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Abstract

Falling off-grid solar prices and subsidized grid extension are revolutionizing choice for
the billion people without electricity. We use experimental price variation to estimate
demand over all electricity sources in Bihar, India, during a four-year period when
electrification rates leapt from 27% to 64%. We find that household surplus from elec-
trification tripled, with gains due nearly as much to off-grid solar as to the subsidized
grid. Choice matters—the surplus from electrification is 3-5× greater than from any
one source. Nonetheless, we project future electrification will come mainly from the
grid, since households prefer the grid as they grow wealthier.
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The global electrification frontier is the collection of places in the world where, at a given time,

households are getting electricity for the first time. The steady movement of this frontier, in the

United States from 1935 onwards, Brazil from the 1960s, China in the 1980s, and much of South

Asia and sub-Saharan Africa in the 2000s up through today, has been inseparable from structural

change and economic growth. In pursuit of growth, many developing countries are investing large

sums to build out their distribution infrastructure and subsidize connections, to reach the roughly

one billion people who are still not on the electricity grid (International Energy Agency, 2017).

The rapid decline in the cost of solar panels, however, has changed the shape of the global

electrification frontier. In the traditional mode of electrification, the frontier was a literal boundary,

defined by the extent of the grid, with households filling in behind it (Lee et al., 2014). Solar panels

can supply the grid, but, unlike other sources of power, they can also generate relatively efficiently

at a small scale, on the roof of a single household. The frontier today has therefore dissolved and

permeated rural areas. A rapid decline in solar costs has opened up a new mode of electrification,

whereby every household can choose whether to get solar power, regardless of whether the grid

has reached them. The advent of off-grid solar has thus spurred hope of a faster, greener path to

universal electrification.1 This optimism has a real justification: over the last decade, off-grid solar’s

market share on the global electrification frontier has skyrocketed (Figure 1).

The convergence of “big push” grid expansions and off-grid solar means that many households in

developing countries now have a choice between competing electricity sources. This paper estimates

the demand for electricity, over all available sources of electricity, in order to understand how poor

households are making this choice. We seek to measure the value of electrification and to attribute

this value to the changes in technology and policy that are taking place on the frontier.

Our setting is Bihar, India, a typical outpost on the global electrification frontier. Between 2000

and 2016, India contributed over 80% of the total gain in the number of households in the world

connected to the grid (International Energy Agency, 2017). While the grid has expanded rapidly,
1 Former UN Secretary General Ban Ki-moon proclaimed “Developing countries can leapfrog conventional options

in favor of cleaner energy solutions, just as they leapfrogged land-line based phone technologies in favor of mobile
networks.” (“Powering Sustainable Energy for All,” The New York Times, January 11th, 2012. See also “Africa
Unplugged: Small-scale Solar Power is Surging Ahead”, The Economist, October 29th, 2016.) UN Sustainable
Development Goal #7 is to “ensure access to affordable, reliable, sustainable, and modern energy” and targets
increasing the share of renewable energy in the global energy mix in particular. Nearly all large-scale aid programs
in the power sector include significant on-grid and off-grid components. USAID, for example, launched Power Africa
in 2013 and DFID launched Energy Africa in 2015, both of which invest in off-grid renewable electricity.
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electricity in the state of Bihar, as in many developing countries, remains a differentiated product:

there are several sources of electricity, including both the public grid and private off-grid sources,

which differ in price, load, hours of supply and other features.

We model the demand for electricity with a discrete choice demand model (McFadden, 1974;

Lancaster, 1971), to capture the choice between technologies that is the defining feature of house-

hold electrification in many developing countries today. Households choose between four electricity

sources—the grid, diesel generators, solar microgrids, and their own off-grid solar systems—and

an outside option of no electricity. We allow for substantial observed heterogeneity in household

demand and source characteristics. We also allow the unobserved quality of different electricity

sources to vary without restriction across villages and time (Berry, 1994). This feature is critical

for us to capture rapid changes in the quality of goods like off-grid solar power.

We estimate the demand model using an experiment that introduced a new product, solar micro-

grids, and varied its price across 100 village-level markets for two and a half years. The availability

of experimental variation in price to estimate a discrete choice demand model is extraordinarily rare

and removes the need to rely on traditional assumptions, about market conduct or the structure of

demand shocks, to generate instrumental variables (Berry, Levinsohn and Pakes, 1995; Hausman,

1996; Nevo, 2001). Our experiment varies price over the medium-run, which removes external va-

lidity concerns that arise with short-run discounts. In our setting, we find that the experimental

variation is necessary to recover unbiased and precise estimates of the price elasticity of demand.2

To place the experiment within a broader context, we collect comprehensive data on the demand

and supply sides of the village electricity markets in our sample over the four years from 2013 to

2017. During this period electrification increased by almost 40 percentage points. As a basis of

comparison, this surge in electrification occurred in half the time it took to increase electrification

rates by the same amount in the rural United States, after the passage of the landmark Rural

Electrification Act in 1936.3 The gains in electrification in Bihar were due to the same two factors,

the advent of off-grid solar and a “big push” on the grid, that are reshaping electrification around
2The experimental estimates of the price coefficient are negative, large and stable across specifications. If we instead

estimate the price coefficient using ordinary least squares, it is negative and precisely estimated, but smaller than
the experimental estimate by a factor of seven. Traditional instruments from the industrial organization literature
are found to have no power in our setting (Berry, Levinsohn and Pakes, 1995; Hausman, 1996; Nevo, 2001).

3The same increase for rural (farm) households in the United States took 9 years, during and after World War II,
from 1939 to 1948 (Bureau of the Census, 1975).
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the world. Our setting therefore allows us to use experimental estimates of demand to value historic

changes in energy access that are externally relevant for the experience all along the global frontier.

We have three main findings. First, the increases in energy access observed during our sample

period tripled the household surplus from electrification. With the demand model, we can isolate

the reasons for this gain, and find that the advent of off-grid solar alone would have increased

surplus by 2.2× and the “big push” of the electricity grid alone by 2.6×. In our study period, the

grid extended from 29% to 72% of villages and connection costs for households below the poverty

line were subsidized to zero. It is a testament to the advances in solar technology that private,

off-grid solar, on its own, would have created three-quarters as much surplus (= (2.2− 1)/(2.6− 1))

as this enormous and highly subsidized expansion of the traditional grid.

Second, choice matters: the household surplus from electrification, from all sources of electricity,

is three to five times greater than the surplus due to any single electricity source. The reason is that

households readily substitute between several sources that offer similar energy services at similar

prices, although they are differentiated on dimensions like the load they support and hours of

supply. In our full demand model, the elasticity of demand with respect to price for off-grid sources

of electricity ranges from -1.5 to -1.8. Put plainly, households’ choices show that they find available

sources similar and will take up any source that meets certain basic needs at the right price.

Third, future growth in electrification will come mainly from the grid, since households prefer

grid electricity as they become wealthier. This finding is a direct implication of our demand esti-

mates, in which households with a solid roof, a common indicator for wealth, have roughly double

the probability of choosing grid electricity as households without. Wealthier households’ preference

for the grid likely stems from their wish to run higher load appliances, like fans and televisions,

which off-grid sources usually do not support. To forecast the future path of electrification in Bihar,

we run a counterfactual where solar costs continue their decline, the grid reaches all villages, the

number of hours electricity is available on the grid increases and all households achieve at least the

80th percentile of sample income and assets.4 In this scenario, all new electricity connections, on

net, are grid connections, despite the continued fall in the price of solar.

While growth in incomes will tilt demand towards the grid, whether the grid will dominate
4These changes are large, but plausible in our dynamic context, and still raise household income in our sample

only to parity with the per capita GDP of Malawi, one of the world’s poorest countries.
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future electrification to the degree we forecast depends on policy towards subsidies. Bihar, like many

countries on the global frontier, subsidizes household electricity use. Such subsidies are a durable

aspect of policy, sustained by several strong forces, including the political economy of redistribution

through energy (Burgess et al., 2020). Nevertheless, they place fiscal stress on governments, and so

we consider a counterfactual where the state scales back subsidies as demand for electricity grows.

In this scenario, households’ price sensitivity and the fluid substitution between sources lead to

marked switching from the grid to solar and modest reductions in overall electrification rates and

surplus. The path of electrification running mainly on the grid therefore depends on the state’s

continued willingness to bear energy subsidies as it approaches universal electrification.

Our paper makes two contributions to the literature on electricity access in developing countries.

First, we study household demand for electrification, a revealed-preference measure of the value of

electricity, whereas most of the literature has measured the impact of access to electricity on a range

of economic and welfare outcomes.5 Second, we estimate how households value both grid and off-

grid electricity together, in a single demand system, which allows us to study substitution between

sources. Other papers have estimated the demand for individual sources of electricity, rather than

electricity generally, leaving the choice set and the pattern of substitution unspecified.6,7

More broadly, this study joins a methodological movement in the development literature that

combines structural models with experimental variation to aid in the interpretation and increase the

external validity of experimental results.8 Our study combines experimental price variation with a

structural demand model allowing rich observed and unobserved heterogeneity. Our finding on the

large gap between the value of electrification and the value of any one electricity source shows the
5Prior work has found that electricity access causes large increases in labor supply (Dinkelman, 2011), industrial

output (Rud, 2012; Allcott, Collard-Wexler and O’Connell, 2016), manufacturing productivity (Kline and Moretti,
2014), agricultural productivity (Kitchens and Fishback, 2015), land values (Lewis and Severnini, 2019), and proxies
for household welfare, such as the human development index and indoor air quality (Lipscomb, Mobarak and Barham,
2013; Barron and Torero, 2017). See Lee, Miguel and Wolfram (2020a) for a review of the impacts of electrification.

6In contemporaneous experiments, Lee, Miguel and Wolfram (2020b) estimate demand for grid connections in
Kenya and Grimm et al. (2020) estimate demand for off-grid solar technologies in Rwanda. Aklin et al. (2018) study
how household characteristics predict solar take-up in India.

7A couple papers have hypothesized that solar and grid electricity are imperfect substitutes for the rural poor.
Fowlie et al. (2019) suggest that a promise of future grid connections, in Rajasthan, India, may have reduced the
take-up of off-grid sources like microgrids. Lee, Miguel and Wolfram (2016) report the results from a household
survey in Kenya showing that grid users own more high-load appliances than solar users.

8Examples include studies that use experiments to help estimate structural models of fertility, education, labor
supply, migration and human capital, and enforcement of plant emission standards, though not demand for electricity
(Todd and Wolpin, 2006; Attanasio, Meghir and Santiago, 2012; Duflo, Hanna and Ryan, 2012; Bryan, Chowdhury
and Mobarak, 2014; Galiani, Murphy and Pantano, 2015; Duflo et al., 2018; Attanasio et al., 2020).
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value of a structural model for placing experimental estimates of demand, for any given product,

in the context of the broader product market. Our paper is therefore related to the literature

in industrial organization on estimating the value of new products (Hausman, 1996; Petrin, 2002;

Goolsbee and Petrin, 2004). Experimental work in development economics tends to estimate the

demand for one product at a time, which may, as in our case for electricity, greatly understate the

demand for the categories to which products belong.9

1 Background and Data: The Electricity Landscape in Bihar

This section introduces our data and describes the electricity market in Bihar, India, a state of 104

million people (Census of India, 2011).

Bihar is one of India’s poorest states and, at the start of our study period, had very low access

to electricity. Table 1 juxtaposes the United States, India, sub-Saharan Africa and Bihar on the

dimensions of income and access to electricity circa 2012 (our baseline survey was conducted at the

end of 2013). The electrification rate in Bihar at this time was only 25%, below the rate of 37% in

sub-Saharan Africa and about one-third of the all-India rate of 79%. The average Bihari used just

122 kWh of electricity per year, less than one percent of the level in the United States (column 4,

last row). At this level of consumption, which is an average, including many households with no

electricity at all, a person can power two light bulbs totaling 60 watts for six hours per day. The

low level of consumption is an equilibrium outcome. Demand for electricity is low because many

households are poor. Supply of electricity is limited, on both the extensive margin, since many

villages are not on the grid, and the intensive margin, since supply is rationed.

Our study, luckily, was well-timed to capture two big changes in the electricity market. First,

beginning before and carrying on through our study period, the continued decline in the price of

solar panels made off-grid solar a feasible alternative to grid power. Second, in response to low

rates of electrification in states like Bihar, the Government of India funded large campaigns for grid
9Experimental estimates of demand have been an enormous area of growth in development economics and are

used both to test theories of behavior and to consider optimal policy. Preventive health products (Berry, Fischer and
Guiteras, 2020; Peletz et al., 2017; Dupas, 2014) and financial services (Bertrand et al., 2010; Karlan and Zinman,
2018, 2019) are two prominent markets in which experiments have been used to estimate demand. Though many
products in these markets arguably have close substitutes, few studies that experimentally estimate demand explicitly
model substitution. Kremer et al. (2011) is a close precedent that experimentally varies the quality of a good, a local
water source, and estimates a demand model using observable variation in walking distance to water sources as a
proxy for price.
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extension and household connections.

a Data

We collect data from both the demand and supply sides of the market over a nearly four-year period.

Our sample consists of 100 villages in two districts in Bihar (Figure 2). The study villages were

sampled from a set chosen to have low rates of electricity access at baseline.10

We collect data from four sources. First, on the demand side, a household-level panel survey on

the sources and uses of electricity. Second, on the supply side, household-level administrative data

on customer enrollment and payments from HPS. Third, on the supply side, village-level survey

data from the operators of common diesel generators, an off-grid source of electricity. Fourth, on

the supply side, household-level administrative data from the state utility on customer billing and

payments, as well as village-level electricity supply. We describe the household panel survey here

and the rest of the data sources in Appendix A.

Our household panel survey sampled 30 households per village to cover about 3,000 households,

containing about 18,000 people, across the 100 sample villages. The sample was drawn to represent

those with an interest in a microgrid solar connection, but, because this screening for interest was

loose, in practice the sample is nearly representative of the population as a whole.11

The survey has three rounds: two thick rounds, which we call baseline and endline, and one thin

round, which we call follow-up. The baseline survey took place in November and December of 2013,

the endline from May to July of 2016, and the follow-up in May 2017 (Appendix Figure A1 shows the

timing of survey rounds). The two thick rounds used nearly the same survey instrument and covered

demographics, the sources and uses of electricity, and welfare outcomes likely to be influenced by
10Low access was defined as on three criteria. First, they were not listed as electrified villages by the government,

meaning that household grid electrification was below ten percent and at least one neighborhood of the village was
not on the grid at all. Second, as we worked with a solar microgrid provider, Husk Power Systems (HPS), to offer
solar microgrids, villages must not yet have been offered HPS microgrids. Third, to facilitate a possible expansion of
microgrids, villages were chosen to be reasonably close to existing HPS sites. We selected 100 villages that met these
criteria, which have a total of 48,979 households. A number of the study villages, in West Champaran district, are
clustered near the border between Bihar and Uttar Pradesh, with one village being part of Uttar Pradesh.

11We ran an initial customer identification survey in August 2013 across all sample villages, which elicited household
willingness to pay for a solar microgrid connection. A random sample of 30 households per village was selected among
those who expressed interest in paying for a solar connection at a monthly price of INR 100. This identification was
barely restrictive in practice, because households were not required to put down a deposit, nor were they held to
their initial statement of interest when the product was later offered. Over 90% of households without electricity or
with just diesel-based electricity said they would be interested in using microgrids. The same was true for over 70%
of households with a grid connection or home solar panels.
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electricity use. The follow-up round took place one year after the endline for the experiment and

was not part of our original plan. The purpose of this round was to update household electricity

sources and choices, in light of the massive changes we observed on the supply side. The baseline

and follow-up rounds are separated by three and a half years.

b Characteristics of electricity sources

In developed countries, electricity is the archetype of a homogeneous good: power is available from

the grid 24/7/365 and can run all kinds of appliances. In Bihar, as in many developing countries,

electricity connections are differentiated products. This part describes the characteristics of different

electricity sources in our sample.

Table 2 describes each electricity source qualitatively on several dimensions that matter for

household choices, such as availability, energy services and reliability. There is one on-grid electricity

source: grid electricity, provided by a state-run distribution company (column 1). There are three

off-grid electricity sources: microgrid solar, own solar, and diesel generators, all provided in private

markets (columns 2 through 4). A solar microgrid is a solar system, consisting of a solar panel and

batteries, that serves a small group of six to nine households.12 An own solar system is a panel

and battery bought and operated by a single household. A diesel generator, in our context, is a

generator set up by an entrepreneur and run with diesel fuel to supply electricity to a large group

of households in a single village. Diesel generators serve 100 customers on average, with a range

from 60 to 200 in our sample. The outside option for households is not to have electricity from any

of these four sources, which means they then rely on kerosene for lighting (column 5).

Grid electricity is only available if a village is on the grid, and then only after an application

process to grant a connection (column 1). Off-grid electricity sources, described in columns 2 through

4, are offered in private markets and therefore can be sold whenever demand is great enough to justify

their costs. Off-grid sources are limited in the load—the power drawn by connected appliances—

they can serve, and so typically provide only lighting and phone charging, the basic energy services
12The microgrids in our context are offered by Husk Power Systems, our partner in the experiment. The HPS

microgrid consists of a 240 watt panel and a separate, 3.2 volt rechargeable battery and meter for each household.
Households have a key pad to secure access to the battery and must purchase codes on a monthly basis to keep
using the system. Each household on the microgrid gets 25 to 40 watts of power. To compensate for the small load,
the system is bundled with two high-efficiency light bulbs and an electrical outlet, typically used for mobile phone
charging, and therefore provides very similar energy services to diesel and own solar systems.
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that all households demand from an electricity source.

Though all the off-grid electricity sources provide similar energy services, there are important

differences between them in availability, set-up costs, contracts, maintenance, and the risk of discon-

nection. For example, households purchasing an own solar system pay up-front and would usually

have to travel to a market town to buy a system, made up of a panel, a battery, and sometimes a

socket to plug in and switch appliances (column 3). Since the system is owned outright, households

face no risk of disconnection after purchase. Households with a solar microgrid or diesel connection

pay the private operators of those services on a monthly basis and may therefore be disconnected

for non-payment (columns 2 and 4). An offsetting advantage of these sources, relative to own solar

systems, is that the provider, rather than the household, is responsible for set-up and maintenance.

These kinds of differences between sources suggest that there are a number of reasons, some of

which are difficult to measure, as to why a household may prefer one source to another.

Table 3 supports this qualitative comparison with summary statistics on the characteristics of

electricity sources at baseline (columns 1 through 5), endline (columns 6 through 10) and follow-

up (columns 11 through 15). Panel A reports on source characteristics: monthly price, the total

connected load of appliances a household using each source has plugged in, hours of supply, in total

and during peak and off-peak hours, and the share of villages in which a source is present.13 We

highlight four findings that characterize the trade-offs households face in choosing a source.

First, the grid can support higher loads and therefore a wider range of energy services than other

sources. Most households connected to any electricity source own mobile phones and light bulbs

(Table 3, panel B). Among grid-connected households, in addition, 22 percent own a fan and 15

percent a television, whereas few households with other sources of electricity own these appliances.

Households on the grid have a mean connected load of 322 watts, 30% larger than the second-highest

load source (panel A, comparing columns 1 through 4).

Second, the grid is not as reliable as other sources during the evening peak, when households

most want electricity. The mean grid supply in the peak hours, from 5 to 10 pm, was only 2

hours per day at baseline and endline, increasing to 3 hours at follow-up. Even this low average

understates the trouble with grid supply, since on one day out of four there is no grid supply at
13Properly, the connected load of appliances is not a characteristic of a source, but depends on household appliance

purchases. We describe connected load as if it were a source characteristic, because the connected load for all sources
but the grid is effectively capped by the load a source can support.
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all (Appendix Figures A2 and A3 show the distributions of hours of supply for the grid, in total,

off-peak and on-peak). All other sources of power provide more supply during the peak hours in all

survey waves.

Third, the pricing in the market is fairly tightly clustered. At baseline, three sources have

average monthly prices from INR 72 to INR 99 per month (Table 3, panel A, columns 1 to 3).14

The highest-priced product, above this tight cluster, is microgrids, with a price of INR 200 per

month. Our experiment later subsidized the price of this product (see Section 2 a). The tight

clustering of both energy services and pricing across disparate sources in the baseline data gives a

sense that the retail electricity market in Bihar is quite competitive.

Fourth, the availability of different sources changed dramatically over the nearly four years of

our data collection. The grid was present in 29% of all villages at baseline (Table 3, panel A, column

1), 53% at endline (column 6) and 72% at endline. The availability of diesel fell from 57% (column

2) to 13% of villages (column 12) in the same span, predominantly because it was losing to the grid

in the marketplace. We assume that own solar systems are available in all villages, since households

can travel to buy these systems.

c The two disruptions in Bihar’s electricity market

The electricity landscape in Bihar, as these statistics on availability suggest, was transformed during

our study. The two changes underlying this transformation, on the supply side, are a fall in the

cost of solar power and a surge in grid extension and connections.

The first force changing the electricity landscape is a fall in the price of solar power. The price of

solar power has been declining rapidly for several decades, but only in the last decade has it reached

a level low enough to make off-grid solar a viable choice for poor people (Figure 1). Our data reflects

these trends. The price of own solar systems fell 10% during our data collection from INR 80 at
14Households pay up front for home solar systems, so we have amortized the cost of these systems into a monthly

price equivalent. For own solar, household systems, once purchased, have no operating costs. To make the price
comparable to other sources, which are paid monthly, we amortize the capital costs of own solar using an assumed
lifespan of seven years and a 20% interest rate. For the grid, we take the monthly price to be the self-reported
monthly payment for grid electricity, averaged across formal and informal households on the grid. Grid electricity
is in principle charged on a volumetric tariff; however, a minimum monthly payment and infrequent meter reading
imply that many poor consumers are de facto billed at a flat monthly rate. The de facto grid price is INR 72 per
month at baseline and INR 60 at endline. Informality acts as a large price cut for the grid. Of the 158 households
using the grid at baseline, only 47% answered yes to the question “Do you pay electricity bills?” The full grid price
of INR 153 per month at baseline, if everyone paid their bills, would place it amongst the most costly sources, while
at INR 72 per month, it is one of the cheapest.
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baseline to INR 72 at follow-up. This lower price is likely not for the same energy service, but a

better one. Solar vendors entered smaller towns closer to villages, effectively lowering connection

costs. Quality may also have improved as solar panels got more efficient and batteries more reliable.

The second force was a “big push” policy on grid electrification at both the national and state

levels. In his 2015 independence day address, Indian Prime Minister Narendra Modi launched a

rural electrification program with a thousand-day deadline to electrify the remaining 18,452 census

villages still without access, at an estimated cost of USD 11 billion.15 When the grid reaches a

village, poor households may not connect, or may take a long time to do so (Lee et al., 2014). The

Government of India therefore started a complementary USD 2.5 billion program to subsidize states

in providing infill household connections in electrified villages.16

In Bihar, the state government made electricity access a priority (Kumar, 2019). Nitish Kumar,

Bihar’s six-time Chief Minister, invested heavily in grid electrification, using both central and state

funds, and promised universal household electrification as part of his reelection campaign (Business

Today, 2017). During our four-year study period, the state’s own data report giving out over 7

million electricity connections, representing a staggering 51 pp increase in the statewide household

grid electrification rate. The government not only invested in infrastructure, to extend the grid,

but also held camps to sign-up households and heavily subsidized connections, including by offering

connections for free to all households designated as Below the Poverty Line (BPL). The heavy state

investment in this period allowed the grid to reach progressively poorer households.17

15The village-level goal was declared achieved ahead of schedule on April 28, 2018. A village is defined as electrified
once public spaces, such as schools and health centers, have access to electricity, along with a minimum of 10% of its
households. The target is out of a total of almost 600,000 census villages in India. This program, the Deen Dayal
Upadhyaya Gram Jyoti Yojana (DDUGJY), is a continuation, under a new name, of the prior government’s Rajiv
Gandhi Grameen Vidyutikaran Yojana (RGGVY), which had similar objectives but fell short of reaching all villages
(Government of India, 2015; Burlig and Preonas, 2016).

16The Pradhan Mantri Sahaj Bijli Har Ghar Yojana, known as Saubhagya, launched in September 2017.
17Appendix Table A1 shows comparisons of household characteristics by the timing of grid arrival in a given village,

within our survey sample. Villages that got the grid earlier are significantly richer than villages that got it later. In
villages that got the grid earlier, households are twice as likely to have a solid house, more likely to have a solid roof
and have more educated household heads. Households in villages that got the grid earlier also have higher access to
electricity, from any source, at baseline. This finding is not purely a mechanical effect, due to grid presence, but may
reflect underlying differences in household demand. For example, “grid late” villages, which did not have the grid at
the time of our baseline survey, but got it before our follow-up survey, nonetheless have greater electricity access at
baseline than “no grid” villages; this higher initial access is provided by diesel generators, and not the grid itself.
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d Market shares of electricity sources in Bihar

The two disruptions of solar and grid expansion transformed electricity access during our study.

Figure 3 shows the market shares of all electricity sources over time. Each stacked bar gives the

share of households, from bottom to top, that use grid electricity, diesel generators, solar microgrids,

own solar systems or no electricity. Market shares are calculated with respect to the total sample,

regardless of whether a source is available in a village or not; in a village where the grid is not

present, for example, the grid necessarily has a zero share. There are three clusters of bars, for

shares in the baseline, endline and follow-up survey waves. Within each cluster of bars, the three

bars from left to right give the market shares amongst all households, households that do not have

a solid roof, and households that do have a solid roof, respectively. Whether a household has a solid

roof is commonly used to measure wealth (Alatas et al., 2012; Haushofer and Shapiro, 2016)

Household electrification surged during our study period. Consider the left bar in each group,

for all households. The electrification rate from any source, the sum of the colored bar stacks,

increased 37 pp, from 27% to 64%, in somewhat less than four years.

The net gain in electrification conceals the churning of market shares across sources. Diesel

generators, the black bar segment (second from bottom), were the most popular source of electricity

at baseline, with 17% market share (despite being available in only 57% of villages). By endline,

diesel had all but disappeared. Grid electricity (the bottom bar segment, in brown), by contrast,

surged, with market share rising from 5% to 25% and then 43%, in successive surveys. No village

in our sample had a grid take-up of over 50% at baseline, but 44% did by the follow-up survey.

Solar microgrids (third from the bottom, in yellow) also increased their share, from nothing to 9%

at endline, when subsidies were still offered as part of our experiment, but fell back down a year

later. Own solar systems (top colored bar, in orange) picked up the slack, rising from a 5% share

at baseline to a 15% share at follow-up, with all of their growth coming between the endline and

follow-up rounds.

Figure 3 also shows significant heterogeneity in household electricity sources within a given

survey wave (cluster of bars). At baseline, the electrification rate among households without a solid

roof is little more than half that for households with a solid roof. The two disruptions increased

electrification rates for both groups and narrowed this divide, though a gap in electrification rates
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of 15 pp remained at follow-up. The heterogeneity across households also extends to technology

choice; households with a solid roof are much more likely to have grid electricity, whereas they are

somewhat less likely, compared to households without a solid roof, to have off-grid solar.

The transformation of Bihar’s electricity sector thus has three aspects. First, a surge in the

overall electrification rate. Second, a compositional shift, away from diesel and towards solar power

and especially grid electricity. Third, heterogeneity in household demand, with richer households

more likely to have electricity from the grid at any given time.

2 Demand for Solar Microgrids

This section describes our experiment and uses the experimental variation to estimate demand for

solar microgrids. The demand for microgrids is important, in its own right, because off-grid solar

has emerged as a widespread substitute for grid electricity on the global electrification frontier. We

use the demand estimates to calculate the contribution of microgrids to household surplus.

While we start by estimating demand for this new good, microgrids are only one of several com-

peting electricity sources in Bihar (Section 1). Therefore, Section 3 will use the same experimental

variation that we introduce here to estimate a richer model of demand over all electricity sources.

a Experimental design

The falling price of solar has made solar-as-a-service a newly viable business. Husk Power Systems

(HPS), a social venture company that supplies off-grid power to villages in Bihar, decided to add the

solar microgrid product to its portfolio as a means of reaching a wider set of customers.18 HPS was

the only microgrid provider, to our knowledge, in our sample, and so we treat HPS and microgrids

as synonymous hereafter.

We partnered with HPS to vary the availability and price of solar microgrids in a cluster-

randomized control trial at the village level. We randomly assigned sample villages into one of

three arms: a control arm (34 villages) where HPS did not offer microgrids, a normal price arm (33

villages) where HPS offered microgrids at the prevailing price, initially INR 200 per month, and a
18HPS was founded in 2007 to provide electricity in rural areas using biomass gasifiers as generators, fueled by

agricultural waste, such as rice husks (hence the name of the company). These biomass plants were subject to fuel
supply disruptions and could only serve a village if demand was sufficiently broad.
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subsidized price arm (33 villages) where HPS offered microgrids at a price of INR 100 per month.

The normal price arm provides microgrid service at, or slightly above, cost and the subsidized arm at

perhaps 40% below cost.19 Within each treatment village, all households were offered the same HPS

connection and pricing, regardless of whether they had previously expressed interest in a microgrid

or participated in our baseline survey. Sales of microgrid connections began in January 2014, right

after the baseline survey.

The treatment assignments set the initial prices in all villages. Prices of microgrids thereafter

changed for two reasons. First, the prevailing or normal price arm was not rigid, but was meant to

capture the price at which HPS would offer microgrids, if there had not been an experiment. Husk

Power, due to low demand at the initial price of INR 200, endogenously chose to cut prices to INR

160 in 11 villages in the normal price arm. Second, the experiment ended with our endline survey, in

May 2016, but our data collection runs beyond this survey. After the completion of the experiment

and our endline, but before the follow-up survey, Husk Power set the price in all 66 treatment

villages to INR 170 per month.20 HPS did not enter the control villages at any point during our

study period. In the demand analysis, we use treatment assignments, and their interactions with

survey wave indicators, as exogenous instruments for price.

Table 4 shows the balance of household covariates in our sample including demographic variables

(panel A), wealth proxy variables (panel B) and energy access (panel C). The first three columns

show the mean values of each variable in the control, normal price and subsidized price arms, with

standard deviations in square brackets. Table 4, column 1 gives household characteristics in the

control group. Our rural sample is poorer than the population of Bihar as a whole. Self-reported

household incomes imply mean per capita daily income of INR 43 (USD PPP 2.5) at baseline,

compared to mean per capita daily income of INR 99 (USD PPP 5.8) across the state.21 Two-thirds

of households own agricultural land and less than half have a solid roof.
19We estimate the capital and installation costs of a microgrid to be INR 105 per household per month (Appendix

Figure C4). This figure is net of capital subsidies provided by the government, which were on the order of 60% in
2014. The service of the system would include additional costs for billing, collection and maintenance. It is therefore
reasonable to estimate costs in the range of INR 160 to INR 200 per month, the range of prices offered in our normal
price arm.

20This price adjustment meant that 22 normal price villages experienced price declines of INR 30 (from 200 to
170); 11 normal price villages experienced a INR 10 increase; and all 33 subsidized price villages saw a substantial
increase of INR 70 (from 100 to 170).

21Using a Gross State Domestic Product (GSDP) of Rs 36,143 for year 2014-15 (Bihar State Government, 2015),
and a INR per USD PPP rate of 17, per OECD Data for India for 2014.
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Table 4, columns 4 and 5 show the differences between normal price and control arms and

between subsidized price and control arms, respectively, with standard errors in parentheses. The

final column shows the F -statistic and p-value from a test of the null hypothesis that the differences

in means between normal price and control arms and between subsidized price and control arms

are jointly zero at baseline. The joint test rejects the null of equality of treatment and control arms

at the 10% level for three out of twelve variables at baseline. We address this slight imbalance by

including household covariates as controls in our demand estimates.

b Demand estimates

Table 5 presents estimates of microgrid demand. In the first three columns, we give intention to treat

(ITT) estimates that regress microgrid market shares in village v in period t on the experimental

treatment assignments:

sMicrogrids,tv = β0 + β1T
Subsidized
v + β2T

Normal
v + εtv. (1)

The coefficients in the first two rows report the change in market shares for solar microgrids due to

the subsidized and normal price treatments, respectively, and the constant gives the market share

of microgrids in the control group. Columns 1 through 3 report estimates for different periods: the

baseline (November 2013), endline (May 2016) and follow-up surveys (May 2017), respectively.

The first finding in Table 5 is that the experiment increased solar microgrid penetration. We

expect there should be zero take-up at the baseline, because microgrids were a new product, about

to be launched. At baseline, in column 1, the estimated constant, representing take-up in the

control group, and the estimated normal price and subsidized treatment coefficients are very small

and statistically not different from zero. At endline, in column 2, the estimated constant was 2.3

pp (standard error 0.5 pp), and the coefficient on the subsidized price treatment shows that it

increased solar microgrid take-up by 19.3 pp (standard error 4.9 pp). The coefficient on the normal

price treatment is considerably smaller (6.0 pp, standard error 2.8 pp), showing the sensitivity of

household take-up to microgrid prices. We find a similar gap in estimated demand when using

administrative measures of household payments, rather than surveys, to measure take-up.22

22We have administrative data from Husk Power that contains the monthly payment history of all eligible house-
holds. Appendix Table B11 repeats the demand analysis from Table 5 with these administrative data at baseline and
endline, as well as for a separate measure of whether a household ever paid for a Husk solar microgrid. At the endline,
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The second finding in Table 5 is that solar microgrid shares fell sharply between endline and

follow-up, after experimental subsidies were withdrawn. By the follow-up survey, relative to the

experimental endline one year prior, the solar microgrid market share in the subsidized price villages

had declined by more than 11 pp (58%), and in the normal price villages by 4 pp (67%). In the

subsidized treatment arm, the increase in price after the experiment ended must have cut market

share sharply. However, the decline in market shares, proportionally, was just as large in the normal

price treatment arm, which did not experience a large change in price after the experiment. This

similarity across the two treatment arms suggests that the expiration of subsidies does not explain

the entire fall in microgrid market shares, which we investigate further in Section 3 c.

The last two columns of Table 5 give instrumental variables estimates of microgrid demand,

where we instrument for the price level (or log of price) using the experimental treatment assignment.

For example, the column 4 (linear) IV specification of demand consists of the two stages

sMicrogrids,tv = β0 + β1Pricetv + εtv (2)

Pricetv = α0 + α1T
Subsidized
v + ηtv. (3)

A corresponding log-log specification is used in column 5. The sample for these columns is limited

to the two-thirds of villages in which microgrids were offered. Consistent with the ITT estimates, we

find large, negative and highly significant effects of price on microgrid market share in both linear

and log-log specifications of demand. The linear demand estimates imply a choke price, at which

demand for the product is zero, of INR 270, with demand increasing by a 0.129 share (standard

error 0.052) for each INR 100 cut in price.

c Surplus from microgrids

We use these experimental demand estimates to calculate the contribution of microgrids to household

surplus. The value of a new good is the consumer surplus it creates, the area under the demand

curve above the price at which it is offered. Let P (Q) be inverse demand, Q∗tv = P−1(Pricetv) be

we observe that about 18 pp (standard error 5.2 pp) of subsidized treatment households and 1.3 pp (standard error 1.0
pp) of normal treatment households are recorded as customers for solar microgrids. We believe the demand estimates
from the administrative data are slightly smaller than in the survey, in the normal price treatment arm, because there
was a lag between the time when households stopped paying, and hence removed from the administrative records as
a customer, and when they were physically disconnected. The baseline results in the administrative data are also
similar to the survey baseline results. We do not have access to the administrative data at the time of the follow-up.
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the quantity purchased and Q be the small quantity that would be purchased at the choke price

(= 0 for linear demand, and taken as P−1(INR 500) for isoelastic demand). We calculate annual

consumer surplus at a monthly price Pricetv as

CS = 12

∫ Q∗tv

Q
(P (Q)− Pricetv)dQ. (4)

With Q measured in market shares, this yields surplus per household over all households, regardless

of whether or not they purchased microgrid services.

Table 6 reports estimates of the value of microgrids. Columns 1 and 2 report estimates of surplus

using the Table 5, column 4 (linear) and column 5 (log-log) demand specifications, respectively. In

panel A, we evaluate the surplus if microgrids were offered at a uniform, subsidized price of INR

100 per month. Panel B evaluates surplus from microgrids at the actual prices at which they were

offered at endline (1/3 of villages at INR 170, 1/3 at INR 100, and 1/3 not offered). We will return

to discuss columns 3 and 4 in Section 3, where we compare the results from this simple demand

specification with those from our full demand model.

Microgrids are a new means of electricity access, but their limited market shares and our elastic

demand estimates imply that they generate only modest gains in surplus. At the subsidized price,

microgrids increase surplus by INR 222 or INR 242 per household per year (panel A, columns 1 and

2), depending on the demand specification used. At the actual prices and availability (panel B), as

of the endline survey, microgrids give surplus of INR 91 or INR 129 per household per year. The

surplus of INR 91, calculated from the linear demand curve estimates, is 1.6% of household energy

expenditure in our sample. Because roughly one in ten households purchased microgrids, surplus

per microgrid user is higher by about a factor of ten.23 The surplus estimates are fairly similar for

our two different specifications of demand.

The demand for one source of electricity will be a bad proxy for the demand for electricity, on

the whole, if there are close substitutes available for any given source, as we have argued is the

case in Bihar’s competitive electricity market (Section 1). The availability of substitutes affects

both the interpretation and the external validity of our estimates. On interpretation, internally-
23The surplus numbers for the hypothetical removal of microgrids are also understated in the sense that they give

the effect of removal relative to the status quo at the time of the endline survey. In this status quo, microgrids are
not present in the control group, one-third of sample villages, to begin with. Thus the removal of microgrids, by
design, has no effect on surplus in those villages.
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valid estimates of microgrid demand cannot tell us household willingness to pay for the product

category electricity, even within the context of the experiment, when close substitutes are available.

Households may value electricity, but have elastic demand for microgrids, if, when microgrid prices

rise, they can buy another source of electricity they prefer. On external validity, household demand

for microgrids may have been drastically different in a different policy or supply environment, for

example, if the government had not made a big push for the grid, or if the price of alternatives

like own solar had not declined. In the following sections, therefore, we will specify and estimate a

demand model that covers all electricity sources.

3 Model of Demand for All Electricity Sources

We model consumer demand for electricity using a discrete choice demand model over electricity

sources. We specify a nested logit model (McFadden, 1978, 1980; Goldberg, 1995).

Several aspects of our empirical setting allow for an especially rich specification of the model and

credible estimation of its key parameters. First, our data is a household panel survey, so we specify

demand to depend on a rich set of observable characteristics at the household level. Second, we

allow the unobserved quality of all electricity sources to vary without restriction across villages and

time (Berry, 1994). Third, we use the experimental variation in microgrid prices across markets, at

the village-by-survey wave level, to estimate household sensitivity to prices.

a Specification

Utility for household i in village v from electricity source j in survey wave t is is given by

Uijtv = δjtv + z′itγj + εijt (5)

= Vijtv + εijt (6)

The term Vijtv is the strict utility of a choice for a household absent their idiosyncratic taste shock

εijt. The strict utility depends on the average utility of a source δjtv as well as a vector zit of

observable household characteristics. These characteristics affect household utility through source-

specific coefficients γj . For example, households with higher incomes may have a greater preference

for grid electricity, but an unchanged preference for diesel.

17



The term δjtv represents the mean utility of source j in village v at survey wave t. Mean utility

depends on observable source characteristics xjtv and unobserved source quality ξjtv,

δjtv = x′jtvβ + ξjtv (7)

The vector xjtv of observable source characteristics includes price, hours of supply on-peak (from

five to ten pm) and hours of supply off-peak. We refer to ξjtv as unobserved quality or just qual-

ity. Unobserved quality is known to households but not the econometrician. It may include both

unmeasured physical characteristics, such as the capacity of a solar system battery, as well as

characteristics of the service, such as the monetary or hassle costs to obtain a connection.

The choice probabilities in the nested logit model take a simple form.24 Each electricity source

j belongs to a nest g. Our main specification of the demand model will use two inside nests, for

microgrids and for non-microgrid sources together (the grid, own solar and diesel generators).25 The

parameters σg measure the similarity of sources within a nest. The inclusive value of nest g is

IVigtv = ln
∑
j∈Jg

eVijtv/(1−σg), (8)

which is the expected indirect utility when maximizing utility across sources in nest g. The proba-

bility of i choosing a source j in nest gj is then

Pr(yit = j|zit) =
eVijtv/(1−σgj )

eIVigjtvσgj
∑

g e
IVigtv(1−σg)

(9)

Choice probabilities differ by household because they depend on household characteristics zit via

the strict utility term Vijtv. Market shares in the model are defined as the average of household

choice probabilities across households in a village.
24The nested logit assumption imposes that households’ idiosyncratic tastes for electricity sources are distributed

iid across households and survey waves with the joint distribution

F (εi1t, . . . , εiJt) = exp

[
−
∑
g

( ∑
j∈Jg

e−εijt/(1−σg)
)1−σg]

.

As σg approaches one, idiosyncratic variance in utilities comes mostly from the nest level, not from distinctions
between sources within a nest. Under the restriction σg = 0 there is no within-nest correlation and the model
becomes a multinomial logit model.

25On a priori grounds several possible nesting structures seem plausible. We use this nesting structure because it
yields the best model fit out of all possible nesting structures (see Table B12). Under this structure, we can reject the
null hypothesis of a multinomial logit model with no correlation between choice-specific utility shocks (Table B12,
column 2, LR test p-value = 0.05). The choice of nests is not consequential in our setting, however, since alternative
nesting structures yield very similar estimates to those from our main specification (Appendix B e, Tables B12 and
B13).
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b Estimation

We estimate the model in two stages using data from all three surveys. The first, non-linear stage

estimates the effects of observable characteristics on household choices (9) via maximum likelihood.

The second, linear stage estimates use the mean indirect utilities δ̂jtv from the first stage as the

dependent variable to estimate equation 7 using two-stage least squares. This two-step procedure

is common to address endogeneity in the estimation of random coefficients logit models (Berry,

Levinsohn and Pakes, 1995, 2004), of which the nested logit is a simple case. The key idea is to

invert market shares to solve for mean indirect utilities, which then allows for linear IV estimates

in the second stage that are unbiased despite the endogeneity of price to quality (Berry, 1994).

Non-linear estimation of the first stage. In the first stage, we use maximum likelihood to estimate

the parameters δ, γ and σ using choice probabilities (9) and indirect utility (5). Let yitj indicate

that household i in survey t chose product j. The log-likelihood of the sample is

logL(γ, σ|y, z) =
N∑
i=1

T∑
t=1

log Pr(yitj |zit; γ, σ, δ(γ, σ)). (10)

We write δ(γ, σ) to show that we concentrate the δ parameters out of the log-likelihood (Berry,

Levinsohn and Pakes, 1995). For every candidate parameter vector (γ, σ) we solve for the δ that

exactly fits the aggregate market shares.26 This greatly reduces the dimensionality of the non-linear

search, as the δ vector could have up to 1200 elements (= 100 villages × 3 surveys × 4 sources), if

every source were available in every village.

Linear estimation of the second stage. We can now use equation 7 to recover the β vector via a

linear regression of the estimated δ̂jtv on the observable characteristics xjtv of electricity sources at

the survey-by-village level. Let ξjtv = ξjt+ ξ̃jtv be the sum of a survey wave average quality, ξjt, for

each source, and the deviation ξ̃jtv of the quality of a source in a village from that average. The main

concern with estimation of equation 7 is that the error term ξ̃jtv measures the unobserved quality

at the source by survey by village level, inferred from market shares. If a source is very good in a
26We use a Laplace correction to adjust market shares if a source is available but not purchased by any household

in our survey sample. This correction is needed because the model will always predict a strictly positive, though
small, share for a given source, while exact zero shares are observed in finite samples. For a sample of size n, this
correction replaces observed market shares sj with s̃j = (nsj + 1)/(n+ J + 1), which has the effect of giving small,
positive shares to any source with a precise zero share, while slightly deflating the shares of other sources. Since we
observe availability on the supply side for the grid, microgrid and diesel, separately from whether any household in
our sample used a given source, we do not apply this correction if a source was not available in a village. Instead, we
remove that choice from the choice set for that village.
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particular village at a particular time, for example a diesel operator allows higher loads, then the

price of that source may endogenously be set higher, implying E[ξ̃jtv|xjtvk] 6= 0. Additionally, the

price variables are derived from survey reports, so measurement error may attenuate the estimated

price coefficient.

The traditional solution to these concerns is to instrument for price or other characteristics

that may be endogenous to quality. Our solar microgrid experiment offers instruments that are

excludeable and likely to be powerful, given that the microgrid treatment changed market shares

(Table 5). We use interactions of the village-level treatment indicators TNormalv and TSubsidizedv and

an indicator 1{Endline} for the endline survey wave as instruments for price.

The hours of supply on the grid may also be endogenous. To account for this possibility, in

our preferred specification we also instrument the supply hours in a village (both on- and off-peak)

using predicted supply hours P̂ eaktv and ÔPeaktv, where the predictions are made using supply

hours in nearby villages. We expect that villages nearby in the electricity grid, for example that

are served by the same substation, will be similarly affected by the distribution companies’ power

supply rationing rules. The exclusion restriction is that supply of electricity in nearby villages is

not correlated with the determinants of demand in a given village, after conditioning on our rich

set of household observables. Appendix A c details the construction of the instrument.

With these instruments, we estimate equation 7 by two stage least squares:

δ̂jtv = xjtv,priceβprice +
∑

k 6=price
x′jtvkβk + ξjt + ξ̃jtv (11)

xjtv,price = π1T
Normal
v 1{Endline}+ π2T

Subsidized
v 1{Endline}+

π3P̂ eaktv + π4ÔPeaktv + ξjt + νjtv. (12)

We specify here the first stage for the price equation only. The ξjt are source-by-wave fixed effects.

The first stage, equation 12, uses the experimental treatment assignments, interacted with a dummy

for the endline survey, when the experiment was ongoing, as instrumental variables.

As a basis of comparison, we will also report results using ordinary least squares and using tra-

ditional price instruments from the industrial organization literature. We have two sets of alternate

instruments for source-village-wave prices. First, the average hours of supply and load from the

other products in the same village, which will affect source mark-ups and prices under oligopolistic
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competition (Berry, Levinsohn and Pakes, 1995). Second, the average price for a given source in

the nearest three villages where that source is available, which will covary with source price due to

common supply shocks (Hausman, 1996; Nevo, 2001).

Having estimated equation 11, the fitted residuals allow us to recover mean unobserved quality

ξ̂jtv = ξ̂jt +
̂̃
ξjtv = δ̂jtv − x′jtvβ̂.

With these estimates, we can observe how the quality of electricity sources varies across sources,

villages and time, as inferred from households’ choices.

Counterfactual surplus. With the parameters of the demand model we can calculate household

choices and surplus under counterfactuals that vary the availability and characteristics of electricity

sources. The aggregate market share of electricity source j is the choice probability for that source

averaged over households:

ŝjtv =
1

N

N∑
i=1

e(δ̂jtv+z
′
itγ̂j)/(1−σ̂gj )

eσ̂gj ÎV igjtv
∑G

k=1 e
(1−σ̂k)ÎV iktv

, where ÎV igtv = ln
∑
j∈Jg

e(δ̂jtv+z
′
itγ̂j)/(1−σ̂g)

The expected household-level indirect utility from a choice set J is the log of the sum over nests of

a term dependent on nest inclusive value

Ê
[
max
j
Uijtv

∣∣∣J ] = ln
∑
g

e(1−σ̂g)ÎV igtv

We run counterfactuals by considering an alternative set of choices J ′ or by using the estimated

coefficients to calculate new δ̂jvt associated with changed source characteristics. The willingness to

pay for a scenario that alters the choice set or choice characteristics is:

ŴTP = − 1

N

N∑
i=1

(
Ê
[
max
j
Uijtv

∣∣∣J ′]− Ê
[
max
j
Uijtv

∣∣∣J ])/β̂price (13)

The main objects of interest in the counterfactuals are predicted market shares and household

willingness to pay.

c Results

This section reports estimates of household demand for electricity sources. The full demand model

has 1,031 parameters: 999 source-by-village-by-survey wave mean indirect utility parameters, backed

out from the first-stage demand model, 28 parameters governing household heterogeneity, 3 param-
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eters on the average effects of source characteristics and a parameter governing correlation of the

source-specific utility shocks. We therefore report only select parameters, to give a sense of how the

model represents household electricity choices. First, we report the linear estimates of the average

effects of source characteristics, from the second stage. Second, we present estimates, from the

non-linear first stage, of how household characteristics affect choice probabilities. Third, we present

distributions of source quality.

Second stage estimates: Mean effect of source characteristics. We begin with estimates of equa-

tion 12, which is the first stage of the linear part (second stage) of the broader model. Appendix

Table B4 reports the estimates with several different instrumental variables strategies. Our pre-

ferred specification (12) instruments for both price and supply hours. We find that the experimental

treatment assignments have a highly statistically significant effect on price (column 2a). The first-

stage F -statistic for a test of the null that the instruments do not affect price ranges from 21 to 42,

depending on whether we instrument for price and hours simultaneously (column 2a), or only for

price (column 1). In addition, our supply instruments strongly predict hours of supply both during

peak and off-peak hours (columns 2b and 2c).

Alternative instrument sets lack power to predict price in the first stage. Neither the BLP

(F -statistic 0.4) nor Hausman (F -statistic 1.0) instruments have much predictive power for the

endogenous price variable. One interpretation of this result is that the assumption of oligopolistic

conduct that underlies the BLP instruments is not appropriate in this setting, since sources like own

solar are perfectly competitively supplied and the government’s objective, in pricing grid electricity,

is clearly not to maximize profits.

Table 7 reports estimates of the linear part of the demand model, equation 11. Column 1 reports

results from ordinary least squares estimates, as a straw man, since we expect OLS will be biased.

Columns 2 and 3 report instrumental variables estimates using the first stage from the experiment,

instrumenting either for price or for both price and hours. Columns 4 and 5 replace the experimental

variables in the instrument set with alternate instruments for price.

The experimental instrumental variables estimates show a high degree of price sensitivity. We

find a coefficient of −1.70 (standard error 0.63) on price (column 2), which is unchanged if we

additionally instrument for hours of supply (column 3). The magnitude of the coefficient on price

is seven times greater than found in the OLS estimates (column 1), consistent with bias from some
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combination of endogeneity and measurement error.

Estimates of the price coefficient using alternative instruments drawn from the literature are

imprecise. The point estimate with the BLP instruments is half as large as the experimental

estimate (column 4) and the point estimate with the Hausman instruments is positive (column 5).

We cannot reject the equality of either of these estimates with any of the experimental estimates,

the OLS estimates, or a zero coefficient on price. We therefore conclude that the experiment is

necessary to recover unbiased and precise estimates of the price coefficient in our setting.

We calculate the price elasticities implied by these coefficients using our preferred, column 3

estimates. (The elasticities also depend on the other parameters of the demand model, including

household tastes and quality, that we discuss below.) The aggregate own- and cross-price elasticities

by source are shown in Appendix Table B5. The demand elasticity for grid electricity is estimated

to be −0.58. We view households as very price sensitive in absolute terms. The average probability

of choosing the grid is 24%, and the model estimates imply that a INR 10 increase in the grid price

(17% of the mean price of INR 60) decreases grid market share by 2.9 pp (12% of the average share).

Though INR 10 is just enough money to buy two cups of tea or three bananas, raising the grid price

by this amount in a month cuts market share by a noticeable 3 pp. Demand is even more elastic

for off-grid electricity sources. Diesel, own solar and microgrid solar electricity have large own-price

elasticities of −1.83, −1.91 and −1.58, respectively.

We also estimate the effect of supply hours on household mean utility. We find a positive but

statistically insignificant effect of peak hours of supply on mean utility and a smaller, negative, and

borderline statistically significant coefficient for off-peak hours (Table 7, column 3). Our estimate

for the value of peak hours is not precise, but agrees with the idea that agricultural households, who

may be away during the day, mainly value power in the evening hours. We proceed with the column

3 estimates, instrumenting for both price and hours, as our main specification for counterfactual

analysis. The IV specification is preferred on the a priori grounds that supply may be endogenous

to village demand.

First stage estimates: Heterogeneity in demand across households. Table 8 reports the effects

of household characteristics on choice probabilities from the demand model when estimated across

all three periods (the γj coefficients on household observables for each source in equation 5). We

estimate two instances of the model. First, to provide a simple univariate proxy for wealth, we
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estimate a model that includes as covariates only the number of adults in the household and a

dummy variable for whether the household has a solid roof (columns 1 through 5). Second, we

estimate the full model, which includes five additional observable proxies for household demand:

whether the household has a solid house, the number of rooms in the house, household income,

whether the household owns agricultural land, and the education level of the household head.

The effects of household characteristics are non-linear. The table therefore reports marginal

effects evaluated for a “poor” household, which lacks the binary indicators of wealth and has an

income at the 20th percentile of our sample distribution.27 The marginal effects are not strictly

marginal; for binary variables we report the effect on each given choice probability of changing the

value from zero to one, and for continuous variables the effect of a one standard deviation increase.

The main finding of the table is that richer households, by any measure, have stronger preferences

for grid electricity over all other sources. Consider the simple model specification (columns 1 to 5).

The baseline probability of grid choice is 24 percent. On top of this base, a household with a solid

roof is 21 pp (standard error 3.9 pp) more likely to choose grid electricity. Nearly all of this effect

comes from a reduction in the choice of the outside option (no electricity).

In the full model we add additional covariates (columns 6 to 10). The effect of having a solid

roof on grid choice declines, since the solid roof dummy is correlated with other measures of wealth,

but remains large (11 pp). We find that each of our seven observable demand proxies has a positive,

economically meaningful and statistically significant effect on a household’s probability of choosing

grid electricity, and also reduces the probability that a household chooses no electricity (the outside

option). For example, a household that owns agricultural land is 4.9 pp (standard error 1.8 pp)

more likely to choose the grid. These demand proxies have much smaller effects on the choice prob-

abilities for other sources, though some do significantly affect demand; for example, higher-income

households are slightly more likely to choose microgrids. Table 3 offers a natural interpretation of

this heterogeneity: grid electricity supports higher loads, so many more households on the grid can

run a fan or a television.28 Richer households want the energy services that these devices bring.

A likelihood ratio test, reported at the bottom of Table 8, easily rejects the simple demand model
27The profile of a poor household is defined as a household of two adults living in an one-room house, without a

solid roof or solid walls, and no agricultural land ownership. The full profile of a poor household’s characteristics is
described in Appendix Table B6.

28In our baseline survey, very few households reporting using microgrids. As a result, the appliance ownership
summary statistics conditional on using microgrids at baseline are imprecisely estimated.
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in favor of the full model with additional covariates (p-value < 0.001). We use the full model for

counterfactuals.

Unobserved source quality. The demand model flexibly allows for changes in ξjvt, the mean

unobserved quality of each electricity source in each village and survey wave. In the model, un-

observed quality is the residual from the estimation of (11). This residual fits the source market

shares exactly, conditional on source-specific observable characteristics, and is naturally recovered

only for source-village-wave combinations in which the source was available in the market. Quality

for a source will be lower if there are unobserved costs of using that source (e.g., connection fees or

hassle) and higher if there are unobserved benefits (e.g., reliable service).

Figure 4 summarizes the evolution of source quality. Each row shows one source and each column

one survey wave. Within each source and wave, the histogram shows the distribution of quality

across villages. We also plot the median source quality as a horizontal line in each histogram.

The main finding from the figure is that we estimate large changes in quality for sources for which

we have a priori grounds to expect quality improvements, but not otherwise. The two disruptions

in the market came from own solar systems and grid electricity. The median quality of own solar

improved from −2.6 to −1.2 from 2013 to 2017, with most of the improvement coming in the year

between the endline and follow-up survey waves. Higher solar quality may be due to technical

factors such as battery capacity and load, which we do not observe directly, or to a broader reach of

marketing and distribution networks for these systems, which would have lowered connection costs.

The estimated quality of the grid also improved greatly over the span of our data. The median grid

quality increases from −1.1 at baseline to −0.3 at endline and +0.7 at follow-up (Figure 4, row 1).

These improvements are likely the result of a government drive to increase household connections,

which decreased connection costs by subsidizing poor households. Quality for diesel generators and

solar microgrids, by contrast, stagnated (Figure 4, rows 2 and 3, respectively). The distribution of

diesel generator quality is about the same in all three survey waves (though there is truncation at

the bottom, due to exit, as generators were driven out of the market). Our microgrid partner, HPS,

did not offer its product in many villages at baseline, by design, and did not change its product

during our study. This stagnation is apparent in the figure, as the median quality of microgrids is

unchanged across survey waves.

Overall, we find a remarkable concordance between our prior understanding of changes in quality
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for each technology and the unobserved qualities estimated from the demand model. The landscape

of electrification in Bihar has shifted, with own solar systems and the grid rapidly improving and

other technologies stagnating.

d Modeling choices

The model casts household electricity demand as a static differentiated choice problem. Here we

discuss several of our modeling choices.

Nested logit. We use a nested logit model instead of a random coefficients (mixed) logit model

for three reasons. First, we have especially rich observable household data that allows for complex

patterns of substitution, even without random coefficients.29 Second, we find that introducing a

small amount of unobservable correlation in tastes, via the nested logit assumption, has negligible

effects on the estimates.30 Third, the nested logit model can be estimated efficiently by maximum

likelihood without simulation.

Substitutes. The model’s structure assumes that sources are substitutes and that households

cannot choose bundles of sources. In some settings, for example in cities, households may have

diesel generators or solar power to provide power during grid outages, making the technologies

complementary. We see very little bundling in our sample, perhaps because households are too

poor. At the time of our endline survey, only 1.4% of households held multiple sources (Appendix

Table A2). For these few cases, we set a priority order in which households are assumed to have

chosen the grid if it is part of their chosen bundle.

Static model. We use a static model instead of a dynamic model, where households hold sources

as assets, or condition future choices on past decisions. We took this route for two main reasons.

First, in our context, three of the four sources we study are paid for on a monthly basis, own solar

being the exception, and so households do not have any asset value from holding these sources.
29We have household-level panel data with very detailed observable household characteristics, which we show have

large effects on demand, and a small number of product choices. Therefore, the aggregate patterns of substitution
in the model will not be tied to simple patterns like the independence of irrelevant alternatives, even within nests,
because individual households make their own decisions. A mixed logit model would allow patterns of substitution
to be richer still. We believe the gains from a more complex model would be larger in settings where one had fewer
observable proxies for demand and a larger number of product choices.

30Appendix Table B12 shows that the coefficients on observable characteristics and the fit of the model barely
change at all when varying the nest structure, or using a multinomial logit model with no nest at all. Nested logit is
a simple case of a mixed logit model where the random coefficients are on group-specific dummy variables (Cardell,
1997).
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Second, empirically, it does not appear that households are tied to sources they used in the past.

We see total disadoption of diesel, and adoption and then disadoption of microgrids, within our

study period, and massive changes in shares from one year to the next. These fluid aggregate

movements suggest that households do not show a stickiness in their connection to a particular

source. Our model does allow for unobserved adoption or connection costs, via the quality terms.

4 Competition between Sources and the Value of Electrification

The model estimates now allow us to measure the surplus households gain from electricity and

to study how that surplus depends on the competition between different electricity sources. We

do this in three steps. First, we use the model to compare the surplus from electrification to the

surplus from microgrids alone. Second, we use the model to value the two disruptions that Bihar

went through during our study period, the advent of off-grid solar and a big push for grid supply.

Third, we study counterfactual policies that project recent shifts in supply and demand forward, to

understand the medium-run future of electrification.

a The value of microgrids and of all electricity sources

We start by returning to the estimates of the value of microgrids in Table 6. With the structural

model, we can calculate the surplus from any electricity source, by raising the price of that source

to a high level and calculating the decline in total surplus (equation 13).

The value of microgrids is nearly the same in the structural model as calculated previously with

the linear model of demand. Table 6, panel B, column 4 reports the surplus from microgrids at

the time of the endline survey, which we find to be INR 93 per sample household per year. This

estimate is very close to the surplus of INR 91 based on a linear estimate of demand (panel B,

column 2). It is reassuring that these estimates are similar, given that the experimental variation

in price was used to estimate both the reduced-form and the structural demand models.

With the full structural model, we can additionally calculate the surplus from all sources of

electricity together. We find that the total household surplus from electrification is INR 528 per

year, greater than the surplus from microgrids by a factor of roughly five (Table 6, panel B, column 4

versus column 3). This large difference shows that the modest value of microgrids found in Section 2
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does not reflect a low valuation of electricity but rather the availability of other sources of electricity

that are similar in appeal to microgrids. Studying demand for microgrids alone, without considering

other sources of power, grossly understates household willingness to pay for electricity.

The model estimates show similarly large gaps between the value of electricity and the value of

any one source of electricity. For example, we repeat the above comparison of source-specific surplus

to total surplus from electricity for the grid, instead of for microgrids. We find that the surplus

from all sources is greater than the surplus from the grid alone by a factor of roughly three. The

grid is unilaterally the highest-quality source at endline (Figure 4, row 1, column 2), but there is a

wide scope for substitution between sources of electricity that offer similar energy services, which

implies that the value of the source bundle is much greater than for any one source, even the grid.

b The two disruptions in Bihar’s electricity market

The substitution we observe between grid and off-grid sources of electricity affects not only our

interpretation of the experimental results, on the value of microgrids, but also our understanding

of Bihar’s larger transformation in electricity access. Here we apply our model to measure the

contribution of the two disruptions in Bihar’s electricity market, the advent of solar power and the

big push of the grid, to the household surplus from electrification.

Table 9 reports a range of counterfactual results based on the demand model estimates. Every

row represents one counterfactual model run. Columns 1 through 4 report source market shares and

column 5 the electrification rate, the sum of the market shares of all inside sources. Columns 6 to 8

report consumer, producer and total surplus. All surplus measures are per household per year across

the entire population, including households who choose the outside option of no electricity. The

producer surplus is the surplus from the grid only, which is approximately equal to total producer

surplus in the market.31 Producer surplus is typically negative, because the state distribution

company loses money on every grid customer.

Table 9, panel A summarizes the transformation of the electricity market during the span of our
31Producer surplus for the grid is a measure of variable profits: the profits or losses that accrue to the state from

supplying grid electricity, after accounting for the cost of energy supplied. Losses must be covered by tax collection
from Bihar and from other states, due to central government transfers. Producer surplus for the grid can be taken as
capturing producer surplus from the whole market, if we assume that the other sources are competitively supplied.
The assumption of zero profits is probably accurate for own solar but not for diesel, which, in any case, has a small
market share at endline.
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data. The three rows show the modeled market shares and the value of electrification in each of our

three survey waves.32 In each survey wave, the supply side of the market changes due to changes in

source availability, quality and observed source characteristics like price. The demand side of the

market changes due to observed household characteristics (except at the follow-up wave, which did

not collect household covariates and therefore uses household characteristics at endline).

The main finding in the panel is that the increase in electrification during our study period

tripled the household surplus from electricity supply, from INR 309 to INR 935 per household per

year (column 6). To put this in context, at baseline, household expenditure on electricity and

lighting in our sample was INR 2,029 per year and on all energy INR 6,024 per year. The increase

in surplus from electrification is therefore 31% of baseline electricity and lighting expenditures and

10% of all energy expenditures. Grid market share rises by 34 pp (column 1) and the combined

market shares of the two solar sources by 15 pp (columns 3 and 4). Even as consumer surplus

increases three-fold, producer surplus steeply declines (column 7), as the state loses money on the

additional consumers choosing to connect to the extended and improved grid.

In the model, we can decompose household surplus gains into gains due to each of the two large

disruptions to the electricity market. Table 9, panel B isolates the value of the disruption from

off-grid solar, which includes not only microgrids but also households’ own solar systems, relative

to the baseline equilibrium. Row 1 repeats a summary of the state of the market at baseline. Row

2 fast forwards solar technology by four years, to the levels of availability, characteristics, pricing

and quality at our follow-up survey, holding the rest of the state of the market constant at baseline

levels. Row 3 gives the change between these two rows.

The progress of solar power, over only the four years we study, would alone have increased

household electrification rates by 25 pp (panel B, row 3, column 5) and the household surplus from

electrification by INR 358 (panel B, row 3, column 6), or by a factor of 2.2× over the baseline

value. The value of only the progress in the category “solar” is more than three times as large as

the estimated surplus from microgrids alone, as of the endline survey (Table 6, panel B, row 3).
32By construction, the unobserved source quality terms allow the model to fit the actual source market shares

almost exactly in each survey wave. There are small differences between source-specific market shares in the model
and the data, due to two factors: (i) our use of the Laplace correction in modeling market shares (see footnote 26
above) (ii) the classification of source-level availability at the village-level, which disallows some households in the
model from choosing the source they reported in the data (such as microgrids, when microgrids were not offered).
See Appendix Table B3 for a discussion of model fit.
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Improved solar takes market share from the grid and diesel, and therefore increase solar market

shares by 10 pp more than the overall increase in electrification (panel B, row 2 versus row 1).

The value of solar is highly contingent on the state of the grid. Panel B, row 4 repeats the same

calculation, of the change in surplus due to better solar, but with the availability, characteristics

and quality of the grid at improved follow-up levels, instead of the patchier coverage and supply

observed at the baseline. In this case, we find that the change in surplus due to the progress of

solar is INR 127 (panel B, row 4, column 6), about one-third as large as if the rest of the market

had stood still, and that solar increases the electrification rate by only 8 pp instead of 25 pp. The

progress of solar, therefore, is much less valuable to households when the government is making

large investments to expand a heavily subsidized grid.

An ancillary benefit of solar power is that the government loses less money on grid power supply

for every customer that off-grid solar takes off the grid. Panel B, row 4 shows that at the higher,

follow-up state of grid availability and quality, the advent of solar power increases producer surplus

by INR 129 per household (column 7), by stealing money-losing customers from the grid. This

benevolent competition therefore reduces government losses from rural electricity supply by 14%

(= 129/928, from panel C, row 2, column 7 over panel B, row 4). This finding provides a novel

justification, aside from environmental externalities, for why developing country governments that

subsidize the grid may wish to subsidize household solar adoption also.

Table 9, panel C runs a converse set of counterfactuals to isolate the contribution of the expansion

and improvement in grid electricity supply to household surplus, with and without improved off-grid

solar. Row 1 again repeats the baseline market conditions for reference. Row 2 shows the levels of

market shares and surplus with the grid as of our follow-up survey and the rest of the market fixed

at baseline. Row 3 shows the changes from baseline due to the improved grid. Row 4 shows the

changes from baseline due to the improved grid, if follow-up solar system characteristics are used,

instead of their baseline values.

The progress of the grid between 2013 and 2017 would, with the rest of the market frozen at

baseline levels, have increased electrification rates by 26 pp and household surplus from electrification

by INR 488 (panel C, row 3, columns 5 and 6), a factor of 2.6× over the baseline value. With solar

power instead at its improved, follow-up state, the same grid expansion and increases in quality

would have increased surplus by INR 257, about half of the increase if only the grid had improved
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(panel C, row 4). Therefore surplus for the grid, as for solar power, is markedly lower in the presence

of viable competing sources of electricity. The value of any source of electricity is not a constant,

but depends on the state of the rest of the market.

Using the model to interpret the transformation in Bihar’s electricity market, we therefore

find that the contribution of off-grid solar power to household surplus from electricity is three-

quarters as large as that of the improved grid, when each improvement is considered unilaterally

(0.73 = 358/488, panel B, row 3 over panel C, row 3). This near-parity in consumer surplus

gains is remarkable, given that solar panels are provided in private markets and the public grid

is massively subsidized. The state distribution company’s economic model, wherein each added

customer increases losses, means that the progress of the grid between baseline and follow-up is

projected to reduce producer surplus by INR 819 (panel C, row 2, column 7), almost double the

gain in consumer surplus. The advent of off-grid solar, by contrast, achieves nearly the same gain

in household surplus without this large, offsetting loss.

This characterization of the two disruptions in Bihar speaks to the importance of using the model

to look beyond the value of microgrids that we can estimate directly from demand in the experiment.

The results from the microgrid experiment are modestly pessimistic about the value of off-grid solar;

microgrids could compete, when subsidized, but ultimately lost out in the marketplace. In the larger

picture, however, microgrids lost out to a combination of the grid and other off-grid solar sources.

The demand model allows us to step back and observe that all off-grid solar technologies together

contribute nearly as much to the household surplus from electrification as does the grid, without

causing any increase in producer losses via state subsidies.

c Counterfactual policy reforms and the future of electrification

What is the future of electrification along the global electrification frontier? This subsection uses

the results of the demand model to project the medium-run future of electrification in Bihar. We

structure our counterfactuals in order to comment on how electrification will proceed under a range

of projected shifts in the market, including further declines in solar prices, improvements in grid

extension and service quality, growth in household income and increases in grid prices. We consider

a series of counterfactual changes that are large, but realistic, in the dynamic environment of Bihar:

Falling solar prices. Solar panel and battery prices are projected to continue to fall. We use
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estimates from the literature of a reduction in solar cost of 30% by 2022 (Feldman, Margolis and

Denholm, 2016; Howell et al., 2016), and assume that this decline passes through completely to the

prices of both own solar systems and microgrids.33

Improving grid. As of the follow-up survey, the grid is still only present in 72% of villages and

supplies on average 14 hours of power a day, with only about 3 hours during the 5-hour evening

peak. The government continued to invest in grid extension and household connections after our

surveys and has increased supply to rural areas. We counterfactually complete the extension of the

grid to all villages and increase peak supply hours by two hours a day, up to a maximum of five

hours, the full duration of the evening peak.

Growing incomes. Bihar is a relatively poor state but among the fastest growing in India, with

an average annual growth rate in state product of 11% from 2012 to 2018. To model demand growth,

we create profiles that represent “poor,” “median” and “rich” households within our sample. These

profiles are vectors of household observable characteristics where each element roughly corresponds

to the 20th, 50th and 80th percentiles for each wealth and income proxy (see Appendix Table B6 for

a description of the profiles). In the counterfactuals, we weakly raise all households to the maximum

of their current observables and the median profile, or the maximum of their current observables and

the rich profile. These are large relative changes but small in absolute terms; increasing household

income to at least the 80th percentile of the distribution in our sample reaches parity only with the

per capita GDP of Malawi, one of the world’s poorest countries.34

Table 9, panel D reports on the results of these counterfactuals. Panel D begins from the state

of the market in our follow-up survey, in row 1, and cumulatively adds improvements to the supply

and demand sides in the market. Each row below row 1 therefore includes all of the changes up

through the prior row.

Further declines in the cost of solar are projected to have moderate effects, increasing the
33For solar PV, we assume a 55% reduction in cost (Feldman, Margolis and Denholm, 2016). For batteries, we

assume a 75% reduction in cost, in accord with the US Department of Energy’s 2022 goal (Howell et al., 2016). Since
the panel and batteries only make up a part of the system, these changes imply a reduction in total cost of 30%, or
INR 50 (USD 0.83) (See Appendix Figure C4 for a breakdown of costs). We assume that this decline in cost passes
through completely to microgrid prices, thereby lowering prices from a market price of INR 170 to INR 120.

34The median reported household per capita income in our sample is INR 12000 per year (USD 656 at 2011 PPP)
and the 80th percentile is INR 14250 per year (USD 779 at 2011 PPP). At purchasing power parity rates, the 80th
percentile in our sample is therefore about in line with per capita income in Malawi (USD 1143 at 2011 PPP) (World
Bank). Income measurement is difficult for rural, agricultural households with multiple sources of income, and this
comparison should only be taken as roughly indicative of the level of economic development in our sample.

32



electrification rate by 3 pp and household surplus from electrification by 10% of the follow-up status

quo (row 2). Solar market shares increase by nearly four times the net gain in electrification, as

cheaper solar draws households away from the grid.

Completing the “big push” of the grid, to reach all villages (row 3) and improve supply (row

4), would increase electrification rates by a further 9 pp (column 5) and surplus by one-quarter

of the follow-up status quo (column 6, row 4 compared to row 2, and row 4 compared to row 1

= (1245− 1024)/906). Grid extension contributes somewhat less to this gain than intensive margin

improvements in peak supply for all villages (column 6, INR 84 per household, in row 2, versus

INR 137, row 3 less row 2). Although the grid improved greatly during the span of our data, the

further gains in these counterfactuals show that an incomplete and low quality grid remains a major

hindrance to electricity access.

We now take the “big push” on the supply side, including reductions in solar cost and improve-

ments in grid extension and reliability (up through panel D, row 4), as given, and consider the effects

of increasing all households’ incomes to the median and rich profiles in rows 5 and 6, respectively.

Gains in household income have large effects on the value of electrification. In the median (row

5) and rich (row 6) scenarios, the electrification rate surges to 83% and 90%, respectively. Taking

the “big push” scenario (row 4) as the point of comparison, increasing household income boosts the

surplus from electrification by 49% (= 1859/1245, column 6, row 6 over row 4), or 68% of the total

household surplus from electrification as of follow-up (row 1). A striking aspect of these gains is

that they are entirely due to the grid—the overall electrification rate increases 13 pp (column 5, row

6 less row 4), while the grid electrification rate increases 16 pp (column 1, row 6 less row 4), 123%

of the total. This projected dominance of the grid, in response to income growth, was foreshadowed

by our demand model estimates, which showed that moderately richer households, those with a

solid roof for example, have much stronger preferences for grid electricity.

This result on the dominance of the grid presumes that the state is willing to bear the large

additional losses that would occur from a subsidized grid expansion. Producer surplus declines

by INR 751 per household due to the “big push” (row 4 less row 2) and a further INR 614 per

household due to income growth (row 6 less row 4). By row 6, the government is losing INR 1,909

per household in electricity subsidies, about equal to baseline household expenditures on electricity

and lighting. As the grid improves, it is reasonable to expect that the government may at a point
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limit the growth of subsidies by raising prices. In panel D, row 7, we consider a scenario where

all of the changes up to row 6 still occur, but the government also raises prices, in order to limit

producer losses to the follow-up level (column 7, row 1). We calculate that holding losses steady

would require a price increase from INR 60 to INR 115.

The results of this scenario shift nearly all of the forecasted gains in electrification off the grid

in favor of off-grid solar. The overall electrification rate falls only 6 pp (column 5, row 7 less row 6).

The grid electrification rate, however, falls 29 pp (column 1), and the solar rate surges 22 pp. At

prices closer to cost recovery, solar power would continue to play a much larger role in electrification,

even as the extent and quality of the grid improves.

The comparison of these scenarios, particularly the contrast of row 6 and row 7, makes it clear

that the future of electrification is a social choice. If the government makes a big push and retains

the present level of subsidies as household income grows, nearly all of the gains from household

electrification will come from the grid. If subsidies are withdrawn to hold the line on the budget,

then off-grid solar power will continue to play a large role in the electrification of the poor, nearly

coequal with that of the grid.

5 Conclusion

Electricity markets on the global electrification frontier are undergoing radical changes, driven by

innovation in solar power and a traditional “big push” for grid electricity. We model the demand

for all sources of electricity and apply the model to break down the gains to the poor from a large

expansion of energy access. Our approach uses revealed preference measures of demand, estimated

with medium-run experimental variation, to value historic changes in energy supply, which would

not have been feasible directly to manipulate with an experiment. As a point of comparison, the

increase in electrification rates within our four-year study period is roughly twice as large as the

increase in farm electrification rates studied by Kitchens and Fishback (2015), who consider a decade

of gains from the beginning of the Rural Electrification Administration in the United States.

There are three main findings from our analysis of the electricity market over a dynamic four-

year period in rural Bihar. First, the household surplus from electrification tripled during our study

period. Second, while households value electricity, no single source is indispensable, since households
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freely substitute between several sources that provide similar energy services at similar prices. Both

the advent of solar power and the big push of the grid would, on their own, have more than doubled

the household surplus from electrification, with the grid playing only a modestly larger role. Third,

future gains in electrification will come mainly through the grid, because households prefer the grid

even at a strikingly low level of economic development. This finding depends on Bihar’s policy

regime; the pace of the transition to the grid, in general, will depend on whether energy subsidies

keep pace with demand.

We omit at least two valid reasons why governments may favor energy subsidies for the poor.

First, a preference for redistribution. The large loss that Bihar is willing to incur to increase

electrification rates is one measure of the value that the state places on energy access per se. A

drawback of redistribution through energy subsidies is that subsidies, ironically, can undercut the

quality of energy supply (Burgess et al., 2020; Dzansi et al., 2019). A pullback in supply, in turn,

may slow economic growth, for example the growth of manufacturing firms (Allcott, Collard-Wexler

and O’Connell, 2016). The second factor that favors subsidies, for the grid in particular, is external

returns, for example a big push for electrification might generate spillovers in consumption or

increases in productivity for firms, beyond the direct value of electricity to consumers. The evidence

on external returns is uncertain and more research in this area is needed (Lipscomb, Mobarak and

Barham, 2013; Kline and Moretti, 2014). Governments in pursuit of such returns may reasonably

push for universal electrification, even if it may seem too early in the process of development, as

measured by household willingness-to-pay alone. Indeed, Bihar’s big push has come at a very low

level of income, relative to historical precedent (Lee, Miguel and Wolfram, 2020a).

The expansion of the electricity choice set that we study has brought a large increase in household

surplus from electrification in a short time. Off-grid solar is not leaping over the grid, as mobile

telephony made the landline obsolete, before landline networks were ever completed. However, it

is a worthy competitor for the needs of the rural poor, which has accelerated growth in energy

access. Universal electrification is a landmark in the development of every country, but the number

of people without grid electricity today is only a bit lower than the world population in 1879, when

Thomas Edison invented the light bulb. The pace of change we now observe, both on the grid and

off, is not unique to Bihar. Soon enough the global electrification frontier may disappear.
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6 Figures

Figure 1: Growth of Solar Power in Developing Countries
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The figure shows the growth of solar power in India and Africa, which account for most of the global population without
electricity. The line series, measured against the left axis, show grid electricity generation from solar photovoltaics
for India and the African continent. Generation data comes from the International Energy Agency, IRENA and the
Central Electricity Authority, Government of India. The marker series, measured against the right axis, denote the
percentage of households using off-grid solar systems in India and Africa. We estimate cumulative household market
shares using data on solar system sales from GOGLA. To calculate the stock of market shares from flow data on
sales, we assume that each household owns only one system and the number of systems in use is the sum of systems
sold less a 10% annual depreciation of the prior stock. We divide by the population of households using population
and household size data from the UN Population Division, the World Bank and the Indian Census.

40



Figure 2: Maps of Study Area

A Study districts within the state of Bihar, India
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B Sample villages within study districts

The figure shows the study area. Panel A highlights the two districts of West Champaran and East Champaran, in
the northwest corner of Bihar, which contain the study villages. Panel B shows, within the two study districts, the
locations of sample villages and their treatment assignments. The nearest large towns are Bettiah and Motihari. The
river Gandak, in the northwest, forms the state border with Uttar Pradesh.
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Figure 3: Household Electricity Sources Over Time
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The figure shows the market shares of different sources of electricity over time. Each stacked bar gives the share of
households, from bottom to top, that use grid electricity, diesel generators, solar microgrids, own solar systems or
no electricity. These market shares are calculated with respect to the total sample of households, without regard
for whether a source is available in a village or not; in a village where the grid is not present, for example, the grid
necessarily has a zero share. There are three clusters of bars, for shares in the baseline (starting November 2013),
endline (starting May 2016) and follow-up (starting May 2017) survey waves. We use a dummy variable for whether
a household has a solid roof as a proxy for household assets. Within each cluster of bars, the three bars from left to
right give the market shares amongst all households, households that do not have a solid roof, and households that
do have a solid roof, respectively.
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Figure 4: Evolution of Electricity Supply Quality by Source
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The figure plots the estimated distributions of unobserved source quality for all electricity sources over time. The
four rows are for different electricity sources, from top to bottom: grid electricity, diesel, solar microgrids, and own
solar systems. The three columns are for the survey waves, from left to right: baseline (starting November 2013),
endline (starting May 2016) and follow-up (starting May 2017). Each histogram in the figure shows the distribution
across villages v of unobserved mean quality ξ̂jtv for the row source j during the column survey wave t. The vertical
axis is the value of mean unobserved quality, where the outside option is normalized to zero, and the horizontal axis
is the density. The mean unobserved quality is estimated in the demand model as the residual that fits source market
shares given the observed characteristics of each source.
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7 Tables

Table 1: Grid Electrification Around the World, 2012

United
States India

Sub-
Saharan
Africa Bihar

(1) (2) (3) (4)

GDP per capita (USD) 57,467 1,709 1,449 420
kWh per capita 12,985 765 481 122
Electricity access (% of population) 100 79 37 25
kWh per capita / US kWh per capita 1 0.059 0.037 0.009
The table places the income and electricity access in the state of Bihar, India, the site of the study (column
4), in the context of other areas of the world (columns 1 through 3). The first row is nominal GDP per
capita, the second row is mean electricity consumption per capita, the third row is the electrification rate
and the last row is the ratio of mean electricity consumption per capita to mean consumption in the
United States (World Bank, 2017).

Table 2: Description of Electricity Sources in Bihar

Grid electricity Microgrid solar Own solar Diesel generator
No electricity (use
kerosene)

(1) (2) (3) (4) (5)

Availability

Grid must reach
village. Then
household can
apply for a
connection.

Offered in
treatment villages
by Husk Power
Systems.

Available in
market towns.
Households travel
to buy on their
own.

Private operators
offer in villages
with high enough
demand.

Sold through
Public
Distribution
System.

Energy services
typically
supported

Light and phone
charging, fans,
televisions. No
load limit.

Light and phone
charging.

Light and phone
charging. Fans for
larger systems.

Light and phone
charging.

Light, of lower
quality.

Reliability

Poor. Frequent
power cuts at peak
times.

Good, but limited
by battery
capacity.

Good, but limited
by battery
capacity.

Good, but
operates during
peak evening
hours only. Good.

Contract

Pay monthly bill,
either flat or per
unit.

Pay monthly flat
bill.

Buy system
up-front. Low
marginal cost but
household liable
for maintenance.

Pay monthly flat
bill.

Pay by quantity at
a subsidized rate.

Risk of
disconnection

Disconnection
possible, though
unlikely, if no
payment.

Disconnection
possible if no
payment. Not applicable.

Disconnection
likely if no
payment. Not applicable.

The table describes the electricity sources that are used by households in our sample in Bihar.
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Table 3: Summary of Electricity Sources

Baseline Endline Follow-up

Grid Diesel
Own
solar

Micro-
grid None Grid Diesel

Own
solar

Micro-
grid None Grid Diesel

Own
solar

Micro-
grid None

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

Panel A. Source characteristics
Price (INR per month) 72 99 80 200 - 60 88 91 164 - 59 89 72 170 -
Load (watts) 322 134 247 31 - 145 22 39 31 - 147 40 13 31 -
Hours of supply

Total 10.9 3.4 7.4 5.3 - 11.0 3.1 5.6 5.6 - 13.6 3.1 5.6 5.6 -
Peak (5 - 10 pm) 2.0 3.4 4.7 4.3 - 2.1 3.1 4.9 5.0 - 2.8 3.1 4.9 5.0 -
Off-peak 8.6 0.0 2.7 1.0 - 8.8 0.0 0.7 0.6 - 10.4 0.0 0.7 0.6 -

Source in village (%) 29 57 100 0 - 53 18 100 66 - 72 13 100 66 -

Panel B. Household appliance ownership
Fan (%) 22 2 1 0 0 34 4 9 3 1 - - - - -
Light bulb (%) 84 93 72 55 2 100 100 99 66 1 - - - - -
Mobile phone (%) 87 89 97 90 74 95 95 97 92 86 - - - - -
Television (%) 15 3 10 15 1 11 1 4 2 0 - - - - -

The table summarizes the characteristics of electricity sources available in our sample. The overarching column headers show each electricity source in each survey
wave: baseline (starting November 2013), endline (starting May 2016) and follow-up (starting May 2017). The individual columns then indicate each electricity
source. Panel A shows source attributes weighted by sample size at the village level. Price shown is the average monthly price for each electricity source; for grid,
the price takes theft into account by multiplying reported payment by the percentage of households that actually pay. Load is imputed based on what appliances
the households say they have plugged in. Hours of supply refers to hours per day of electricity supply; for grid, supply comes from administrative data and for the
non-grid sources, supply comes from the respective household survey. The final row in Panel A shows the percent of villages where the given source is available.
Panel B shows the share of households that own the most popular appliances. Appliance ownership at the follow-up survey is not available, as we did not collect
these variables during this thin round of survey.
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Table 4: Household Characteristics and Experimental Balance

Control Normal Subsidy N - C S - C F -Test
(1) (2) (3) (4) (5) (6)

Panel A. Demographics
Education of household head (1-8) 2.41 2.67 2.58 0.26∗ 0.17 1.48

[2.03] [2.14] [2.09] (0.15) (0.15) (0.23)
Number of adults 3.31 3.50 3.49 0.20∗ 0.18∗ 2.19

[1.58] [1.75] [1.78] (0.11) (0.11) (0.12)

Panel B. Wealth proxies
Household income (INR ’000s/month) 7.46 7.32 7.28 -0.14 -0.18 0.068

[6.88] [6.86] [7.03] (0.56) (0.50) (0.93)
Number of rooms 2.40 2.55 2.53 0.15 0.13 1.29

[1.32] [1.45] [1.45] (0.10) (0.098) (0.28)
Solid house (=1) 0.24 0.27 0.31 0.035 0.074∗∗ 2.79∗

[0.43] [0.45] [0.46] (0.037) (0.031) (0.066)
Owns ag. land (=1) 0.67 0.69 0.67 0.015 0.0022 0.045

[0.47] [0.46] [0.47] (0.056) (0.053) (0.96)
Solid roof (=1) 0.42 0.46 0.51 0.042 0.095∗∗ 3.08∗

[0.49] [0.50] [0.50] (0.043) (0.039) (0.050)

Panel C. Energy access
Any elec source (=1) 0.25 0.31 0.27 0.061 0.022 0.63

[0.43] [0.46] [0.44] (0.055) (0.050) (0.54)
Uses grid (=1) 0.030 0.036 0.091 0.0052 0.060∗∗ 2.53∗

[0.17] [0.19] [0.29] (0.017) (0.028) (0.085)
Uses diesel (=1) 0.17 0.21 0.11 0.039 -0.063 1.70

[0.38] [0.41] [0.31] (0.058) (0.046) (0.19)
Uses own solar (=1) 0.034 0.050 0.061 0.016 0.027∗ 1.81

[0.18] [0.22] [0.24] (0.014) (0.015) (0.17)
Uses microgrid solar (=1) 0.0067 0.0081 0.0050 0.0015 -0.0017 0.14

[0.081] [0.090] [0.071] (0.0078) (0.0054) (0.87)

Observations 1052 983 1001
The table reports the balance of covariates in our baseline survey across treatment arms for demographic variables
(Panel A), wealth proxy variables (Panel B) and energy access (Panel C). The first three columns show the mean
values of each variable in the control, normal price and subsidized price treatment arms, with standard deviations
in brackets. The next two columns show the differences between the normal price and control arms and subsidized
price and control arms, respectively. The final column shows the F -stat and p-value from a test of the null that
the treatment dummies are jointly zero at baseline. The rightmost 3 columns have standard errors clustered at the
village-level in parentheses. ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01.
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Table 5: Solar Microgrid Demand

ITT Estimates IV Estimates

Survey wave: Baseline Endline Follow-up Endline Endline
Dependent variable: Share Share Share Share log(Share)

(1) (2) (3) (4) (5)

Treatment: Subsidized price -0.001 0.193∗∗∗ 0.081∗∗∗

(0.005) (0.049) (0.027)
Treatment: Normal price 0.009 0.060∗∗ 0.020∗

(0.010) (0.028) (0.012)
Price (INR ’00s) -0.129∗∗

(0.052)
log(Price) -0.997∗∗∗

(0.386)
Constant 0.006 0.023∗∗∗ 0.002 0.347∗∗∗ -2.079∗∗∗

(0.004) (0.005) (0.002) (0.091) (0.189)

Observations 100 100 100 66 66
First-stage F -Stat 676 1107
The table shows estimates of microgrid demand. The dependent variable in the first 3 columns is the village-level
market share of microgrid solar. The independent variables are the subsidized price arm (microgrids offered at
INR 100) and a normal price arm (microgrids offered at the prevailing price of INR 200, later cut to INR 160 in
some villages). The control arm (microgrids not offered) is omitted. Each column measures market share at one of
the three survey waves. Columns 4 and 5 show instrumental variables estimates of the demand curve using linear
and log-log specifications, respectively. We instrument for price using a dummy for the subsidized treatment arm.
Standard errors are shown in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Table 6: Consumer Surplus from Microgrids versus All Sources of Electricity

Reduced-form IV
Estimates Structural Estimates

Linear Log-log
Microgrids

only All sources
(1) (2) (3) (4)

Panel A. Evaluated at microgrid price of INR 100
Market share 22 13 23 23
Surplus per sample household 222 242 215 645

Panel B. Evaluated at endline prices for microgrids
Market share 11 6 10 10
Surplus per sample household 91 129 93 528

The table compares estimates of consumer surplus from microgrids to the surplus from all electricity
sources. Columns 1 and 2 give estimates of the surplus from microgrids using the reduced-form IV
demand estimates of Table 5. Columns 3 and 4 give surplus estimates from our full structural demand
model, presented in Table 7 column 3 and Table 8 columns 6 through 10. Column 3 is the change
in surplus, in the full demand model, if microgrids are removed from the market. Column 4 is the
consumer surplus from all sources of electricity.
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Table 7: Demand for Electricity: Estimates of Linear Stage

OLS Price IV Price & Hours IV

RCT RCT BLP Hausman
(1) (2) (3) (4) (5)

Price (INR 100 per month) -0.25∗∗ -1.70∗∗∗ -1.70∗∗∗ -0.93 10.1
(0.12) (0.63) (0.63) (5.80) (22.6)

Hours of peak supply 0.20 0.11 0.21 0.25 0.74
(0.21) (0.21) (0.27) (0.32) (1.19)

Hours of off-peak supply -0.092∗ -0.078∗ -0.11∗ -0.12 -0.21
(0.047) (0.046) (0.058) (0.074) (0.23)

ξtj mean effects Yes Yes Yes Yes Yes

Observations 999 999 999 945 989
First-stage F -Stat 42.1 21.1 0.4 0.5
The table presents estimates of the second, linear stage of our demand system (equation 11). The dependent
variable is mean indirect utility at the market-by-survey wave level, estimated in the non-linear first stage. Peak
hours refers to electricity supply during the evening, from 5 to 10 pm, and off-peak to other hours of the day.
The columns estimate the same equation either by ordinary least squares (column 1) or instrumental variables
(columns 2 to 5). Each column uses a different set of instruments. In column 2, we use the experimental
treatment assignments interacted with a dummy for the endline survey as instruments (equation 12). In column
3, we additionally instrument for hours of supply, on-peak and off-peak, using the predicted hours of supply based
on supply in nearby villages. In columns 4 and 5 we replace the experimental instruments with instruments from
the industrial organization literature (Berry, Levinsohn and Pakes, 1995; Nevo, 2001; Hausman, 1996). Column 4
uses the average characteristics of the other products available in a given village as instruments (Berry, Levinsohn
and Pakes, 1995). The characteristics we use are hours of supply and load. Column 5 uses the average price of
each product in the nearest three villages as instrument for its price in a given village (Nevo, 2001; Hausman,
1996). All regressions control for wave-by-source fixed effects. The final row of the table reports the first-stage
F -statistic from the price equation. Standard errors are clustered at the village-level and shown in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 8: Electricity Source Choice Probabilities by Household Characteristics

Simple Model Full Model

Grid Diesel
Own
Solar

Micro-
grid None Grid Diesel

Own
Solar

Micro-
grid None

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Number of adults 0.054 0.008 0.006 0.012 -0.081 0.036 0.002 0.001 0.005 -0.045
(0.010) (0.008) (0.005) (0.006) (0.008) (0.009) (0.006) (0.002) (0.004) (0.008)

Solid roof (=1) 0.195 -0.010 0.007 -0.009 -0.183 0.107 -0.007 0.005 -0.007 -0.098
(0.020) (0.011) (0.008) (0.007) (0.015) (0.020) (0.010) (0.006) (0.007) (0.018)

Solid house (=1) 0.077 -0.004 -0.002 -0.005 -0.066
(0.020) (0.011) (0.003) (0.008) (0.018)

Number of rooms 0.026 0.011 0.003 0.003 -0.043
(0.009) (0.006) (0.003) (0.004) (0.008)

Owns ag. land (=1) 0.049 -0.023 0.003 0.008 -0.036
(0.016) (0.009) (0.004) (0.009) (0.016)

Education of household head (1-8) 0.026 0.008 -0.001 0.002 -0.036
(0.007) (0.006) (0.001) (0.004) (0.008)

Household income 0.016 0.002 0.001 0.014 -0.034
(0.007) (0.005) (0.001) (0.004) (0.008)

Observations 8822 8822
Log-likelihood -5884.7 -5791.4
LR index 0.031 0.047
LR test statistic (p-value) 186.6 (0.000)
The table shows the effects of household characteristics on the probability of a household choosing a given electricity source. The table reports the results of
two models. A simple model, reported in columns 1 through 5, includes as covariates the number of adults in the household and a dummy variable for whether
the household has a solid roof. Our full model, reported in columns 6 through 10, includes five additional observable proxies for household demand: whether
the household has a solid house, the number of rooms in the house, household income, whether the household owns agricultural land, and years of education
of the household head. The effects of household characteristics are nonlinear. The table therefore reports “marginal” effects evaluated for a “poor” household,
lacking the binary indicators of wealth and with an income at the 20th percentile. The profile of a poor household is defined as a household of two adults
living in an one-room house, without a solid roof or walls, and lacking agricultural land ownership. See Appendix Table B6 for the characteristics of a poor
household. The marginal effects are not truly marginal; for binary variables, we report the effect on choice probability of changing the value from zero to one,
and for continuous variables the effect of an one standard deviation increase in that variable. To assess the goodness-of-fit of each model, we report a likelihood
ratio index, which is defined as ρ = 1− LL(β̂)/LL(0), where LL(β̂) is the log-likelihood at the estimated parameters and LL(0) is the log-likelihood of a null
model, where we constrain all the household characteristic coefficients to be zero. We also report the maximized value of the log-likelihood for both models
and a likelihood ratio test statistic, distributed χ2 with 20 degrees of freedom, from a test of the restriction that the coefficients on the covariates added in the
full model are jointly zero.
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Table 9: The Value of Electrification under Counterfactual Policies

Market shares Surplus (INR per hh per year)

Grid Diesel
Own
solar

Micro-
grid All Consumer Producer Total

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A. Model market shares and surplus by survey wave
1. Model at baseline 6 17 7 0 30 309 -109 200
2. Model at endline 24 3 7 9 43 520 -501 19
3. Model at follow-up 41 3 17 4 65 935 -850 86

Panel B. Disruption due to the improvement of solar power, relative to baseline
1. Market at baseline 6 17 7 0 30 309 -109 200
2. + Improved solar 3 10 37 6 55 667 -53 614
3. Change due to improved solar -3 -7 29 6 25 358 56 415
4. Change due to improved solar, if grid improved -6 -2 12 4 8 127 129 256

Panel C. Disruption due to the improvement of grid electricity, relative to baseline
1. Market at baseline 6 17 7 0 30 309 -109 200
2. + Improved grid 44 9 3 0 56 797 -928 -131
3. Change due to improved grid 39 -8 -5 0 26 488 -819 -331
4. Change due to improved grid, if solar improved 35 -3 -21 -1 9 257 -746 -490

Panel D. Future growth in electrification via supply and demand shifts, relative to follow-up
1. Market at follow-up 41 3 17 4 65 935 -850 86
2. + Solar cost falls 35 2 24 8 68 1024 -730 295
3. + Grid in all villages 46 2 18 7 73 1108 -960 148
4. + Increase peak grid hours 57 1 13 6 77 1245 -1481 -236
5. + All households at least median income 63 1 14 5 83 1444 -1637 -193
6. + All households at least 80th percentile 73 1 11 4 90 1859 -1909 -51
7. + Raise grid price to hold losses constant 44 2 30 7 84 1456 -850 606

The table presents market shares and surplus under counterfactual changes in the electricity market. The counterfactual scenarios are laid out in Section 4 of the text and the
detailed assumptions behind the counterfactuals are in Appendix Table C14. All counterfactuals are calculated using the full demand model estimates of Table 8, columns 6 through
10. For each counterfactual, columns 1 to 4 give the market shares of each source, column 5 gives the electrification share, and columns 6 through 8 give consumer, producer and
total surplus. Consumer surplus is the amount in INR per household per year that households would be willing to pay for a given choice set, relative to having only the outside
option of no electricity. The amounts of both consumer and producer surplus are averaged over the entire sample of consumers, regardless of their choice. Producer surplus is the
variable profit of the state utility that provides grid electricity. Levels rows are unindented, whereas changes rows (where the numbers displayed are differences in two counterfactual
scenarios) are indented.

50



Appendix A [FOR ONLINE PUBLICATION]

A Appendix: Data

This Appendix describes our data collection and the construction of instrumental variables for hours

of electricity supply. We also provide additional summary statistics.

a Sampling and timeline

Figure A1 shows the timeline for the implementation of the experiment and the timing of the data

collection. The microgrid experiment ran for roughly 2.5 years but the data collection spanning the

experiment covered roughly 4 years in total.

51



A
ppendix

A
[FO

R
O
N
LIN

E
P
U
B
LIC

A
T
IO

N
]

Figure A1: Data Collection Timeline
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The figure shows the collection of data during the study from several sources: a household survey, microgrid administrative data, grid administrative data and a
diesel operator survey. See Section 1 a for a detailed description of the data sources. In August 2013, we conducted a customer identification survey (“CIS”) for
the villages in our study, which was subsequently used to assign villages to treatment and control groups and also served as the sampling frame for our household
sample. The experiment ran from January 2014, after the conclusion of the baseline survey, through the endline survey in mid-2016.
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We describe our panel survey in Section 1 a. We also draw on three other original data sources,

which are described below.

Microgrid administrative data. The second source of data is an administrative dataset on micro-

grid customers from HPS. We partnered with HPS to roll-out solar microgrids experimentally in the

sample villages (see Section 2). The dataset includes enrollment, pricing and customer payments

from January 2014 to January 2016, which we match with our household surveys. This matching

allows us to estimate demand in administrative payments data, to complement our survey-based

estimates.

State utility administrative data. We use three datasets pertaining to grid electricity: (i) a

consumer database for all formal customers, (ii) a billing and collections dataset containing bills and

customer payments, and (iii) village-level hours of supply, recorded from administrative log-books.

The data sources (i) and (ii) are matched at the customer level to our survey respondent households.

Many households using the grid in the survey are not matched to the administrative database, as

there are high rates of informal connections, i.e. electricity theft, in Bihar. We can measure informal

connections by designating households informal if they could not provide a customer ID from their

electricity bill, or the ID provided did not match the utility’s billing database.

Survey of diesel generator operators. Our final source of data is a survey of diesel generator

operators. Entrepreneurs set-up diesel generators and connect customers within non-electrified

villages, providing electricity to fifty or more households at a time. We surveyed these operators

to collect data on operating costs, hours of operation, pricing and customers served from January

2014 to 2016.

These sources of data allow us to see, on the demand side, a rich set of household characteristics

and the sources and uses of electricity. On the supply side, we have data on all the competing

sources in the marketplace, in some cases from both administrative sources and our household and

operator surveys.

b Construction of hours of supply for grid

The household survey provides most of the characteristics of sources that we use in our demand

model. An exception is the grid hours of supply, which we obtained from administrative logbooks

maintained by the North Bihar Power Distribution Company Limited. The logbooks record the
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hours when the grid is switched on and off at the level of the feeder, the lowest level of the distribution

network at which the company exercises control over power supply. We aggregated this data from

the hourly level to compute average daily hours of electricity supply to each feeder, both on-peak

(from 5 to 10 pm) and off-peak. We then mapped our 100 sample villages to their respective supply

feeders.

Some villages were missing data around the time of our endline survey. If a village was missing

data during the endline survey, we imputed hours of supply with the hours of supply data for

that same village within a window running from 6 months before to 6 months after the survey. If

the village had no data in that window, we imputed hours of supply data based on the hours of

supply for the three nearest villages for which we had data, using a random forest model. The

model additionally included as covariates latitude and longitude, division fixed effects and their

interactions. The root mean squared error of our prediction, for villages where data is available, is

1.9 hours.

c Construction of instrument for hours of supply

The experiment provides instruments for price but not for other product characteristics, which in

principle may also be endogenous to demand: for example, a high-demand village may be given

more supply by the distribution company. Our preferred specification for the second-stage linear

IV estimation therefore instruments for price, peak, and off-peak hours of electricity supply.

The instruments for peak and off-peak hours of supply are the predicted peak and off-peak

hours of supply for a given village based upon hours of supply to nearby villages, as described in

Appendix Section b above. We expect hours of supply to nearby villages to be correlated since

they are served by the same feeders or by separate feeders from the same substation, which would

experience correlated supply shocks such as for rationing decisions.

For non-grid sources we set predicted hours of supply based on their technological characteristics.

We set off-peak hours for diesel and microgrid solar to be zero, and assume that all supply is on

peak. For own solar, we set peak and off-peak supply to be constant and equal to the global mean

of each variable. In this way, there is no variation in predicted supply for off-grid sources and so the

variation to identify the coefficients on supply hours come solely from variation in predicted supply

for grid electricity.
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d Summary statistics

Appendix Table A1 shows comparisons of household characteristics by the timing of grid arrival in

a given village. We divide villages into three groups: “grid early” villages already had the grid at

the time of our baseline survey, “grid late” villages got the grid by the time of our follow-up surey,

and “no grid” villages did not get the grid at any time during our data collection.

The table compares household characteristics, at baseline, across these several sets of villages.

The first three columns show mean household characteristics for household in each group of villages.

Columns 4 and 5 test for differences in means between “grid early” and “no grid” and “grid late” and

“no grid” villages, respectively. Column 5 gives an F-test for the joint equality of means across all

three groups.
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Table A1: Household Characteristics and Experimental Balance By Grid Access

No grid
Grid
early

Grid
late

Early -
No

Late -
No F -Test

(1) (2) (3) (4) (5) (6)

Panel A. Demographics
Education of household head (1-8) 2.20 2.78 2.55 0.58∗∗∗ 0.35∗∗ 8.41∗∗∗

[1.80] [2.25] [2.07] (0.14) (0.14) (0.00)
Number of adults 3.46 3.44 3.41 -0.022 -0.052 0.098

[1.69] [1.67] [1.73] (0.11) (0.12) (0.91)

Panel B. Wealth proxies
Household income (INR ’000s/month) 6.92 7.28 7.66 0.36 0.74 0.92

[6.26] [6.52] [7.56] (0.51) (0.55) (0.40)
Number of rooms 2.45 2.51 2.50 0.056 0.043 0.18

[1.25] [1.49] [1.42] (0.099) (0.098) (0.83)
Solid house (=1) 0.16 0.33 0.29 0.16∗∗∗ 0.12∗∗∗ 16.6∗∗∗

[0.37] [0.47] [0.45] (0.029) (0.031) (0.00)
Owns ag. land (=1) 0.80 0.62 0.66 -0.18∗∗∗ -0.13∗∗∗ 9.96∗∗∗

[0.40] [0.49] [0.47] (0.046) (0.042) (0.00)
Solid roof (=1) 0.32 0.55 0.47 0.23∗∗∗ 0.15∗∗∗ 18.7∗∗∗

[0.47] [0.50] [0.50] (0.038) (0.042) (0.00)

Panel C. Energy access
Any elec source (=1) 0.15 0.34 0.28 0.20∗∗∗ 0.13∗∗∗ 9.30∗∗∗

[0.36] [0.48] [0.45] (0.047) (0.048) (0.00)
Uses grid (=1) 0 0.15 0 0.15∗∗∗ 0 51.4∗∗∗

[0] [0.35] [0] (0.021) (0) (0.00)
Uses diesel (=1) 0.082 0.15 0.23 0.067 0.14∗∗∗ 4.57∗∗

[0.27] [0.36] [0.42] (0.045) (0.049) (0.01)
Uses own solar (=1) 0.055 0.038 0.052 -0.017 -0.0029 0.69

[0.23] [0.19] [0.22] (0.016) (0.016) (0.50)
Uses microgrid solar (=1) 0.011 0.0093 0.0016 -0.0020 -0.0098 1.72

[0.11] [0.096] [0.040] (0.0092) (0.0072) (0.18)

Observations 705 1071 1260
The table reports the balance of covariates in our baseline survey by timing of grid arrival for demographic variables
(Panel A), wealth proxy variables (Panel B) and energy access (Panel C). The first three columns show the mean
values of each variable for villages that never receive grid access during our survey data collection, receive grid
access during our baseline survey and receive grid access during our endline or follow-up survey, with standard
deviations in brackets. The next two columns show the differences between the early grid and never grid groups
and late grid and never grid groups, respectively. The final column shows the F -stat and p-value from a test of
the null that the grid access dummies are jointly zero at baseline. The rightmost 3 columns have standard errors
clustered at the village level and shown in parentheses. ∗p < 0.10, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01
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The table shows that villages that got the grid earlier are significantly richer than villages that

got it later. In villages that got the grid earlier, households are twice as likely to have a solid

house, more likely to have a solid roof and have more educated household heads. Households in

early villages are also less likely to own agricultural land, suggesting they may have non-agricultural

occupations at higher rates. Finally, households in grid early villages have higher access to electricity,

from any source, at baseline. This effect is not purely a mechanical effect due to grid presence but

may reflect underlying differences in household demand. For example, “grid late” villages, which

did not have the grid at the time of our baseline survey, nonetheless have greater electricity access

at baseline than “no grid” villages, but this higher access is provided by diesel generators and not

the grid itself.

Appendix Figure A2 shows the distribution of daily hours of electricity supply on the grid and

Figure A3 the distributions of supply hours during off-peak and on-peak times. Appendix Table A2

shows the market shares of electricity sources at endline accounting for the possibility of ownership

of multiple sources.

Figure A2: Daily Hours of Supply on the Grid
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This figure shows the distribution of the daily average hours of grid electricity supply across

villages in our sample at the endline survey.

57



Appendix A [FOR ONLINE PUBLICATION]

Figure A3: Hours of grid supply off-peak and on-peak
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B Peak supply

The figure shows the distribution of grid hours of supply. The data come from administrative logbooks of hourly
supply to sample villages. Panel A shows the distribution of hours of supply during the off-peak period and Panel B
during the peak period of 5 to 10 pm. The maximal possible hours of supply in the peak period is therefore 5 hours
and during the complementary off-peak period 19 hours.

Table A2: Electricity Source Ownership at Endline

Frequency Percentage
Cumulative
Percentage

(1) (2) (3)

Grid 681 22.43 22.43

Diesel 81 2.67 25.10

Own solar 148 4.87 29.97

Microgrid 141 4.64 34.62

Grid & Own solar 28 0.92 35.54

Grid & Microgrid 14 0.46 36.00

None 1824 60.08 96.08

No data 119 3.92 100.00

Total 3036 100.00 100.00

This table shows the household level take-up rate for different electricity sources,

accounting for joint ownership, at the endline survey.
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B Appendix: Additional Results on Demand

This section presents additional results on demand. Subsection a reconciles market shares in the

raw data, with Laplace correction, and as predicted by our structural model. Subsection b presents

estimates of the first stage from the estimation of the second, linear part of our structural demand

model. Subsection d gives the profiles of households, which are used to calculate marginal effects

in the demand model, and shows the heterogeneity of the estimated marginal effects by household

profile. Subsection e provides additional estimates to check the robustness of the structural demand

estimates to alternative nest structures in the nested logit model.

a Market shares: model versus data

Table B3 presents the fit of market shares in the model to the data by survey wave and electricity

source. In principle the model can fit the data exactly, since village-source-wave specific mean

indirect utility terms are free parameters. The fit is very close, but not exact, for two reasons.

First, the raw data contain zero market shares for some sources that were available in a given

village and wave. For example, we take own solar to be universally available and yet there are some

villages where no household said they use own solar. These zeros are not surprising in a sample

of 30-odd households, but in the model, all sources must have positive shares, though they can be

arbitrarily small. To force the data to have positive shares, we implement a Laplace correction (see

footnote 26), which raises market shares slightly for sources with low take-up (Table B3, panels

A through C, row 2 versus row 1). Second, we classify availability for some sources based on

our supply-side data on village-source-level availability, rather than the survey data on household

reports. This classification allows us to observe when a source is not offered (as opposed to not

bought), and therefore remove the choice from the choice set instead of modeling it as available

but not selected. However, in a small number of cases households report buying sources that we do

not believe were offered in their village and survey wave, which we attribute to survey misreports.

Again, these differences in classification have a very small affect on market shares (Table B3, panels

A through C, row 3 versus row 2).
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Table B3: Structural Model Fit versus Data

Market shares

Grid Diesel
Own
solar

Micro-
grid All

(1) (2) (3) (4) (5)

Panel A. Baseline
Raw data 5 17 5 1 27
Data with Laplace correction 6 17 7 1 31
Model 6 17 7 0 30

Panel B. Endline
Raw data 25 3 4 9 40
Data with Laplace correction 24 3 7 10 43
Model 24 3 7 9 43

Panel C. Follow-up
Raw data 43 3 15 3 64
Data with Laplace correction 40 3 17 5 65
Model 41 3 17 4 65

The table presents market shares in the electricity market, and juxtaposes data vs our
model’s fit. Data with Laplace correction adjusts each product’s market share to ensure
that no product has a zero share. Small differences between data with Laplace correction
and model for a given wave can exist due to the use of market-level source availability in the
model. Data with Laplace correction uses actual household-level availability, and there can
be inconsistencies between household-level and market-level availability in the data due to
a very small number of households in the control villages saying that they used microgrid
solar.

b First stage estimates for structural demand model

Table B4 presents the first-stage from the linear, instrumental variables estimates of the second part

of the structural demand model. The endogenous variables are either price, peak hours of supply,

or off-peak hours of supply. In columns 1 through 4 the instruments for price are the interactions

between the experimental treatment assignments and the endline survey waves. Column 1 gives

the first stage for price when instrumenting only for price. Column 2 gives the first stage for

price when instrumenting for price, peak hours of supply, and off-peak hours of supply. Columns

3 and 4 give the respective first stage estimates for peak and off-peak hours of supply. Columns 5

and 6 give the first stage estimates of the price equation, when instrumenting for price and both

hours measures, and replacing the experimental instruments with instrumental variables constructed

along the lines of Berry, Levinsohn and Pakes (1995) and Hausman (1996). We have two sets of

alternative instruments for source-village-wave prices. First, the average hours of supply and load
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from the other products in the same village, which should affect source mark-ups and prices under

oligopolistic competition (Berry, Levinsohn and Pakes, 1995). Second, the average price for a given

source in the nearest three villages where that source is available, which will covary with source

price due to common supply shocks (Hausman, 1996; Nevo, 2001).
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Table B4: First-Stage of Linear Estimation of Demand for Electricity

Price IV Price & hours IV
Price & hours

IV BLP
Price & hours
IV Hausman

Price Price Peak hours
Off-peak
hours Price Price

(1) (2a) (2b) (2c) (3) (4)

Treatment normal price X Endline 0.064∗∗ 0.064∗∗ 0.0050 -0.0046
(0.029) (0.028) (0.0051) (0.030)

Treatment subsidy price X Endline -0.16∗∗∗ -0.16∗∗∗ 0.0075 0.014
(0.021) (0.021) (0.0063) (0.031)

Hours of peak supply -0.050
(0.049)

Hours of off-peak supply 0.0081
(0.013)

Peak hours instrument -0.032 0.94∗∗∗ 0.19 -0.040 -0.038
(0.045) (0.063) (0.15) (0.043) (0.044)

Off-peak hours instrument 0.0040 0.032∗∗ 0.88∗∗∗ 0.0057 0.0051
(0.0094) (0.013) (0.030) (0.0090) (0.0091)

Total supply of competing products -0.0017
(0.0060)

Load of competing products 0.0079
(0.011)

Avg price in nearby villages 0.038
(0.080)

ξtj mean effects Yes Yes Yes Yes Yes Yes

Observations 999 999 999 999 945 989
First-stage F -Stat 42.1 21.1 524.1 1057.2 0.4 0.5
Control mean 0.95 0.95 4.09 3.07 0.95 0.95
This table presents the first-stage of the IV estimates provided in column 2 through 5 of Table 7. Each outcome variable is an endogenous variable that we
instrument for in the IV estimations. The second cluster of columns correspond to our preferred IV specification, which uses our experiment to instrument for
price, peak, and off-peak hours of supply. Details on instrument construction for hours of supply can be found in Appendix A, Subsection c. Standard errors
are clustered at the village-level and shown in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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c Elasticities of substitution

Table B5 presents aggregate own- and cross-price elasticities by source, using the structural demand

model. The elasticities are calculated using the full model of demand, using the specification for

mean indirect utility in Table 7, column 3 and the specification for household heterogeneity in

Table 8, columns 6 through 10. Each entry in the table gives the elasticity of the market share for

the column source with respect to the price of the row source.

Table B5: Price Elasticities of Electricity Source Demand

Elasticity of share for source:

Grid Diesel
Own
solar

Micro-
grid None

with respect to price of source: (1) (2) (3) (4) (5)

Grid -0.62 0.33 0.58 0.15 0.15
Diesel 0.06 -1.84 0.24 0.03 0.04
Own solar 0.18 0.39 -1.71 0.10 0.09
Microgrid 0.13 0.14 0.28 -1.53 0.15
The table presents aggregate own- and cross-price elasticities of demand by electricity
source. The arc elasticities are calculated using a 10% increase in each source’s price from
its mean endline price. The elasticities are calculated for the market share of each column
source with respect to the price of each row source.

d Marginal effects for alternative household profiles

Table 8 presents the marginal effects of household characteristics on electricity choice probabilities

for a “poor” household. Section 4 shows the results of counterfactuals where we increase the income

and wealth of households from “poor” to “median” and “rich” levels. This subsection defines these

household profiles and shows marginal effects for alternative household profiles to complement the

estimates in the main text.

Table B6 shows the characteristics of households that are used to create the three profiles of

household covariates. The number of adults (column 1) is integer valued, house characteristics (2

and 3) are indicator variables, the number of rooms is integer valued (4), agricultural land ownership

is an indicator variable (5), literacy is integer valued (6) and income is continuous. Each row gives

the values that these variables take on for each of the three household profiles we use to calculate

marginal effects and to run counterfactuals.

63



Appendix B [FOR ONLINE PUBLICATION]

The levels of these variables were chosen in order to roughly place a household, on an univariate

basis, at the 20th, 50th and 80th percentile of the income or wealth distributions. Table B8 shows

detailed summary statistics for the household covariates that enter our demand model in order to

place the household profiles in context.

To calculate the marginal effects of these covariates on choice probabilities, we change their

values by either one unit, for dummy variables, or one standard deviation, for integer valued and

continuous variables. Table B7 shows the changes that this entails for each household covariate

that enters the profiles. For the binary variables (Pukka, roof, land), this approach necessarily

means that we cannot calculate the discrete effect for these variables when they are already equal

to one in a given profile. For example, we cannot calculate the impact of having a roof for a median

household, as a median household already has a roof. We therefore omit these entries from the

corresponding tables of marginal effects.

Table B6: Profile Details

Adults Pukka Roof Rooms Land

Educa-

tion

Income

(INR)

(1) (2) (3) (4) (5) (6) (7)

Poor 2 0 0 1 0 1 3750

Median 3 0 1 2 1 1 6000

Rich 5 1 1 3 1 5 9500

This table details the characteristics for a poor, median, and rich household.

Each profile was constructed by independently taking a fixed percentile of each

column attribute. The fixed percentiles corresponding to poor, median, and rich

are 20, 50, and 80, respectively. For example, a poor household lives in a 1-room

dwelling, which corresponds to the 20th percentile of households in our sample

across all survey waves.
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Table B7: Definition of Household Characteristics and Magnitude of Marginal Change

Characteristic Definition Marginal Change (Poor)

Adults Adults in the household 1 SD (1.83 persons)

Pukka Indicator for solid house 0 to 1

Roof Indicator for solid roof 0 to 1

Rooms Number of rooms in the house 1 SD (1.32 rooms)

Land Indicator for agricultural land 0 to 1

Education Education of household head (1-8) 1 SD (2 levels)

Income Monthly household income 1 SD (INR 6486)

The table defines the household characteristics used in our choice model and shows the magnitude of

the change in each covariate for a poor household, as used in the marginal impact analysis of household

covariates on choice probabilities (Table 8). Base profiles for a representative poor, median, and rich

household can be found in Table B6. Education classification: 1 = not literate, 2 = Aanganwadi, 3 =

literate but below primary, 4 = literate till primary, 5 = literate till middle, 6 = literate till secondary,

7 = literate till higher secondary, 8 = graduate and above.

Table B8: Summary Statistics of Household Characteristics

Mean Median Q1 Q3 SD Min Max

(1) (2) (3) (4) (5) (6) (7)

Adults in the household 3.67 3 2 5 1.83 1 15

Indicator for solid house 0.32 0 0 1 0.47 0 1

Indicator for solid roof 0.51 1 0 1 0.50 0 1

Number of rooms in the house 2.45 2 2 3 1.32 1 11

Indicator for agricultural land 0.63 1 0 1 0.48 0 1

Education of household head (1-8) 2.48 1 1 4 2.04 1 8

Monthly household income (INR) 7576 6000 4000 8500 6486 0 65000

Observations 8822 8822 8822 8822 8822 8822 8822

The table summarizes each of the household covariates used in our structural demand estimation. Each observation

is for a household in a specific survey wave.
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Tables B9 and B10 show the estimated discrete effects for a median and rich household, re-

spectively, to be compared to Table 8 in the main text. The main finding is that, at all levels

of household income, the discrete effects of increasing income or wealth proxies is to increase the

demand for grid electricity and decrease, or barely alter, the demand for other sources of electricity.

The discrete effects of household characteristics on choice probabilities are slightly smaller for rich

than for poor households on some measures (e.g., the effect of income on grid choice), though these

differences are small and not generally statistically significant. This relative lack of attenuation may

reflect that even rich households, in our sample, have far from complete take-up of any electricity

source.

Table B9: Impact of Household Characteristics on Choice Probabilities (Median Household)

Grid Diesel Own Solar Microgrid None
(1) (2) (3) (4) (5)

Number of adults 0.047 -0.001 0.001 0.003 -0.049
(0.010) (0.003) (0.002) (0.004) (0.008)

Solid roof (=1) - - - - -

Solid house (=1) 0.097 -0.006 -0.006 -0.009 -0.076
(0.023) (0.008) (0.006) (0.009) (0.019)

Number of rooms 0.035 0.005 0.004 0.001 -0.046
(0.012) (0.004) (0.005) (0.004) (0.008)

Owns ag. land (=1) - - - - -

Education of household head (1-8) 0.036 0.004 -0.002 0.000 -0.039
(0.009) (0.004) (0.003) (0.004) (0.007)

Household income 0.019 0.000 0.001 0.014 -0.034
(0.009) (0.003) (0.002) (0.005) (0.008)

The table shows the discrete effects of changes in household observable characteristics (in rows) on the probability the
household will purchase different electricity sources (in columns). The household characteristics are from our survey.
The changes in choice probabilities are calculated with the demand model, for which the estimated coefficients are
presented in Appendix Table B12, column 2. Each cell entry is the change in choice probability for a median
household from increasing the row characteristics. For discrete household characteristics, the increase is from zero
to one. For continuous household characteristics, the increase is for one standard deviation. Appendix Table B6
describes the statistical profile of a poor, median, and rich household. Standard errors are constructed using the
delta method.

e Robustness of demand estimates

Table B11 shows estimates of the intent-to-treat effects of the experimental treatment assignments

on microgrid demand using administrative data on microgrid payments. These estimates are analo-
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Table B10: Impact of Household Characteristics on Choice Probabilities (Rich Household)

Grid Diesel Own Solar Microgrid None
(1) (2) (3) (4) (5)

Number of adults 0.036 -0.003 -0.000 0.000 -0.033
(0.008) (0.003) (0.001) (0.004) (0.005)

Solid roof (=1) - - - -

Solid house (=1) - - - - -

Number of rooms 0.026 0.003 0.002 -0.001 -0.030
(0.011) (0.004) (0.003) (0.004) (0.007)

Owns ag. land (=1) - - - - -

Education of household head (1-8) 0.028 0.002 -0.002 -0.001 -0.026
(0.007) (0.003) (0.003) (0.003) (0.005)

Household income 0.011 -0.001 0.000 0.011 -0.022
(0.008) (0.003) (0.001) (0.005) (0.006)

The table shows the discrete effects of changes in household observable characteristics (in rows) on the probability the
household will purchase different electricity sources (in columns). The household characteristics are from our survey.
The changes in choice probabilities are calculated with the demand model, for which the estimated coefficients are
presented in Appendix Table B12, column 2. Each cell entry is the change in choice probability for a rich household
from increasing the row characteristics. For discrete household characteristics, the increase is from zero to one. For
continuous household characteristics, the increase is for one standard deviation. Appendix Table B6 describes the
statistical profile of a poor, median, and rich household. Standard errors are constructed using the delta method.

gous to the Table 5 estimates in the main text but use administrative data on payments rather than

survey data on source usage as the measure of demand. The estimated market share in subsidized

price villages is very similar across both data sources, while the estimated market share in normal

price villages is higher in the survey data than in the payments data. Payments for microgrids may

differ from survey reports due to measurement error or because households still use microgrids, for

a time, even after they have stopped paying the monthly price. We understood from our field work

that the pace at which HPS repossessed systems for non-payment was slow.

We specify a nested logit demand model, which requires an ex ante choice of nest structure.

Since different sources of electricity differ on multiple dimensions, it is not obvious for what sources

demand should be expected to unobservably correlate. Table B12 presents coefficients from the

non-linear part of the demand model for alternative nest structures. Column 1 gives coefficients

from a multinomial logit model, in which there is no correlation between the unobserved taste shocks

for different sources. Columns 2 and onwards then give coefficients from nested logit models with

varying nest structures. The last two coefficients in the table are the parameters that govern the
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Table B11: Solar Microgrid Demand by Village Treatment Arm

Administrative

Baseline Endline Paid ever
(1) (2) (3)

Treatment: Subsidized price 0.033 0.179∗∗∗ 0.271∗∗∗

(0.025) (0.052) (0.066)
Treatment: Normal price 0.003 0.013 0.022

(0.002) (0.010) (0.034)
Constant 0.000 0.005 0.030

(0.000) (0.005) (0.029)

Observations 100 100 100
The table shows estimates of microgrid demand by treatment status. The depen-
dent variable is the village-level market share of microgrid solar from HPS admin-
istrative payments data, which measures whether households have paid for the
source recently. There are three treatment arms: a subsidized price arm (micro-
grids offered at INR 100), a normal price arm (microgrids offered at the prevailing
price of INR 200, later cut to INR 160 in some villages), and a control arm (micro-
grids not offered). Each column measures market share for a specific time frame:
the household paid in the first month after baseline; the household paid in the
three months leading up to the endline; the household ever paid. Standard errors
are shown in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

correlation of the logit shocks within nests.

There are two main points from the table. First, we have chosen the column 2 specification as

our main specification, since it achieves the highest log likelihood. Our main estimates therefore

come from using a nest structure that assigns microgrids and the outside option to their own nests,

and grid, diesel and own solar to a third nest. Second, while these estimates achieve the highest log

likelihood, the assumed nest structure has very small effects on both the log likelihood of the model

and the coefficients on household characteristics. All of the models, including the multinomial logit

model, yield very similar coefficients on household observables.

Since the nest structure may affect the coefficients on observable characteristics, in the non-linear

part of the structural model estimation, it may then change the dependent variable and estimates

in the second, linear part of the structural model also. Table B13 shows estimates of the second,

linear part of the structural demand model, where alternative nest structures have been used in the

first stage. The coefficient on price is very close to our main estimate across all specifications. The

coefficient on hours of peak supply is somewhat more variable, but imprecise, and not significantly

different from our main estimate in any alternative specification.
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Table B12: First-Stage Estimation Results for Alternative Nest Specifications

Multinomial
Logit

{Grid, Diesel,
Own solar} &
{Microgrid}

{Grid, Diesel,
Microgrid} &
{Own solar}

{Grid, Own solar,
Microgrid} &

{Diesel}
{Grid} &

{Non-Grid}

{Grid, Own
solar} & {Diesel,

Microgrid}
{Grid, Diesel} &

{Solars}
γjr (1) (2) (3) (4) (5) (6) (7)

Grid × Income 0.21 0.19 0.21 0.21 0.20 0.21 0.21
(0.06) (0.05) (0.06) (0.06) (0.06) (0.07) (0.06)

Diesel × Income 0.14 0.16 0.14 0.14 0.21 0.14 0.14
(0.08) (0.06) (0.09) (0.08) (0.05) (0.14) (0.08)

Own solar × Income 0.16 0.18 0.16 0.17 0.20 0.16 0.17
(0.07) (0.06) (0.07) (0.07) (0.05) (0.13) (0.20)

Microgrid × Income 0.50 0.49 0.50 0.48 0.25 0.50 0.49
(0.11) (0.11) (0.14) (0.13) (0.00) (0.13) (0.49)

Grid × Land 0.24 0.20 0.24 0.24 0.24 0.24 0.24
(0.09) (0.08) (0.09) (0.09) (0.09) (0.09) (0.09)

Diesel × Land -0.15 -0.09 -0.15 -0.15 -0.01 -0.15 -0.15
(0.12) (0.11) (0.12) (0.12) (0.00) (0.15) (0.12)

Own solar × Land 0.15 0.18 0.15 0.16 0.11 0.15 0.16
(0.11) (0.09) (0.11) (0.12) (0.00) (0.17) (0.22)

Microgrid × Land 0.21 0.20 0.21 0.20 0.08 0.21 0.19
(0.17) (0.17) (0.17) (0.16) (0.06) (0.17) (0.42)

Grid × Adults 0.12 0.12 0.12 0.12 0.12 0.12 0.12
(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

Diesel × Adults 0.09 0.09 0.09 0.09 0.08 0.09 0.09
(0.04) (0.03) (0.04) (0.04) (0.01) (0.06) (0.03)

Own solar × Adults 0.09 0.10 0.09 0.09 0.10 0.09 0.09
(0.03) (0.02) (0.03) (0.03) (0.02) (0.06) (0.03)

Microgrid × Adults 0.09 0.09 0.09 0.09 0.10 0.09 0.09
(0.04) (0.04) (0.04) (0.04) (0.02) (0.04) (0.05)

Grid × Pukka 0.42 0.36 0.42 0.41 0.42 0.42 0.42
(0.10) (0.09) (0.10) (0.10) (0.10) (0.10) (0.10)

Diesel × Pukka 0.13 0.20 0.13 0.13 0.09 0.13 0.15
(0.14) (0.11) (0.14) (0.14) (0.10) (0.16) (0.15)

Own solar × Pukka 0.11 0.16 0.11 0.11 0.09 0.11 0.11
(0.12) (0.10) (0.12) (0.12) (0.09) (0.15) (0.32)

Microgrid × Pukka -0.01 -0.00 -0.00 0.02 0.12 -0.00 0.02
(0.19) (0.19) (0.21) (0.20) (0.10) (0.19) (0.86)

Grid × Lit 0.10 0.08 0.10 0.09 0.10 0.10 0.10
(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

Diesel × Lit 0.09 0.08 0.09 0.09 0.06 0.09 0.09
(0.03) (0.02) (0.03) (0.03) (0.00) (0.06) (0.03)

Own solar × Lit 0.02 0.05 0.02 0.02 0.04 0.02 0.02
(0.02) (0.02) (0.02) (0.03) (0.00) (0.03) (0.02)

Microgrid × Lit 0.05 0.05 0.05 0.05 0.06 0.05 0.05
(0.04) (0.04) (0.04) (0.04) (0.02) (0.04) (0.04)

Grid × Roof 0.58 0.52 0.58 0.57 0.58 0.58 0.57
(0.10) (0.09) (0.10) (0.10) (0.10) (0.10) (0.10)

Diesel × Roof 0.20 0.28 0.20 0.20 0.23 0.20 0.20
(0.13) (0.11) (0.13) (0.13) (0.05) (0.17) (0.14)

Own solar × Roof 0.42 0.44 0.42 0.41 0.32 0.42 0.40
(0.12) (0.09) (0.12) (0.11) (0.00) (0.29) (0.38)

Microgrid × Roof 0.00 0.00 0.00 0.03 0.22 0.00 0.02
(0.18) (0.18) (0.19) (0.20) (0.00) (0.18) (0.84)

Grid × Rooms 0.13 0.14 0.13 0.14 0.13 0.13 0.13
(0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)

Diesel × Rooms 0.15 0.15 0.15 0.15 0.16 0.15 0.15
(0.05) (0.03) (0.05) (0.05) (0.03) (0.10) (0.05)

Own solar × Rooms 0.18 0.17 0.18 0.18 0.16 0.18 0.18
(0.04) (0.03) (0.04) (0.04) (0.03) (0.11) (0.06)

Microgrid × Rooms 0.10 0.10 0.10 0.10 0.15 0.10 0.11
(0.07) (0.07) (0.07) (0.06) (0.03) (0.07) (0.15)

σ1 - 0.55 0.01 0.10 0.82 0.01 0.10
(0.20) (0.28) (0.32) (0.00) (0.43) (0.42)

σ2 - - - - - 0.01 0.08
(0.39) (5.06)

Observations 8822 8822 8822 8822 8822 8822 8822
Log likelihood -5793.31 -5791.36 -5793.35 -5793.27 -5791.67 -5793.37 -5793.12
LR test statistic - 3.91 -0.07 0.08 3.29 -0.10 0.38
LR test p value - 0.05 1.00 0.78 0.07 1.00 0.83
Our likelihood ratio test statistic is LR = −2 {LL(θconstrained)− LL(θunconstrained)} Each of the nested logit specifications (columns 2 through 7) is tested against the constrained
multinomial logit specification in column 1. LR is distributed χ2 with degrees of freedom equal to the number of constraints on θ. LL is the negative of the optimized objective function
in MATLAB (which is defined as the negative of the sum of the individual household contributions to the log of the likelihood function).
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Table B13: Linear Estimation of Demand for Electricity (Alternative Nests)

Nested Logit

{Microgrid}
{Non-

Microgrid}
{Solar}

{Non-Solar}
{Grid}

{Non-Grid}
Multinomial

Logit
(1) (2) (3) (4)

Price (Rs. 100) -1.70∗∗∗ -1.60∗∗ -1.74∗∗ -1.58∗∗

(0.63) (0.64) (0.72) (0.64)
Hours of peak supply 0.21 0.44 0.47 0.47

(0.27) (0.30) (0.30) (0.30)
Hours of off-peak supply -0.11∗ -0.16∗∗ -0.17∗∗ -0.17∗∗

(0.058) (0.065) (0.066) (0.065)
ξtj mean effects Yes Yes Yes Yes

Observations 999 999 999 999
First-stage F -Stat 21.1 21.1 21.1 21.1
The table presents linear estimation of our demand system, using alternative nest structures in the
non-linear estimation. The dependent variable are the mean indirect utilities, specific to each village
and survey wave, which come from the non-linear first-stage estimation. The first column uses our
preferred nest structure of grouping grid, diesel, and own solar in one nest and microgrid in its own
nest. (The estimates in the first column are the same as those in column 3 of Table 7.) The second
column uses a nest structure with grid and diesel in one nest and both solar technologies in another. In
the third column, we group grid in its own nest and all non-grid technologies in a second nest. In the
last column, we use the mean indirect utilities derived from a multinomial logit first-stage estimation.
For all second-stage linear estimations, we instrument for price, peak hours, and off-peak hours. Peak
hours refers to electricity supply during the evening (5 - 10pm). All regressions control for wave ×
source mean effects. Standard errors are clustered at the village-level and shown in parentheses. ∗

p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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C Appendix: Counterfactual Scenarios

This section gives additional details on our counterfactual scenarios. Figure C4 shows the breakdown of costs

for solar microgrids, which we use to forecast the effects of declines in the prices of solar photovoltaic panels

and batteries on solar systems. Because the capital cost of PV panels and batteries make up a significant,

but incomplete, share of total cost, this breakdown is necessary to calculate the effect that any proportional

decline in capital costs will have on the total costs of solar systems.

Figure C4: Microgrid Solar Cost Structure: Current and Predicted
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In this figure, we show the cost components of a microgrid, to provide transparency on how we derived the solar

prices in our counterfactual scenarios involving a fall in solar prices. We only take into account price changes for

solar photovoltaics and batteries, which are clearly correlated with R&D. We assume a 55% reduction in the cost of

solar PV, which is in line with the National Renewable Energy Laboratory’s projections for 2022. For batteries, we

assume a cost reduction of 75%, in accordance with the US Department of Energy’s 2022 goal. These two changes

translate into a 30% reduction in the overall price of a microgrid. We use the same proportional change in price for

own solar in our counterfactuals.

For reference, Table C14 enumerates the assumptions in our counterfactual scenarios from Table 9.

Column 1 gives the name of each scenario and columns 2 through 4 detail assumptions made in the row

scenario regarding source availability, supply hours, pricing and subsidies, and any additional details.
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Table C14: Counterfactual Analysis: Assumptions

Scenario
Source
availability

Source hours
(peak) Other notes

Improved solar Follow-up Follow-up

Solar technologies at their market characteristics as of the
follow-up survey, with consumer characteristics held
constant at baseline levels

Improved grid Follow-up Follow-up

Grid technology at its market characteristics as of the
follow-up survey, with consumer characteristics held
constant at baseline levels

Solar cost falls Follow-up Follow-up

Reduction in microgrid price from INR 170 to INR 120
(based on 2022 projection), proportional (30%) reduction
in own solar price

Grid in all
villages

Follow-up for
diesel and solar,
grid everywhere Follow-up

Increase peak
grid hours Follow-up

Two additional
peak hours for grid
(capped at 5
hours), follow-up
peak hours for all
other sources

All households at
least X Follow-up Follow-up

Each household covariate is at least as large as it is under
profile X where X ⊂ {Median,Rich}. Profile Rich
corresponds to the 80th percentile (details on each profile
can be found in Appendix Table B6)

Reduce theft Follow-up Follow-up
Increase grid price from INR 60 to INR 115 to keep
producer losses at follow-up level
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