Q2 2 (0, Q∗) (equivalently, q2 < q∗) to
Eq. (D.12).

To this end, we define the function,

f (q2,λ2) = ρ+  q2 − δ + λ2
(
1−

exp (q2)

Q∗

)
− σ22.

The equilibrium price is the solution to, f (q2,λ2) = 0 (given λ2). Note that f (q2,λ2) is a concave function

of q2 with limq2!−1 f (q2,λ2) = limq2!1 f (q2,λ2) = −1. Its derivative is,

@f (q2,λ2)

@q2
=  − λ2 exp (q2 − q∗) .

Thus, for fixed λ2, it is maximized at,

qmax2 (λ2) = q
∗ + log ( /λ2) .
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Moreover, the maximum value is given by

f (qmax2 (λ2) ,λ2) = ρ− δ +  (q∗ + log ( /λ2)) + λ2 (1− exp (log ( /λ2)))− σ22
= ρ− δ +  q∗ +  log ( /λ2) + λ2 −  − σ22.

Next note that, by Assumption 1I, the maximum value is strictly negative when λ2 =  , that is,

f (qmax2 ( ) , ) < 0. Note also that df(qmax2 (λ2),λ2)
dλ2

= 1 −  
λ2
, which implies that the maximum value is

strictly increasing in the range λ2 ≥  . Since limλ2!1 f (q
max
2 (λ2) ,λ2) = 1, there exists λmin2 >  that

ensures f
(
qmax2

(
λmin2

)
,λmin2

)
= 0. By Assumption 2I, the transition probability satisfies λ2 ≥ λmin2 ,

which implies that f (qmax2 (λ2) ,λ2) ≥ 0. By Assumption 1I, we also have that f (q∗,λ2) < 0. It follows

that, under Assumptions 1I-2I, there exists a unique price level, q2 2 [qmax2 , q∗), that solves the equation,

f (q2,λ2) = 0.

D.3. New Keynesian microfoundations for nominal rigidities with investment

In the rest of this appendix, we present the microfoundations for nominal rigidities that lead to Eqs. (D.5)

and (D.6). The production structure is the same as in Appendix B.1.2. Specifically, there is a continuum

of monopolistically competitive production firms that produce intermediate goods according to (B.3), and

there is a competitive sector that produces the final good according to (B.4). This also implies the demand

for production firms is given by(B.5). One di§erence is that production firms do not own the capital but they

rent it from investment firms at rate Rt,s. Hence, they choose how their capital input kt,s (ν), in addition to

their factor utilization rate, ηt,s (ν), as well as production and pricing decisions, yt,s (ν) , pt,s (ν).

These features ensure that the production firm’s output will be split between their capital expenditures

(that they pay to investment firms) and monopoly profits. To simplify the analysis, we make assumptions

so that there are no monopoly profits in equilibrium (and all output accrues to investment firms as return to

capital). Specifically, we assume the government taxes the firm’s profits lump sum, and redistributes these

profits to the firms in the form of a linear subsidy to capital.

Formally, we let Πt,s (ν) denote the equilibrium pre-tax profits of firm ν (that will be characterized

below). We assume each firm is subject to the lump-sum tax determined by the average profits of all firms,

Tt,s =

Z

ν

Πt,s (ν) dν. (D.14)

We also let Rt,s − τ t,s denote the after-subsidy cost of renting capital, where Rt,s denotes the equilibrium

rental rate paid to investment firms, and τ t,s denotes a linear subsidy paid by the government. We assume

the magnitude of the subsidy is determined by the government’s break-even condition,

τ t,s

Z

ν

kt,s (ν) dν = Tt,s. (D.15)

Without price rigidities, the firm chooses pt,s (ν) , kt,s (ν) , ηt,s (ν) 2 [0, 1] , yt,s (ν) , to maximize its (pre-
tax) profits,

Πt,s (ν) ≡ pt,s (ν) yt,s (ν)− (Rt,s − τ t,s) kt,s (ν) , (D.16)

subject to the supply constraint in (B.3) and the demand constraint in (B.5). As in Appendix B.1.2, the
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demand constraint holds as equality. Then, the optimality conditions imply,

ηt,s (ν) = 1 and pt,s (ν) =
"

"− 1
Rt,s − τ t,s

A
.

That is, the firm utilizes its capital at full capacity (as before) and it increases its capital input and production

up to the point at which its price is a constant markup over its after-subsidy marginal cost. In a symmetric-

price equilibrium, we further have, pt,s (ν) = 1. Using Eqs. (B.3) and (D.15), this further implies,

yt,s (ν) = yt,s = Akt,s and Rt,s =
"− 1
"
A+ τ t,s = A. (D.17)

That is, output is equal to potential output, and capital earns its marginal contribution to potential output

(in view of the linear subsidies).

Now consider the alternative setting in which the firms have a preset nominal price that is equal across

firms, Pt,s (ν) = P . In particular, the relative price of a firm is fixed and equal to one, pt,s (ν) = 1. The firm

chooses the remaining variables, kt,s (ν) , ηt,s (ν) 2 [0, 1] , yt,s (ν), to maximize its (pre-tax) profits, Πt,s (ν),
subject to the supply constraint in (B.3) and the demand constraint, (B.5). Combining the constraints and

using pt,s (ν) = 1, the firm’s problem can be written as,

max
ηt,s(ν),kt,s(ν)

Aηt,s (ν) kt,s (ν)− (Rt,s − τ t,s) kt,s (ν) s.t. 0 ≤ ηt,s (ν) ≤ 1 and Aηt,s (ν) kt,s (ν) ≤ yt,s.

We conjecture an equilibrium in which Rt,s = τ t,s and firms choose symmetric capital inputs, kt,s (ν) = kt,s.

Under this equilibrium, the marginal cost of renting capital is zero, Rt,s − τ t,s = 0. This verifies that it

is optimal for firms to choose symmetric inputs, kt,s (ν) = kt,s. After substituting these expressions, the

firm’s problem becomes equivalent to its counterpart in Appendix B.1.2. Following the same steps there,

the optimal factor utilization is given by ηt,s (ν) =
yt,s
Akt,s

≤ 1. Hence, output is determined by aggregate

demand, yt,s, subject to the capacity constraint, ηt,s (ν) ≤ 1.
In the conjectured equilibrium, the production firms choose the same level of inputs and factor utilization

rates and produce the same level of output as each other. Therefore, they also have the same level of pre-

tax profits. Using Eqs. (D.16) together with Rt,s = τ t,s = 0, we also calculate the pre-tax profit level as

Πt,s = yt,s. Substituting this into Eqs. (D.14) and (D.15), we obtain τ t,s = yt,s/kt,s = ηt,sA. Substituting

this into Eq. (D.16), we further obtain Rt,s = yt,s/kt,s = ηt,sA. This verifies the conjecture, Rt,s = τ t,s.

In sum, when the firms’ nominal prices are fixed, aggregate output is determined by aggregate demand

subject to the capacity constraint, which verifies Eq. (D.5). Moreover, thanks to lump-sum costs to profits

and linear subsidies to capital, all output accrues to the investment firms as return to capital, which verifies

Eq. (D.6).
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E. Appendix: Data Details and Omitted Empirical Results

This appendix presents the details of the data sources and variable construction used in Section 7, and

presents the empirical results (tables and figures) omitted from the main text.

House price index. We rely on the cross-country quarterly panel dataset described in Mack et al. (2011).
The dataset is regularly updated and publicly available at https://www.dallasfed.org/institute/houseprice.

We use the inflation-adjusted (real) house price index measure to construct the shock variable in our re-

gression analysis (see (54)). Our country coverage is to a large extent determined by the availability of this

measure, e.g., we exclude a few developed countries such as Portugal and Austria for which we do not have

consistent data on real house prices.

Euro or Exchange Rate Mechanism (Euro/ERM) status. We hand-collect this data from various

online sources. A country-quarter is included in the Euro/ERM sample if the country is a member of the

Euro or the European Exchange Rate mechanism in most of the corresponding calendar year. Table 1

describes the Euro/ERM status by year for all countries in our sample.

GDP, consumption, investment. We obtain this data from the OECD’s quarterly national accounts

dataset (available at https://stats.oecd.org). We use the variables calculated according to the expenditure

approach. The corresponding OECD subject codes are as follows:

• GDP: “B1_GE” (Gross domestic product — expenditure approach).

• Consumption: “P31S14_S15” (Private final consumption expenditure)

• Investment: “P51” (Gross fixed capital formation)

For each of these variables, we use the measures that are adjusted for inflation as well as seasonality. The

OECD measure code is: “LNBQRSA” (National currency, chained volume estimates, national reference year,

quarterly levels, seasonally adjusted).

Relative GDP (with PPP-adjusted prices in a common base year). We obtain an alternative

GDP measure from the OECD’s annual national accounts dataset (available at https://stats.oecd.org). We

use the variable calculated according to the expenditure approach (with subject code “B1_GE”), measured

with PPP-adjusted prices in a common base year. The OECD measure code is: “VPVOB” (Current prices,

constant PPPs, OECD base year). We use the value of this measure in 1990 to weight all of our regressions

(see (54)).

CPI. We obtain this data from the OECD’s prices and purchasing power parities dataset (available at

https://stats.oecd.org). We use the core CPI measure that excludes food and energy. The OECD subject

code is: “CPGRLE” (Consumer prices - all items non-food, non-energy). We use the annual measure, which

is less subject to seasonality, and we linearly interpolate this to obtain a quarterly measure.

Unemployment rate. We obtain this data from the OECD’s key short-term economic indicators database
(available at https://stats.oecd.org). We use the harmonized unemployment rate measure with seasonal ad-

justment and at quarterly frequency. The OECD subject code is “LRHUTTTT” (Harmonised unemployment

rate: all persons, s.a).
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The policy interest rate. Obtaining the policy interest rate is not as trivial as it might sound since di§erent
central banks conduct monetary policy in terms of di§erent target rates (and sometimes without specifying

a target rate, or by monitoring multiple rates). On the other hand, the selection does not substantially

a§ect the results since short-term risk-free rates within a developed country are often highly correlated.

Following Romer and Romer (2018), we use announced policy target rates when available, and otherwise we

use collateralized short-term market rates (such as Repo rates or Lombard rates). For Eurozone countries,

we use the local collateralized rate until the country joins the Euro, and we switch to the European Central

Bank’s (ECB) main refinancing operations (MRO) rate after the country joins the Euro.

For most of the countries, we construct our own measure of the policy interest rate according to

the above selection criteria by using data from the Global Financial Data’s GFDATABASE (GFD).

This is a proprietary database that contains a wealth of information on various asset prices (see

https://www.globalfinancialdata.com for details).

For a few countries (specified below), we instead rely on the Bank for International

Settlements’s (BIS) database on central bank policy interest rates (publicly available at

https://www.bis.org/statistics/cbpol.htm). We switch to the BIS measure when we cannot construct

an appropriate measure using the GFD; or when the BIS measure has greater coverage than ours and the

two measures are highly correlated. From either database, we obtain monthly data and convert to quarterly

data by averaging over the months within the quarter.

• United States: GFD ticker “IDUSAFFD” (USA Fed Funds O¢cial Target Rate).

• United Kingdom: GFD ticker “IDGBRD” (Bank of England Base Lending Rate).

• Australia: GFD ticker “IDAUSD” (Australia Reserve Bank Overnight Cash Rate).

• South Korea: GFD ticker “IDKORM” (Bank of Korea Discount Rate).

• Germany: GFD ticker “IDDEULD” (Germany Bundesbank Lombard Rate) until the country joins

the Euro. Afterwards, we use the ECB MRO rate. The corresponding GFD ticker is: “IDEURMW”

(Europe Marginal Rate on Refinancing Operations).

• New Zealand: GFD ticker “IDNZLD” (New Zealand Reserve Bank O¢cial Cash Rate).

• France: GFD ticker “IDFRARD” (Bank of France Repo Rate) until the country joins the Euro.

• Denmark: We use the BIS measure (highly correlated with our measure and greater coverage).

• Finland: GFD ticker “IDFINRM” (Bank of Finland Repo Rate) until the country joins the Euro.

• Sweden: GFD ticker “IDSWERD” (Sweden Riksbank Repo Rate).

• Israel: GFD ticker “IDISRD” (Bank of Israel Discount Rate).

• Italy: GFD ticker “IDITARM” (Bank of Italy Repo Rate) until the country joins the Euro.

• Spain: GFD ticker “IDESPRM” (Bank of Spain Repo Rate) until the country joins the Euro.

• Ireland: GFD ticker “IDIRLRD” (Bank of Ireland Repo Rate) until the country joins the Euro.

• Belgium: GFD ticker “IDBELRM” (Belgium National Bank Repo Rate) until the country joins the

Euro.

• Greece: GFD ticker “IDGRC”D (Bank of Greece Discount Rate) until the country joins the Euro.
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• Netherlands: GFD ticker “IDNLDRD” (Netherlands Bank Repo Rate) until the country joins the

Euro.

• Norway: GFD ticker “IDNORRD” (Bank of Norway Sight Deposit Rate).

• Japan: GFD ticker “IDJPNCM” (Japan Target Call Rate). GFD data is missing from March 2001

until July 2006. BIS data is also missing for most of this period. We use other sources to hand-fill the

interest rate over this period as being equal to 0% (see for instance, the data from St. Louis Fed at

https://fred.stlouisfed.org/series/IRSTCI01JPM156N).

• Switzerland: We use the BIS measure (cannot identify an appropriate rate from the GFD).

• Canada: We use the BIS measure (highly correlated with our measure and greater coverage).

Stock prices. We obtain this data from the GFD. For each country, we try to pick the most popular stock

price index (based on Internet searches). We obtain daily data and convert to quarterly data by averaging

over all (trading) days within the quarter. We then divide this with our core CPI measure (see above) to

obtain a real stock price series.

• United States: GFD ticker “_SPXD” (S&P500 Index)

• United Kingdom: GFD ticker “_FTSED” (UK FTSE100 Index).

• Australia: GFD ticker “_AXJOD” (Australia S&P/ASX 200 Index).

• South Korea: GFD ticker “_KS11D” (Korea SE Stock Price Index (KOSPI)).

• Germany: GFD ticker “_GDAXIPD” (Germany DAX Price Index).

• New Zealand: GFD ticker “_NZ15D” (NZSX-15 Index).

• France: GFD ticker “_FCHID” (Paris CAC-40 Index).

• Denmark: GFD ticker “_OMXC20D” (OMX Copenhagen-20 Index).

• Finland: GFD ticker “_OMXH25D” (OMX Helsinki-25 Index).

• Sweden: GFD ticker “_OMXS30D” (OMX Stockholm-30 Index).

• Israel: GFD ticker “_TA125D” (Tel Aviv SE 125 Broad Index).

• Italy: GFD ticker “_BCIJD” (Milan SE MIB-30 Index).

• Spain: GFD ticker “_IBEXD” (Madrid SE IBEX-35 Index).

• Ireland: GFD ticker “_ISEQD” (Ireland ISEQ Overall Price Index).

• Belgium: GFD ticker “_BFXD” (Belgium CBB Bel-20 Index).

• Greece: GFD ticker “_ATGD” (Athens SE General Index).

• Netherlands: GFD ticker “_AEXD” (Amsterdam AEX Stock Index).

• Norway: GFD ticker “_OSEAXD” (Oslo SE All-Share Index).

• Japan: GFD ticker “_N225D” (Nikkei 225 Stock Index).

• Switzerland: GFD ticker “_SSMID” (Swiss Market Index).
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• Canada: GFD ticker “_GSPTSED” (Canada S&P/TSX 300 Index).

Earnings. We obtain monthly data on the price-earnings ratio of publicly traded firms from the GFD

(typically constructed for a broad sample of stocks chosen by the GFD). We then combine this information

with our nominal price index (using the price at the last trading day of the month) to construct a monthly

series for earnings. We convert this to a quarterly measure by averaging over the months within the quarter.

We then divide this by our core CPI measure to obtain a quarterly real earnings series for publicly traded

firms.

GFD ticker for the price earnings ratio typically has the form “SY-three digit country code-PM” (e.g.,

the ticker for the United States is “SYUSAPM”). One exception is the United Kingdom for which the

corresponding GFD code is “_PFTASD” (UK FT-Actuaries PE Ratio).

Credit expansion. Our measure of bank credit is based on Baron and Xiong (2017), who construct a

variable, credit expansion, defined as the annualized past three-year change in bank credit to GDP ratio.

Mathematically, it is expressed as

credit expansion =
∆
(
bank credit
GDP

)
t
−∆

(
bank credit
GDP

)
t−12

12
× 4, (E.1)

where t denotes a quarter. Baron and Xiong (2017) construct this measure by merging data from two sources.

Their main source is the “bank credit” measure from the BIS, which covers a large set of countries but is

generally available only for postwar years. For this reason, Baron and Xiong (2017) also supplement it with

the “bank loans” measure from Schularick and Taylor (2012), which covers fewer countries but more years.

Since our panel starts in 1990, we ignore the second source and rely entirely on the BIS measure.

Specifically, we use the quarterly BIS database on credit to the nonfinancial sector (publicly available at

https://www.bis.org/statistics/totcredit.htm). We obtain the measure “bank credit to the private nonfinan-

cial sector” expressed in units of percentage of GDP (the corresponding BIS code is “Q:5A:P:B:M:770:A”),

which enables us to construct the variable in (E.1). We verify that our variable is highly correlated with the

measure constructed by Baron and Xiong (2017) (who generously shared their data with us)–the correlation

coe¢cient for the available country-quarters is 0.975.

Following Baron and Xiong (2017), we also construct a “credit expansion-std” variable by standardizing

the measure in (E.1) by its mean and standard deviation within each country. Since Baron and Xiong (2017)

focus on predicting stock prices, they calculate the mean and the standard deviation using only past data

so as to avoid any look-ahead bias. Since our focus is di§erent, we ignore this subtlety and calculate the

sample statistics using the entire data for the corresponding country (in the BIS database).
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Table 1: Euro/ERM status by country and year
Country 1990 1991 1992 1993 1994 1995 1996 1997-2017

Belgium 1 1 1 1 1 1 1 1
Denmark 1 1 1 1 1 1 1 1
Finland 0 0 0 0 0 0 0 1
France 1 1 1 1 1 1 1 1
Germany 1 1 1 1 1 1 1 1
Greece 0 0 0 0 0 0 1 1
Ireland 1 1 1 1 1 1 1 1
Italy 1 1 1 0 0 0 0 1

Netherlands 1 1 1 1 1 1 1 1
Spain 1 1 1 1 1 1 1 1

Australia 0 0 0 0 0 0 0 0
Canada 0 0 0 0 0 0 0 0
Israel 0 0 0 0 0 0 0 0
Japan 0 0 0 0 0 0 0 0
Korea 0 0 0 0 0 0 0 0
NZL 0 0 0 0 0 0 0 0
Norway 0 0 0 0 0 0 0 0
Sweden 0 1 1 0 0 0 0 0

Switzerland 0 0 0 0 0 0 0 0
UK 0 1 1 0 0 0 0 0
USA 0 0 0 0 0 0 0 0

Euro status. Belgium, Finland, France, Germany, Ireland, Italy, Netherlands, Spain adopted the Euro in
1999. Greece adopted in 2001. Denmark hasn’t adopted the Euro but is a member of the ERM.

82



Table 2: Summary statistics by ERM for the baseline regression sample
ERM sample Non-ERM sample Di§erence

Mean Std.Deviation Mean Std.Deviation Mean Std.Error
∆ log house prices (real) 0.0040 0.0183 0.0053 0.0181 -0.0013 (0.0023)

∆ log GDP (real) 0.0043 0.0128 0.0065 0.0093 -0.0022 (0.0010)

policy interest rate (nominal) 0.0232 0.0194 0.0352 0.0288 -0.0119 (0.0038)

∆ log CPI (core) 0.0041 0.0029 0.0046 0.0039 -0.0004 (0.0005)

∆ unemployment rate -0.0000 0.0042 -0.0002 0.0030 0.0002 (0.0004)

∆ log investment (real) 0.0030 0.0535 0.0070 0.0297 -0.0040 (0.0021)

∆ log consumption (real) 0.0035 0.0103 0.0069 0.0095 -0.0034 (0.0008)

earnings to price ratio 0.0616 0.0409 0.0585 0.0227 0.0031 (0.0039)

∆ log stock prices (real) 0.0011 0.0974 0.0108 0.0820 -0.0097 (0.0047)

credit expansion 0.0175 0.0557 0.0136 0.0298 0.0040 (0.0079)

credit expansion-std 0.1715 1.2657 -0.0346 1.1128 0.2062 (0.1957)
Observations 821 1120 1941

∆ represents quarterly change. Standard errors are Newey-West standard errors with a bandwidth of 20 quarters.
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Table 3: Private housing wealth in 2005 (% of GDP) by Euro/ERM status
Country (Euro/ERM) Housing wealth Country (Non-Euro/ERM) Housing wealth

Spain 414.33 Australia 301.32
Italy 271.25 USA 199.77
France 253.74 Korea 179.55
Netherlands 222.03 Japan 169.74
Germany 186.77 Canada 146.51
Denmark 168.45 Norway 139.48

Sweden 132.10

Average 252.76 Average 181.21
GDP-weighted average 255.29 GDP-weighted average 191.64

Table 4: Stock market capitalization in 2005 (% of GDP) by Euro/ERM status
Country (Euro/ERM) Market cap Country (Non-Euro/ERM) Market cap

Finland 102.48 Switzerland 229.68
Netherlands 87.37 Canada 129.84
Spain 82.95 UK 126.75
France 80.07 Australia 121.32
Belgium 74.47 Sweden 116.08
Denmark 67.30 USA 103.83
Greece 58.57 Korea 96.16
Ireland 53.90 Israel 86.04
Italy 43.08 Norway 79.94
Germany 42.01 Japan 61.89

Average 69.22 Average 115.16
GDP-weighted average 61.84 GDP-weighted average 120.26

Data sources. We obtain housing wealth to GDP ratio from the World Inequality Database (WID) which

is publicly available at https://wid.world/. We construct the ratio by combining yearly series on “private

housing assets” (WID indicator, “mpwhou”) and “gross domestic product (WID indicator, “mgdpro”).

We obtain stock market capitalization to GDP ratio as yearly series from the GFD. The corresponding

ticker has the form “CM.MKT.LCAP.GD.ZS three digit country code” (e.g., the ticker for the United States

is “CM.MKT.LCAP.GD.ZS USA”).

For both tables, we construct the GDP-weighted averages by using our relative GDP measure (in 2005)

described earlier in this appendix.
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Figure 10: Di§erences in coe¢cients between the ERM and the non-ERM samples corresponding
to the baseline regression results in Figure 6.
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Figure 11: Di§erences in coe¢cients between the ERM and the non-ERM samples corresponding
to the regression results with credit interaction in Figure 7.
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Figure 12: The analogues of the baseline regression results in Figure 6 with the di§erence that time
fixed e§ects are excluded from the regressions.
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Figure 13: The analogues of the results in Figure 6 with a sample that starts in 1980Q1 (as opposed
to 1990Q1).
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Figure 14: The analogues of the results in Figure 7 with a sample that starts in 1980Q1 (as opposed
to 1990Q1).
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Figure 15: The analogues of the baseline regression results in Figure 6, where we consider shocks
to the policy interest rate as opposed to house prices. Specifically, we run the analogue of the
specification in (54) (on the full sample) where the shock variable is the level of the policy interest
rate and the outcome variable is log house prices (left panel) or log stock prices (right panel).
The solid lines plot the coe¢cients corresponding to the the policy interest rate variable. All
regressions include time and country fixed e§ects; 12 lags of the level of the policy interest rate,
contemporaneous value and 12 lags of the first di§erence of log GDP, 12 lags of the first di§erence
of log house prices, and 12 lags of the first di§erence of log stock prices. The dotted lines show
95% confidence intervals calculated according to Newey-West standard errors with a bandwidth
of 20 quarters. All regressions are weighted by countries’ PPP-adjusted GDP in 1990. Data is
unbalanced quarterly panel that spans 1990Q1-2017Q4. All variables except for the policy interest
rate are adjusted for inflation. The sources and the definitions of variables are described earlier in
this appendix.
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1. Introduction

Should monetary policy have a prudential dimension? That is, should policymakers raise inter-

est rates, or delay a cut, to rein in financial excesses during a boom? This question has occupied

the minds of central bankers and monetary policy researchers for decades. At present, there are

two dominant views. The fully-separable view contends that monetary policy should focus exclu-

sively on its traditional mandate while delegating financial stability concerns to macroprudential

policy (see, e.g., Weidmann (2018); Svensson (2018)). The non-separable view argues that, in

practice, macroprudential policy might be insu¢cient to deal with financial excesses since its

tools are limited and inflexible (see, e.g., Stein (2014); Gourio et al. (2018)). This debate has

led to a growing literature investigating the costs and benefits of prudential monetary policy

(PMP). In this paper, we provide a new rationale for PMP, and we show that under appropriate

circumstances it can be as e§ective as macroprudential policy. This equivalence is useful since,

as highlighted by the non-separable view, monetary policy in practice is significantly nimbler

than macroprudential policy when responding to cyclical fluctuations.1

PMP has obvious costs: it slows down the economy and leads to ine¢cient factor utilization

during the boom. The benefits are less well understood. One of the main arguments for PMP is

the asset price channel: monetary policy can mitigate the asset price boom and therefore make

the subsequent crash smaller and less costly (see, e.g., Borio (2014); Adrian and Liang (2018)).

This view is supported by evidence that monetary policy has a sizable, nearly immediate impact

on asset prices. Despite its potential importance, there is little formal analysis on how the asset

price channel of PMP works and whether (or when) it improves social welfare. We fill this gap

by developing an aggregate demand model with asset price booms and speculation.

In our model, the economy transitions from a boom with high asset prices into a recession

with low asset prices. The boom features financial speculation–investors with heterogeneous

valuations trading risky financial assets amongst themselves. We focus on speculation among

investors with heterogeneous beliefs (optimists and pessimists), but similar insights apply if

speculation is driven by other forces such as heterogeneous risk tolerances (e.g., banks and

households). The recession features interest rate frictions–factors that might constrain how

the risk-free rate adjusts after a shock. We focus on the zero lower bound, but our mechanism

applies for other constraints that limit downward adjustment in interest rates during recessions.

These ingredients make optimists’ wealth share a key state variable for the economy. In

particular, when optimists have more wealth in the recession, they push up asset prices and

aggregate demand, softening the recession. However, individual optimists that take on leverage

during the boom (and pessimists that lend to them) do not internalize the welfare e§ects of

1Adrian et al. (2017) summarize the results from a tabletop exercise conducted by the Federal Reserve that
“aimed at confronting Federal Reserve Bank presidents with a plausible, albeit hypothetical, macro-financial
scenario that would lend itself to macroprudential considerations...From among the various tools considered,
tabletop participants found many of the prudential tools less attractive due to implementation lags and limited
scope of application...Monetary policy came more quickly to the fore as a financial stability tool than might have
been thought before the exercise.”
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Figure 1: Graphical illustration of the relations that determine optimists’ wealth share and the
asset price in recession, (α2, Q2). The left (resp. right) panel illustrates the e§ect of macropru-
dential policy (resp. PMP).

optimists’ wealth losses during the recession, which motivates policy interventions. Macropru-

dential policy is in theory the ideal tool for disciplining optimists’ risk taking, but in practice

it can be imperfect. Our main result shows that in such instances PMP can e§ectively reduce

optimists’ risk-exposure.

To illustrate this result, we introduce some notation and relations (we provide microfoun-

dations in the main text). Specifically, let s = 1 and s = 2 denote the boom and the recession

states, respectively. The economy is set in continuous time and transitions from the boom state

to the recession state according to a Poisson process. Let αs and Qs denote optimists’ wealth

share and the price of capital (asset price) in state s, respectively. In the recession state s = 2,

the price of capital is an increasing function of optimists’ wealth share:

Q2 = Q2 (α2) . (1)

In the boom state s = 1, optimists choose an above-average leverage ratio, !o1 > 1. Therefore,

if there is a transition to the recession state, their wealth share declines. Specifically, we have,

α2
α1
= 1− (!o1 − 1)

(
Q1
Q2

− 1
)
, (2)

where Q1/Q2 > 1 captures the magnitude of the price decline after the transition. Note that this

equation also describes an increasing relation between optimists’ wealth share, α2, and the price

of capital in the recession, Q2 (since !o1 > 1 ). Given a boom wealth share α1, the equilibrium

pair, (α2, Q2), corresponds to the intersection of two increasing relations (1) and (2), similar to

Kiyotaki and Moore (1997). Figure 1 provides a graphical representation of these relations.
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In this framework, aggregate demand is an increasing function of asset prices, so monetary

policy can be described in terms of its e§ect on asset prices. As a benchmark, suppose the

monetary authority sets interest rates in the boom to achieve asset prices and aggregate demand

consistent with potential output, Q1 = Q∗. In the recession, monetary policy is constrained,

so asset prices and aggregate demand fall short of potential output, Q2 < Q∗. A larger wealth

share for optimists, α2, increases asset prices and aggregate demand and softens the recession.

This e§ect is an aggregate demand externality, which provides a rationale for prudential policies

that improve optimists’ wealth share in the recession, α2.

Eq. (2) suggests that there are two prudential channels policymakers can use to increase

α2. First consider macroprudential policy that reduces optimists’ leverage ratio, !o1. This policy

increases α2 by reducing optimists’ exposure to a given asset price decline, Q∗/Q2. Second,

suppose instead that optimists’ leverage ratio is fixed, !o1 = !
o
1, due to either binding macropru-

dential policy or financial frictions, and consider PMP that reduces asset prices during the boom,

Q1 < Q
∗. This policy increases α2 by decreasing the size of the asset price decline, Q1/Q2, for a

given level of optimists’ exposure. Figure 1 shows that these two policies can achieve the same

allocations, illustrating the logic behind our main result.

Moreover, as we shall see in the formal derivation, PMP lowers asset prices, Q1 < Q∗,

by setting the interest rate higher than the benchmark with conventional output stabilization

(“rstar”). Thus, an equivalent intuition for our main result is that PMP raises the interest rate

to create room for monetary policy to react to negative asset price shocks. This interpretation

would not apply in the standard New Keynesian model where the severity of the recession

depends only on the level of interest rates. In our model, the path of interest rates also matters

because optimists’ balance sheet is a key state variable that is a§ected by changes in asset prices.

PMP has two potential drawbacks relative to macroprudential policy. First, optimists’ lever-

age ratio has to be constrained and must not react to a policy-induced change in asset prices,

!o1 = !
o
1. In our model, when optimists are fully unconstrained, their leverage ratio adjusts to

completely undo the prudential e§ects of monetary policy. That is, once !o1 adjusts, α2 does

not depend on Q1. The intuition is that, since optimists perceive smaller risks after transition

to a recession, they increase their leverage ratio. While this result is extreme and driven by

specific features of our model (in particular, complete markets and no borrowing constraints),

it provides a cautionary note and illustrates that PMP is more e§ective when there is some

macroprudential policy that (imperfectly) restricts optimists’ risk taking.

Second, even when monetary policy achieves the same prudential objectives as macropru-

dential policy, it is more costly because it lowers asset prices during the boom, Q1 < Q∗, which

reduces factor utilization below the e¢cient level. However, in a neighborhood of the price level

that ensures e¢cient factor utilization (Q∗), these negative welfare e§ects are second order. On

the other hand, the beneficial e§ects of softening the recession are first order. Our main result

formalizes this insight and establishes that (when optimists are subject to some leverage limit)

the first-order welfare e§ects of PMP are exactly the same as the e§ects of tightening the leverage
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limit directly. Put di§erently, for small policy changes, PMP is as e§ective as macroprudential

policy. PMP increases unemployment in a booming economy, which has negligible costs, and

reduces unemployment during a recession, which has sizeable benefits.

This discussion illustrates how our main result may apply beyond our particular model of

recessions. For example, suppose the recession features no interest rate frictions, but there are

financial frictions and fire-sale prices that increase in experts’ wealth share. Suppose experts

take on leverage during the boom to increase the size of their investments (as in Lorenzoni

(2008)). The analogues of Eqs. (1) and (2) apply in this setting. Hence, as long as experts’

leverage is constrained, PMP would improve experts’ balance sheets in the recession and improve

welfare. In this alternative setup, the policy would improve welfare by mitigating fire-sale

externalities, whereas in our model PMP internalizes aggregate demand externalities.

We also characterize the optimal monetary policy in our environment and establish three

comparative static results. First, the planner utilizes PMP more when leverage limits (or macro-

prudential policy) are at an intermediate level. Intuitively, when the limits are too loose, PMP

is not worthwhile because it requires a large decline in Q1 to push optimists against their con-

straints. Naturally, when the limits are already too tight, further tightening via PMP is not

beneficial. These two extreme cases illustrate that macroprudential policy and PMP can be

complements as well as substitutes. Second, as expected, the planner utilizes PMP more when

she perceives a greater probability of transitioning into a recession. Finally, the planner utilizes

PMP more when investors have greater disagreements about the risk of a recession. This result

highlights that the policy is not driven by high asset prices per se (which is addressed by con-

ventional monetary policy objectives) but by the financial speculation associated with episodes

that concentrate risks on optimists’ (or banks’) balance sheets.

Finally, one of the main concerns in practice with respect to prudential policies is the pres-

ence of “shadow banks” (lightly regulated high-valuation agents). We extend our analysis to

consider these agents and show that PMP can still replicate the financial stability benefits of

macroprudential policy. However, both policies are weaker than when there are no shadow

banks. The policies are weaker because of general equilibrium feedbacks: less regulated agents

respond to the stabilizing benefits of either policy by increasing their leverage and risk taking.

Literature review. Our paper is part of a large literature that investigates the e§ect of mon-

etary policy on financial stability. Adrian and Liang (2018) provide an excellent recent survey

(see also Smets (2014)). As they note, easy monetary policy can generate financial vulnerabil-

ities by fueling credit growth, exacerbating the maturity mismatch of financial intermediaries,

and inflating asset prices. Our paper focuses on the asset-price channel, which is underexplored.

One strand of the literature emphasizes that loose monetary policy can reduce risk premia

during the boom by exacerbating the “reach for yield” due to incentive problems or behavioral

forces (see, e.g., Rajan (2006); Maddaloni and Peydró (2011); Borio and Zhu (2012); Morris

and Shin (2014); Lian et al. (2018); Acharya and Naqvi (2018)). In our model, monetary policy
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does not directly a§ect the risk premium–it a§ects asset prices mainly through the traditional

discount rate channel. Nonetheless, we find a role for PMP because the reduction in asset

prices during the boom softens the asset price crash after transition to recession. Our channel is

stronger (and it operates through the same key equations) if, as suggested by empirical evidence,

monetary policy also a§ects the risk premium during the boom (e.g., Bernanke and Kuttner

(2005); Hanson and Stein (2015); Gertler and Karadi (2015); Gilchrist et al. (2015)).

Our paper complements the literature emphasizing the credit channel. A number of papers

show that monetary policy can a§ect financial stability by influencing credit growth or leverage.

Woodford (2012) articulates this channel using a New Keynesian framework (that builds upon

Curdia and Woodford (2010)) in which loose monetary policy increases the leverage of financial

institutions (or borrowers), which in turn increases the probability of a crisis (by assumption).

We show that monetary policy also a§ects the severity of future downturns by influencing asset

prices during the boom. Moreover, our model does not require a financial crisis: there are

benefits if the economy transitions into a plain-vanilla recession (in which monetary policy is

constrained). Hence, our theoretical findings suggest that quantitative analyses that rely purely

on the credit channel and financial crises likely underestimate the benefits of PMP.2

In our model, PMP causes an output gap during the boom, which generates a second-order

welfare loss (for small changes in policy), and mitigates the output gap during the recession,

which generates a first-order welfare gain. Kocherlakota (2014) and Stein (2014) derive simi-

lar insights by assuming that the Fed uses a quadratic loss function to penalize deviations of

unemployment from its target. They show that targeting financial stability fits naturally into

the Fed’s dual mandate. Our model provides a microfoundation for their key assumption that

accommodative monetary policy exacerbates financial vulnerability.

Our paper is part of a growing theoretical literature that analyzes the interactions between

macroprudential and monetary policies in environments with aggregate demand externalities

(see, e.g., Korinek and Simsek (2016); Farhi and Werning (2016); Rognlie et al. (2018)).3 Most

of these papers conclude that financial stability issues are best addressed with macroprudential

policy. We depart from this literature by assuming that macroprudential policy can be con-

strained, and we find a role for monetary policy. We also investigate the asset price channel,

whereas Korinek and Simsek (2016) and Farhi and Werning (2016) focus on credit. Rognlie

et al. (2018) analyze investment and show that incorporating this ingredient would strengthen

our main result. When alternative policies are imperfect, PMP can be used to reduce investment

2A growing empirical literature has documented that rapid credit growth is associated with more frequent
and more severe financial crises (e.g., Borio and Drehmann (2009); Jordà et al. (2013)). Recent work uses the
empirical estimates from this literature to calibrate Woodford-style models and quantify the costs and benefits of
PMP. Svensson (2017); IMF (2015) argue that the costs of this policy exceed the benefits, whereas Gourio et al.
(2018); Adrian and Liang (2018) find mixed e§ects.

3Several papers investigate the relationship between macroprudential and monetary policies but focus on other
frictions, such as pecuniary externalities or moral hazard, e.g., Stein (2012); Collard et al. (2017); Martinez-Miera
and Repullo (2019). A vast literature theoretically investigates macroprudential policy but doesn’t focus on
nominal rigidities or monetary policy (see, e.g., Dávila and Korinek (2017) and the references therein).
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during the boom. PMP creates pent-up investment demand that raises investment, asset prices,

and aggregate demand during the recession.

Finally, although our mechanism is more general, our specific model with belief disagree-

ments and speculation is related to a large finance literature (e.g., Lintner (1969); Miller (1977);

Harrison and Kreps (1978); Scheinkman and Xiong (2003); Fostel and Geanakoplos (2008);

Geanakoplos (2010); Simsek (2013a,b); Iachan et al. (2015); Cao (2017); Heimer and Simsek

(2018)). Similar to Caballero and Simsek (2017), we analyze speculation when aggregate de-

mand can influence output due to interest rate rigidities. We depart from our earlier work by

assuming that financial markets are incomplete due to exogenous leverage limits (see Remark

3). This assumption ensures that monetary policy a§ects the extent of speculation.

In Section 2 we introduce the basic environment, and provide a partial characterization

of the equilibrium. In Section 3, we characterize the equilibrium in the recession state and

illustrate the aggregate demand externalities that motivate policy interventions. In Section 4,

we characterize the equilibrium in the boom state for a benchmark case without PMP, and

illustrate how macroprudential policy can improve welfare. In Section 5, we introduce PMP

and establish our main results regarding its (local) equivalence with macroprudential policy. In

Section 6, we characterize the optimal PMP in our setting and establish its comparative statics.

In Section 7, we add “shadow banks” to our framework and analysis. Section 8 concludes and

is followed by several appendices that contain omitted derivations and proofs.

2. Environment and equilibrium

In this section we introduce our general dynamic environment. We then provide a definition

and a partial characterization of the equilibrium. In subsequent sections we further analyze this

equilibrium under di§erent assumptions about monetary policy.

Potential output and risk premium shocks. The economy is set in infinite continuous

time, t 2 [0,1), with a single consumption good and a single factor of production, capital. Let
kt,s denote the capital stock at time t in the aggregate state s 2 S.

The rate of capital utilization is endogenous and denoted by ηt,s 2 [0, 1]. When utilized at
this rate, kt,s units of capital produce

Aηt,skt,s (3)

units of the consumption good. The capital stock follows the process

dkt,s/dt

kt,s
= gs − δ

(
ηt,s
)
. (4)

The depreciation function δ
(
ηt,s
)
is increasing. Hence, Eqs. (3) and (4) illustrate that utilizing

capital at a higher rate allows the economy to produce more current output at the cost of faster

depreciation and slower output growth. Without nominal rigidities, there is an optimal level
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of capital utilization denoted by η∗, which we characterize in the subsequent analysis. With

nominal rigidities, the economy may operate below this level of utilization, ηt,s ≤ η∗, due to

aggregate demand shortages.

Eq. (4) also illustrates that the expected growth rate of capital (before depreciation) is

given by gs, which is an exogenous parameter. The states, s 2 S, di§er only in terms of gs. For
simplicity, we assume there are three states, s 2 {1, 2, 3}. The economy starts in state s = 1.

While in states s 2 {1, 2}, the economy transitions into state s0 ≡ s+ 1 according to a Poisson
process that we describe below. Once the economy reaches s = 3, it stays there forever.

We assume the parameters satisfy g2 < min (g1, g3). We envision a scenario in which the

economy starts in the boom state with a relatively high growth rate, eventually enters a recession

state with a low growth rate, then returns to an absorbing recovery state with a high growth rate.

Accordingly, we refer to states 1, 2, and 3 as “the boom,” “the recession,” and “the recovery,”

respectively. For analytical tractability, we focus on a single business cycle. Figure 2 illustrates

the timeline of events for a particular realization of state transitions.

Remark 1 (Broadening the interpretation of expected growth fluctuations). We view the

changes in the expected growth rate, gs, as a device to capture more broadly “time-varying risk

premia”: that is, fluctuations in risky asset prices that are unrelated to short-run fundamentals

(i.e., the current supply-determined output level). In Caballero and Simsek (2017), we formalize

this intuition by showing that (in a two period model) changes in gs generate the same e§ect

on asset prices and economic activity as changes in risk or risk aversion. A large literature

documents that time-varying risk premia are a pervasive phenomenon in financial markets (see

Cochrane (2011); Campbell (2014) for recent reviews).

Transition probabilities and belief disagreements. We let λis > 0 denote investor i’s

belief about the Poisson transition probability from state s into state s0 = s + 1. Since state

s = 3 is an absorbing state, we have λi3 = 0 for each i. For the remaining states, we assume there

are two types of investors, i 2 {o, p}. Type o investors are “optimists,” and type p investors are
“pessimists.” We denote the di§erence between perceived transition probabilities for optimists

and pessimists by

∆λs = λ
o
s − λ

p
s.

We assume the belief di§erences satisfy:

Assumption 1. ∆λ1 < 0 and ∆λ2 > 0.

When the economy is in the boom state s = 1, optimists assign a smaller transition probability

to the recession state s = 2. When the economy is in the recession state, they assign a greater

transition probability to the recovery state s = 3.
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Figure 2: The timeline of events.

Remark 2 (Broadening the interpretation of disagreements). We view disagreements about

transition probabilities as a convenient modeling device to capture heterogeneous asset valua-

tions. The key aspects of “optimists” is that they value risky assets more than “pessimists,”

so that: (i) during the boom, they take on leverage, and (ii) during the recession, they increase

risky asset prices. These aspects would be the same with other modeling devices such as heteroge-

neous risk aversion or Knightian uncertainty. Consequently, we can also think of “optimists” as

banks (or institutional investors) that are more risk tolerant and less Knightian than households

(“pessimists”).

Menu of financial assets. There are two types of financial assets. First, there is a market

portfolio that represents a claim on all output (which accrues to production firms as earnings).

We let Qt,skt,s denote the price of the market portfolio, so Qt,s is the price per unit of capital.

We let rt,s denote the instantaneous expected return on the market portfolio conditional on no

transition. Second, there is a risk-free asset in zero net supply. We denote its instantaneous

return by rft,s.

In Caballero and Simsek (2017), we allow for Arrow-Debreu securities that enable investors

to trade the transition risk. In this paper, we assume financial markets are incomplete and

thus investors speculate by adjusting their position on the market portfolio, i.e., changing their

leverage ratio (see also Remark 3).

Market portfolio price and return. Absent state transitions, the price of capital Qt,s
follows an endogenous, deterministic path. Using Eq. (4), the growth rate of the price of the
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market portfolio is given by

d (Qt,skt,s) /dt

Qt,skt,s
= gs − δ

(
ηt,s
)
+
Q̇t,s
Qt,s

,

where we use the notation Ẋ ≡ dX/dt. Consequently, the return of the market portfolio absent
state transitions can be written as

rt,s =
yt,s

Qt,skt,s
+ gs − δ

(
ηt,s
)
+
Q̇t,s
Qt,s

. (5)

Here, yt,s denotes the endogenous level of output at time t. Therefore, the first term captures the

“dividend yield” component of return. The second term captures the capital gain conditional

on no transition, which reflects the expected growth of capital and its price.

Portfolio choice. Investors are identical except for their beliefs about state transitions, λis.

They continuously make consumption and portfolio allocation decisions. Specifically, at any time

t and state s, investor i has some financial wealth denoted by ait,s. She chooses her consumption

rate, cit,s, and the fraction of her wealth to allocate to the market portfolio, !
i
t,s. The residual

fraction, 1− !it,s, is invested in the risk-free asset.
Note that !it,s also captures the investors’ leverage ratio. We impose a leverage limit in the

boom state s = 1:

!it,1 ≤ !t,1, (6)

where we require !t,1 ≥ 1 (to ensure market clearing). We allow for !t,1 =1, in which case the
leverage limit never binds. Our main result applies when the leverage limit may bind. This con-

straint can capture a government-imposed leverage limit. It can also capture a market-imposed

leverage limit due to unmodeled financial frictions such as moral hazard, adverse selection,

lenders’ uncertainty or their desire for safety. In fact, we can flexibly accommodate these fric-

tions because we allow the leverage limit to change as the boom persists and risk conditions

evolve. For simplicity, we assume that the leverage limit applies only in the boom state–adding

this constraint to the recession (or recovery) states does not a§ect our qualitative findings.

For analytical tractability, we assume investors have log utility. The investors’ problem (at

time t and state s) can then be written as

V it,s
(
ait,s
)
= maxh

ct̃,s̃,!
i
t̃,s̃

i

t̃≥t,s̃

Eit,s

[Z 1

t
e−ρt̃ log ci

t̃,s̃
dt̃

]
(7)

s.t.

8
<

:
dait,s =

(
ait,s

(
rft,s + !

i
t,s

(
rt,s − r

f
t,s

))
− ct,s

)
dt absent transition,

ait,s0 = a
i
t,s

(
1 + !it,s

Qt,s0−Qt,s
Qt,s

)
if there is a transition to state s0 6= s

(8)

and !it,1 ≤ !t,1.
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Here, Eit,s [·] denotes the expectation operator corresponding to investor i’s beliefs for state
transition probabilities.

Equilibrium in asset markets. Asset markets clear when the total wealth held by investors

is equal to the value of the market portfolio both before and after the portfolio allocation

decisions:

aot,s + a
p
t,s = !

o
t,sa

o
t,s + !pt,sa

p
t,s = Qt,skt,s. (9)

When the conditions in (9) are satisfied, the market clearing condition for the risk-free asset

(which is in zero net supply) holds.

Nominal rigidities and equilibrium in goods markets. The supply side of our model

features nominal rigidities similar to the New Keynesian model. There is a continuum of com-

petitive production firms that own the capital stock and produce the final good. For simplicity,

these production firms have pre-set nominal prices that never change. Firms choose their capital

utilization rate, ηt,s, to maximize their market value subject to demand constraints. They take

into account that greater ηt,s increases production according to Eq. (3) and that it leads to

faster capital depreciation according to Eq. (4).

First consider the benchmark case without price rigidities. In this case, firms solve the

problem:

max
ηt,s

ηt,sAkt,s − δ
(
ηt,s
)
Qt,skt,s. (10)

The optimality condition is given by

δ0
(
ηt,s
)
Qt,s = A. (11)

That is, the frictionless level of utilization ensures that the marginal depreciation rate is equal

to the marginal product of capital.

Next consider the case with price rigidities. In this case, firms solve problem (10) with

the additional constraint that their output is determined by aggregate demand. As in the New

Keynesian model, firms optimally meet this demand as long as their price exceeds their marginal

cost. In a symmetric environment, the real price per unit of consumption good is one for all

firms, and each firm’s marginal cost is given by
δ0(ηt,s)Qt,s

A . Therefore, firms’ optimality condition

can be written as4

yt,s = ηt,sAkt,s = c
o
t,s + c

p
t,s as long as δ0

(
ηt,s
)
Qt,s ≤ A. (12)

Moreover, all output accrues to production firms in the form of earnings. Hence, the market

portfolio can be thought of as a claim on all production firms.

4 If instead the marginal cost exceeded the price, δQt,s
A

> 1, then these firms would choose ηt,s = 0 and produce
yt,s = 0. This case does not emerge in equilibrium.
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Interest rate rigidity and monetary policy. Our assumption that production firms do

not change their prices implies that the aggregate nominal price level is fixed. The real risk-free

interest rate, then, is equal to the nominal risk-free interest rate, which is determined by the

monetary authority’s interest rate policy. We assume there is a lower bound on the nominal

interest rate, which we set as zero for convenience: rft,s ≥ 0.

We model monetary policy as a sequence of interest rates,
n
rft,s

o

t,s
, and implied levels of

factor utilization and asset price levels,
{
ηt,s, Qt,s

}
t,s
, chosen subject to the zero lower bound

constraint. Absent price rigidities, factor utilization and asset price levels satisfy condition (11).

Therefore, we define the conventional output-stabilization policy as

rft,s = max
(
0, rf∗t,s

)
for each s, (13)

where rf∗t,s (“rstar”) is recursively defined as the instantaneous interest rate that obtains when

condition (11) holds and the planner follows the output-stabilization policy in (13) at all future

times and states.

Our goal is to understand whether the planner might want to use monetary policy for pruden-

tial purposes in the boom state. In particular, we assume the planner follows the conventional

output-stabilization policy in (13) for the recession and the recovery states s 2 {2, 3}, but she
might deviate from this rule in the boom state s = 1. For now, we allow the planner to choose an

arbitrary path,
n
rft,1, Qt,1, ηt,1

o

t
, that is consistent with the equilibrium conditions. We specify

the monetary policy further in Section 5 and define the equilibrium below.

Definition 1. The equilibrium is a collection of processes for allocations, prices, and returns

such that capital evolves according to Eq. (4), its instantaneous return is given by Eq. (5),

investors maximize their expected utility subject to a leverage limit in the boom state (cf. problem

7), asset markets clear (cf. Eq. (9)), goods markets clear (cf. Eq. (12)), and the monetary

authority follows the conventional output-stabilization policy in states s 2 {2, 3} [cf. Eq. (13)]
and chooses a feasible path

n
rft,1, Qt,1, ηt,1

o

t
in state s = 1.

We next provide a generally applicable partial characterization of the equilibrium. In sub-

sequent sections, we use this characterization to describe the equilibrium in the di§erent states

and policy regimes.

2.1. Equilibrium in the goods market

We start by establishing the equilibrium conditions in the goods market. In view of log utility,

the investor’s consumption is a constant fraction of her wealth, regardless of her portfolio choice:

cit,s = ρa
i
t,s. (14)
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This leads to a tight relationship between output and asset prices. Combining Eqs. (14) and

(9) implies that aggregate consumption is a constant fraction of aggregate wealth,

cot,s + c
p
t,s = ρQt,skt,s.

Combining this result with the goods market clearing condition in Eq. (12), we obtain the

output-asset price relation,

Aηt,s = ρQt,s. (15)

Intuitively, greater asset prices increase aggregate demand, output, and factor utilization. Com-

bining Eqs. (11) and (15), we find that the e¢cient level of output utilization solves

δ0 (η∗) η∗ = ρ. (16)

Note that optimal capital utilization is the same across all states. We assume the following

regularity conditions on the depreciation function to ensure that there exists a unique solution

to Eq. (16):

Assumption 2. δ (η) is strictly increasing and convex over R+ with δ0 (0) < ρ and

limη!1 δ
0 (η) ≥ ρ.

Combining Eqs. (15) and (16), we find that there is an e¢cient asset price level:

Q∗ =
Aη∗

ρ
. (17)

This is the level of asset prices such that the associated aggregate demand leads to e¢cient capital

utilization (and ensures that actual output is exactly at potential output). When Qt,s < Q∗,

we have ηt,s < η∗: capital is utilized below its e¢cient level, which we interpret as a demand

recession. Note also that, using the one-to-one relationship between factor utilization and asset

prices in (15), we have
ηt,s
η∗ =

Qt,s
Q∗ : the degree of underutilization relative to the e¢cient level is

proportional to the ratio of the asset price level to the e¢cient asset price level.

Next note that we can use Eqs. (12) and (15) to rewrite Eq. (5) as

rt,s = ρ+ gs − δ
(
Qt,s
Q∗

η∗
)
+
Q̇t,s
Qt,s

. (18)

In equilibrium, the dividend yield on the market portfolio is equal to the consumption rate ρ.
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2.2. Equilibrium in asset markets

We next establish the equilibrium conditions in asset markets. For these markets, the key state

variable is investors’ relative wealth shares, which we define as

αit,s ≡
ait,s

Qt,skt,s
for i 2 {o, p} . (19)

Note that investors’ wealth shares sum to one, αot,s + α
p
t,s = 1 [cf. Eq. (9)].

In the appendix, we characterize investors’ wealth share after a transition in terms of their

leverage ratio
αit,s0

αit,s
− 1 =

(
!it,s − 1

) Qt,s0 −Qt,s
Qt,s0

. (20)

When the transition increases the asset price, Qt,s0 > Qt,s, an investor’s wealth share increases

after the transition, αit,s0 > αit,s, if and only if she has above-average leverage, !
i
t,s > 1. The

converse happens if the transition decreases the asset price.

Note also that Eq. (20) establishes a one-to-one relationship between αit,s0 and !
i
t,s (as long

as Qt,s0 6= Qt,s, which is the case in our model). Hence, we can think of the investor as choosing
her wealth share after transition, αit,s0 , and adjusting her leverage ratio to obtain this outcome.

Thus, we can state the investor’s portfolio optimality condition as

rt,s − r
f
t,s + λ

i
s

αit,s
αit,s0

Qt,s0 −Qt,s
Qt,s0

≥ 0, (21)

with equality when the leverage limit doesn’t bind (see Appendix A.1 for a derivation). As long as

the investor is unconstrained, she invests in the market portfolio until the risk-adjusted expected

excess return is zero. The risk-adjusted return captures aggregate price changes (
Qt,s0−Qt,s
Qt,s0

) as

well as the adjustment of marginal utility relative to other investors if there is a transition (
αit,s
αi
t,s0
).

For the equilibria we analyze, the leverage limit never binds for pessimists. Consequently, the

optimality condition (21) always holds as equality for pessimists but it might apply as inequality

for optimists.

Finally, combining Eqs. (9), (19) and (20), we can see that asset markets clear as long as

investors’ wealth shares after transition,
n
αit,s0

o

i2{o,p}
, sum to one. Therefore, the equilibrium

in asset markets reduces to finding wealth shares that solve (21) for each type and that satisfy

αot,s0 + α
p
t,s0 = 1.

Next consider the evolution of investors’ wealth shares if there is no state transition. In

Appendix A.1.2, we show that

α̇it,s
αit,s

= λps
αpt,s
αpt,s0

 

1−
αit,s0

αit,s

!

. (22)
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Pessimists’ beliefs (superscript p) appear in this expression because the optimality condition (21)

always holds as equality for them, so we can use their beliefs to price assets. This expression

illustrates that investors face a trade-o§ across states. If an investor chooses αit,s0 > α
i
t,s (resp.

αit,s0 < αit,s) so that her wealth share increases (resp. decreases) after a state transition, then

she also has α̇it,s < 0 (resp. α̇it,s > 0) so her wealth share shrinks (resp. grows) if there is no

state transition.

Special case with non-binding leverage limits. When the leverage limit doesn’t bind for

optimists, these equations can be simplified further. In particular, Eq. (21) holds as equality

for both types of investors, which implies λos
αot,s
αo
t,s0

= λps
αpt,s
αp
t,s0
. Combining this equality with the

market clearing condition (9), we obtain a closed-form solution:

αit,s0

αit,s
=
λis
λt,s

where λt,s = αt,sλot,s + (1− αt,s)λ
o
t,s. (23)

Here λt,s denotes the wealth-weighted average of the transition probability. After substituting

this expression into Eq. (22), we solve for investors’ wealth dynamics as:

α̇it,s
αit,s

= −
(
λis − λt,s

)
. (24)

These expressions are intuitive. When type i investors assign an above-average probability to

transition, λis > λt,s, their wealth share increases after a transition but drifts downward absent a

transition. Conversely, when investors assign a below-average transition probability, their wealth

share declines after a transition but drifts upward absent a transition.

Remark 3 (Role of market incompleteness due to binding leverage limits). Eqs. (21− 24)
clarify the di§erence of this model with the one in Caballero and Simsek (2017). Specifically,

Eqs. (23) and (24) are the same as their counterparts in Caballero and Simsek (2017), where we

allow investors to trade transition risks via Arrow-Debreu securities. The intuition is that, as

long as the leverage limit does not bind, the market portfolio and the risk-free asset are su¢cient

to dynamically complete the market. The main di§erence in this setting is that the leverage limit

can bind, in which case the wealth-share dynamics are di§erent than in Caballero and Simsek

(2017) and are characterized by Eqs. (21) and (22).

3. The recession and aggregate demand externalities

We next characterize the equilibrium in the recession state (as well as in the recovery state).

We also illustrate the aggregate demand externalities that motivate policy intervention. Since

our focus is on the boom state, we relegate the details to Appendix A.2 and state the key

equations and the results relevant for our analysis. For the rest of the paper, with a slight abuse
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of notation, we often drop the superscript o from optimists’ wealth share:

αt,s ≡ αot,s.

Pessimists’ wealth share is the complement of this expression, αpt,s = 1− αt,s. We will describe
the remaining equilibrium variables as functions of optimists’ wealth share, so this convention

will considerably simplify the notation.

Under appropriate parametric restrictions (Assumption A1) we show that the recovery state

s = 3 features positive interest rates, e¢cient asset prices, and e¢cient factor utilization, rft,3 >

0, Qt,3 = Q
∗, ηt,3 = η

∗, whereas the recession state s = 2 features zero interest rates, ine¢ciently

low asset prices, and ine¢cient factor utilization, rft,2 = 0, Qt,2 < Q
∗, ηt,2 < η

∗. The equilibrium

in the recovery state is straightforward since there is no further transition and no speculation.

We then proceed backwards, starting with a description of the equilibrium in the recession state.

Equilibrium in the recession. Since there is no leverage limit in this state, Eq. (21) holds

as equality for both types of investors. We aggregate this expression across investors (using Eq.

(23)), and substitute for rt,2 from Eq. (18) and Qt,3 = Q∗, to obtain:

ρ+ g2 − δ
(
Qt,2
Q∗

η∗
)
+
Q̇t,2
Qt,2

+ λt,2

(
1−

Qt,2
Q∗

)
= rft,2. (25)

We refer to this expression as the risk balance condition: it says that the equilibrium risk-

adjusted return on the market portfolio (evaluated with the wealth-weighted average belief) is

equal to the risk-free interest rate.

As a preliminary step, consider the outcomes that would obtain if the interest rate were

unconstrained. In this case, substituting Qt,2 = Q∗ into the risk balance condition (25), we

obtain an expression for the output-stabilizing interest rate: rf,∗t,2 = ρ+g2−δ (η
∗). For intuition,

consider the e§ect of lowering g2. This exerts downward pressure on asset prices due to low

expected growth in output and earnings. Monetary policy responds by lowering the risk-free

interest rate, rf,∗t,2 , and keeps asset prices at the e¢cient level, Qt,2 = Q∗. By lowering the

risk-free rate, monetary policy ensures that investors continue to hold the market portfolio at

the e¢cient asset price level, even though they expect low output growth.

We assume g2 is su¢ciently low so that the implied output-stabilizing interest rate violates

the lower bound, rf,∗t,2 < 0. Consider the outcomes with a binding interest rate lower bound.

Substituting rft,2 = 0 into the risk balance condition (25), we obtain an expression that charac-

terizes the asset price, Qt,2. Intuitively, the only way condition (25) can be satisfied when r
f
t,2

cannot decline below zero is for Qt,2 to fall below below Q∗. This asset price decline increases

the return of the market portfolio, which in turn ensures that investors continue to hold the

market portfolio despite lower expected output growth. However, the decline in Qt,2 also lowers

aggregate spending and triggers a demand recession.
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Importantly, Eq. (25) suggests that, when the wealth-weighted belief is more optimistic

(greater λt,2), a smaller decline in Qt,2 is su¢cient to reestablish the risk balance condition. We

verify this intuition in the appendix. Formally, we characterize the asset price and optimists’

wealth share, (Qt,2,αt,2), as the solution to a di§erential equation in the time domain (see Eq.

(A.9)). We write the solution as Qt,2 = Q2 (αt,2) for each αt,2 2 [0, 1]. We show that the

function, Q2 (·), satisfies

Q2 (α) < Q
∗ and

dQ2 (α)

dα
> 0 for each α 2 (0, 1) . (26)

In particular, a greater wealth-share for optimists increases the asset price and brings it closer

to the frictionless level.

Recall from Eq. (15) that there is a one-to-one relationship between asset prices and factor

utilization. Hence, Eq. (26) implies ηt,2 < η
∗: the recession features an ine¢ciently low level of

capital utilization. We capture the welfare costs of underutilization with the concept of a gap

value function, which we first introduced in Caballero and Simsek (2017).

Gap value function. To define the gap value function, let b denote a superscript representing

beliefs about transition probabilities. The planner can have di§erent beliefs from optimists and

pessimists, so b takes one of three values {o, p, pl}. For a fixed b, we use V i,bt,s
(
ait,s
)
to denote

type i investors’ equilibrium value calculated according to type b beliefs. In view of log utility,

the value function takes the form

V i,bt,s
(
ait,s
)
=
log
(
ait,s/Qt,s

)

ρ
+ vi,bt,s.

The normalized value function vi,bt,s captures the value when the investor holds one unit of the

capital stock (or wealth, ait,s = Qt,s). We further decompose this term as follows:

vi,bt,s = v
i∗,b
t,s + w

b
t,s. (27)

The frictionless value function vi∗,bt,s is the value that obtains in a counterfactual economy where

the evolution of wealth shares are left unchanged but asset prices are equal to the frictionless

level, Qt,s = Q∗ for each t, s. This captures all determinants of welfare (including the bene-

fits/costs from speculation) except for suboptimal factor utilization. The residual term, wbt,s,

corresponds to the gap value function. This term captures the welfare losses due to suboptimal

factor utilization evaluated according to investors’ preferences (and type b beliefs).

In the appendix, we formalize this intuition by establishing that the gap value function solves
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the following di§erential equation:

ρwbt,s −
@wbt,s
@t

= W (Qt,s) + λ
b
s

(
wbt,s0 − w

b
t,s

)
, (28)

where W (Qt,s) ≡ log
Qt,s
Q∗

−
1

ρ

(
δ

(
Qt,s
Q∗

η∗
)
− δ (η∗)

)
.

The function W (Qt,s) is strictly concave with a maximum at Qt,s = Q∗ and maximum value

equal to zero, W (Q∗) = 0 (cf. Eq. (16)). W (Qt,s) ≤ 0 captures the instantaneous losses in

welfare when the asset price (and therefore factor utilization) deviates from its e¢cient level,

Qt,s 6= Q∗. Therefore, the gap value wbt,s corresponds to the present discounted value of expected
welfare losses due to price rigidities and ine¢cient factor utilization.

In our welfare analysis, we mostly focus on the gap value function calculated according to

the planner’s belief, b = pl. This sidesteps questions about whether speculation increases or

reduces welfare (see Brunnermeier et al. (2014) for further discussion). Our analysis aligns with

the mandates of monetary policy in practice: the planner in our model exclusively focuses on

minimizing output gaps relative to a frictionless benchmark (similar to Kocherlakota (2014) and

Stein (2014)).5 Following Brunnermeier et al. (2014), we assume the planner’s beliefs are in the

convex hull of optimists’ and pessimists’ beliefs: λpl1 2 [λ
o
1,λ

p
1] and λ

pl
2 2 [λ

p
2,λ

o
2]. Our results

are qualitatively robust to the choice of planner’s beliefs in these sets.

Gap value in the recession: Aggregate demand externalities. In the appendix, we

show that the planner’s gap value function in the recession can be written as wplt,2 = w
pl
2 (αt,2),

where wpl2 (·) is a function that satisfies:

wpl2 (α) < 0 and
dwpl2 (α)

dα
> 0 for each α 2 (0, 1) . (29)

As expected, the gap value is strictly negative. Moreover, a greater wealth-share for optimists

shrinks the gap value. The welfare gap is smaller when optimists have more wealth, since

optimists’ wealth increases asset prices and aggregate demand and mitigates the underutilization

of capital [cf. Eqs. (26) and (28)].

Note that optimists’ wealth share is an endogenous and aggregate state variable that depends

on the amount of financial speculation that takes place in the boom state. In particular, the

positive relationship between optimists’ wealth and the gap value in (29) illustrates aggregate

demand externalities that motivate policy interventions during the boom. Individual optimists

that take on leverage during the boom (and pessimists that lend to them) do not internalize the

e§ects of their financial decisions on asset prices in the recession. In subsequent sections, we

5 In Caballero and Simsek (2017), we illustrate that (under appropriate parametric restrictions) macroprudential
policy that restricts investors’ risk taking can generate a Pareto improvement in welfare. That is, the planner
can make everyone better o§ even if she focuses on the total value (not just the gap value) and evaluates each
investor’s expected value according to her own belief.
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investigate whether prudential policies can help correct these externalities.

4. The boom: benchmark without prudential monetary policy

We now turn to our main focus: the equilibrium in the boom state. In this section, we analyze the

benchmark case without PMP, that is, when monetary policy follows the conventional output-

stabilization policy in (13) in state s = 1. We use this setup to illustrate that macroprudential

policy that tightens the leverage limit can internalize the aggregate demand externalities. In

the next section we introduce PMP and show that it can accomplish similar financial stability

objectives to macroprudential policy.

Recall that investors face a (possibly time-varying) leverage limit, !it,1 ≤ !t,1. We assume

the leverage limit can be written as a function of optimists’ wealth share, !t,1 = !1 (αt,1). This

assumption ensures that αt,1 is the only state variable. We denote the equilibrium variables as

functions of optimists’ wealth share and the leverage limit function: αt,2 = α2 (α,!1 (·)) denotes
optimists’ wealth share after transition when their current wealth share is αt,1 = α and the

leverage limit is described by !t,1 = !1 (αt,1) for each t. We use the notation α2 (α,1) to
denote the equilibrium when there is no leverage limit: !1 (α) =1 for each α.

Under appropriate parametric restrictions (Assumptions A2-A3 in the appendix) we show

that the boom without PMP features positive interest rates, e¢cient asset prices, and e¢cient

factor utilization, rft,1 > 0, Qt,1 = Q∗, ηt,1 = η∗. To characterize this equilibrium, consider

the intermediate cases, αt,1 2 (0, 1) (the corner cases are straightforward and relegated to the
appendix). The leverage limit doesn’t bind for pessimists but it might bind for optimists. Using

Eq. (21) for pessimists, and substituting rt,1 from Eq. (18) and Qt,1 = Q∗, Qt,2 = Q2 (αt,2), we

obtain

rf1 (α,!1) = ρ+ g1 − δ (η
∗)− λp1

1− α
1− α2 (α,!1)

(
Q∗

Q2 (α2 (α,!1))
− 1
)
. (30)

This is the risk balance condition according to pessimists (cf. Eq. (25)). The condition charac-

terizes the output-stabilizing interest rate given investors’ wealth shares. Assumption A2 ensures

that rf1 (α,!1) > 0 when α = 0, that is, the interest rate is above the lower bound if pessimists

dominate.

Hence, it remains to characterize the function α2 (α,!1). First consider the special case

without a leverage limit, !1 = 1 for each α. In this case, Eq. (23) provides a closed-form

solution:

α2 (α,1) = α
λo1

λ1 (α)
< α. (31)

Recall that we use the notation α2 (α,1) to denote optimists’ equilibrium wealth share without

a leverage limit. The expression λ1 (α) ≡ αλo1 + (1− α)λ
p
1 denotes the wealth-weighted average

probability as a function of optimists’ wealth share. Using Eq. (20), we can solve for the
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corresponding leverage ratio in closed form:

!o1 (α,1) = 1 +
1− λo1

λ1(α)

Q∗

Q2

(
αλo1
λ1(α)

) − 1
> 1. (32)

Optimists have above-average leverage during the boom, which induces a decline in their wealth

share after transition to the recession.

Next consider the case with a leverage limit. Suppose !1 (α) ≤ !o1 (α,1) so that the limit
binds (the other case is the same as before). Then, optimists’ leverage ratio is determined by

the limit:

!o1 (α,!1) = !1 (α) . (33)

To find optimists’ wealth share after transition, we consider Eq. (20) for the boom state

s = 1:

α2 (α,!1)

α
= 1− (!1 (α)− 1)

[
Q1
Q2

− 1
]
, (34)

where Q1 = Q∗ and Q2 = Q2 (α2 (α,!1)) .

The first line of this expression is the microfounded version of Eq. (2) from the introduction.

The second line substitutes the equilibrium prices for the boom and the recession states. The

last equation is the microfounded version of Eq. (1). As illustrated by Figure 1, the equilibrium

can be visualized as the intersection of two increasing relations. In Appendix A.3, we show that

under appropriate regularity conditions (Assumption A3), Eq. (34) has a unique solution that

satisfies α2 (α,!1) 2 [α2 (α,1) ,α].
Finally, applying Eq. (22), we obtain the dynamics of optimists’ wealth share absent a

transition as

α̇t,1
αt,1

= λp1
1− αt,1

1− α2 (αt,1,!1)

(
1−

α2 (αt,1,!1)

αt,1

)
≤ (1− αt,1) (λ

p
1 − λ

o
1) . (35)

The weak inequality is satisfied as equality when the leverage limit doesn’t bind (i.e., when α2 is

given by Eq. (31)). It is also easy to see that α̇t,1/αt,1 is a decreasing function of α2: if optimists

obtain a greater wealth share after transition to recession, then their wealth share grows more

slowly if there is no transition.

To summarize the equilibrium without PMP, the asset price during the boom is at its e¢cient

level, Q1 (α,!1) = Q∗, and the equilibrium interest rate is given by (30). If optimists’ leverage

is unconstrained, their wealth share after transition and their leverage ratio are given by Eqs.

(31) and (32). If their leverage ratio is constrained, these values are given by Eqs. (33) and

(34). Optimists’ wealth share evolves according to (35).

Our next result describes how macroprudential policy that tightens the leverage limit af-
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fects this equilibrium. This provides a useful benchmark for the next section where we assume

macroprudential policy is imperfect and investigate whether PMP can provide similar financial

stability benefits.

Proposition 1. Suppose Assumptions 1-2 and A1-A3 hold. Consider the benchmark equilibrium
without PMP, Q1 (·) = Q∗. Fix a level α 2 (0, 1) that is associated with some binding leverage
limit, !1 (α) ≤ !o1 (α,1). Decreasing the leverage limit increases optimists’ wealth share after
a transition to recession: dα2(α,!1)

d!1(α)
< 0. It also slows down the growth rate of optimists’ wealth

share if the boom persists, d(α̇t,1/αt,1)d!1(α)
< 0.

For a sketch proof (completed in Appendix A.3), note that optimists’ wealth decline after

transition is increasing in their leverage ratio, !1−1 [cf. Eq. (34)]. Tightening the leverage limit
reduces optimists’ leverage ratio, !̃1 − 1 < !1 − 1, which in turn mitigates their wealth decline.
This increases the price level in the recession, Q2, which further boost optimists’ wealth. In

equilibrium, optimists’ wealth share and the asset price in the recession settle at a higher level,

α2 (α, !̃1) > α2 (α,!1) and Q2 (α2 (α, !̃1)) > Q2 (α2 (α,!1)). The left panel of Figure 1 (in the

introduction) illustrates the virtuous cycle that results from tightening the leverage limit.

Recall that increasing optimists’ wealth share in the recession internalizes aggregate demand

externalities [cf. Eq. (29)]. Therefore, Proposition 1 illustrates how macroprudential policy that

tightens the leverage limit can improve welfare. At the same time, the welfare e§ects do not

follow immediately because tightening the leverage limit also slows down the growth of optimists’

wealth share if the recession is not realized, as illustrated by the last part of Proposition 1.

In a dynamic setting, optimists’ wealth share can also be useful in future recessions and thus

macroprudential policy involves a trade-o§. We investigate this trade-o§ in Caballero and Simsek

(2017), where we show that the benefits from an immediate transition to recession often dominate

the costs from worsening future recessions (in view of discounting). In particular, we show

that (under regularity conditions and starting from a no-policy benchmark) adopting some

macroprudential policy improves welfare.

5. Prudential monetary policy

We now assume that macroprudential policy is inflexible: the planner cannot change the existing

leverage constraints. Instead, we introduce our main ingredient and allow monetary policy in

the boom state to be used for prudential purposes. We start by establishing a negative result:

when there is no leverage limit, PMP is useless because optimists endogenously change their

risk taking to undo the prudential benefits. We then consider the case with a leverage limit and

establish that, when there is some leverage limit, monetary policy can replicate the prudential

e§ects of tightening this limit. Specifically, our main result establishes that, up to a first order,

the welfare e§ects of PMP are the same as the e§ects of directly tightening the leverage limit.
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Formally, suppose that in the boom state the planner does not follow the rule in (13) but

instead sets the interest rate to target an asset price level, Qt,1, which might be lower than the

e¢cient level, Qt,1 ≤ Q∗. We assume the planner’s price target can be written as a function of
optimists’ wealth share:

Qt,1 = Q1 (αt,1) ≤ Q∗.

We denote the equilibrium variables as functions of the PMP function (in addition to the earlier

variables): α2 (α,!1 (·) , Q1 (·)) denotes optimists’ wealth share after transition, when monetary
policy is described by Qt,1 = Q1 (αt,1) for each t. We use the same notation as in the previous

section to denote the equilibrium in the benchmark in which the planner follows the conventional

output-stabilization policy: e.g., α2 (α,!1) denotes the equilibrium when monetary policy is

described by Qt,1 = Q∗ for each t.

5.1. No leverage limit

First consider the case without a leverage limit, !1 = 1. In this case, we establish a negative
result: PMP can only worsen the gap value (i.e., reduce welfare).

Proposition 2. Suppose Assumptions 1-2 and A1-A3 hold. Consider the case without a leverage
limit, !1 =1, and some PMP, Q1 (·). Optimists’ wealth share after transition and the evolution
of their wealth share are the same as in the benchmark without prudential policy (in particular,

Eq. (31) holds). The policy lowers the planner’s gap value relative to the benchmark with

conventional output-stabilization policy:

wpl1 (α,1, Q1) ≤ w
pl
1 (α,1) .

The first part of Proposition 2 says that PMP, by itself, does not a§ect the evolution of

investors’ wealth shares. The second part follows as a corollary. Since the policy does not a§ect

wealth shares, it only a§ects the gap value through its impact on the asset price during the boom,

Qt,1 [cf. Eq. (28)]. Lowering Qt,1 below Q∗ makes factor utilization less e¢cient and decreases

welfare: W (Qt,1) < W (Q∗) when Qt,1 < Q∗. Put di§erently, the policy has no benefits, but it

has some costs due to low asset prices and ine¢cient factor utilization in the boom state.

The key step to our argument is that the policy does not a§ect optimists’ wealth share

after transition, α2 (α,1, Q1) = α2 (α,1) = α
λo1

λ1(α)
[cf. Eq. (31)]. To understand this feature,

consider the equilibrium for an intermediate case, α 2 (0, 1), and note that the policy a§ects
optimists’ equilibrium leverage ratio. In particular, we have the following version of Eq. (34):

α2 (α,1)
α

= 1− (!o1 (α,1, Q1)− 1)
[

Q1 (α)

Q2 (α2 (α,1))
− 1
]
.

Note that a decline in Q1 (α) does result in a smaller price drop after transition (the term inside

the brackets). Therefore, the policy leaves optimists’ wealth share after transition (α2) un-
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changed because it induces optimists to increase their leverage ratio, !o1 (α,1, Q1) > !
o
1 (α,1).

Put di§erently, the prudential e§ects of the policy are neutralized by an increase in optimists’

risk taking. Optimists increase their leverage because they perceive the transition to recession

as less risky due to a smaller asset price drop after the transition.

5.2. With leverage limit

The previous discussion suggests that PMP can a§ect investors’ equilibrium exposures if opti-

mists are constrained by some leverage limit. Consider a situation in which there is a limit that

binds for optimists so that !o1 (α,!1, Q1) = !1 (α). Then, we have the following version of Eq.

(34):
α2 (α,!1, Q1)

α
= 1− (!1 (α)− 1)

[
Q1 (α)

Q2 (α2 (α,!1, Q1))
− 1
]
. (36)

In this case, since !1 (α) is fixed, a decline in Q1 (α) translates into an increase in optimists’

wealth share after transition. By reducing asset prices during the boom, the planner reduces the

price drop after a transition to recession, which supports optimists’ balance sheets. The following

result formalizes this intuition and shows that monetary policy can replicate the prudential

e§ects of tightening the leverage limit.

Proposition 3. Suppose Assumptions 1-2 and A1-A3 hold. Consider the benchmark equilibrium
without PMP, Q1 (·) = Q∗. Fix a level α 2 (0, 1) that is associated with some leverage limit,
!1 (α) < 1 (that might or might not bind). Consider an alternative leverage limit !̃1 (·) that
agrees with !1 (·) everywhere except for α and that satisfies !̃1 (α) < min (!1 (α) ,!

o
1 (α,1)),

and a PMP Q̃1 (·) that agrees with Q1 (·) everywhere except for α. Then:
(i) There exists Q̃1 (α) < Q∗ such that the PMP (with the original leverage limit) gener-

ates the same e§ect on optimists’ wealth share after transition as the alternative leverage limit

(without PMP):

α2

(
α,!1, Q̃1

)
= α2 (α, !̃1) .

Targeting a lower e§ective limit requires targeting a lower asset price, @Q̃1(α)@!̃1(α)
> 0.

(ii) PMP requires setting a higher interest rate than the benchmark without policy:

rf1

(
α,!1, Q̃1

)
> rf1 (α,!1) .

Targeting a lower e§ective limit requires setting a higher interest rate,
@rf1 (α,!1,Q̃1)

@!̃1(α)
< 0.

The first part of Proposition 3 shows that monetary policy can replicate the prudential

e§ects of tightening the leverage limit that we established in Proposition 1. For a sketch proof

(completed in Appendix A.4), note that optimists’ wealth decline after a transition depends on

the product of their (above-average) leverage and the price decline, (!1 − 1)
h
Q1
Q2
− 1
i
[cf. Eq.
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(36)]. Recall that tightening the leverage limit mitigates optimists’ wealth decline by reducing

their leverage ratio, !̃1 − 1 < !1 − 1. For a given asset price Q2, monetary policy can achieve
the same wealth decline for optimists at the leverage limit, !1 = !1, by reducing the asset

price decline, Q̃1Q2 − 1 <
Q∗

Q2
− 1. This policy increases the price level in the recession, Q2, which

generates a similar virtuous cycle as a policy that directly tightens the leverage limit. The right

panel of Figure 1 illustrates how PMP generates e§ects that are very similar to tightening the

leverage limit.

In fact, the monetary authority can choose Q̃1 so that optimists’ wealth share and the

equilibrium price in the recession settle exactly at the same level as if the regulator had tight-

ened the leverage limit, α2
(
α,!1, Q̃1

)
= α2 (α, !̃1) and Q2

(
α2

(
α,!1, Q̃1

))
= Q2 (α2 (α, !̃1)).

Specifically, after substituting these expressions into Eq. (36), we characterize Q̃1 as the unique

solution to

(!1 (α)− 1)

"
Q̃1

Q2 (α2 (α, !̃1))
− 1

#

= (!̃1 (α)− 1)
[

Q∗

Q2 (α2 (α, !̃1))
− 1
]
. (37)

Hence, Q̃1 is the asset price that replicates optimists’ wealth decline after accounting for the

endogenous price adjustment in the recession.

The second part of Proposition 3 shows that PMP requires raising the interest rate above the

conventional policy benchmark with output stabilization. As expected, targeting a lower asset

price requires a higher interest rate. This result o§ers an alternative interpretation for how PMP

works. Recall that, if there is an instantaneous transition to the recession, then the interest rate

will decline to zero with or without PMP, rf2
(
α,!1, Q̃1

)
= rf2 (α,!1) = 0. Hence, by increasing

the interest rate during the boom, PMP increases the size of the interest rate cut in case there

is a transition to recession, rf1 − r
f
2 . For a given level of Q2, this reduces the asset price decline

after transition to recession, Q1/Q2. A smaller asset price decline supports optimists’ wealth

share after transition, α2, and increases the asset price level Q2 (which triggers the virtuous

cycle described earlier). Thus, the policy can be thought of as increasing the interest rate to

create room for an interest rate cut and mitigate the impact of negative asset price shocks in

the future.

Proposition 3 is essentially static: it considers a policy change at a particular instant while

leaving the policy at other times unchanged. This is useful for illustrating how PMP works, but

it does not have an impact on the dynamic equilibrium. In addition, since PMP has costs as

well as benefits, there is the remaining question of how it a§ects welfare. We next present our

main result, which generalizes Proposition 3 to a dynamic setting and shows that the welfare

e§ects of prudential policy are also (locally) equivalent to tightening the leverage limit.

To state the result, we parameterize the leverage limit function, ! (α, l) where l 2 L ⊂ R+,
and lower levels of l correspond to a tighter leverage limit, @!(α,l)@l > 0 for α 2 (0, 1). An example
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is the simple leverage limit function

!1 (α, l) = l with l 2 L = (1,1) . (38)

Here, the leverage limit doesn’t depend on α and a lower l corresponds to a tighter limit for all

α. Whenever we parameterize the leverage limit function, we simplify the notation by denoting

the corresponding equilibrium variables with α2 (α, l, Q1) (as opposed to α2 (α,!1 (·, l) , Q1)).

Proposition 4. Suppose Assumptions 1-2 and A1-A3 hold. Consider the case with some lever-
age limit function, !1 (α, l), parameterized so that lower levels of l correspond to a tighter limit.

(i) For each l̃ < l in a su¢ciently small neighborhood of l, there exists a PMP, denoted by

Q1

(
·, l̃
)
, such that optimists’ equilibrium wealth share after transition is the same as when the

leverage limit is given by !1
(
α, l̃
)
without PMP:

α2

(
α, l, Q1

(
·, l̃
))
= α2

(
α, l̃
)
for each α 2 (0, 1) .

(ii) For small policy changes, the welfare e§ects of PMP are the same as the welfare e§ects

of tightening the leverage limit directly:

dwpl1

(
α, l, Q1

(
·, l̃
))

dl̃
|l̃=l =

dwpl1

(
α, l̃
)

dl̃
|l̃=l. (39)

The first part of Proposition 4 follows from a similar analysis as in Proposition 3. In particu-

lar, for each α 2 (0, 1), the price levelQ1
(
α, l̃
)
= Q̃1 corresponds to the policy that replicates the

prudential e§ects of the tighter leverage limit, !1
(
α, l̃
)
= !̃1, given the current limit !1 (α, l).6

The second part characterizes the welfare e§ects of PMP for small amounts of e§ective

tightening. For a sketch proof, note that the policies l̃ and Q1
(
·, l̃
)
lead to identical equilibrium

allocations except for the asset price in the boom state. Using this observation and the definition

of the gap value in (28), the welfare di§erence between the two policies can be written as

wpl1

(
α, l, Q1

(
·, l̃
))
− wpl1

(
α, l̃
)
=

Z 1

0
e
−
(
ρ+λpl1

)
t
(
W
(
Q1

(
αt,1, l̃

))
−W (Q∗)

)
dt. (40)

Here, αt,1 denotes optimists’ wealth share when the economy starts with α0,1 = α, follows

policy l̃, and reaches time t without transitioning into recession. Since W (Qt,1) < W (Q∗) for

Qt,1 < Q∗, this expression implies that PMP always yields lower welfare than the equivalent

tightening of the leverage limit. However, since W (Qt,1) is maximized at Qt,1 = Q∗, these

6One di§erence from Proposition 3 is that the policy’s e§ect on the interest rate is more complicated because
the price drift Q̇t,1 is not necessarily zero. This non-zero drift a§ects the equilibrium return to capital [cf. Eq.
(18)] and thus the equilibrium interest rate. As long as l̃ is in a neighborhood of l, this e§ect is small and the
interest rate in the boom state remains strictly positive (in particular, the policy doesn’t violate the zero lower
bound). In fact, in the numerical simulations (described below), PMP increases the interest rate.
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Figure 3: Equilibrium functions in the boom state s = 1 for di§erent specifications of the
leverage limit and PMP.

welfare di§erences are second order when the prudential policy is used in small doses (so that

Qt,1 remains close to Q∗). Therefore, as formalized by Eq. (39), the two policies have identical

first-order e§ects on welfare.

5.3. Numerical illustration

We next illustrate the e§ects of PMP with a numerical example. Suppose optimists’ and pes-

simists’ beliefs about the probability of a transition to recession are given by λo1 = 0.09 < λ
p
1 = 0.9

and the remaining parameters are as described in Appendix A.6. We work with the simple lever-

age limit function in (38). We assume the current (market-imposed) limit barely binds when

optimists have half of the wealth share. This amounts to setting: l = !o1 (0.5,1) = 9.03. The
planner would like to tighten this constraint by a quarter, l̃ = 0.75l = 6.77, but she cannot

control the leverage limit directly. Instead, the planner implements the replicating prudential

policy, Q1
(
α, l̃
)
.

Figure 3 plots the equilibrium functions for three di§erent policy specifications over the

range α 2 [0.4, 0.9]. The red dashed lines correspond to the case with the current leverage limit
l but no prudential policy of any kind. The black dash-dotted lines correspond to tightening the

leverage limit directly, l̃ = 0.75l. Finally, the blue solid lines correspond to implementing this
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tightening via PMP, Q1
(
α, l̃
)
.

The top left panel illustrates optimists’ leverage ratio as a function of their wealth share

for each specification. Optimists have an above-average leverage ratio. The current (market-

imposed) leverage limit restricts optimists’ leverage ratio only slightly (not visible in the figure).

The proposed tightening would restrict their leverage ratio considerably more. PMP raises

optimists’ leverage ratio (over the range α > 0.5) as it pushes them against the leverage limit.

The top middle panel illustrates optimists’ wealth share after transition normalized by their

current wealth share, α2 (α) /α. Optimists’ wealth share declines after transition, α2 (α) /α < 1.

PMP replicates the e§ect of tightening the leverage limit and therefore increases optimists’

wealth share after transition. The top right panel illustrates that this e§ective tightening slows

down the growth of optimists’ wealth share if there is no transition.

The bottom left panel illustrates the equilibrium asset price in the boom state normalized by

the e¢cient level. The leverage limit (its current level or hypothetical tightening) leaves the asset

price equal to its e¢cient level. In contrast, PMP reduces the asset price by around 2%. This

relatively small decline is able to replicate the e§ects of a large reduction in optimists’ leverage

ratio because optimists’ initial leverage ratio is high. With high and constrained leverage, small

changes in asset prices have large e§ects on optimists’ balance sheets [cf. (36)].

The bottom middle panel illustrates the price after a transition to recession normalized by

the e¢cient level. PMP increases the asset price during the recession. We can gain intuition

for this result by comparing this panel with the bottom left panel. By lowering the asset price

during the boom, PMP reduces the asset price decline after a transition to recession. This

smaller decline supports optimists’ balance sheets and thus improves the asset price level during

the recession by around 2%.

The bottom right panel illustrates the equilibrium interest rate. The leverage limit reduces

the policy interest rate because it reduces optimists’ e§ective asset demand. In contrast, PMP

increases the policy interest rate (by less than 2 percentage points). This reduces the asset price,

as illustrated by the bottom left panel, which results in a smaller asset price decline when there

is a transition to recession. Equivalently, by raising the interest rate, monetary policy creates

room to mitigate the asset price decline that results from negative shocks.

Figure 4 simulates the equilibrium variables over time (for each policy specification) for a

particular initial wealth share for optimists, α0, and a particular realization of uncertainty. We

take α0 = 0.85, and we consider a path in which the economy transitions into the recession at

t = 0.2 and recovers from the recession at t = 0.6 (other choices lead to qualitatively similar

e§ects). The plots illustrate that PMP raises the asset price in the recession at the cost of

reducing it in the boom. In this example, the increase in the asset price level during the

recession is greater than the required decline during the boom, but this is not always the case.

Regardless of the relative magnitudes, the policy improves welfare (as we will show) because the

asset-price increase in the recession generates first-order benefits, whereas the asset-price decline

in the boom generates second-order welfare losses.
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Figure 4: Simulation of the equilibrium path starting with a0 = 0.85 and s = 1 for di§erent
specifications of the leverage limit and PMP.
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Figure 5: The planner’s gap value as a function of the e§ective leverage ratio starting with
a0 = 0.85 and s = 1 for a direct tightening (dashed line) and an equivalent tightening via PMP
(solid line).
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Figure 5 illustrates the welfare e§ects of the policy by plotting the planner’s gap value

function, wpl1 (α0) [cf. Eq. (28)]. We take the planner’s beliefs to be the average of optimists’

and pessimists’ beliefs, λpls = (λos + λ
p
s) /2. The black dash-dotted line in Figure 5 illustrates

that, if feasible, a direct tightening of the leverage limit would improve the gap value. The solid

blue line illustrates that an indirect tightening via PMP also increases the gap value. In fact,

for small policy changes, PMP has the same welfare impact as a direct tightening, illustrating

the second part of Proposition 4. This can be seen graphically in Figure 5 by comparing the gap

values at the point corresponding to the leverage tightening studied above (which we highlight

with the vertical dotted line). For small policy changes, welfare losses from the asset price

decline during the boom are second order. As the (desired) limit is tightened further, these

welfare losses grow larger and PMP becomes less desirable compared to a direct tightening.

6. Optimal prudential monetary policy

So far, we have established that monetary policy can have prudential benefits by e§ectively

tightening an existing leverage limit. In this section, we analyze the determinants of optimal

PMP in our setting. We first characterize the optimal prudential policy as the solution to a

recursive optimization problem. We then solve the problem numerically and investigate the

comparative statics of optimal policy.

For each α, suppose the planner sets an arbitrary price level Q1 ≤ Q∗ subject to the re-

striction that the price level weakly declines after the transition. Given Q1, optimists’ wealth

share after transition is determined by the function α2 (α,!1, Q1) 2 [0, 1]. This is a continuous
and piecewise di§erentiable function that is equal to α2 (α,1) if optimists’ leverage limit does
not bind (that is, if !o1 (α,1, Q1) < !1 (α)) and is equal to the solution to (36) if the limit

binds. Using this notation, we can recursively formulate the planner’s optimization problem in

the boom state s = 1 as:

(
ρ+ λpl1

)
wpl1 (α) = max

Q1
W (Q1)−W (Q∗) +

dwpl1 (α)

dα
α̇+ λpl1 w

pl
2 (α2) (41)

where α̇ =
α (1− α)λp1
1− α2

(
1−

α2
α

)

α2 = α2 (α,!1, Q1)

and Q1 2 [Q2 (α2 (α,!1, Q1)) , Q
∗] .

Here, the second line uses Eq. (35) to describe the evolution of optimists’ wealth share absent a

transition, α̇ = dαt,1
dt , as a function of their induced wealth share after transition, α2 = αt,2 (as

well as their current wealth share, α = αt,1).7

The analytical solution to problem (41) is complicated in part because there might be a

7 In problem (41), we ignore the zero lower bound constraint on the interest rate. In numerical solutions
(described subsequently), we check and verify that this constraint doesn’t bind at the optimal solution.
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discontinuity in the optimal policy function.8 However, it is straightforward to solve problem

(41) numerically. Moreover, we can glean some intuition by considering the local optimality

conditions. Specifically, for an interior solution Q1 2 (Q2, Q∗), the optimality condition (for
decreasing Q1 further) can be written as:

dW (Q1)

dQ1
=

dα2
d (−Q1)

"

λpl1
dwpl2 (α2)

dα2
+
dα̇

dα2

dwpl1 (α)

dα

#

(42)

where
dα̇

dα2
= −λp1

(1− α)2

(1− α2)2
.

The left-hand side of Eq. (42) captures the costs of the policy via its impact on the output

gap in period 1. This term is positive since W 0 (Q1) > 0: decreasing the asset price in the boom

exacerbates the output gap. The right-hand side captures the welfare e§ects of the policy via

its impact on optimists’ wealth share. We have dα2
d(−Q1)

> 0: lowering the asset price increases

optimists’ wealth share after transition. We also have dw
pl
2 (α2)
dα2

> 0: increasing optimists’ wealth

share after transition internalizes aggregate demand externalities and mitigates output gaps.

Hence, the first term inside the brackets is positive and captures the static benefits of PMP.

On the other hand, we also have dα̇
dα2

< 0: if there is no transition, the policy slows down

the accumulation of optimists’ wealth share. Moreover, we have dwpl1 (α)
dα > 0: the reduction in

optimists’ wealth share in the boom state widens output gaps in a future recession. Therefore,

the second term inside the brackets is negative and captures the dynamic costs of PMP.

6.1. Numerical illustration

Figure 6 illustrates the optimal monetary policy corresponding to the numerical example in

Section 5.2. As a benchmark, the red dashed lines illustrate the equilibrium without PMP but

with the simple leverage limit !1 (α, l) = l = 9.03. Recall that this leverage limit is chosen so

that (absent PMP) it binds for optimists when α < 0.5 but not when α ≥ 0.5. The green dotted
line in the left panel illustrates the minimum price decline necessary to make the leverage limit

bind for optimists–price reductions smaller than this level have no prudential benefits as they

are undone by endogenous risk adjustments by optimists.

The blue solid line in the left panel of Figure 6 illustrates the optimal price that solves problem

(41). With this parameterization, the planner does not use monetary policy for prudential

purposes when α < 0.33. In this range, the leverage limit is already tight, and tightening it

further via PMP does not create large enough benefits to compensate for the costs imposed by

slowing down the accumulation of optimists’ wealth share [cf. Eq. (42)]. In contrast, the planner

8This discontinuity emerges from the fact that, if the leverage limit doesn’t bind absent policy (!o1 (α,1, Q∗1) <
!1 (α)), then prudential monetary policy requires a discontinuous decline in asset prices and output. In particular,
there might be a threshold level of optimists’ wealth share, α, where the planner is indi§erent between setting
Q1 (α) < Q1 (and using the policy) and setting Q1 (α) = Q∗1 (and not using the policy).
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Figure 6: Equilibrium with optimal PMP (blue solid line) and without PMP (red dashed line)
given the leverage limit l. The green dotted line in the left panel illustrates the minimum price
decline necessary to make optimists’ leverage limit bind.

uses PMP over the range α 2 [0.33, 0.99]. Moreover, the degree of tightening relative to the
conventional policy benchmark is non-monotonic in the optimists’ wealth share. In particular,

the planner tightens the policy more as optimists’ wealth share increases toward α = 0.85 and

tightens it less beyond this level. Hence the policy is most useful when optimists’ wealth share

lies in an intermediate range. Two forces make the policy relatively less attractive for large α.

First, since optimal private leverage drops as α rises, the policy becomes costlier as the planner

needs to reduce the price even further to make optimists’ leverage limit bind and gain some

traction (as illustrated by the green dotted line). Second, the policy is less useful because there

is less speculation. In fact, for α ' 0.99, these countervailing forces are strong enough that the
planner stops using the policy altogether (as illustrated by the jump in the blue solid line).

Figure 7 illustrates the comparative statics of the optimal policy. To facilitate exposition, we

describe the e§ects for a particular level of optimists’ wealth share, α = 0.85 (the same wealth

share we considered in the previous section). The top panels display the change in the optimal

price level as we vary a single parameter. The bottom panels display the change in the optimal

interest rate relative to the conventional policy benchmark with output stabilization.

The left panels show the e§ect of changing the leverage limit, l. When the leverage limit is

very loose, the planner does not use prudential policy because it is easily undone by optimists,

illustrating Proposition 2. There is a threshold leverage limit below which the planner uses
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Figure 7: Comparative statics of the optimal PMP price level (top panels) and the interest rate
(bottom panels) for α = 0.85 with respect to changing the parameter on the x-axis. The vertical
dotted lines illustrate the benchmark parameters (used in earlier figures).

monetary policy. Once the leverage limit is below this threshold, tightening it further makes the

planner use PMP less. Hence, the leverage limit and PMP are complements in the high-l range

but they become substitutes in the low-l range.

The middle panels illustrate the e§ect of changing the planner’s belief about the probability

of transition into recession, λpl1 . As expected, when the planner believes the recession is more

likely, she utilizes PMP more and reduces the asset price by a greater amount.

The right panels show the e§ect of changing belief disagreements, λp1 − λ
o
1 (keeping the

mean belief constant at λp1+λ
o
1

2 ). With greater belief disagreements, the planner is more likely

to utilize PMP. Intuitively, disagreements increase speculation (and optimists’ risk-exposure),

which makes PMP more useful. Conditional on using the policy, the planner does not change

the intensity of the policy very much.9 This insensitivity arises because, once the policy is used,

it sets optimists against the leverage limit, which largely decouples equilibrium outcomes from

the magnitude of belief disagreements.

9 In particular, the main e§ect of greater disagreements is to reduce the threshold level of optimists’ wealth
share above which the planner uses prudential monetary policy (see Figure 6).
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7. Prudential policies with “shadow banks”

In practice, a major concern with macroprudential policy is that there are lightly regulated

institutions–typically referred to as shadow banks–that can circumvent leverage limits or other

regulatory constraints. Stein (2013) noted that in these environments PMP might have an

advantage over macroprudential policy “because it gets in all of the cracks.” We next evaluate

the performance of macroprudential policy and PMP in our model when some of the high-

valuation agents face a looser leverage limit. We conclude that both policies remain useful but

are weakened by the same general equilibrium forces that incentivize shadow banks to increase

their leverage.

Specifically, suppose a subset of optimists are not subject to the leverage constraint,

!1,t ≤ !1,t. We refer to these agents as unregulated optimists, and refer to the remaining

fraction of optimists as regulated optimists. Recall that we view (regulated) optimists as the

model counterpart to “banks” (see Remark 2). Therefore, unregulated optimists are the model

counterpart to “shadow banks.” The assumption that unregulated optimists face no leverage

limit simplifies the analysis but is clearly extreme. Even if shadow banks can avoid all regula-

tion, they may still be subject to market-based leverage constraints. Our assumption is only

intended to qualitatively capture that shadow banks face looser leverage limits compared to

banks.

We let β 2 (0, 1) denote the relative fraction of optimists’ wealth that is held by unregulated
optimists. Hence, the wealth share of unregulated and regulated optimists is given by, respec-

tively, αβ and α (1− β). As before, the total wealth share of optimists (including both types)
and pessimists is given by, respectively, α and 1− α. The rest of the model is unchanged.

To characterize the equilibrium, consider first the recession state s = 2. Conditional on the

total mass of optimists, α2, the equilibrium is the same as before. This is because we assume

optimists face no constraints from state 2 onwards, which implies there is no remaining functional

di§erence between regulated and unregulated optimists. In particular, the equilibrium price in

the recession can be written as Qt,2 = Q2 (αt,2) , where Q2 (·) is the price function characterized
earlier [cf. Eq. (26)].

Next consider the equilibrium in the boom state s = 1. In this case, there are two state

variables: the total mass of optimists, α 2 (0, 1), and the fraction of unregulated optimists,
β 2 (0, 1). Therefore, we denote the equilibrium variables as functions of two state variables, in

addition to the leverage constrained policy and the PMP. In particular, α2 (α,β,!1 (·) , Q1 (·))
and β2 (α,β,!1 (·) , Q1 (·)) denote, respectively, the total mass of optimists and the fraction
of unregulated optimists that obtains if there is an instantaneous transition to recession. To

simplify the notation, we suppress the dependence of these functions on some or all of their

arguments as long as the appropriate arguments are clear from the context.

Much of our earlier analysis applies also in this setting. In particular, Eq. (22), which

characterizes the growth rate of agents’ wealth shares absent a state transition, applies for all
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agents. In the appendix, we solve the corresponding equations for regulated and unregulated

optimists to obtain the dynamics of α and β as follows:

α̇

α
= λp1

1− α
1− α2

(
1−

α2
α

)
, (43)

β̇

β
= λp1

1− α
1− α2

α2
α

(
1−

β2
β

)
.

Given α2, optimists’ total wealth share follows the same equation as before (cf. Eq. (35)). Given

β2 and α2, the relative wealth share of unregulated optimists follows a similar equation. Below,

we will verify that the equilibrium features α2 < α and β2 < β. Combining this observation

with (43) implies α̇ > 0 and β̇ > 0. Optimists’ total wealth share (resp. unregulated optimists’

relative wealth share) grow absent transition to recession, because these agents take on greater

risk and earn a higher risk premium compared to pessimists (resp. regulated optimists).

It remains to characterize the functions, α2,β2. To this end, note that the portfolio optimality

condition (21) holds as equality for unregulated optimists and as a weak inequality for regulated

optimists. Combining these observations, we obtain:

λo1
α (1− β)
α2 (1− β2)

≥ λo1
αβ

α2β2
= λp1

1− α
1− α2

. (44)

Note also that Eq. (20) , which relates agents’ wealths share after transition to their leverage

ratio, applies for all agents. Applying this condition for regulated and unregulated optimists,

we obtain:

α2 (1− β2)
α (1− β)

= 1− (1− !o,reg1 )

(
Q1

Q2 (α2)
− 1
)

(45)

α2β2
αβ

= 1− (1− !o,unreg1 )

(
Q1

Q2 (α2)
− 1
)
. (46)

Given the current price level Q1 and the price function after transition Q2 (α2), the equilibrium

functions for α2,β2 (as well as for !
o,reg
1 ,!o,unreg1 ) can be characterized by solving Eqs. (44− 46).

Consider the case in which regulated optimists’ leverage constraint binds (the other case is

the same as in previous sections). In this case, we have !o,reg1 = !1. Substituting this into Eq.

(45), we obtain:
α2 (1− β2)
α (1− β)

= 1− (!1 − 1)
[

Q1
Q2 (α2)

− 1
]
. (47)

As before, this expression describes regulated optimists’ relative wealth share as a function of the

leverage limit and the price drop after transition. Solving for β2 from Eq. (44), and substituting

into Eq. (47), we further obtain:

1

1− β

(
α2
α
−
λo1
λp1
β
1− α2
1− α

)
= 1− (!1 − 1)

[
Q1

Q2 (α2)
− 1
]
. (48)
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This equation generalizes Eq. (34) (which we analyzed extensively in previous sections) to cases

with β > 0. In particular, the equation characterizes α2 given Q1, Q2 (α2) and !1.

Note also that the left-hand side of Eq. (48) is an increasing function of α2. Hence, as

before, the equation can be visualized as the intersection of two increasing relations between α2
and Q2. Under appropriate regularity conditions (relegated to the appendix), there is a unique

intersection. The following result considers the benchmark case without PMP, Q1 = Q∗, and

establishes the comparative statics of the equilibrium with respect to the fraction of unregulated

optimists, β. The result also establishes the comparative statics with respect to the leverage

limit !1 and generalizes our earlier result about macroprudential policy (Proposition 1) to this

setting.

Proposition 5. Suppose Assumptions 1-2 and A1-A3 hold and that a fraction, β 2 (0, 1), of
optimists’ wealth is held by unregulated optimists that face no leverage limits. Consider the

benchmark equilibrium without PMP, Q1 (α) = Q∗. Fix levels α,β 2 (0, 1) that are associated
with some binding leverage limit, !1 (α,β) < !o,reg1 (α,β,1). Absent transition to recession,
α and β follow the dynamics in (43). After transition, α2 is characterized as the solution to

Eq. (48) and β2 is characterized as the solution to (44). In equilibrium, α2 < α,β2 < β and

α̇ > 0, β̇ > 0: optimists’ total wealth share and unregulated optimists’ relative wealth share shrink

after transition to recession and grow absent transition. Moreover, α2 satisfies the following

comparative statics:

(i) Increasing the relative wealth share of unregulated optimists, β, decreases optimists’ wealth

share after transition, dα2(α,β,!1(·))dβ < 0. In the limit as β ! 1, optimists’ wealth share approaches

its level in the equilibrium without leverage limits, α2 (α,1).
(ii) Macroprudential policy that decreases the leverage limit increases optimists’ wealth share

after a transition to recession, dα2(α,β,!1(·))d!1(α,β)
< 0. Increasing the relative wealth share of unregu-

lated optimists, β, reduces the e§ectiveness of macroprudential policy, @
@β

dα2(α,β,!1(·))
d!1(α,β)

> 0.

This result verifies the conventional wisdom that the presence of less regulated agents reduces

the strength of macroprudential policy. The first part shows that, as the relative wealth share

of unregulated optimists grows, optimists take on greater risk and their wealth share declines by

a greater magnitude after transition to recession. The second part shows that (as long as some

optimists are regulated, β < 1) macroprudential policy that tightens leverage limits mitigates

the decline in optimists’ wealth share but less so than in the earlier setting without unregulated

optimists.

Next consider PMP that lowers the current asset price level, Q1 (α,β) ≤ Q∗. As illustrated
by Eq. (47), PMP reduces regulated optimists’ exposure to transition to recession. As illustrated

by Eq. (48), this in turn increases the total mass of optimists after transition to recession, α2.

Eq. (48) further suggests that, as before, PMP a§ects the equilibrium in much the same way

as a decline !1. The following result verifies this intuition and generalizes our main result

showing that monetary policy can replicate the prudential e§ects of tightening a leverage limit
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(cf. Proposition 3).

Proposition 6. Suppose Assumptions 1-2 and A1-A3 hold and that a fraction, β 2 (0, 1), of
optimists’ wealth is held by unregulated optimists that face no leverage limits. Fix some α,β 2
(0, 1) and consider the setup of Proposition 3. In particular, consider an alternative leverage

limit !̃1 (·) that agrees with !1 (·) everywhere except for (α,β) and that satisfies !̃1 (α,β) <
min (!1 (α,β) ,!

o,reg
1 (α,β1)). Then:

(i) There exists Q̃1 (α,β) < Q∗ such that the PMP (with the original leverage limit) generates

the same e§ect on regulated and unregulated optimists’ wealth shares after transition as the

alternative leverage limit (without PMP):

α2

(
α,β,!1, Q̃1

)
= α2 (α,β, !̃1) and β2

(
α,β,!1, Q̃1

)
= β2 (α,β, !̃1) .

Targeting a lower e§ective limit requires targeting a lower asset price, @Q̃1(α,β)@!̃1(α,β)
> 0.

(ii) PMP requires setting a higher interest rate than the benchmark without policy:

rf1

(
α,β,!1, Q̃1

)
> rf1 (α,β,!1) .

Targeting a lower e§ective limit requires setting a higher interest rate,
@rf1 (α,β,!1,Q̃1)

@!̃1(α,β)
< 0.

The sketch-proof of this result is the same as in Proposition 3. In particular, the monetary

authority can choose Q̃1 so that optimists’ total wealth share and the equilibrium price in the

recession settle at the same level as if the regulator had directly tightened the leverage limit. In

fact, conditional on optimists’ wealth share α2, the replicating Q̃1 that the planner needs to set

is characterized as the solution to the same equation (37) as in our earlier analysis.

7.1. Numerical illustration

We next illustrate numerically the e§ects of macroprudential policy and PMP in the presence of

unregulated optimists. Consider the same example we analyzed in Section 5.3. In particular, the

current leverage limit barely binds when optimists have half of the wealth share. The planner

would like to tighten the existing limit by a quarter, l̃ = 0.75l. However, she cannot control

the leverage limit directly. Instead, the planner implements the replicating prudential policy,

Q1

(
α,β, l̃

)
.

Figure 8 plots the equilibrium functions for three di§erent policy specifications over the

range α 2 [0.4, 0.9] and β 2 [0, 1]. The lines corresponding to β = 0 match the earlier equilibria
without unregulated optimists (also plotted in Figure 3). The rest of the surfaces illustrate the

e§ect of unregulated optimists.

First consider the e§ect of macroprudential policy that tightens leverage limits: specifically,

compare the benchmark with the current limit (illustrated with red lines) with a direct tightening
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Figure 8: Equilibrium functions in the boom state s = 1 with unregulated optimists for di§erent
specifications of the leverage limit and PMP. β is the fraction of optimists’ wealth held by
unregulated optimists.

37



of the limit (illustrated with black lines). The top two left panels show regulated and unregulated

optimists’ leverage ratios, respectively. In the benchmark, regulated and unregulated optimists

have similar leverage ratios (since the leverage limit barely binds). The proposed tightening of

the leverage limit reduces regulated optimists’ leverage ratio while raising unregulated optimists’

leverage ratio. Intuitively, tightening the leverage limit reduces financial stability risk, since it

increases asset prices after transition to recession. Unregulated optimists respond by taking

greater risks.

The top right panel illustrates optimists’ wealth share after transition to recession. Macro-

prudential policy improves optimists’ wealth share in the recession but less so than in the case

without unregulated optimists (β = 0), illustrating Proposition 5. Intuitively, since unregu-

lated optimists respond to the policy by increasing their risks, they reduce (but do not fully

eliminate) the e§ectiveness of macroprudential policy. Consequently, macroprudential policy

improves asset prices in the recession but less so than in the case without unregulated optimists.

Next consider the PMP (illustrated with blue lines) that replicates the prudential e§ects of

a direct tightening of the leverage limit. The two panels in the bottom left show that PMP

achieves this outcome by increasing the interest rate and lowering asset prices during the boom,

illustrating Proposition 6. The two panels in the top left show that PMP increases the leverage

ratio of regulated optimists (as it pushes them against the leverage limit) and the leverage ratio of

unregulated optimists. In fact, unregulated optimists respond by increasing their leverage ratio

even more than when the planner directly tightens the leverage limit. These agents obtain the

same wealth share after transition, α2β2, as in direct tightening (see Proposition 6). However,

they now achieve this outcome by taking on greater leverage since the price drop after transition

is smaller (see Eq. (46)).

These results illustrate that, when some high-valuation agents are lightly regulated, PMP

can still replicate the financial stability benefits of macroprudential policy. However, in our

setting, PMP is subject to similar limitations as macroprudential policy: less regulated agents

respond to the policy by increasing their leverage and risk taking. This finding is consistent

with recent empirical evidence showing that a contractionary monetary policy shock increases

lending by shadow banks (see Elliott et al. (2019); Drechsler et al. (2019)).

8. Final Remarks

We propose a model of asset price booms with speculation that may justify using PMP to

reduce the severity of future recessions. PMP aims to reduce the social cost of concentrating

risk in leveraged, high-valuation agents (“optimists” or “banks”). The policy achieves this goal

by lowering the asset price level during the boom, which reduces the asset price decline after

a transition to recession. This reduction supports highly-levered agents’ balance sheets in the

recession, which in turn raises asset prices (and hence further reduces the price drop) and softens

the recession.
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An equivalent interpretation is that PMP raises the interest rate to increase the available

“ammunition” for the next recession. This concept has little meaning in most macro models

where all that matters during a recession is the level of interest rates. By contrast, our framework

emphasizes the importance of the size of interest rate cuts as the economy transitions from boom

to recession. A larger interest rate cut is useful because it mitigates the asset price decline as the

economy transitions to recession. A smaller asset price decline is preferable because it improves

highly-levered agents’ wealth share, which is a key state variable that determines the severity of

the recession.

Our main insight can be applied beyond the specific binary-state context of our model. For

example, in practice, large recessions are often preceded by minor slowdowns, at which time

central banks need to decide how quickly to cut interest rates. Our analysis suggests that, if

the slowdown is associated with significant financial speculation, then it may be worth delaying

interest rate cuts. By doing so, the central bank e§ectively keeps its ammunition for a larger

recession in which monetary policy becomes constrained.
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A. Appendix: Omitted derivations

This appendix presents the derivations and proofs omitted from the main text.

A.1. Omitted derivations in Section 2

A.1.1. Recursive formulation of the portfolio problem

We start by deriving the investors’ optimality conditions. Recall that the investor’s portfolio problem is

given by (7). The HJB equation corresponding to this problem is

ρV it,s
(
ait,s
)
= max

c,!
log c+

@V it,s
@a

(
ait,s

(
rft,s + !

(
rt,s − r

f
t,s

))
− c
)

(A.1)

+
@V it,s

(
ait,s
)

@t
+ λis

(
V it,s0

(
ait,s

(
1 + !

Qt,s0 −Qt,s
Qt,s

))
− V it,s

(
ait,s
))

s.t. ! ≤ !t,1 if s = 1.

In view of log utility, the solution has the functional form

V it,s
(
ait,s
)
=
log
(
ait,s/Qt,s

)

ρ
+ vit,s. (A.2)

The first term in the value function captures the e§ect of holding a greater capital stock (or greater

wealth), which scales the investor’s consumption proportionally at all times and in all states. The second

term, vit,s, is the normalized value function when the investor holds one unit of the capital stock (or

wealth, ait,s = Qt,s). This functional form also implies

@V it,s
@a

=
1

ρait,s
.

The first order condition for c then implies Eq. (14) in the main text. The first order condition for

! implies

@V it,s
@a

ait,s

(
rt,s − r

f
t,s

)
+ λis

@V it,s0
(
ait,s0

)

@a
ait,s

Qt,s0 −Qt,s
Qt,s

≥ 0,

with inequality only if s = 1 and ! = !t,1. After substituting for
@V i

t,s

@a and
@V i

t,s0

@a and rearranging terms,

this relation implies

rt,s − r
f
t,s + λ

i
s

ait,s
ait,s0

Qt,s0 −Qt,s
Qt,s

≥ 0,

with inequality only if s = 1 and ! = !t,1. After substituting ait,s = α
i
t,sQt,skt,s [cf. Eq. (19)], this gives

Eq. (21) in the main text.
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A.1.2. Evolution of investors’ wealth share

We next derive the evolution of investors’ wealth shares. After substituting optimal consumption from

(14) into the budget constraint in problem (7), type i investors’ wealth evolves according to

dait,s/dt

ait,s
= rft,s + !

i
t,s

(
rt,s − r

f
t,s

)
− ρ.

Combining this with Eq. (9), aggregate wealth evolves according to

d (Qt,skt,s) /dt

Qt,skt,s
= rft,s +

(
rt,s − r

f
t,s

)
− ρ.

Combining these expressions with αit,s =
ait,s

Qt,skt,s
[cf. Eq. (19)], we obtain:

α̇it,s
αit,s

=
(
!it,s − 1

) (
rt,s − r

f
t,s

)
. (A.3)

Next recall that the portfolio optimality condition (21) holds with equality for pessimists. Applying

this equation, we obtain:

rt,s − r
f
t,s = −λ

p
s

αpt,s
αpt,s0

Qt,s0 −Qt,s
Qt,s0

. (A.4)

Likewise, applying Eq. (20) for type i investors, we obtain:

!it,s − 1 =

 
αit,s0

αit,s
− 1

!
Qt,s0

Qt,s0 −Qt,s
. (A.5)

Substituting Eqs. (A.4) and (A.5) into Eq. (A.3), we obtain Eq. (22) in the main text.

A.2. Omitted derivations in Section 3

A.2.1. Equilibrium in the recession and the recovery states

As we describe in the main text, for the rest of the analysis we often simplify the notation by dropping

the subscript o from optimists’ wealth share:

αt,s ≡ αot,s.

Pessimists’ wealth share is the complement of this expression, αpt,s = 1− αt,s.
We next present the details of our characterization of equilibrium for the recession and recovery states,

s 2 {2, 3}. We assume the following:

Assumption A1. δ (0)−
(
ρ+ λi2

)
< g2 < δ (η

∗)− ρ < g3.

With this assumption, we conjecture an equilibrium in which the recovery state s = 3 features positive

interest rates, e¢cient asset prices, and e¢cient factor utilization, rft,3 > 0, Qt,3 = Q
∗ and ηt,3 = η

∗. The

recession state s = 2 features an interest rate of zero, lower asset prices, and ine¢cient factor utilization,

rft,2 = 0, Qt,2 < Q
∗ and ηt,2 < η

∗. We will show that the equilibrium price in the recession state can be
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represented as a strictly increasing function of optimists’ wealth share: Qt,2 = Q2 (αt,2) where Q2 (·) is a
strictly increasing function.

Note that for s 2 {2, 3} the leverage limit doesn’t bind. Therefore, Eq. (23) applies. Combining Eqs.
(21) and (23), we obtain:

rt,s − r
f
t,s + λt,s

Qt,s0 −Qt,s
Qt,s0

= 0. (A.6)

In particular, the risk premium is determined by the weighted-average belief, λt,s.

Equilibrium in the recovery state s = 3. In the recovery state, there is no speculation since

λi3 = 0 for each i. Substituting this transition probability into Eq. (A.6), we find that the risk premium

is zero, rt,3 − r
f
t,3 = 0. After substituting for the market return from Eq. (18), and using Q̇t,3 = 0 (since

Qt,3 = Q
∗ is constant), we obtain:

rft,3 = ρ+ g3 − δ (η
∗) > 0. (A.7)

The inequality follows from Assumption A1. Hence, in the recovery state, the interest rate is constant

and strictly positive and the equilibrium asset price and factor utilization levels are e¢cient.

Equilibrium in the recession state s = 2. In this state, there is some speculation since investors

have heterogeneous beliefs, λo2 > λ
p
2 [cf. Assumption 1]. Substituting Eq. (18) into Eq. (A.6) and using

the conjecture Qt,3 = Q∗, we obtain Eq. (25) in the main text. Substituting the conjecture r
f
t,2 = 0, we

further obtain:

ρ+ g2 − δ
(
Qt,2
Q∗

η∗
)
+
Q̇t,2
Qt,2

+ λt,2

(
1−

Qt,2
Q∗

)
= 0. (A.8)

Next consider the extreme cases αt,2 2 {0, 1}. These cases are the same as if there is a single belief
type i 2 {o, p}. In particular, since there is no speculation, the price is constant within the state, that is:
Qt,2 ≡ Qi2 and thus Q̇t,2 = 0. Therefore, Eq. (A.8) can be written as

ρ+ g2 − δ
(
Qi2
Q∗
η∗
)
+ λi2

(
1−

Qi2
Q∗

)
= 0.

Under Assumption A1, there exists a solution that satisfies Qi2 2 (0, Q∗). This describes the equilibrium
price in the recession state if all investors share type i investors’ beliefs. Using λo2 > λ

p
2 (Assumption 1),

it is easy to check that Qo2 > Q
p
2. In particular, the price is greater under optimists’ beliefs than under

pessimists’ beliefs.

Next consider the intermediate cases, αt,2 2 (0, 1). In this case we combine Eq. (A.8) with Eq. (24)
for state s = 2 to obtain a system of di§erential equations for (αt,2, Qt,2):

ρ+ g2 − δ
(
Qt,2
Q∗

η∗
)
+
Q̇t,2
Qt,2

+ λt,2

(
1−

Qt,2
Q∗

)
= 0, (A.9)

α̇t,2 = −αt,2 (1− αt,2)∆λo2.

This is similar to the di§erential equation system for the recession state in Caballero and Simsek

(2017). Following similar steps, we show that the system is saddle path stable: for any αt,2, there exists

a unique equilibrium price level Qt,2 2 [Q
p
2, Q

o
2) such that the solution satisfies limt!1 αt,2 = 0 and

limt!1Qt,2 = Q
p
2. Since the system is stationary, the solution can be written as a function of optimists’
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Figure 9: Equilibrium price of capital in the recession state s = 2. The dotted line illustrates
the frictionless price level, Q∗.

wealth share, Qt,2 = Q2 (α). In Caballero and Simsek (2017), we show that Q2 (α) is strictly increasing

in α. Since Qp2 < Q
o
2 < Q

∗, this establishes Eq. (26) in the main text.

For a numerical solution, we convert the di§erential equation in (A.9) into a di§erential equation in

α-domain. In particular, di§erentiating Qt,2 = Q2 (αt,2) with respect to time, we obtain:

Q̇t,2 = Q
0
2 (αt,2) α̇t,2.

Combining this with Eq. (A.9), we obtain:

Q02 (α)

Q2 (α)
=

1

α (1− α)∆λo2

(
ρ+ g2 − δ

(
Q2 (α)

Q∗
η∗
)
+ λ2 (α)

(
1−

Q2 (α)

Q∗

))
.

The equilibrium price function is the solution to this system subject to the boundary conditions Q2 (0) =

Qp2 and Q2 (1) = Q
o
2. Figure 9 illustrates the solution for a particular parameterization.

A.2.2. Value functions in equilibrium

We next characterize investors’ equilibrium expected values and derive the gap value that we use in the

main text. Let the superscript b 2 {o, p, pl} denote the belief corresponding to optimists, pessimists, or
the planner. Let i 2 {o, p} denote type i investors. We let V i,bt,s

(
ait,s
)
denote type i investors’ expected

value when she has wealth ait,s, evaluated according to type b belief. In view of log utility, we conjecture

the following version of Eq. (A.2):

V i,bt,s
(
ait,s
)
=
log
(
ait,s/Qt,s

)

ρ
+ vi,bt,s. (A.10)
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Note that this function implies
@V i,b

t,s

@a = 1
ρait,s

. Using this expression as well as cit,s = ρa
i
t,s, we obtain the

following version of the HJB equation (A.1):

ρV i,bt,s
(
ait,s
)
−
@V it,s

(
ai,bt,s

)

@t
= log ρait,s +

1

ρ

(
rft,s + !

i
t,s

(
rt,s − r

f
t,s

)
− ρ
)

(A.11)

+ λbs

(
V it,s0

(
ait,s

(
1 + !

Qt,s0 −Qt,s
Qt,s

))
− V it,s

(
ait,s
))
.

Note that we evaluate the value function along the equilibrium path and according to transition proba-

bility λbs.

Substituting Eq. (A.10) into Eq. (A.11), we obtain a di§erential equation for the normalized value:

ρvi,bt,s −
@vi,bt,s
@t

= log ρ+ logQt,s +
1

ρ

 

rt,s − ρ−
Q̇t,s
Qt,s

+
(
!it,s − 1

) (
rt,s − r

f
t,s

)
+ λbs log

(
1 + !

Qt,s0 −Qt,s
Qt,s0

)!

+ λbs

(
vi,bt,s0 − v

i,b
t,s

)
.

To simplify this expression, we substitute rt,s = ρ +
Q̇t,s

Qt,s
+ gs − δ

(
Qt,s

Q∗ η
∗
)
using Eq. (18). We also

substitute for
(
!it,s − 1

) (
rt,s − r

f
t,s

)
=

α̇it,s
αit,s

from Eq. (A.3). Finally, we substitute for 1 + !
Qt,s0−Qt,s

Qt,s0
=

αi
t,s0

αit,s
using Eq. (20). After these substitutions, we obtain:

ρvi,bt,s −
@vi,bt,s
@t

= log ρ+ logQt,s +
1

ρ

 

gs − δ
(
Qt,s
Q∗

η∗
)
+
α̇it,s
αit,s

+ λbs log

 
αit,s0

αit,s

!!

(A.12)

+ λbs

(
vi,bt,s0 − v

i,b
t,s

)
.

We have thus characterized the normalized value function, vi,bt,s, as a solution to the di§erential

equation in (A.12). This equation applies for any beliefs b 2 {o, p, pl}, including investors’ own beliefs
b = i, and it applies regardless of whether the leverage limit binds. The terms that feature Qt,s capture

potential welfare losses due to ine¢cient factor utilization. The term gs captures the welfare e§ect of

expected growth. The term
α̇it,s
αit,s

+λbs log

(
αi
t,s0

αit,s

)
captures the welfare e§ect of speculation that reshuffles

investors’ wealth shares across states.

As we describe in the main text, we decompose the normalized value into two components [cf. (27)]:

vi,bt,s = v
i∗,b
t,s + w

i,b
t,s,

Here, vi∗,bt,s is the frictionless value function, which is found by solving Eq. (A.12) with Qt,s = Q∗ for

each t, s. This captures all determinants of welfare except for suboptimal factor utilization (including the

benefits/costs from speculation). The residual, wbt,s, corresponds to the gap value function. This captures

the welfare losses due to suboptimal factor utilization evaluated according to investors’ preferences (and

type b beliefs).

To further characterize the gap value, note that vi,bt,s and v
i∗,b
t,s both solve Eq. (A.12) with Qt,s and

Qt,s = Q
∗, respectively. Taking the di§erence of these equations, and using wi,bt,s = v

i,b
t,s − v

i∗,b
t,s , we obtain

47



Eq. (28) in the main text, which we replicate for ease of exposition:

ρwbt,s −
@wbt,s
@t

= W (Qt,s) + λ
b
s

(
wbt,s0 − w

b
t,s

)
,

where W (Qt,s) = log
Qt,s
Q∗

−
1

ρ

(
δ

(
Qt,s
Q∗

η∗
)
− δ (η∗)

)
.

This implies that the gap value depends on an investor’s beliefs but not her identity, wbt,s ≡ w
i,b
t,s.

Integrating Eq. (28) forward, we obtain:

wbt,s =

Z 1

t

e−(ρ+λ
b
s)(t̃−t)

(
W
(
Qt̃,s

)
+ λbsw

b
t̃,s0

)
dt̃. (A.13)

Hence, the gap value captures an appropriately discounted present value of instantaneous welfare gaps.

Note that W (Qt,s) is a strictly concave function maximized at Qt,s = Q∗. Therefore, Eq. (A.13) also

implies wbt,s ≤ 0 for each t, s.

A.2.3. Gap value in recession

Next consider the gap value in the recession state s = 2. Since the model is stationary, we conjecture

that the gap value can be written as a function of optimists’ wealth share,

wbt,2 = w
b
2 (αt,s) ,

for some function wb2 (·). Di§erentiating this expression, we have:

@wbt,s
@t

=
dwb2 (αt,s)

dα
α̇t,s

= −
dwb2 (αt,s)

dα
αt,2 (1− αt,2)∆λo2.

Note that wbt,3 = 0 since Qt,3 = Q
∗. Finally, recall that we have Qt,2 = Q2 (α) < Q∗, where Q2 (α) is a

strictly increasing function. Substituting these expressions into Eq. (28) for state s = 2, we characterize

the gap value as the solution to a di§erential equation in α-domain:

(
ρ+ λb2

)
wb2 (α) +

dwb2 (α)

dα
α (1− α)∆λo2 =W (Q2 (α)) .

We analyze the solution to this di§erential equation in Caballero and Simsek (2017). In particular, since

W (Q2 (α)) is strictly increasing in α (since Q2 (α) < Q∗), wb2 (α) is also strictly increasing in α. Using

the integral expression in (A.13), we also have wb2 (α) < 0 for each α. This establishes Eq. (29) in the

main text.

A.3. Omitted derivations in Section 4

We first characterize the equilibrium for a given leverage limit function, !1 (·). We then prove Proposition
1, which establishes the comparative statics of tightening the leverage limit (for given α).

To characterize the equilibrium, we assume the parameters satisfy:

Assumption A2. rf,p1 ≡ ρ+ g1 − δ (η∗)− λ
p
1

(
Q∗

Qp
2
− 1
)
> 0.
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Here, Qp2 = Q2 (0) < Q
∗ denotes the asset price in the recession state when pessimists dominate the econ-

omy. Assumption A2 ensures that the boom features a positive interest rate even if pessimists dominate.

Under this assumption, we conjecture an equilibrium in which the interest rate is positive, rft,1 > 0, and

the asset price is at its e¢cient level, Qt,1 = Q∗. We also conjecture that the equilibrium outcomes can be

described as a function of optimists’ wealth share, αt,1 (as well as the leverage limit function, !1 (·)). In
particular, optimists’ wealth share after transition can be written as αt,2 = α2 (αt,1,!1) (and pessimists’

wealth share is the residual, αpt,2 = 1− αt,2).
First consider the corner cases αt,1 = 0 and αt,1 = 1. Equivalently, αit,1 = 1 for some belief type i.

Using Eq. (21), which holds as equality for type i investors, we obtain:

rf,i1 = ρ+ g1 − δ (η∗)− λi1

(
Q∗

Qi2
− 1
)
. (A.14)

Under Assumption A2, there exists a solution that satisfies rf,i1 > 0 for each i 2 {o, p}. Since λo1 < λ
p
1,

we also have rf,o1 > rf,p1 : the equilibrium interest rate is greater when optimists dominate the economy.

Next consider the intermediate cases, αt,1 2 (0, 1). Most of the analysis is in the main text. The
remaining step is to show that, when !1 (α) ≤ !o1 (α,1) (when the leverage limit binds) Eq. (34) has a
unique solution that satisfies α2 (α,!1) ≥ α2 (α,1). This result follows from Lemma 1 below, which we

use in subsequent sections. The lemma applies under the following regularity conditions:

Assumption A3. Q02 (α2) <
Q∗−Q2(α2)

1−α2
for α2 2 (0, 1); and Q2

(
αλo1
λ1(α)

)
> Q∗α

(
1− λo1

λp1

)
for α 2 (0, 1).

These conditions concern the price function in the recession. They are mild, and we can verify that

numerical solutions do not violate these conditions. They are also su¢cient conditions, i.e., they can

be relaxed further. The first part says that the slope of the price function is not too large. Since

Q2 (1) = Q
o
2 < Q

∗, this condition will always hold if Q2 (α2) is a linear function. Therefore, it holds as

long as Q2 (α2) does not deviate from linearity too much. The second part requires that either the price

decline after transition to the recession is not too large, or the extent of speculation during the boom is

not too large. For instance, when α = 1, the requirement is Qo2 > Q
∗
(
1− λo1

λp1

)
. This holds if Qo2 is close

to Q∗ or if λo1 is not substantially smaller than λ
p
1.

Lemma 1. Consider the following function:

f (α2;α,!1) = 1−
α2
α
− (!1 − 1)

[
Q∗

Q2 (α2)
− 1
]
,

where α,!1 are parameters such that α 2 (0, 1) ,!1 ≤ !o1 (α,1). Under Assumption A3, f (α2) = 0 has
a unique solution that satisfies α2 2 [α2 (α,1) ,α).

Proof. We first show that there exists a solution that lies in the desired interval. We have

f (α2 (α,1)) = 1−
α2 (α,1)

α
− (!1 − 1)

[
Q∗

Q2 (α2 (α,1))
− 1
]

≥ 1−
α2 (α,1)

α
− (!o1 (α,1)− 1)

[
Q∗

Q2 (α2 (α,1))
− 1
]
= 0.

Here, the inequality in the second line follows since !1 ≤ !o1 (α,1) and Q2 (α2 (α,1)) < Q∗, and the
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equality follows from the definition of !o1 (α,1). We also have

f (α) = − (!1 − 1)
[

Q∗

Q2 (α2)
− 1
]
< 0.

It follows that there exists a solution in [α2 (α,1) ,α).
We next show that the derivative of f is strictly negative at each zero of f :

f 0 (α2) < 0 for each α2 2 [α2 (α,1) ,α) and f (α2) = 0. (A.15)

This establishes that f has a unique zero in the desired interval. To establish this claim, we first evaluate

the derivative

f 0 (α2) = −
1

α
+ (!1 − 1)

Q∗

(Q2 (α2))
2Q

0
2 (α2) .

Hence, f 0 (α2) < 0 as long as

α (!1 − 1)
Q∗

Q2 (α2)

Q02 (α2)

Q2 (α2)
< 1.

Note that we require this to hold when f (α2) = 0. This implies

α (!1 − 1)
Q∗

Q2 (α2)
= (α− α2)

Q∗

Q∗ −Q2 (α2)
.

Combining the last two displayed equations, we need to show

Q02 (α2) <
Q∗ −Q2 (α2)
1− α2

1− α2
α− α2

Q2 (α2)

Q∗
. (A.16)

Using the first part of Assumption A3, we have

Q02 (α2) <
Q∗ −Q2 (α2)
1− α2

. (A.17)

Using the second part of Assumption A3, we also have

1 ≤
1− α2 (α,1)
α− α2 (α,1)

Q2 (α2 (α,1))
Q∗

≤
1− α2
α− α2

Q2 (α2)

Q∗
. (A.18)

Here, the first inequality follows from Assumption A3 since 1−α2(α,1)
α−α2(α,1) =

λp1
α(λp1−λo1)

after substituting

α2 (α, 0) =
αλo1
λ1(α)

[cf. Eq. (31)]. The second inequality follows since α2 (α,1) ≤ α2 implies
1−α2(α,1)
α−α2(α,1) ≤

1−α2
α−α2

and Q2 (α2 (α,1)) ≤ Q2 (α2). Combining Eqs. (A.17) and (A.18) establishes Eq. (A.16). This in
turn establishes Eq. (A.15) and shows that there is a unique solution.

Proof of Proposition 1. Recall that optimists’ wealth share after transition corresponds to the zero
of the function defined in Lemma 1. Next consider how the solution (characterized in the proof of the

lemma) changes with !1. Implicitly di§erentiating the equation f (α2;α,!1) = 0 with respect to !1, we

obtain:
dα2
d!1

=

Q∗

Q2(α2)
− 1

f 0 (α2)
< 0.

Here, the inequality follows since Q∗

Q2(α2)
− 1 > 0 and f 0 (α2) < 0 [cf. Eq. (A.15)]. It follows that the
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solution is strictly decreasing in !1, that is,
dα2(α,!1)
d!1(α)

< 0. In particular, decreasing the leverage limit

increases optimists’ wealth share after transition.

To establish the last part, note that Eq. (35) describes optimists’ growth absent transition, α̇t,1/αt,1,

as a decreasing function of αt,2 (given the parameters and αt,1). Combining this observation with
dα2(α,!1)
d!1(α)

< 0, we also find d(α̇t,1/αt,1)
d!1(α)

< 0. Hence, decreasing the leverage limit slows down the growth

of optimists’ wealth share absent transition, completing the proof.

A.4. Omitted derivations in Section 5

Proof of Proposition 2. Recall that Eq. (23) applies for an arbitrary specification of monetary policy
as long as leverage constraints do not bind for either type. When !1 = 1, constraints do not bind in
state 1. Applying Eq. (23), the evolution of optimists’ wealth share is given by (31). In particular,

monetary policy does not influence the evolution of optimists’ wealth share.

Next note that, using Eq. (A.13), we can write the planner’s gap value as

wpl1 (α0,1) =

Z 1

0

e−(ρ+λ
pl
1 )t
(
W (Qt,1) + λ

pl
1 w

b
t,2 (αt,2)

)
dt.

Here, αt,2 denotes optimists’ wealth share in the recession state if the economy switches to recession at

time t. Monetary policy does not a§ect the path {αt,2}. Therefore, the previous expression is maximized
whenW (Qt,1) is maximized. This happens when the planner follows the conventional output-stabilization

policy and sets Qt,1 = Q∗. It follows that prudential policy can only lower the gap value function,

wpl1 (α,1, Q1) ≤ w
pl
1 (α,1), completing the proof.

Proof of Proposition 3. First consider the e§ect of the leverage limit, !̃1. Since !̃1 (α) < !1 (α,1),
optimists’ wealth share, α2 (α, !̃1), is characterized as the unique solution to the following equation (see

Appendix A.3):
α2 (α, !̃1)

α
= 1− (!̃1 (α)− 1)

[
Q∗

Q2 (α2 (α, !̃1))
− 1
]
. (A.19)

We will show (constructively) that there exists a PMP that replicates the wealth share. Let α̃2 =

α2

(
α,!1, Q̃1

)
denote optimists’ wealth share after transition with PMP. In the conjectured equilibrium,

optimists’ leverage limit binds (since α̃2 = α2 (α, !̃1) > α2 (α,1)). Therefore, optimists’ wealth share is
the solution to

α̃2
α
= 1− (!1 (α)− 1)

"
Q̃1 (α)

Q2 (α̃2)
− 1

#

. (A.20)

We next claim that, for appropriately chosen Q̃1 (α), this equation holds for α̃2 = α2 (α, !̃1).

To this end, let Q̃1 (α) be such that Eq. (37) holds. After rearranging this expression, we can solve

for Q̃1 (α) in closed form:

Q̃1 (α) = Q2 (α2 (α, !̃1))

(
1 +

!̃1 (α)− 1
!1 (α)− 1

[
Q∗

Q2 (α2 (α, !̃1))
− 1
])
. (A.21)

Since !̃1 (α) < !1 (α), it is easy to check that Q̃1 (α) < Q∗. Since !̃1 (α) > 1, we also have Q̃1 (α) >

Q2 (α2 (α, !̃1)). In particular, there exists a unique Q̃1 (α) 2 (Q2 (α2 (α, !̃1)) , Q∗) that satisfies Eq. (37).
We next substitute Eq. (37) into Eq. (A.19), which proves our claim that Eq. (A.20) holds with

α̃2 = α2 (α, !̃1). We can also check that (under Assumption A3) this equation has a unique solution.
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This proves α2
(
α,!1, Q̃1

)
= α2 (α, !̃1). Note that Eq. (A.21) implies

@Q̃1(α)
@!̃1(α)

> 0, which completes the

proof of the first part of the proposition .

Next consider the interest rate corresponding to PMP. Since the policy applies only at an infinitesimal

instant, it does not a§ect the price drift, Q̇t,1 = 0. In particular, the instantaneous return to capital is

given by r̃1 = ρ+ g1− δ
(
Q̃1(α)
Q∗ η∗

)
[cf. Eq. (18)]. Combining this with Eq. (21) for pessimists, we obtain

the following analogue of Eq. (30):

r̃f1 = ρ+ g1 − δ

 
Q̃1 (α)

Q∗
η∗

!

− λp1
1− α

1− α2 (α, !̃1)

 
Q̃1 (α)

Q2 (α2 (α, !̃1))
− 1

!

.

Using Eq. (A.20) to substitute for the price decline, we can rewrite this as

r̃f1 = ρ+ g1 − δ

 
Q̃1 (α)

Q∗
η∗

!

− λp1
1− α
α

α− α2 (α, !̃1)
1− α2 (α, !̃1)

1

!1 (α)− 1
. (A.22)

Absent prudential policy, the interest rate is characterized by Eq. (30). After substituting for the

price decline from (20), we can rewrite this expression as

rf1 (α,!1) = ρ+ g1 − δ (η
∗)− λp1

1− α
α

α2 (α,!1)− α
1− α2 (α,!1)

1

!1 (α,!1)− 1
. (A.23)

Here, !1 (α,!1) denotes the equilibrium leverage ratio.

Next note that δ
(
Q̃1(α)
Q∗ η∗

)
< δ (η∗) since Q̃1 (α) < Q∗. Note also that

α−α2(α,!̃1)
1−α2(α,!̃1)

< α−α2(α,!1)
1−α2(α,!1)

since

α2 (α, !̃1) > α2 (α,!1). Finally, note that 1
!1(α)−1

≤ 1
!1(α,!1)−1

since !1 (α,!1) ≤ !1 (α). Combining

these observations with Eqs. (A.22) and (A.23) proves that r̃f1 = r
f
1

(
α,!1, Q̃1

)
> rf1 (α,!1): PMP raises

the interest rate.

Finally, consider how raising the leverage limit !̃1 (α) a§ects the interest rate with PMP. Since raising

the leverage limit increases Q̃1 (α), it also increases the e§ective depreciation rate, δ
(
Q̃1(α)
Q∗ η∗

)
. Since

raising the leverage limit reduces α2 (α, !̃1), it also increases the term
α−α2(α,!̃1)
1−α2(α,!̃1)

. Combining these

observations with (A.22) proves that raising the leverage limit decreases r̃1, that is:
@rf1 (α,!1,Q̃1)

@!̃1(α)
< 0.

In particular, lowering the e§ective leverage limit !̃1 (α) requires a higher interest rate, completing the

proof.

Proof of Proposition 4. We have the following closed-form solution for the price function:

Q1

(
α, l̃
)
=

8
><

>:

Q∗ if !1
(
α, l̃
)
< !1

(
α, l̃
)

Q2

(
α2

(
α, l̃
))(

1 +
!1(α,l̃)−1
!1(α,l)−1

[
Q∗

Q2(α2(α,l̃))
− 1
])

< Q if !1
(
α, l̃
)
= !1

(
α, l̃
) .

(A.24)

Here, the first line corresponds to the case in which the leverage limit does not bind under l̃. In this

case, the monetary authority does not use PMP. The second line corresponds to the case in which the

leverage limit binds. In this case, the monetary authority uses PMP. Moreover, using Eq. (A.21) we have

a closed-form solution for the asset price level.

One di§erence from Proposition 3 concerns the characterization of the interest rate. Since the policy

is applied dynamically, the price drift, Q̇t,1, is not necessarily zero, which a§ects the level of the interest
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rate. To characterize this e§ect, note that:

Q̇t,1 =
@Q1

(
α, l̃
)

@+α
α̇t,1

=
@Q1

(
α, l̃
)

@+α
λp1αt,1

1− αt,1
1− αt,2

(αt,1 − αt,2)

=
@Q1

(
α, l̃
)

@+α
λp1α (1− α)

α− α2
(
α, l̃
)

1− α2
(
α, l̃
) . (A.25)

Here, the second line substitutes the evolution of optimists’ wealth share from Eq. (22) and the third line

substitutes αt,1 = α and αt,2 = α2
(
α, l̃
)
. The expression

@Q1(α,l̃)
@+α

corresponds to the right-derivative of

the function characterized in (A.24).10 We can check that the right-derivative,
@Q1(α,l̃)
@+α

, is continuous in

l̃ and equal to 0 when l̃ = l (because Q1 (α, l) = Q∗ for each α). Consequently, when viewed as a function

of l̃, the price drift, Q̇t,1, is also continuous in l̃ and equal to 0 when l̃ = l.

Next note that, following similar steps as in the proof of Proposition 4, the interest rate in this case

can be written as

r̃f1 = ρ+ g1 + Q̇t,1 − δ

0

@
Q1

(
α, l̃
)

Q∗
η∗

1

A− λp1
1− α

1− α2
(
α, l̃
)

0

@
Q1

(
α, l̃
)

Q2

(
α2

(
α, l̃
)) − 1

1

A ,

where Q̇t,1 is given by Eq. (A.25). When viewed as a function of l̃, the interest rate r̃
f
1 is continuous in

l̃, and it is equal to the benchmark interest rate rf1 (α, l) when l̃ = l. Recall that the benchmark rate is

strictly positive for each α 2 (0, 1) [cf. Section 4]. Therefore, r̃f1 > 0 for each α 2 (0, 1) as long as l̃ is in a
su¢ciently small neighborhood of l. In particular, PMP doesn’t violate the zero lower bound constraint

on the interest rate.

Next consider the second part. Using Eq. (A.13), we can write the planner’s gap value with policy l̃

as

wpl1

(
α0,1, l̃

)
=

Z 1

0

e−(ρ+λ
pl
1 )t
(
W (Q∗) + λpl1 w

b
t,2 (αt,2)

)
dt. (A.26)

Here, αt,2 denotes optimists’ wealth share if the economy transitions to recession at time t. Likewise, we

write the planner’s gap value with policy Q1
(
α, l̃
)
as

wpl1

(
α0,1, Q1

(
α, l̃
))
=

Z 1

0

e−(ρ+λ
pl
1 )t
(
W
(
Q1

(
α, l̃
))
+ λpl1 w

b
t,2 (αt,2)

)
dt. (A.27)

Next note that, using the first part of this proposition, optimists’ wealth share after transition, αt,2
(conditional on αt,1), is the same under policies l̃ and Q1

(
·, l̃
)
. Combining this observation with Eq.

(22), we also find that the evolution of optimists’ wealth share absent transition, α̇t,1/αt,1, is the same

under both policies. Consequently, optimists’ wealth share follows an identical path under both policies.

In view of this observation, after taking the di§erence of Eqs. (A.27) and (A.26), we obtain Eq. (40) in

the main text.
10Note that the function is piecewise di§erentiable so the right-derivative always exists. The equation depends

on the right-derivative (as opposed to left) because α̇t,1 > 0, so αt,1 grows over time.
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Next note that Eq. (A.24) implies (for a given α 2 (0, 1)) that the prudential asset price level is
di§erentiable in l̃ with a finite derivative. Note also that Q1 (α, l) = Q∗. Therefore, taking the derivative

of Eq. (40) with respect to l̃ and evaluating at l̃ = l∗, we obtain:

dwpl1

(
α, l, Q1

(
α, l̃
))

dl̃
|l̃=l −

dwpl1

(
α, l̃
)

dl̃
|l̃=l =

Z 1

0

e−(ρ+λ
pl
1 )t dW (Q∗)

dQt,1

dQ1

(
αt,1, l̃

)

dl̃
|l̃=ldt

= 0.

Here, the first line applies the chain rule and the second line uses the observation that dW (Q∗)
dQt,1

= 0 [cf.

Eq. (28)]. Rearranging this expression establishes Eq. (39) and completes the proof.

A.5. Omitted derivations in Section 7

We first state and prove a generalization of Lemma 1, which implies that Eq. (48) has a unique solution

(when Q1 = Q∗). We then prove Propositions 5 and 6.

Lemma 2. Consider the following function:

f (α2;α,β,!1) = 1− (!1 − 1)
[

Q∗

Q2 (α2)
− 1
]
−

1

1− β

(
α2
α
−
λo1
λp1
β
1− α2
1− α

)
,

where α,β,!1 are parameters such that α,β 2 (0, 1) ,!1 ≤ !o1 (α,β,1). Under Assumption A3, f (α2) =
0 has a unique solution that satisfies α2 2 (α2 (α,1) ,α).

Proof. Following similar steps as in Lemma 1, it is easy to check that f (α2 (α,1)) > 0 and f (α) < 0.
This establishes that there exists a solution that lies in the desired interval, α2 2 (α2 (α,1) ,α).

We next show that the derivative of f is strictly negative at each zero of f , that is:

f 0 (α2) < 0 for each α2 2 (α2 (α,1) ,α) and f (α2) = 0.

This establishes that f has a unique zero in the desired interval. To prove the claim, we first evaluate

the derivative

f 0 (α2) = (!1 − 1)
Q∗

(Q2 (α2))
2Q

0
2 (α2)−

1

1− β

(
1

α
+
λo1
λp1
β

1

1− α

)
.

Hence, f 0 (α2) < 0 as long as

!1 − 1
Q2 (α2)

Q∗

Q2 (α2)
Q02 (α2) <

1

1− β

(
1

α
+
λo1
λp1
β

1

1− α

)
.

Note that we require this to hold when f (α2) = 0. This implies:

!1 − 1
Q2 (α2)

=
1

Q∗ −Q2 (α2)

(
1−

1

1− β

(
α2
α
−
λo1
λp1
β
1− α2
1− α

))
.
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Combining the last two displayed equations, we need to show

Q02 (α2) <
Q∗ −Q2 (α2)
1− α2

Q2 (α2)

Q∗
g (α2,α,β)

where g (α2,α,β) =
(1− α2) 1

1−β

(
1
α +

λo1
λp1
β 1
1−α

)

1− 1
1−β

(
α2
α −

λo1
λp1
β 1−α21−α

) .

Note that, in the proof of Lemma 1, we already established this inequality for β = 0 (under Assumption

A3). Hence, it su¢ces to show that g (α2,α,β) ≥ g (α2,α, 0). This inequality holds because,

g (α2,α,β) >
1− α2

1− 1
1−β

(
α2
α −

λo1
λp1
β 1−α21−α

) >
1− α2
1− α2

α

= g (α2,α, 0) .

Here, the first inequality follows because 1
1−β

(
1
α +

λo1
λp1
β 1
1−α

)
< 1

α . The second inequality follows because

α2 > α2 (α,1) =
αλo1

αλo1+(1−α)λ
p
1
implies α2

1−α2
>

λo1
λp1

α
1−α , which in turn implies

1
1−β

(
α2
α −

λo1
λp1
β 1−α21−α

)
> α2

α .

This establishes the claim and completes the proof of the lemma.

Proof of Proposition 5. First consider the evolution of α and β absent transition to recession. Applying
(22) for regulated and unregulated optimists (in state s = 1), we obtain:

d (α (1− β)) /dt
α (1− β)

= λp1
1− α
1− α2

(
1−

α2 (1− β2)
α (1− β)

)
(A.28)

d (αβ) /dt

αβ
= λp1

1− α
1− α2

(
1−

α2β2
αβ

)

Solving these equations for α̇ and β̇, we obtain Eq. (43) in the main text.

Next consider the characterization of α2. In the main text, we established that Eq. (48) characterizes

α2. Lemma 2 implies that there exists a unique solution that satisfies α2 2 (α2 (α,1) ,α). Combining
this with Eq. (43) also implies α̇ > 0.

Next note that Eq. (44) characterizes β2 conditional on α2. Note also that α2 > α2 (α,1) =
αλo1

αλo1+(1−α)λ
p
1
implies α2

1−α2
>

λo1
λp1

α
1−α . Combining this with Eq. (44), we obtain

β2
β =

λo1
λp1

α/(1−α)
α2/(1−α2)

< 1.

This proves β2 < β. Combining this with Eq. (43) also implies β̇ > 0.

Next consider the comparative statics of α2 with respect to β. Recall that α2 is characterized as

the unique solution to the equation, f (α2;α,β,!1) = 0, where f (·) is defined in Lemma 2. Implicitly
di§erentiating the equation with respect to β, we obtain:

dα2
dβ

=
@f (α2;α,β,!1) /@β

−@f (α2;α,β,!1) /@α2
,

where the derivatives are evaluated at the solution. From the proof of Lemma 2, we also know that

f 0 (α2;α,β,!1) < 0 when f (α2) = 0. Hence, dα2dβ < 0 as long as @f (α2;α,β,!1) /@β < 0. The latter
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inequality holds because:

@f (α2;α,β,!1)

@β
= −

@

@β

(
1

1− β

(
α2
α
−
λo1
λp1
β
1− α2
1− α

))

= −
@

@β

(
1

1− β

(
α2
α
−
λo1
λp1

1− α2
1− α

)
+
λo1
λp1

1− α2
1− α

)

= −
(
α2
α
−
λo1
λp1

1− α2
1− α

)(
@

@β

1

1− β

)
< 0.

Here, the last inequality follows since α2
α >

λo1
λp1

1−α2
1−α (since α2 > α2 (α,1)) and @

@β
1

1−β > 0. This proves
dα2
dβ < 0.

Next consider the limit as β ! 1. For any α2 > α2 (α,1), we have

lim
β!1

f (α2;α,β,!1) = lim
β!1

2

4
1− (!1 − 1)

h
Q∗

Q2(α2)
− 1
i
+

λo1
λp1

1−α2
1−α

− 1
1−β

(
α2
α −

λo1
λp1

1−α2
1−α

)

3

5

= −1

Here, the last line follows because α2
α >

λo1
λp1

1−α2
1−α and limβ!1

−1
1−β = −1. This also implies limβ!1 α2 =

α2 (α,1) because α2 is characterized as the unique solution to the equation, f (α2;α,β,!1) = 0, over

the range α2 2 (α2 (α,1) ,α).
Next consider the comparative statics with respect to the leverage limit, !1 = !1 (α,β). Following

similar steps, we obtain:

dα2
d!1

=
−@f (α2;α,β,!1) /@!1
@f (α2;α,β,!1) /@α2

=

Q∗

Q2(α2)
− 1

(!1 − 1) Q∗

(Q2(α2))
2Q02 (α2)−

1
1−β

(
1
α +

λo1
λp1
β 1
1−α

) < 0.

Here, the first equality evaluates the partial derivatives and the second inequality uses

@f (α2;α,β,!1) /@α2 < 0.

Finally, consider the sign of the cross-partial derivative @
@β

dα2
d!1
. We have

sign

(
@

@β

dα2
d!1

)
= sign

(
@

@β

1

1− β

(
1

α
+
λo1
λp1
β

1

1− α

))

= sign

(
@

@β

1

1− β

(
1

α
+
λo1
λp1

1

1− α

)
−
λo1
λp1

1

1− α

)

= sign

(
@

@β

1

1− β

(
1

α
+
λo1
λp1

1

1− α

))
> 0.

This proves @
@β

dα2
d!1

> 0 and completes the proof.

Proof of Proposition 6. The proof follows similar steps to Proposition 3. Using Eq. 48, α2 corre-
sponding to the alternative leverage limit is characterized as the unique solution to:

1

1− β

(
α2
α
−
λo1
λp1
β
1− α2
1− α

)
= 1− (!̃1 − 1)

[
Q∗

Q2 (α2)
− 1
]
. (A.29)
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Likewise, α2 corresponding to the PMP (with the current leverage limit) is characterized as the solution

to:
1

1− β

(
α2
α
−
λo1
λp1
β
1− α2
1− α

)
= 1− (!1 − 1)

"
Q̃1

Q2 (α2)
− 1

#

. (A.30)

Next note that the proof of Proposition 3 establishes that there is a unique level of Q̃1 that ensures

Eq. (37) holds. Let Q̃1 denote this level, that is:

(!1 − 1)

"
Q̃1

Q2 (α2)
− 1

#

= (!̃1 − 1)
[

Q∗

Q2 (α2)
− 1
]
. (A.31)

Substituting Q̃1 into Eq. (A.30) ensures that this equation is the same as Eq. (A.29). Therefore, the

solutions are the same. Hence, there exists a PMP that replicates α2 that results from the alternative

leverage limit. Recall also that β2 is characterized by Eq. (44) conditional on α2. Thus, the same PMP

also replicates β2 that results from the alternative leverage limit. Note also that Eq. (A.31) implies
@Q̃1

@!̃1
> 0. This completes the proof of the first part.

Next consider the interest rate corresponding to PMP. Note that Eq. (21) continues to hold as

equality for pessimists. This implies that the interest rate is given by:

r̃f1 = ρ+ g1 − δ

 
Q̃1
Q∗
η∗

!

− λp1
1− α
1− α2

 
Q̃1

Q2 (α2)
− 1

!

.

Using Eq. (45) (that describes the wealth share after transition for regulated optimists) to substitute for

the price decline, we obtain:

r̃f1 = ρ+ g1 − δ

 
Q̃1
Q∗
η∗

!

− λp1
1− α
1− α2

(
1−

α2 (1− β2)
α (1− β)

)
1

!1 − 1
. (A.32)

For the benchmark without any prudential policy, following similar steps we obtain:

rf,b1 = ρ+ g1 − δ (η∗)− λ
p
1

1− α
1− αb2

0

@1−
αb2

(
1− βb2

)

α (1− β)

1

A 1

!b1 − 1
. (A.33)

Here, αb2,β
b
2,!

b
1 denote the equilibrium variables in the benchmark, which are potentially di§erent than

the equilibrium with PMP. In particular, recall from Proposition 5 that α2 > αb2. Combining this with

Eq. (44), we further obtain β2 < β
b
2. PMP decreases the fraction of optimists’ wealth held by unregulated

optimists, because they react to the policy by increasing their risks more than regulated optimists.

Next note that the wealth shares satisfy the following identity:

1− α
1− α2

(
1−

α2 (1− β2)
α (1− β)

)
= (1− α)

1− α2(1−β2)
α(1−β)

1− α2

= (1− α)
(
1−

α2
1− α2

[
1− β2
α (1− β)

− 1
])
. (A.34)

Here, the term in the brackets is positive because β2 < β. This identity holds for the pair, (α2,β2), as

well as the pair,
(
αb2,β

b
2

)
. Combining the identity with the inequalities, α2 > αb2 and β2 < βb2 (which
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implies 1− β2 > 1− β
b
2), we further obtain:

1− α
1− α2

(
1−

α2 (1− β2)
α (1− β)

)
<
1− α
1− αb2

0

@1−
αb2

(
1− βb2

)

α (1− β)

1

A .

Note also that 1
!1−1

≤ 1
!b1−1

since !b1 ≤ !1. Finally, we also have δ
(
Q̃1

Q∗ η
∗
)
< δ (η∗) since Q̃1 < Q∗.

Combining these inequalities with Eqs. (A.32) and (A.33) proves that r̃f1 > rf,b1 : that is, PMP sets a

higher interest rate than in the benchmark without prudential policies.

Finally, consider how raising the target leverage limit !̃1 a§ects the interest rate corresponding

to PMP. Since raising the leverage limit increases Q̃1, it also increases the e§ective depreciation rate,

δ
(
Q̃1

Q∗ η
∗
)
. Since raising the leverage limit reduces α2, it also increases β2 (and reduces 1−β2). Combining

this with the identity in (A.34) implies that raising the leverage limit raises the term, 1−α1−α2

(
1− α2(1−β2)

α(1−β)

)
.

Combining these observations with (A.32) proves that raising the target leverage limit decreases the

interest rate, that is: @r̃f1
@!̃1

< 0. In particular, targeting a lower e§ective leverage limit !̃1 requires setting

a higher interest rate, completing the proof.

A.6. Details of the numerical exercise in Sections 5 and 6

For depreciation, we use the functional form

δ (η) = δ +
(
δ − δ

)
(
η − η

)1+1/"

1 + 1/"
for η ≥ η (A.35)

(and δ (η) = δ for η < η) given some constants δ, (δ − δ), η, " > 0. This functional form implies that

decreasing factor utilization below the e¢cient level, η∗, reduces the depreciation rate until η < η∗, but it

has no e§ect on depreciation beyond this level. Raising factor utilization above the e¢cient level increases

capital depreciation.

In our numerical examples, we set

η = 0.97, δ = 0.04, δ = 0.087, " = 20.

These choices ensure that the e¢cient factor utilization and the corresponding depreciation rate are given

by [cf. Eq. (16)] with

η∗ = 1 and δ (η∗) = 0.041.

In particular, we normalize the e¢cient factor utilization to one. The choice of η = 0.97 (together with a

relatively high elasticity, " = 20) implies that underutilizing capital by up to 3 percent is not too costly,

since it is compensated by a relatively large decline in depreciation. Underutilizing capital beyond this

level is much costlier as there is no compensation in terms of reduced depreciation. In our examples, this

means that underutilizing capital in the recession is much costlier than underutilizing capital during the

boom.

For the discount rate, we set

ρ = 0.04.

This choice (together with the specification for the depreciation function) ensures that Assumption 2
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holds. For the productivity level, we set A = 1. This does not play a role as it scales all variables. These

choices imply that the e¢cient asset price level is given by [cf. Eq. (17)]:

Q∗ =
Aη∗

ρ
= 25.

For the productivity growth rates, we set

g3 = g1 = 0.1− (ρ− δ (η∗)) = 0.101

g2 = −0.05− (ρ− δ (η∗)) = −0.049.

These choices satisfy g2 < min (g1, g3). They also imply that, with no state changes or belief disagreements

and if capital were perfectly utilized, then the (risk-adjusted) return to capital would be equal to 10% in

the boom and the recovery states and -5% in the recession state [cf. (18)]. In particular, the transition

from the boom to the recession represents a 15% shock to asset valuations.

For beliefs, we set

λo1 = 0.09 and λp1 = 0.9

λo2 = 4.97 and λp2 = 0.49

(and λo3 = λp3 = 0). These beliefs satisfy Assumption 1: compared to pessimists, optimists assign a

smaller probability to a transition from boom to recession but a greater probability to a transition from

recession to recovery. When combined with the remaining parameters, these values satisfy Assumptions

A1-A2, the regularity conditions we need in order to obtain an equilibrium with a positive interest rate

in the boom state and a zero interest rate (and suboptimal asset price level) in the recession state.

Recall that we also need Assumption A3 (which is a regularity condition) to ensure that there is a

unique equilibrium when optimists’ leverage limit binds (cf. Appendix A.3). This condition depends on

the equilibrium price function in the recession, Q2 (α). Figure 9 plots the price function corresponding

to the parameters described above. We verify that, when combined with the remaining parameters, this

function satisfies Assumption A3.

59


	Introduction
	A stepping-stone example
	Dynamic environment and equilibrium
	Common beliefs benchmark and amplification
	Belief disagreements and speculation
	Welfare analysis and macroprudential policy
	Empirical evidence
	Final remarks
	Appendix: Omitted Derivations for the Two Period Model
	Baseline two period model
	More general EIS
	Belief disagreements and speculation

	Appendix: Omitted Derivations for the Dynamic Model
	Omitted derivations in Section ??
	Portfolio problem and its recursive formulation
	New Keynesian microfoundation for nominal rigidities

	Omitted derivations in Section ??
	Omitted derivations in Section ??
	Details of the parameterization

	Appendix: Omitted Derivations for the Welfare Analysis
	Value functions in equilibrium
	Equilibrium with macroprudential policy

	Appendix: Extension with investment and endogenous growth
	Environment and equilibrium with investment
	Common beliefs Benchmark with Investment
	New Keynesian microfoundations for nominal rigidities with investment

	Appendix: Data Details and Omitted Empirical Results

