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Abstract

This paper has two parts. In the first part, I demonstrate that, in the absence of
price and wage bounds, monetary models do not have current equilibria - and so lack
predictive content - for a wide range of possible policy rules and/or future equilibrium
outcomes. This non-existence problem disappears in models in which firms face (arbi-
trarily loose) finite upper bounds on prices or positive lower bonds on nominal wages.
In the second part, I study the properties of a class of dynamic monetary models with
these kinds of bounds on prices/wages. Among other results, I show that these models
imply that the Phillips curve is L-shaped, are consistent with the existence of per-
manently inefficiently low output (secular stagnation), and do not imply that forward
guidance is surprisingly effective. I show too that economies with lower nominal wage
floors have even worse equilibrium outcomes in welfare terms. It follows that models
with arbitrarily low but positive nominal wage floors are not well approximated by

models without wage floors.
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1 Introduction

This paper has two parts. In the first part, I set forth a class of monetary models in which
prices and wages adjust freely. I demonstrate that these models have an important defect:
it is only possible to ensure existence of equilibrium in a given period by imposing (possibly
tight) restrictions on the set of monetary policy rules and/or future equilibrium outcomes.
It follows that the models are uninformative about what happens if governments and agents
don’t obey those restrictions. I demonstrate that this non-existence result disappears when
firms face a finite upper bound on their price choices and a positive lower bound on their
wage choices (regardless of how loose these bounds are). I conclude that useful monetary
models require a finite price ceiling and a positive wage floor.

In the second part, I study the properties of a class of such monetary models. I show
that they have a number of important properties that are distinct from the implications of
conventional models with price-setting and wage-setting frictions. Specifically, I prove the

following results about the models with price/wage bounds:!

e Whenever there is a negative output gap (output is inefficiently low), the inflation rate
is equal to its lowest possible level. When the output gap is zero (output is efficient),
the inflation rate varies. In this sense, the models predict an L-shaped Phillips curve
that is horizontal when the output gap is negative and vertical when the output gap is

zero. (The output gap cannot be positive.)

e The models are consistent with a form of secular stagnation in the sense that, under
weak conditions, there is a set of equilibria in which the output gap is permanently

negative.

e When output is efficient, the output multiplier on government purchases is zero. When

output is inefficiently low, the output multiplier on government purchases is one.

!The models are finite horizon and have a set of equilibria that are indexed by final-period (possibly
random) inflation. All of these results are conditional on a particular specification of final period inflation
(which might be interpreted as “anchored” inflation expectations).



e There is no “forward guidance puzzle”: if interest rate rules obey the Taylor Principle,
the current impact of forward guidance about future interest rates declines exponen-

tially with the horizon of the guidance.?

e Lowering the nominal wage floor makes inefficient equilibrium outcomes even worse in

a welfare sense.?

In Appendix A, I describe highly accurate numerical solution methods for (the fully nonlinear)
versions of this class of models in which exogenous shocks follow a Markov chain. I apply
these methods in a numerical example that illustrates the (possibly surprising) power of
slightly negative nominal interest rates.?

The theoretical argument in the first part of the paper justifies the imposition of some
bounds on prices and wages. Of course, the quantitative implications of a model with such
bounds necessarily depend on their magnitudes. But, as described above, the nature of this
dependence is somewhat counter-intuitive. Reducing the nominal wage floor reduces inflation
expectations, raises real interest rates, and (for a given interest rate rule) lowers output. This
logic means that a world with very low nominal wage floors has highly inefficient equilibrium
outcomes and so is not well-approximated by models without price/wage bounds or without
monetary trade.

We can get some intuition for these apparently counterintuitive results about bounds
through the lens of a simple two-person game, in which player ¢ chooses a; from the interval

1. The players’ payoffs are given by:

(alag,O) if |CL1| > |a2|
(O,alag) if |CL2| > |a1|

(a1a2/2, a1a2/2) if |ai| = |as]

2See del Negro, Giannoni (2015) and MacKay, Nakamura, and Steinsson (2016) for a description of the
“forward guidance puzzle” in New Keynesian models.

3The result resembles the “paradox of toil” described by Eggertsson (2010).

4The numerical methods mirror those described in Kocherlakota (2016b).



Suppose first that the interval is unbounded, so that I = (—oo,00). Then, player ¢ has no
best response when player j chooses a; # 0. It follows that the unique Nash equilibrium in
this game is that both players choose 0.

Now suppose instead that the interval is bounded from above and below, so that I = [b, B|
where b < 0 < B. It is still an equilibrium for both players to choose 0, but it is also an
equilibrium for both players to choose b or for both players to choose B. (Indeed, the latter
two extremal equilibria seem more robust, since the first requires the use of weakly dominated
strategies.) As we increase the absolute value of the bounds, the set of equilibria in the latter
bounded game diverges from the set of equilibria in the former unbounded game. A game
without bounds on players’ action sets need not be a useful approximation to a game with
bounds on action sets, even when those bounds are very loose.

Why do the implications of monetary models with price/wage bounds differ from more
conventional monetary models with nominal frictions (like models with Calvo pricing, Rotem-
berg pricing or menu costs)? The key difference lies in the nature of the inefficiency implied
by the two kinds of models. In conventional models with (only) price-setting frictions, the
allocation is inefficient because agents consume a lot of goods from some firms (with low
prices) and they consume few goods from some firms (with high prices). In the class of mod-
els with price/wage bounds that I study in this paper, the allocation is inefficient because all
firms are producing too little and all households are working too little.

Here’s an example of why this matters. Suppose that we were to agree that output was
inefficiently low in the US in late 2009 (when the unemployment rate was 10%). In conven-
tional models with price-setting and/or wage-setting adjustment costs, such an inefficiency
is wholly attributable to misallocations of production across otherwise identical firms and
workers. In bounded competition models, the relevant inefficiency is attributable to all firms
being unable to lower worker wages and product prices.

Throughout the paper, I'm agnostic about the source of the nominal wage floors or price

ceilings. But I don’t believe that either should be seen as emerging from legal restrictions of



some kind. Rather, it seems clear that, at any point in time, businesses face non-statutory
bounds on their price and wage decisions. The important empirical issue with bounds on
price-setting and wage-setting is not whether they exist, but rather if and when they bind.

I defer a full discussion of the related literature until Section 6. However, for clarity, it
is important to emphasize that the class of models that I study feature a lower bound on
nominal wages. This bound has distinct implications from the more typical assumption that
real wages are sticky (for prominent examples, see Blanchard and Gali (2005) or Christiano,
Eichenbaum and Trabandt (2016)). In a model with sticky real wages, there is a gap between
the marginal product of labor and the real wage. In a model with flexible prices and a lower
bound on nominal wages, product market competition will eliminate any such gap. (There
is a more related literature about downward nominal wage rigidity, which I will discuss in
Section 6.)

I close with a final methodological comment. Throughout the paper, I abandon the re-
cursivity /stationarity restrictions that macroeconomists usually impose on equilibria. These
restrictions, as far as I can tell, have no economics behind them. Rather, they are ad hoc
ways to ensure that macroeconomic models are “nice” from the point of view of computation
(and, for some, estimation).

In contrast (and as in Kocherlakota (2016a)), I use finite horizon models. The upper-
hemicontinuity of equilibrium correspondences with respect to horizon length implies that
these models should have fewer equilibria than their infinite horizon analogs.” Nonetheless,
the finite horizon models that I study actually exhibit an enormous amount of nominal and
real indeterminacy - indeterminacy which, as will become clear in the next section, lies at

the heart of the paper.

5Thus, in monetary models in which money is intrinsically valueless, there are only non-autarkic equilibria
when the horizon is infinite. Similarly, infinitely repeated games may have many more equilibria than occurs
when the same game is repeated a finite number of times.



2 Why Monetary Models Need Bounds on Prices and
Wages

In this section, I illustrate, through a two-period example, why monetary models need to
include bounds on prices and wages. I first consider a (standard) Walrasian two-period
model of monetary exchange. In this model, the government imposes a lump-sum tax in
period 2 equal to the average amount of money outstanding. As a result, essentially any
price level is an equilibrium. However, the anticipation of many (possibly almost all) of these
period 2 equilibria leads to non-existence of equilibrium in period 1. Put another way, we
have to impose an otherwise artificial restriction on the set of period 2 equilibria to ensure
that we get existence of equilibrium in period 1.

I switch to a model in which firms compete strategically by setting prices and wages. I
show that, without bounds on the firms’ choices, the same existence issue emerges as in the
Walrasian case. I then add an upper bound to constrain the firms’ choices of prices and a
positive lower bound to constrain their choices of wages. Given these restrictions, there is an

equilibrium in period 1 for any period 2 equilibrium.

2.1 Two Period Example Setup

There are two periods and a unit measure of agents who all live for two periods. The agents

maximize the expectation of a cardinal utility function of the form:

u(cr) + keo



where k > 0. Here, ¢; is consumption in period 1 and ¢y is consumption in period 2. The

utility function u satisfies typical restrictions:

u,—u" >0
lime_ou'(c) = oo

lime_oot/(c) =0

In period 1, the agents are each endowed with N units of time. In period 2, the agents
are each endowed with Y units of consumption. Both consumption and leisure are required
to be non-negative.

There are J firms who have identical constant returns to scale technologies that transform
a measure n units of time in period 1, n > 0, into a measure n consumption goods. The
agents have equal ownership of all firms.

The symmetric efficient allocation in this environment is easy to compute. Agents have
no utility from leisure and their time can generate useful consumption goods in period 1. So,
it is efficient for each agent to work 1 unit of time in period 1, consume N units of goods in

period 1, and to consume Y units of goods in period 2.

2.2 Two-Period Walrasian Monetary Equilibrium

I now add money to this model. T treat money as an interest-bearing asset (akin to the
interest-bearing reserves that banks hold with the Federal Reserve). Each person is endowed
with M dollars of money in period 1. The government commits to an interest rate rule: in
period 2, money pays a gross nominal interest rate R(P;), where R is a continuous function
of the period 1 price level P;. In terms of fiscal policy, all agents are required to pay a
lump-sum tax of M R(P;) dollars in period 2.

In period 2, households trade money and goods. Given a period 2 price level P, the



generic household’s problem is:

MAT ey M, KCo
s.it.Pyco + My < PY + M{R(PY)

My > MR(P;)

where P} is the period 1 price level. Here, M| may differ across households. However,
the average M] is equal to the initial per-capita money-holdings M. The last constraint is
necessary to ensure that the household has enough money at the end of the period to pay its
taxes.
It is straightforward to show that, for any P, it’s optimal for households to set My =
MR(Py) and to set:
co=Y + M{R(P\)/P, — MR(P,)/P,

Given these choices, markets clear, because the average of M| across households equals the
supply of money M. It follows that any positive real P, is an equilibrium.®

Now, we move back in time to period 1. Suppose the households rationally expect that
the equilibrium period 2 price level Py will equal the equilibrium period 1 price level Pf

multiplied by (an endogenously determined variable) II*. Given these expectations, they

trade in period 1. The households’ problem in period 1 is then:

SThroughout the paper, I treat the final period price level as being indeterminate. There are certainly
ways to use government policy to limit or eliminate this indeterminacy. The results in this section would
then be viewed about the sensitivity of period 1 outcomes to period 2 government policy choices.



(c],n7,¢5) € argmag (e, n, cyu(c1) + kco
st.Pfey+ M =W*ng + M + Jo*
II*Pies = MIR(PY) — MR(P,) + II"PrY

!
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where Pj is the period 1 price level, and W* is the period 1 wage (in terms of dollars). The
firms’ problem is:

¢ = maxnlzopl*nl — Wrny

Finally, the market-clearing conditions are:

Clzni
=Y
M =M

It is straightforward to show that:

Proposition 1. Given a monetary policy rule R and an anticipated period 2 gross inflation
rate 11*, there exists a period 1 Walrasian monetary equilibrium if and only if there exists

some Py such that:

In any Walrasian monetary equilibrium, the equilibrium allocation is efficient.

Proof. We can show, as in the proof of Proposition 1, that in any Walrasian monetary



equilibrium, W* = P, ®* =0, and n] = N. It follows from market-clearing that:

e
I
<=

%)
N ¥
I

which means that, in any Walrasian monetary equilibrium, the allocation is efficient.
However, people will be willing to hold M dollars of money from period 1 to period 2
if and only if the real interest rate paid by money is equal to the shadow real interest rate

associated with the efficient allocation. Mathematically, we need:

which proves the proposition. O

Proposition 2 shows that there is a Walrasian monetary equilibrium if the real interest
rate on money is equal to the efficient real interest rate. That Walrasian equilibrium is
efficient.

However, there is an existence problem with Walrasian equilibrium. Suppose R(P,) = R
for all P, where:

u' (NIT*/k # R

Then, a period 1 Walrasian equilibrium doesn’t exist. The criterion of existence in period 1
imposes a constraint on the interest rate rule and/or what can happen in period 2. But this
seems highly problematic. Why should we presume that the government will be informed
enough or benevolent enough to choose an interest rate rule that is consistent with existence
of equilibrium? Or that players in the future will necessarily make choices consistent with

existence of equilibrium today?

10



2.3 Explicit Price and Wage Competition

How to fix this defect in Walrasian monetary equilibrium? To answer this question, I turn to
a more explicitly strategic model of firm price and wage competition. I begin in this section
by allowing the firms to choose from action sets that are unbounded from above or away
from zero. As above, I assume that households and firms have rational beliefs about what
will transpire in period 2.

The J firms play a game in period 1 in which they simultaneously choose a wage W, a
price P, and a capacity constraint Y. The capacity constraint simultaneously constrains the
labor hired by the firm (to be no more than Y') and output produced by the firm (to be no
more than Y). In this way, the capacity constraint decision ensures that the demand for the
firm’s product market and labor market activities cohere.

After observing firm choices, households choose, in a randomly determined sequence, how
many goods to buy from each firm and how much time to supply to each firm. (The sequential
nature of household choice limits the amount of inefficient queueing at any given firm.) In
this second stage, a household’s best labor market response is to supply all of its time to the
capacity-unconstrained firm with the highest (positive) wage, given prior households’ choices.

In the product market, a household demands:

N kR(P) P/ Py)

units of consumption in period 1, where P; is the equilibrium price level in period 1 and
P is the commonly known period 2 price level. The household buys that consumption
from the capacity-unconstrained firm that offers the lowest prices, given the choices by prior
households.

In this game, I focus on symmetric equilibria (in which all firms make identical choices).

I further restrict attention to equilibria in which firms’ production levels are positive and

11



are equal to their chosen capacity constraints.” I refer to these equilibria as being strategic
competitive equilibria. These equilibria have the following properties.

First, all firms choose W = P,. If W > Py, then all firms are making negative profits.
A given firm can gain by setting its capacity constraint to zero. If W < Py, then a given firm
can gain by raising its capacity constraint a lot, cutting its price slightly (so as to generate
more household demand), and raising its wage slightly (to attract more household labor
supply).

Second, there is no equilibrium in which labor nj < N (these variables are
per-household). Suppose that n} < N, and a firm deviates by cutting its wage W by € (e
small and positive). This deviation is profitable because, even at this lower wage, there are
(1 = nj(J —1)/J) households who would like to supply labor to the firm.

Finally, there is no equilibrium in which:

() M)

where IT* is the anticipated equilibrium inflation rate from period 1 to period 2. Suppose
u'(N) < kR(Py)/II*. Then, households demand only ¢; < N units of consumption, which is
contradicted by the earlier observation that nf = N in equilibrium. Suppose that u'(N) >
ER(Pf)/IT*. Then, a firm can profitably deviate by raising its price by e. This deviation
is profitable because all other firms are capacity-constrained, and (even at a slightly higher

price) households demand more consumption than the putative equilibrium level V.

"This last requirement is without loss of generality.

12



These three observations imply that the only possible equilibrium is one in which:

It is straightforward to verify that this is, in fact, a strategic competitive equilibrium outcome.
(No firm can reduce its wage without losing its supply of workers. No firm can raise its price
without losing the demand for its products.)

Thus, the set of strategic competitive equilibria is in fact equivalent to the set of Walrasian
monetary equilibria described in the prior subsection. This means that strategic competition
gives rise to efficient outcomes. However, it also means that, just as was true for Walrasian
equilibrium, there is no strategic competitive equilibrium for a wide range of rational beliefs

about period 2 equilibrium and/or government policy rules.

2.4 Price and Wage Bounds

In this subsection, I discuss why we obtained the non-existence result in the prior subsection.
As I did in the introduction, I argue that it is attributable to the openness of the firms’ action
sets. I describe and characterize bounded strategic competitive equilibria.

Suppose that the period 2 gross inflation rate II* is such that:

for all values of P;. Then, for any period 1 price level, the households demand less consump-

tion than can be produced if they all work full-time. But we saw in the last subsection it is

13



impossible for ny < N in a strategic competitive equilibrium because, regardless of how low
P, is, firms can increase their profits by cutting wages.

Similarly, suppose that IT* is such that:

for all P;. Then, for any price level, the households demand more consumption than can be
produced if they all work full-time. But we saw in the last subsection that it is impossible
for this situation to occur in a strategic competitive equilibrium, because, regardless of how
high P, is, firms can always increase their profits by raising prices.

Thus, the non-existence of period 1 equilibrium, conditional on beliefs about what will
happen in period 2, is attributable to the non-compact nature of the firms’ action sets. The
issue is similar to what occurs in a game between two players who are asked to simultaneously
name two natural numbers, with a prize being awarded to the player who names the higher
number. There is, of course, no equilibrium to this game because a player can always increase
her chance of winning the prize by choosing a (possibly mixed) strategy that stochastically
dominates her initial one. In contrast, suppose we compactify the players’ action sets from
above from B, so that they are allowed to name a natural number that is less than or equal
to B. Then, the unique equilibrium is one in which both players choose B and split the prize.

This analogy suggests that we can resolve the non-existence problem by imposing bounds
on the firms’ action sets. With that in mind, I now consider the same game as in the prior
subsection, except that a firm’s choice of its price is bounded from above by Pyp and its
choice of a wage is bounded from below by Wyg > 0. As before, I focus on symmetric
equilibria in which the firm production equals their chosen positive capacity. 1 term such

equilibria bounded strategic competitive equilibria.

Proposition 2. Given a monetary policy rule R, and a period 2 gross inflation rate I1*, an

outcome (ci,ny, W, Pf) is part of a bounded strategic competitive equilibrium outcome if and

14



only if ¢ = nj, W* = P, and one of the three following sets of conditions are satisfied:

L Py = WP nj < Ni and o(¢;) = kR(W") /I
2. Pf = PYP; ni = N; and /(N) > kR(PY5) /11"

3. WP < Pr < PUP; i = N; and o'(N) = kR(P;)/IT*

Proof. 1 first show that these cases are, in fact, equilibria. In case 1: P; = W8 and so no
firm can deviate by cutting its wage. Raising its price means that no customers will demand
its goods. It follows that firms can’t find a profitable deviation.

In case 2: Py = PUYB. A firm can’t deviate by increasing its price. Lowering its wage
means that it won’t be able to hire any labor. It follows that firms can’t find a profitable
deviation.

In case 3: There is no profitable deviation for any firm, because a firm loses all labor
supply if it lowers its wage and loses all product demand if raises its price.

Are there other equilibria? It is straightforward to show that, in any equilibrium, ¢} = nj

and P/ = W*. Given the gross real return on money (R(P;)/II*), households demand:

cf(Py) = u™ (kR(P])/1T)

units of consumption from each firm. If ¢?(P) < N, then firms will set their capacity
constraints at c(P;)/J and hire n} = ¢{(P;) < N units of time. That can only be an
equilibrium if W* = Wyp (case 1).

If ¢{(Py) > N, firms are unable to hire enough workers to meet the households’ demand
for goods. The households end up consuming only N units of goods each. This can only be
an equilibrium if P = Pyp (case 2).

If ¢4(Py) = N, firms have no incentive to adjust their prices or wages, so this can be an

equilibrium for any price level (case 3). O

15



Proposition 2 describes three kinds of bounded strategic competitive equilibria. In all
of them, while they can substitute between consumption and interest-bearing money, the
households end up spending their wage income (WW*nj) to buy Py} period 1 goods. Money
plays no substantive role in the economy: households simply hold their initial money-holdings
M into period 2 and then use that money to pay their taxes.

The first kind of equilibria (case 1) are inefficient, because households consume ¢} < N
and work n*¥ < N. The inefficiency cannot be alleviated because firms can’t lower their wages.
The second kind of equilibria (case 2) are efficient (because households consume ¢ = N and
work n¥ = N). However, they are efficient with rationing: households systematically would
like to sell their money for more goods from firms than the firms can produce (given their
capacity constraints). The rationing cannot be alleviated because the firms are unable to

adjust their prices upward. The final kind of equilibria (case 3) are efficient without rationing

and correspond to the Walrasian monetary equilibria.

2.5 Existence of Bounded Strategic Competitive Equilibria

In this subsection, I prove that for any (continuous) interest rate rule R, any period 2 gross
inflation rate II*, for any price upper bound P2, and for any W#, there exists a bounded

strategic competitive equilibrium.

Proposition 3. For any continuous interest rate rule R, any period 2 gross inflation rate
IT*, price upper bound PYB, and nominal wage floor WLB | there exists a bounded strategic

competitive equilibrium.
Proof. 1f there isn’t an inefficient equilibrium (case 1), then:

)iy < RR(WEP)
u'(N) > —

If there isn’t an efficient equilibrium with rationing (case 2), then:

16



= kR(PYB)
u'(N) < T

Since R is continuous, these two inequalities imply via the intermediate value theorem that:

- kR(Py)
!/ N _ 1
W(N) =S
so that there exists at least one efficient equilibrium without rationing. ]

There is a bounded strategic competitive equilibrium for all (continuous) interest rate
rules and all IT*. Note that the proof of existence is valid regardless of how large PYZ is or

how small WLPB is.

2.6 Summary

In this section, I illustrated a problem with the concept of Walrasian equilibrium: to obtain
existence in a given period, we need to restrict the set of future equilibrium outcomes. I
showed how to fix this problem by using bounded strategic competitive equilibrium - a notion
of equilibrium which incorporates bounds on firm price-setting and wage-setting.

Bounded strategic competitive equilibrium outcomes may be inefficient. The essence
of the inefficiency is that households would like to work and consume more. However, a
given household can only trade its labor for consumption via firms that own the means of
production. Those firms can’t profitably expand their scale of operation because they can’t
cut nominal wages.

It shouldn’t be surprising that the relevant inefficiency involves underproduction, not
overproduction. Underproduction represents mutually beneficial trades not being consum-
mated. This kind of inefficiency is simply a form of incompleteness of markets. In contrast,
overproduction would (somehow) require forcing firms and workers to engage in trades that

are not mutually beneficial.
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3 Dynamic Equilibrium

In this section, I extend the above definition of equilibrium to a finite horizon economies.
(Henceforth, I use the short-hand term “equilibrium” to refer to a bounded strategic com-

petitive equilibrium.)

3.1 Description of the Economy

Consider a (T + 1) period stochastic version of the above economy, where 7' is finite but
arbitrarily large. In each period, firms have a technology in which n units of time translates
into n units of output. Agents have no disutility from labor, and are endowed with NV, units
of time in period ¢t = 1,,...,T, where {N,}Z, is a stochastic process. They are endowed
with a random amount Y7,; units of consumption in the final period (7' + 1). Agents have

expected utility, with a time separable cardinal utility function over consumption processes:

where {\,}11 is a stochastic process.

In terms of monetary policy, money is again an interest-bearing asset. The one-period
nominal interest rate from period (t—1) to period t is given by R(m; ), where m; is the gross
inflation rate from period (¢ — 1) to period ¢ and (g,)Z_; is an exogenous stochastic process of
monetary policy shocks. (Without loss of generality, I fix Py = 1.) I assume that the interest
rate rule R is strictly increasing and continuous in its first argument. In the final period, the
government levies a lump-sum tax equal to the per-capita money supply on each agent.

Firms compete in each period t = 1, ..., T by setting prices and wages. Their price choice
in period ¢ is constrained by an upper bound given by 7V2P? | where P} | is the period

(t — 1) price level. Their wage choice is constrained by a lower bound given by m*PW}; ,.

Since labor productivity is constant over time, this lower bound on nominal wages translates

18



into an equivalent lower bound on inflation.®

3.2 Definition of Equilibrium

As in the 2-period economy, the gross inflation rate mr,; in the final period (7' + 1) is
indeterminate. So, the set of equilibria should be seen as being indexed by the (random)
inflation rate mp .

Given the exogenous processes {e;, \s,, No}1_; and the exogenous period (T + 1) shocks
(Ar41, Tr41, Yrie1), an equilibrium is a joint consumption-inflation process (c;, 7))L, that

satisfies two sets of restrictions. The first is a set of Euler equations:

/ )\ 3
i (e ) = maz(BR(TVP: e By ML)y g A p (1)
41

where c¢py1 = Yri1. The period ¢ level of consumption is equal to its efficient level N, if
inflation is above its lower bound. Otherwise, the period t level of consumption is shaped
by the current marginal utility of future dollars given that period ¢ inflation is at its lower
bound.

The second set of restrictions describes how inflation is determined subject to its upper
and lower bounds. If inflation is unconstrained by its bounds, then the level of consumption
is efficient. The inflation rate in period t is determined by the interest rate rule so as to

satisfy the Euler equation:

(U’(cm; A1)

Tg4+1

U/(Nt; )\t) = BR(Wt; 5t)Et

However, there may be no m; in [78, 7YP] such that the Euler equation is satisfied. More

8If labor productivity varied over time, or (in a richer model) mark-ups varied over time, then the lower
bound on inflation would be a stochastic process.
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generally, for t = 1, ..., T, the second set of equilibrium restrictions take the form:

U/(Ct+1;3\t+1) <1 (2)
7Tt+1u/(Nt;)\t) N

/ ,A )
= 7lB if R?TLB;FSEM>1 3
SR e B ) ®)

/ )\ )
— R YBYE U (Ct+1a_t+l
(6 { t7Tt+1UI(Nt§)\t)

m =7V if BR(7YE; e,) Ey(

}7 &) otherwise (4)

where ¢, = Y711. Note that, because R is strictly increasing, these restrictions characterize
a unique 7.
The three cases can be classified much as in the two-period economy discussed in the

prior section. If:

(€1 Aig1)

RWUB;s E(——————————-
b ( t) t(7Tt+1U/(Nt§)\t)

) <1

the equilibrium exhibits rationing in period t because agents demand more than the maximal
amount that can be produced. In contrast, if:

BR(WLB; €t)E ( u (Ct+1; )‘t+1)

WAL ALy
t 7Tt+1U/(Nt; At) )

then equilibrium output is inefficiently low in period t.

3.3 Constructing Equilibrium

It is straightforward to apply backward induction to these two sets of restrictions (1) and (2)
to construct the set of equilibria. Fix an arbitrary random period (7'+ 1) gross inflation rate
741 and set ¢pyq = Yryq. Then, we can use the period T restrictions (1) to solve for period

T consumption:

, W (Yrir; A -
(e M) = max(ﬁR(ﬂLB; er)Er( ( T;Ll 741) ), u' (Np; Ar))
T+1
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And we can use the period T restriction (2) to solve for inflation:

u' (Yri1; Argr)
W (Np; A\r)Tri
u' (Yry1; Aryr)
U'(NT§ )\T)WT+1
u'(Yri1; AMrgn)
Tt (Nr; Ar)

mr = 1B if BR(7YE; er) Ex(

=P if BR(7MP;er) Ex(

— R—l(/B—l{ET

} 71 er) otherwise

There is a unique solution for 7 because the interest rate rule R is strictly increasing and
continuous.
We can then continue using backward induction to construct the full equilibrium (cz, 77)7; .
In this way, given any (random) terminal inflation 77, 1, there is a unique equilibrium (¢, 7).
Note that in any equilibrium of this form, the (identical) households choose never to trade
money and goods. As in the two-period model, money is simply a store of value used to pay
their taxes in the final period. Nonetheless, the opportunity to hold interest-bearing money

can in fact create inefficiencies.

3.4 The Role of the Price/Wage Bounds

What if there were no bounds on prices or wages? In that case, the equilibrium would
necessarily be efficient and inflation would satisfy the restrictions:
B (N M)

Et(U’(Nt+1;>\t+1))

Tt4+1

Ty = R_l(

;€t),t = 1, (T — 1)

But these restrictions imply that too that the terminal inflation rate 7, must be such that

forallt=1,...T:
571U/(Nt; At)
Et(u’(Ntﬂ;)\tJrl))

Ti41

lies in the range of the interest rate rule R. This (potentially complex) restriction on future

equilibria to ensure period t existence is exactly what I criticized in the two-period example.
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4 Results

In this section, I derive a number of properties of the (bounded strategic competitive) equi-
libria of the models set forth in section 3. I focus on implications that are distinct from
models with more conventional pricing frictions. As in Kocherlakota (2016a), the proofs rely

on backward induction.

4.1 Secular Stagnation

In this section, I show that under weak uniform boundedness conditions, there are equilibria

in which output is permanently lower than would be efficient. In my view, this kind of

9

outcome” corresponds to what Summers (2013) terms “secular stagnation”. The key to these

equilibria is that money is viewed as a highly valuable asset because long-run inflation 774

is expected to be low.

Proposition 4. Suppose that the interest rate rule R satisfies the condition:

R(WLB§ €) > Rrp

for all €. Suppose too that for some constants Ly and Ly

u’(YT+1; )‘T-l—l) > Ly >0 w.p. 1

Fort=1,...,T, W' (N;\) < Ly w.p. 1

Then there is a set of equilibria (with sufficiently low inflation wr,1) in which consumption

¢t < Ny with probability one for allt < T.

Proof. In Appendix B. n

The following example is a simple illustration of Proposition 4. The example is based

on the premise that the efficient allocation is constant. It then shows that if /7P = 1,

9See Eggertsson and Mehrotra (2014) for an overlapping generations model of secular stagnation.
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and the nominal interest rate lower bound equals one, there is a set of constant inefficient

equilibria.'?

Example 1. Suppose Yy, = 1, N, = 1,t = 1, ..., T, and that there are no marginal utility
shocks. Suppose
R(r*B:e) =1

for all € and %8 = 3. Set 741 to be any constant so that:

B > T

Then, using backward induction, we can construct an inefficient equilibrium in which period

(T'+ 1) inflation equals 7, 1, period t inflation m;, = 7, and period ¢ consumption satisfies:

pu'(1)

u'(c) = ——= > /(1)
TT4+1
Begin with period 7. We know that:
!/
1
o (er) = mar( 20 )
TT+1

Since B/mry1 > 1, it follows that:

u'(er) > u'(1)
and mp = 7. Now suppose inductively that:

_ pu'(1)

U/(Ctﬂ) =

TT+1

0Suppose that there (also) exists @ > w5 such that BR(7)/7 = 1. Then, there is also a set of constant
efficient equilibria.
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and Tt+1 = TLB- Then:

B/ (cr11)

()

u'(cp) = max(

_ Bu(y)

TT4+1

Since

B/(mri1) > 1,

it follows that u/(c;) > v/(1), and that inflation must be at its lower bound 7. The equi-

librium construction follows by induction.

4.2 Reducing the Nominal Wage Floor

The main result in this subsection is that reducing the nominal wage floor makes inefficient
equilibrium outcomes even worse in welfare terms. I first use example 1 to illustrate this

claim, and then provide a more general proof.

Example 2. Consider the parameter setting in example 1, except that the wage lower bound
7L is set to be less than 3. (Note that R(7l?;¢) still equals one for this lower value of 715.)
Then, we can use reverse induction as before to show that, given long-run inflation 771, the
equilibrium marginal utility in period ¢ is given by:

ﬂTftJrlu/(l)

/
wle) = By

This equilibrium marginal utility is an exponentially increasing function of 7*?, meaning
that the equilibrium becomes arbitrarily less efficient as the wage lower bound 7*# is made
smaller.

The intuition behind Example 2 is simple. Reducing the wage lower bound in period
(t + 1) also reduces expected inflation in period ¢. Because the lower bound on the interest

rate rule has been left unchanged, the fall in expected inflation results in a higher real interest
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rate, lower demand, and lower output.

The following proposition generalizes Example 2.

Proposition 5. Consider two economies that are identical except that they have distinct

inflation lower bounds 7P > 718 and interest rate rules R, R’ such that:

R'(n;"e) = R(n”;¢)

for all . Suppose (c;, m)_, is an equilibrium in the former economy given random period
(T + 1) inflation 7ry1 such that ¢, < Ny with probability one for all t < T. Then, given
the same random period (T + 1) inflation w1, there is an equilibrium (c,, m;) in the latter

economy such that:

T T—t—1
u' (e M) (=gg)" T < (e M)
TL
with probability one for allt < T.
Proof. In Appendix B. O]

Proposition 4 established that, for a wide class of economies, there is a “secular stag-
nation” equilibrium in which output is inefficiently low in all periods. Proposition 5 shows
that reducing the nominal wage floor, without changing the minimum nominal interest rate,
makes this secular stagnation equilibrium even worse. The intuition is the same as in Ex-
ample 2: The smaller value of the nominal wage floor translates into lower realized inflation
and lower inflation expectations. With a fixed lower bound on the nominal interest rate, the
lower inflation expectations translate into higher real interest rates, lower demand and lower

output.

4.3 L-Shaped Phillips Curve

In this class of economies, the Phillips curve relating the output gap to inflation is L-shaped.
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Proposition 6. Consider an equilibrium (¢, 7). In this equilibrium, 7, = 7" in any date

and state in which ¢; < N,. In these dates and states:

, W (Cppn; A
W (ci; \i) = BR(m*P, a)Et{M}

Te+1
As well, ¢; = Ny in any date and state in which m > w8,
Proof. Straightforward implication of the definition of equilibrium. O

In any equilibrium, the Phillips curve is horizontal with inflation equal to 7 when there
is a negative output gap (so that output is inefficiently low). In these dates and states,
firms bid down wages and prices to the common lower bound. In contrast, when the output
gap is zero (output is efficient), current inflation is determined by expectations about future

inflation and future consumption:

1
_ . —1/ -1 . UB
m = min(R™ (B B u/(Ct415Me41) } €)™ 7)

u' (N Ae) 41

In this vertical portion of the curve, higher future expected inflation and higher future ex-
pected consumption is associated with higher current inflation. This L-shaped Phillips curve
is quite different from the log-linear Phillips curve that emerges from the New Keynesian
paradigm.

Friedman (1968) famously argued that, in the long-run, the Phillips curve is necessarily
vertical. But in these models, there is no force that ensures that the economy converges to
the vertical portion of the Phillips curve. Instead, as Proposition 4 and Example 1 illustrate,
the economy may remain stuck permanently on the horizontal portion of the Phillips curve.

More generally, we should expect the economy to fluctuate between the two branches of the

L.
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4.4 Fiscal Multipliers

In this subsection, I discuss how fiscal multipliers work in this class of models.

Suppose that the government buys an exogenously specified process g = {g;}._, of con-
sumption goods. (The purchases could be financed in a number of ways. To be explicit,
suppose that the government issues debt that pays off only in period (7" + 1) and pays off
that debt using lump-taxes.) Then, the efficient level of private consumption in any period
t becomes (N, — g;), where g, is the amount of public consumption in that period. The

equilibrium conditions for private consumption become:

w'(cpp1; A _
u' (¢ N\) = max(BR(7"5; &)EJ%), u'(Ny — gi; M), t=1,..,T (5)
t+1

Now suppose that we perturb the government purchases process by increasing period
t purchases g, by a small positive A, while keeping final period inflation 77, remaining
unchanged. This increase in government purchases has no effect on private consumption if
¢ < (N; — g;). In this case, the output multiplier is one. The impact on welfare depends on
how government purchases enter into agents’ utility functions. There is no effect on period ¢
inflation (if A is small).

In contrast, if ¢, + ¢, = N, then raising ¢, by A will lower ¢; by A. The output multiplier
is zero, as we get completely crowding out. If there is no rationing, then the period ¢ inflation

rate is given by:
1
Et{ w(ce13Ae+1) }

W (Ne—gi—Ajhe)mg1

m =R (67 €1)

and so it is an increasing function of A.

4.5 Failure of Neo-Fisherian Logic

In recent papers, Cochrane (2016) and Schmitt-Grohe and Uribe (2014) have argued that

increasing the nominal interest rate rule will result in higher inflation. In this subsection,
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I consider this claim in the context of the models with bounded competition studied in
this paper. I consider two policy rules (R, R') such that R' > R for all 7,e. The following
proposition shows that, given a random variable 77,4, the implied equilibrium (¢, 7") under

R’ is no larger than the implied equilibrium under R.

Proposition 7. Consider two interest rate rules R, R’ such that R'(m;e) > R(m;€) for all
(m,e). If (¢*,7*) is an equilibrium given R with (random) period (T'+ 1) inflation 741, and
(c',7") is an equilibrium given R with the same (random) period (T+1) inflation, then ¢, < ¢}

and m, < 7w} for all t with probability one.

Proof. In Appendix B. n

The key neo-Fisherian premise is that, for any interest rate rule, the long run real interest
rate is necessarily efficient. Given this premise, the Fisher equation then implies that the
long-run inflation rate has to move one-for-one with the long-run nominal interest rate. But,
as Proposition 4 demonstrates, this presumption of a policy-invariant long-run real interest
rate is not valid in models with bounded competition. In these models, there is a set of
equilibria indexed by the long-run inflation rate, and the long-run real interest rate can vary

both across and within these equilibria.

4.6 The Forward Guidance Puzzle

Del Negro, et. al. (2015) and MacKay, et. al. (2016) demonstrate that forward guid-
ance about future monetary policy is puzzlingly powerful in the New Keynesian modeling
paradigm. In this subsection, I analyze the effect of forward guidance on (inefficiently low)

current output within the class of models studied in this paper. I make two main points:

e The effect of forward guidance is completely summarized through its impact on the

inflation rate during the period in which output returns to an efficient level.

e If the (logged) interest rate rule obeys the Taylor Principle, forward guidance becomes

exponentially less effective with respect to the horizon.
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Transition Inflation as a Summary Statistic

Suppose that the interest rate rule satisfies R(7%P;¢) = Ry for all . Consider an equilibrium
such that, in some event =;, consumption is known to be inefficiently low in periods (¢ + s),
s =0,...,7, and known to be efficient in all periods after (¢ 4+ s). This is a description of a
deterministic liquidity trap, in which the nominal interest rate is known to be pinned at its
lowest level for the next 7 periods.

In any equilibrium of this kind, we know that:

' (Cpp1; A
(e A) = BRyp B 1)

_ (ﬁRLB/WLB)TﬂRLBEt{u,<Nt+T+1; >‘t+'r+1) } (6)

Tttr+1

This restriction implies that the impact of any form of post-trap forward guidance is com-
pletely summarized through its impact on the inflation rate 7,11, during the single period
in which the economy exits the trap. Note too that the effect of changes in this transition
inflation rate m;,,,1 on prior consumption is independent of the anticipated duration 7 of

the liquidity trap.

Decaying Effect of Forward Guidance

We’ve seen that post-liquidity trap forward guidance affects outcomes in the trap only
through the inflation rate during the period in which the economy transits from the trap.
How is this transition inflation rate affected by the level of future (that is, post-trap) interest
rates? The answer to this question depends on the interest rate rule that maps realized
inflation into interest rates.

By way of example, return to the liquidity trap described in the prior subsection. Suppose
[JEFF

that, after the liquidity trap ends, the marginal ' (N, s; Ays) is equal to a constant M

(for all s > 7). Suppose too that, after the liquidity trap ends, the interest rate rule takes

29



the form:

R(m;e) =B,y > 1

The logged version of this interest rate rule obeys the Taylor Principle (so that the nominal
interest rate adjusts more than one-for-one with the inflation rate).

Now consider a form of forward guidance in which the central bank lowers B to B’ = AB,
0 < A < 1, in a single period (¢ + k), where k > (7 + 1). This change in policy in a future

period increases the inflation rate in that period:

Blflﬁfl

o = R W
t+k (Et—i-k(l/ﬂ-t—kk-&-l)) t+k

This increase in period (¢ + k) inflation feeds back into prior inflation rates, so that:

/ —1/~"
Tpey = A Y Rppry T > 1

But, since v > 1, A™"/7"converges to 1 as  converges to infinity. Unlike in the New Keynesian

model, the impact of forward guidance declines exponentially with the relevant horizon.

5 Literature

In this section, I discuss some antecedents for this paper in the existing literature.!!

5.1 Flat Phillips Curve

The basic New Keynesian model implies that there is a positive log-linear relationship between
current inflation and current output (conditional on short-term expected inflation). But
the data from the past nine years suggest that there is little connection between resource
underutilization and inflation. Thus, most measures of labor market slack rose sharply from

2008 to 2009 and inflation fell relatively little over that same time period. Similarly, inflation

1T welcome suggestions for further references that seem relevant.
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has remained essentially unchanged while most measures of labor market slack have fallen
considerably over the past four years (2013-17).

These observations about inflation don’t seem all that surprising when viewed through
the lens of the bounded competition models analyzed in this paper. As long as there is a
negative output gap, the Phillips curve is flat: there is no connection between the magnitude
of the gap and inflation.!? The Phillips curve becomes vertical only when the output gap
rises back to zero. And, when the Phillips curve is vertical, inflation is determined by the
interaction of the nominal interest rate rule, the efficient real interest rate, and expected

inflation.

5.2 Sticky Wages and Prices

I treat prices and wages as completely flexible, except for extremal bounds. There is con-
siderable evidence that prices and wages are not completely flexible, although the degree of
inflexibility remains a subject of much empirical study (see Nakamura and Steinsson (2013)
for a recent survey of the relevant evidence). As discussed in the introduction, the misal-
location inefficiency that emerges in conventional nominal frictions models is quite different
from the underproduction inefficiency that emerges in models with bounds. I also focus on
models with perfect competition. However, I believe that the main results would generalize
to models with 1) Dixit-Stiglitz monopolistic competition 2) output subsidies to correct the
baseline market power distortion and 3) flexible prices/wages except price-setting firms face
a ceiling and wage-setting households face a floor.

In a recent paper, Benigno and Ricci (2011) study a class of Dixit-Stiglitz models in which
prices and wages are flexible, except forward-looking wage-setting households are not able to
lower wages. In these models, the endogeneity of lower bounds on wage choices introduces
dynamic incentives for wage-setters that are absent from the models studied in this paper,

in which wage lower bounds are exogenous. Benigno and Ricci abstract from the equilibrium

12Gee Daly and Hobijn (2014) for a similar justification for the flatness of the Phillips curve.
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indeterminacy that lies at the heart of my analysis.

5.3 Indeterminacy and Finite Horizon

In the class of finite horizon models studied in this paper, the final period inflation rate is not
pinned down. By construction, the wage floor and price ceiling guarantee that there is a dy-
namic equilibrium associated with each of these possible final period outcomes. Equilibrium
indeterminacy is intrinsic to this class of economies.

In some sense, this indeterminacy shouldn’t be viewed as all that unusual. For example,
Cochrane (2011) describes how, even under active Taylor Rules, there is a set of equilibrium
outcomes in New Keynesian models. It is typical practice to discard all but one of these equi-
libria because they lead to explosive inflationary paths. But, as Cochrane rightly emphasizes,
there is no economics to justify that practice.

However, there is a key difference between the finite horizon indeterminacy highlighted
in this paper and the infinite horizon indeterminacy that Cochrane discusses. The set of
equilibria in this paper is indexed by the final period random inflation. This is a large
set, because it consists of all random variables that are measurable with respect to past
realizations of the exogenous processes in the economy. In contrast, the infinite horizon
indeterminacy is indexed by a one dimensional variable: initial inflation.

How can it be that the indeterminacy in these finite horizon models is so much larger
than the indeterminacy in the infinite horizon models? The main reason is that users of
the infinite horizon models typically impose an auxiliary restriction that equilibria be time

homogeneous. This restriction also has no economics behind it.

6 Conclusions and Extensions

This paper demonstrates that, for a wide set of policy rules, monetary models without price

and wage bounds have no equilibria and so are unable to make any predictions about the
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implications of those policy rules. Motivated by this observation, I study the properties of
a class of dynamic monetary models with (arbitrarily loose) price ceilings and wage floors.
Among other results, I show that these models imply that the Phillips curve is L-shaped, are
consistent with the existence of permanent secular stagnation, and do not imply that forward
guidance is surprisingly effective. Perhaps most importantly, I prove that lowering the wage
floor toward zero leads to less efficient outcomes emerging as equilibria. It follows that models
with very low wage floors have materially different implications from non-monetary models
or monetary models without wage floors.!3

I've deliberately kept the class of models simple in many respects. It would be useful to

extend the analysis in a number of directions such as:

e exploring the consequences of adding dimensions of heterogeneity, like different price/wage

bounds across firms and different, imperfectly substitutable, forms of labor.

e adding some kind of inflation cost, like a Friedmanian tax on transactions or a New

Keynesian relative price distortion
e incorporating social costs of rationing (associated with the price ceiling).

e including worker-firm matching impediments in the labor market.

Perhaps most importantly, I treat the price and wage bounds as exogenous. Future work

should investigate how these bounds are determined.
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Appendix A: Exact Numerical Solution Methods in the
Markovian Case

In this appendix, I consider the properties of equilibria in a numerical example in which the
driving processes are Markov chains. As above, the horizon is finite and there is a large set
of equilibria indexed by the final period outcomes. However, I restrict attention to settings
in which the dependence of period ¢ equilibrium outcomes on final period (7" + 1) outcomes
is small when (7" — t) is large. The main purpose of the example is to demonstrate the

(surprising) power of negative nominal interest rates.

A. 1 Markov Chain Setup

I define

EFF )‘t+1“/(Nt+1>
gt-‘rl = —/ —
)\tu (Nt)

to be the growth rate of marginal utility from period ¢ to period (¢ + 1) in an efficient

allocation. I denote the marginal utility “gap” in period ¢ by:
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Note that, in any equilibrium, m; is bounded below by 1. In an equilibrium, we know from

(1):

mt = ma:c(ﬁR(ﬂt, Et)Etmt+1g£rlIF/Wt+1, 1),t = 1, ceey T-—-1

In this economy, there are two relevant exogenous processes: {gFf" &} . T assume

that they are governed by a Markov chain s;, which is a Markov chain with state space
{1,2,..,J} and transition matrix P. I define a state space {(g;,¢;)}/-, and assume that
(97" ep) = (gEFF eg,) for t =1, ..., T.

In what follows, it will be useful to define Q(m) to be a J x J matrix:

ﬁ}%(ﬂ.LB7 5i)f)z‘jg]‘EFF

Qij(m) =
Ty
I require that:
Q)] <1 (7)
where ||.|| represents the Euclidean norm of the matrix.!4This restriction implies that:
lR(m[l <1

for all values of .

A. 2 Solving for Markov Equilibrium

In what follows, I assume that in period (7" + 1) :

U/(Y:CH) )

u'(Nr)

is a function of the state sy in period (7+1). We can then apply backward induction to these

terminal conditions. Given the restriction (7), the resulting equilibrium is approximately

14The Euclidean norm ||P|| of a matrix P is the square root of the maximal eigenvalue of P'P.
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Markov in periods ¢ such that (7" —t) is large.
To be more specific, construct a sequence of marginal utility gap vectors and inflation

vectors by setting m® = 1 and 7° = 7VB71 and iterating as follows:

= maw(1, Qi (x" i)

7t = 7B if Qi(n™)ym™ > 1

1

ﬁPijg]EFF A

J n
Zj:l 7TJ7-L m]

=R ;i) otherwise
For any i, the sequence {7"}2?; is a decreasing sequence in n that is bounded from below
by 7B So, it converges to 7}. Given 7*, and since ||Q(7*)|| < 1, {7"}°, converges to the

unique solution to:

m; =max(l,Q;(r")m™),i=1,..,J

This is the best Markov equilibrium.
We can solve for the worst Markov equilibrium in a similar fashion. Let 70 = 7LB1.
Because ||Q(7")|| < 1, we can define m™** to be the unique solution to:

mmaer — max(l, Qi(ﬂ_O)mmaa:)?i = 1, e J

(2

We begin the reverse iteration process by leting m° = m™%, We can then iterate as above:

m;?“ = max(1,Q;(7™)m")

7t = 7B if Qu(n™)ym™ > 1

1
=R! :&;) otherwise
(EJ ﬁPijg]EFF An’ Z)
7j=1 T 7

For any i, the sequence {m}'}>° | is decreasing in n and bounded from below. At the same

time, the sequence {77}2%, is increasing in n and is bounded from above (by 7Y?). So, both
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sequences converge (to what is the worse Markov equilibrium).
In the numerical examples that follow, the best and worst Markov equilibria always

coincide.

A. 3 Numerical Example

In this subsection, I describe the properties of a numerical example. The main point of the
example is to illustrate how the risk of an economic downturn can create inefficiencies in
apparently “normal” states.!® T discuss to what extent these inefficiencies can be ameliorated
with negative interest rates or a higher inflation target.

In the example, there are three states. I define the state space for the growth rate of

efficient marginal utility to be:

g"rF =(0.97,0.97,1.11)

This parameterization is meant to suggest that the growth rate of marginal utility in an
efficient allocation is “normal” in the first two states. In the last state, the growth rate of
marginal utility in an efficient allocation is very large, meaning that this should be viewed

as a “bad” state. The interest rate rule is defined to be:

R(T[‘i, 62') = €i7T~1'5

7

I vary € in the example.

I set the transition matrix as follows:

0975 0 0.025
T'= 0.06 055 0.39
0 0.5 0.5

15T thank Eunmi Ko for great research assistance with these simulations.
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This parameterization ensures that in state 1, there is only a low risk of entering the bad
state 3. Once in state 3, it is impossible to transit to state 1 directly. However, in state 2,
there is a large risk of entering the bad state 3.

This specification of the transition matrix implies that the average stay in (the good)
state 1 is 40 years. Once the economy transits into (the bad) state 3, it stays (only) two
years on average in that state. But it can only return to state 1 after going through the
(risky) state 2. As a result, after exiting state 1, the economy takes over thirty years on
average to return to that state..

Finally, I set the lower bound 7*Z on the gross inflation rate to equal one and the upper

bound to equal 1.1 (the latter specification is irrelevant, as long as it is sufficiently high).

Baseline

In the baseline specification, I set ¢ = (1.03425,1,1). This setting results in a Markov

equilibrium in which:

= (1,1.24,1.28)

#=(1.02,1,1)

I chose the parameter £; so as to ensure that the inflation in period 2 is 2%.

The equilibrium allocation is efficient in state 1 but (highly) inefficient in state 3. (Note
that this inefficiency is in addition to the low rate of efficient growth in this state.) More
interestingly, the risk of falling into this inefficient state 3 also creates a similarly sized

inefficiency in state 2.
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Negative Interest Rates

In this subsection, I set ¢ = (1.0413,0.995,0.995). The resulting Markov equilibrium is:

= (1,1.02,1.04)

7 =(1.02,1,1)

I've chosen g5, = 3 = 0.995 to be 50 basis points below the zero lower bound. This means
that the nominal interest rate is now (slightly) negative in states 2 and 3. As before, I've
chosen &1 so as to ensure that the inflation rate in the good state 1 is equal to 2%.

The main point of this simulation is that lowering the nominal interest rate by only half a
percent in states two and three greatly reduces the inefficiencies in those states. Intuitively,
what matters for stimulus is not the decrease in the annual real interest rate, but the decline
in the cumulated real interest rate before the allocation of consumption is once more efficient
(that is, the economy returns to state 1). The structure of the transition matrix implies that
if the economy is in states 2 or 3, it is expected to remain out of state 1 for a long period
of time (nearly 30 years on average in state 2 and a couple years longer on average in state
3). Over such a long time period, the cumulative impact of a 50 basis point reduction in the
annual real interest rate is very large.

What happens if I instead set ¢ = (1.0413,1,1), so that the nominal interest rate was
raised in the good state 1 relative to the benchmark but the nominal interest rate remained
zero in states 2 and 37 The equilibrium allocation would be (slightly) worse in states 2 and

3. However, the inflation rate would be much lower in state 1.

m = (1,1.26,1.29)

7= (1.006,1,1)

Contrary to the neo-Fisherian view, raising interest rates lowers inflation and lowers output.
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Higher Inflation Target

In this subsection, I set € = (1.02425,1,1). The resulting Markov equilibrium is:

m

(1,1.22,1.25)

#=(1.04,1,1)

I've chosen a lower value of £; so as to increase the inflation rate in state 1 to 4%, as opposed
to 2%.

Raising the state 1 inflation rate has no effect on the (already efficient) level of economic
activity in that state. However, it does provide a partial mitigant against the inefficiently
low levels of output in the other states: the marginal utility gap is about 2% lower in state
2 and is about 3% lower in state 3. Doubling the inflation target helps, but not by much.

We can understand these simulation results using equation (6). The effect of reducing the
nominal interest rate lower bound RYP grows exponentially with the expected duration of the
liquidity trap. In contrast, the effect of raising the post-trap inflation target is independent

of the duration of the trap.

Appendix B: Remaining Proofs

Proof of Proposition 4

Given the restrictions on the efficient marginal utility process and on the interest rate rule,

there exists L such that for allt =1,....T"

BT_t+1R€Et+1 EtU/(YT-H; )\T—H)
(BT w(Nih)

> L
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with probability one. Pick any positive constant 7w, that is less than L. I proceed by reverse

induction to show that, with probability one:

BT—t-{-l RT—t+1

W'(ce) > W}B)T—_féHEtU'(YTH; Arir) > ' (Ng; M)

and m = kB |

Note first that:

u'(cr) > BR(x"P; er) Er{u (Yria; Mry) /7ri }
> LU/(NT, /\T)/7TT+1

> U/<NT; )\T)

with probability one, which implies that 77 = 7 with probability one.

Now, inductively assume that:

u'(Crin; Aryr) > (nLB)T—t- Erpw (Yria; Arya)

with probability one and 7, = 7*? with probability one. Then, if we roll back one period,

we can show that:

!
. LB, U (Ct+1; )\t+1)
U/(Cta )\t) > 5R(7T aft)Etﬂ_T

T—t pT—t
5 RLB

> (Wﬁﬂm

Br—t+1 Rzgtﬂ
= mEtU/(YT+1; AT+1)

Etu/(YT-i—l; )\T-i-l)

with probability one. It follows that:

u'(ci; M) > L/ (N Ny) [7rgn > /(N \y)
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with probability one, which in turn shows that m, = 7”# with probability one.

Proof of Proposition 6

We proceed by reverse induction. Note first that:

u'(dp; Ar) = R (n7%; e0) Er(u' (Yrga; Ara) /7ri1)
= R(WIL{B§ 5T>ET<UI(YT+1; )\T+1)/7TT+1)

= ul(CT; )\T)
Now suppose inductively that:
I 71-JIEIB T—t—-1 1
w(ceras )\t+1)(ﬂﬁ) < u'(Crys M)
L

with probability one for some ¢ < (T'— 1). Then, u/(¢} 1; \e+1) > @/ (Nyy1; A1) with proba-
bility one and 7, = 7L with probability one. Similarly, since ¢;41 < Ny, with probability
one, 711 = =B with probability one.

Next move backwards in time to period t. We can show that with probability one:

u' (e \) = maz(BR(m5"; e0) Be{u' (coans M) [Tean }, 0 (N Ar))
= BR(mi"; e0) E{u (con; Men) /757 )
< BR(n%;e0) B{u (chyrs M) (w2 [P )7 fmp Py (e B i)

< (s M) (r P )T

which implies that:

w (o M) (EB /o EBYT=t < (e \y)

with probability one.

We have established that u'(c; Ar) = /(cr; Ar) with probability one, and that if ¢, <
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¢r+1 with probability one for ¢ < (T"— 1), then ¢, < ¢; with probability one. The proposition

is proved.

Proof of Proposition 7

We can prove the proposition via reverse induction. Suppose inductively that c;,; < ¢f

and 7, ,; < 7y, with probability one. Then:

u'(chs M) = maz(u' (N M), BR (77 20) B{u/ (¢ 415 M) /71 })
> maz(u' (N o), BR(7™P; ) E ' (]13 A1) /7711 })

= u'(cf5 M)

which implies that ¢} < ¢}. In terms of inflation, consider any event in which 7} = 7. In

that event:

BR(WLBﬁt)Et{U/(C:H; )\t+1)/7:+1} > 1,

and it follows that:

BR (755 e) Ey{u/ (chyys A1) /T > 1

L

which implies that 7} = 728 in that event.

Next, consider any event in which 7 = 7Y5. In that event, 7, < 7YF = 7.

Finally, consider any event in which 7% < 7 < 7B with probability one. Then:

53(7&*; 5t)Et{U/(C:+1; )\t+1>/ﬂ-:+1} =1

In that event:

BR (1} e0) B (Ciyys A1) [Ty b > 1

which implies that m; < 7.

Note that 77 is the same in the two equilibria, and ¢y, = Y7y in the two equilibria.
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Hence, the reverse induction above implies that:

for all ¢t and with probability one.
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