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Abstract

We study the optimal disclosure policy in security issuance using a Bayesian persuasion
approach. An issuer designs a signal to persuade an investment bank to underwrite.
The bank forms a posterior on the basis of the signal and makes its underwriting and
retention decisions. When there is no demand uncertainty, a partially informative dis-
closure is enough to curb primary market underpricing due to informed sales by the
underwriter in the secondary market. When demand is uncertain, the underwriter
may shy away because of more retention than his privately optimal level and larger
losses due to increased total cost of capital. The optimal disclosure can solve such
hold-up problem resulting from weak demand and induce the bank to underwrite. We
derive predictions on the effects of the issuer’s fundamentals, the underwriter’s cost of
capital, the demand uncertainty, and the market liquidity on the informativeness of
the optimal disclosure. Our model not only captures the adverse selection problem in
the originate-to-distribute lending model, but also rationalizes the phenomenon that
arrangers may be willing to retain large and costly stakes in leveraged loan syndication.
Finally, if viewed as an extant blockholder, we show that the underwriter may exert
governance by exit to promote more transparent disclosure by the issuing firm.
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“In today’s aggressive marketplace, listed companies can no longer rely on their numbers

to do the talking. If companies can’t communicate their achievements and strategy, mounting

research evidence suggests, they will be overlooked, their cost of capital will increase and stock

price will suffer.”

–Westbrook (2014)

1 Introduction

The design and transmission of information plays a vital role in security offering in that it

shapes issuers’, intermediaries’ and investors’ expectations of the future, and thus profoundly

influences the resulting supply-demand equilibrium. One overarching friction which plagues

the well-being of the market participants is information asymmetry: usually one party holds a

payoff-relevant informational advantage over another. Issuers have considerable discretion in

the disclosure of information to advance their own interests. Intermediaries, by underwriting

and investing in the deals, acquire proprietary information which helps them predict future

performance but cannot be credibly communicated to other investors. Moreover, they may

gain from trading on their private information. Accordingly, understanding such friction and

evaluating feasible options for alleviating it is of great importance.

The goal of this paper is to provide a comprehensive theoretical framework to address

the following questions. First, how does information disclosure by the issuer potentially

affect a financial intermediary’s decision to retain and trade the issued securities? Second,

can strategic information disclosure help the issuer maximize proceeds from security offer-

ing, mitigate adverse selection, and induce the investment bank to underwrite even if some

unfavorable market friction (e.g. weak demand) may initially deter the bank from doing so?

Third, what are the effects of the issuer’s fundamentals, the underwriter’s cost of capital,

the primary market condition, and the secondary market liquidity on the informativeness of

the optimal disclosure policy?

In this paper, we develop a tractable yet comprehensive model that links the issuer’s

information disclosure in the capital raising process to various primary and secondary market
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activities by the underwriter and other investors. We model the optimal design of disclosure

policy by the issuer as a Bayesian persuasion game à la Kamenica and Gentzkow (2011). In

their seminal paper, Kamenica and Gentzkow (2011) present a model where a sender chooses

a signal to reveal to a receiver, who then takes an action that affects the welfare of both

players. They solve for the sender-optimal signal by reframing the problem as maximizing

the sender’s payoff over distributions of posterior beliefs subject to the Bayesian plausibility

condition that the average posteriors should be consistent with the prior. The effectiveness of

Bayesian persuasion is that it improves the sender’s expected payoff by inducing the receiver

to choose a better action. The maximal value is obtained by finding the concave closure of

the sender’s payoff function for any posterior held by the receiver.

In general, the Bayesian persuasion approach fits the process of security issuance very

well. The issuing party (sender) has to first draft a proposal which will be sent to a potential

underwriting bank (receiver). Routinely, the issuer possesses marked flexibility in selecting

what to disclose and how precise the disclosure is. In effect, issuers usually exercise dis-

cretion in reporting forward-looking information which contributes to the valuation of the

proposed security. Such information includes but is not limited to forecasts of future sales,

earnings, and growth opportunities, which can be either purely qualitative, or quantitative

with varying precision – a range or a point estimate. Moreover, issuers often choose to release

unique marketing information about business models, corporate strategy, and prospects of

the industry to attract potential investors. In sum, the proposal-drafting stage resembles the

sender’s communication about the optimally designed signal system to the receiver. After

seeing the proposal, the investment bank further investigates the realization of the signal

through due diligence if it still cannot decide whether it should underwrite. If the bank

agrees to underwrite, it engages in information production with the issuer to prepare the

information memorandum (for debt) or prospectus (for equity), which is then circulated to

potential investors (other receivers). In this sense, the information memorandum or prospec-

tus reflects the informativeness of the issuer’s disclosure. The underwriter then prices the
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security based on the collected information. This stage corresponds to the mapping from

the signal realization to the pricing of the security.

Specifically, we consider an issuer who designs an information disclosure system and re-

veals it to an investment bank to invite it to underwrite the deal. The issuer may represent

a borrower in a debt issue, an originator in securitization, or an entrepreneur in an equity

issue. The investment bank may serve as a lead bank in loan syndication, an arranger in

the sale of asset-backed security (ABS), or an underwriter in equity and bond offering.1

If the investment bank decides to underwrite, it further helps communicate the signal to

potential investors, chooses its stake, and allocates the remaining securities to the partic-

ipant investors. We assume that the underwriter obtains proprietary information from its

underwriting activity and retention. Similar assumptions regarding the generation of private

information are commonly used in the literature on banking and blockholders (e.g. Parlour

and Plantin, 2008; Edmans and Manso, 2011), and well documented empirically (e.g. Lum-

mer and McConnell, 1989; Edmans, Fang, and Zur, 2013). Nevertheless, the acquisition of

material information in our model is an inevitable but adverse consequence of the under-

writer’s involvement in the issue. As a result, the underwriting bank can profit from insider

trading when the secondary market opens. Following Maug (1998), Hennessy and Zechner

(2011), and Chemla and Hennessy (2014), who model the secondary markets of equity, bond,

and ABS respectively, the market structure is in the sprit of Kyle (1985) where investors

submit their market orders to a continuum of deep-pocketed risk-neutral market makers

who price the security competitively after observing aggregate demand. If the participant

investors anticipate that there is adverse selection in the secondary market, they will demand

a discount in the issue price to offset their future losses, a fact widely used in the literature

(e.g. Holmström and Tirole, 1993; Maug, 1998; Edmans and Manso, 2011).

In our baseline model, we consider a secondary market where the underwriter is banned

1The investment bank can also be viewed as an extant blockholder in the firm who makes decision on
whether to support and participate in a seasoned security offering. See more discussion on the corporate
governance implication of the blockholder on Page 8.
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from selling the security short (or alternatively, short sale is prohibitively costly for him).

In reality, it is almost impossible to sell certain assets such as loans short. Furthermore,

short sale of securities by underwriters has long been contended as highly controversial and

is viewed unfavorably by regulators as well as market participants. Moreover, the SEC has

made an effort to restrict short sale of the ABS by securitization participants. For instance,

in a proposed rule of “Prohibition against Conflicts of Interests in Certain Securitizations”

in September 2011, they prohibit a large group of interested parties including underwriters

from engaging in certain transactions, among which a particular one is short sale. Moreover,

investors are fiercely opposed to short-selling securities by underwriters, and petitions from

institutional investors to urge constraint on short sale in the City of London in recent years

are common occurrences. In other financial markets such as the ones in China, short sale

of any securities is strictly forbidden. This is why we primarily focus on the case in which

there is a short sale constraint for the underwriters.

Like in Aghion, Bolton, and Tirole (2004), we assume that the underwriter’s capital is

scarce and he incurs an opportunity cost (i.e. cost of capital) proportional to his investment in

the security. Consequently, even though the underwriter can free ride on the adverse selection

discount, in equilibrium the additional cost due to the retention depresses his stake to the

level that is just enough for him to camouflage as liquidity traders and gain from informed

trading. Interestingly, a unique equilibrium of informed-sales arises naturally in which the

underwriter liquidates his holdings if his private information indicates that the security will

subsequently underperform, and he refrains from trading otherwise. Our results speak to

the issues associated with the rise of the originate-to-distribute (OTD) lending model in

debt markets (Bord and Santos, 2012). Because of the development of active secondary

markets, banks’ incentives to screen and monitor loans have diminished (Keys, Mukherjee,

Seru, and Vig, 2010). Moreover, they tend to sell loans that are of excessively poor quality

(Purnanandam, 2010), and underperform their peers by about 9% per year subsequent to the

initial sales (Berndt and Gupta, 2009). To this end, our model fully captures the resultant
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adverse selection problem from OTD.

Working backward, we consider the optimal design of disclosure by the issuer. If she does

not disclose additional information, the underwriter will choose to retain a stake only when

the ex ante uncertainty about the security’s payoff is relatively high. Because otherwise his

private information has low value and his trading profits are not enough to compensate for

his opportunity cost of investment. As a result, underpricing occurs only if the security is

more risky. This is consistent with the evidence in Cai, Helwege, and Warga (2007) that find

significant underpricing on speculative-grade debt offerings but no significant underpricing

on investment-grade bond IPOs. Since the underpricing undermines the issuer’s proceeds,

she can do better by inducing posteriors beliefs which reduce the uncertainty to the degree

that the investment bank is just indifferent between no retention and a positive stake. In

this case, the optimal disclosure is partially informative. A sender-preferred equilibrium

prescribes that the underwriter should not retain any share, thus no discount will occur in

equilibrium.

Next we extend our model by introducing demand uncertainty (i.e. demand may fall

short of supply) in the primary market. With a positive probability the shares net of the

underwriter’s planned retention cannot be fully subscribed by the participant investors. In

order to complete the deal, the underwriter has to acquire all the remaining shares. Unlike

before where the investment bank’s decision to underwrite is trivial, the bank will shy away

from the deal if his expected payoff is negative. This creates a hold-up problem arising from

the possibility of demand shock. Intuitively, the bank will choose to underwrite and hold a

stake only if uncertainty about the cash flows from the security is sufficiently high. Then,

the underwriter is able to exploit his private information, and his expected trading gain is

enough to offset his expected loss from excessive retention. Therefore, the issuer’s optimal

information design will be as follows. If the ex ante uncertainty about the security is so

high that the investment bank is always willing underwrite, the issuer will design a signal

system inducing posteriors beliefs which reduce the uncertainty to the level that makes the
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investment bank just indifferent between whether or not to underwrite. This in turn reduces

adverse selection and increases the issuer’s expected revenue. However, if the ex ante uncer-

tainty about the security is relatively low, the investment bank will not underwrite unless

the signal changes his prior. The issuer’s overriding interest in this scenario is to be able to

sell the security and maximize her expected payoff with strategic disclosure. Thanks to the

Bayesian plausibility constraint which requires that the average posteriors to be equal to the

prior, Bayesian persuasion by the issuer can induce the investment bank to underwrite with

positive probability and balances this with a worse belief that leaves the bank’s underwriting

decision unchanged, which improves the issuer’s expected payoff. The optimal disclosure is

such that on the one hand it may induce the worst belief which leads to the investment bank’s

withdrawal from underwriting, but on the other hand it may generate signal that makes the

investment bank just willing to underwrite at the relevant beliefs. At the latter belief, the

security’s uncertainty is in fact increased, and the underwriter’s private information thus

becomes sufficiently valuable again, although on average the disclosure system still reduces

the uncertainty relative to that at the prior belief. Our model features an interesting mech-

anism where increased payoff uncertainty can mitigate the hold-up problem brought about

by demand uncertainty. We contribute to the literature by demonstrating a possible way to

avoid security issuance failure due to weak demand, and by offering alternative insight into

the “pipeline risk” in Bruche, Malherbe, and Meisenzahl (2018), where they document the

successful issuance of leveraged syndicated loans along with the costly excessive retention

by the underwriting banks. We argue that it may stem from the fact that the banks are

successfully persuaded by the borrowers albeit the presence of high demand uncertainty.

Our model yields novel empirical predictions that relate the informativeness of the opti-

mal disclosure to various aspects of the primary and secondary markets. We show that the

effects are not simply monotonic and depend on the ex ante uncertainty of the security’s pay-

off. Specifically, when the ex ante payoff uncertainty is relatively high, both better growth

option of the firm/borrower and more secondary market liquidity lead to more transparent
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disclosure. Conversely, greater issue size, larger cost of underwriting bank’s capital, higher

probability of demand shock, and weaker demand are associated with less informative dis-

closure. Better growth option and more liquidity allow the underwriter to enjoy more profits

by trading on his private information. Hence the optimal system only needs to induce less

uncertainty at posteriors that make the underwriter just break-even. In contrast, larger issue

size and cost of underwriting bank’s capital make it more costly for the underwriter to hold

a stake in order to gain from informed trading. Thus more uncertainty should be introduced

to make the underwriter’s private information more valuable. Likewise, higher probability of

demand shock and weaker demand make it more costly for the bank to underwrite, thus the

optimal system should induce beliefs with higher uncertainty so that his stake carries more

trading value in the secondary market. Our result is similar to the model of Pagano and

Volpin (2012) which shows that coarse information enhances primary market liquidity at the

cost of reducing secondary market liquidity. In contrast, the motivation for the revelation

of coarse information in our model is to solve the hold-up problem and promote an active

primary market with the underwriter’s participation. Moreover, the issuer cannot control

over the realizations of the signal, thus the coarse information does not come with certainty.

The results for the security with ex ante relatively low payoff uncertainty in the pres-

ence of demand uncertainty is just the opposite: better growth option and more liquidity

dampen the informativeness of the disclosure, while greater issue size, larger cost of capital,

higher probability of demand shock, and weaker improve the informativeness. Especially

noteworthy is that in the latter cases although the overall uncertainty is reduced by the op-

timal disclosure, to attract the bank to underwrite, the inherent uncertainty at the posterior

beliefs that make the bank just indifferent actually becomes larger than that at the prior.

The uncertainty at these posteriors should vary according to the intuition discussed in the

previous paragraph. But the informativeness hinges on how dispersed the distribution of the

posteriors is.

Finally, we extend our model by relaxing the assumption on the short sale constraint
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in the secondary market. Without short-sale constraint, it is optimal for the underwriter

not to acquire any security in the primary market, but to exploit his private information

by selling the asset short in the secondary market. If there is no demand uncertainty,

only a fully informative disclosure can deter the underwriter from engaging in informed

trading. Nevertheless, when demand is uncertain, all of the results on optimal disclosure

we have obtained with short-selling constraint extends to the case without it. Compared

with the case where short sale is prohibited, the issuer only needs less transparent disclosure

to persuade the investment bank to underwrite when the uncertainty about the security’s

payoff is relatively low. But she has to design more transparent disclosure to alleviate adverse

selection when the payoff uncertainty is relatively high.

Our paper is related to several strands of the literature. First, our work contributes to

the theoretical literature that attempts to address the question of how the rapidly evolving

debt markets can go awry (e.g. Chemla and Hennessy, 2014; Pagano and Volpin, 2012;

Parlour and Plantin, 2008). We model the adverse selection problem in the OTD lending

model, and show that strategic disclosure not only benefits the issuer, but also reduces this

informational friction.

Second, our theoretical framework enriches the large literature on blockholders’ gover-

nance by exit (e.g. Aghion, Bolton, and Tirole, 2004; Edmans and Manso, 2011; Faure-

Grimaud and Gromb, 2004). Importantly, the applicability of our model naturally goes

beyond debt markets and extends to equity markets if we view the underwriter as an extant

blockholder in a firm. Under this interpretation, we model the blockholder’s decision to

support and participate in a security offering (e.g. seasoned equity offering). As long as he

participates, the blockholder has an informational advantage over other dispersed investors

from holding and learning. As we have explained, he can exert governance by exit to push

the firm to ex ante disclose more transparent information when the payoff uncertainty of the

security is relatively high.

Third, our paper adds to a growing body of literature on information design theory (e.g.
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Kamenica and Gentzkow, 2011; Alonso and Câmara, 2016; Bergemann and Morris, 2018;

Rayo and Segal, 2010) as well as its application in corporate finance (e.g. Azarmsa, 2017;

Azarmsa and Cong, 2018; Boleslavsky, Carlin, and Cotton, 2017; Goldstein and Leitner,

2018; Huang, 2016; Szydlowski, 2016). We extend the basic Bayesian persuasion framework

by including a second receiver (the participant investors) who indirectly affects the welfare

of both the sender and the first receiver.

Fourth, our theoretical analysis offers new insight to the empirical literature on the ef-

fect of disclosure on liquidity (e.g. Balakrishnan, Billings, Kelly, and Ljungqvist, 2014). In

contrast with the extant literature, we focus on how firms will design their disclosure in

security issuance when faced with varying market liquidity. Our model provides a rationale

for whether a liquid secondary market contributes to a better information environment of

the issuing firm. To our best knowledge, we are the first to consider the security issuer’s

optimal design of information disclosure in the presence of both the financing and the trading

frictions. We thus call for empirical investigations of the relationship between the informa-

tiveness of disclosure (through the lens of the information memoranda and the prospectuses)

and the subsequent market activities as predicted in our model.

This paper is organized as follows. Section 2 introduces the setup of the model. Section

3 solves for the secondary market trading equilibrium and the primary market issue price

given an active secondary market. Section 4 presents the core results of the model with

a secondary market that has short sale constraint. The equilibrium disclosure policies are

analyzed both with and without demand uncertainty in the primary market. Section 5

changes the secondary market structure by removing the short sale ban and solve for the

optimal disclosure policies. Section 6 conducts welfare analysis for the investment bank

and the issuer under different primary market conditions and secondary market structures.

Section 7 concludes. All proofs not in the main body of the paper are deferred to the

Appendix.
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2 The Model

The model has four dates and no discounting. There are three types of players: an issuer,

an investment bank, and a group of investors, all of whom are risk-neutral.

2.1 The Issuer

The issuer (also called “she” or “firm”) wants to sell claims to cash flows from a productive

asset. Examples of such claims include bonds, (syndicated/securitized) loans, or equity

stocks. For brevity, we shall simply call them securities. We normalize the number of

securities to be issued to 1. The state of the economy ω is binary: it can be Good (G)

or Bad (B) with prior probability distribution P[ω = G] = µ0 and P[ω = B] = 1 − µ0

respectively. Cash flows ṽ from state B and state G are VH ≡ VL + ∆V and VL respectively.

ṽ

VL

VH

1− µ
0

µ0

Figure 1: Cash Flows Distribution under the Prior

The issuer designs an experiment which we refer to as a disclosure system π with binary

signal s ∈ {h, `}. The signal realization follows the conditional distribution: πG ≡ P[s =

h|ω = G] ≥ πB ≡ P[s = h|ω = B], which also represents the precision of the system. Figure

2 illustrates how the disclosure system maps each state to a signal. Using Bayes’ rule, the

posteriors µs upon observing s ∈ {h, `} are

µh ≡ P[ω = G|s = h] =
πGµ0

πGµ0 + πB(1− µ0)
,

µ` ≡ P[ω = G|s = `] =
(1− πG)µ0

(1− πG)µ0 + (1− πB)(1− µ0)
.
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True State Probability Generated Signal

G h

B `

1− πG

πB

πG

1− πB

Figure 2: The disclosure system π

Moreover, Bayesian updating requires that the average posterior is consistent with the prior,

which gives the Bayesian plausibility condition:

P[s = h] · µh + P[s = `] · µ` = µ0.

Therefore, the information design problem for the issuer is equivalent to choosing a pair of

posteriors {µh, µ`} whose distribution must satisfy the above constraint.

2.2 Informativeness of the Disclosure System

Following Gentzkow and Kamenica (2014), we use the entropy measure to gauge the uncer-

tainty associated with a given belief. In our binary-state economy, if the belief that the state

is G conditional on observing s is µs, its entropy is H(µs) = −µs lnµs − (1− µs) ln (1− µs).

Hence the belief achieves the highest uncertainty when µs = 1/2, and the closer it is to

the endpoints of its support (i.e. 0 or 1), the less uncertain the belief is. And the in-

formativeness of a disclosure system π is measured as the reduction in entropy L(π) =

H(µr) − E〈π|µr〉[H(µs)], where µr is a fixed reference belief independent of the system π,

and the subscript 〈π|µr〉 indicates that the expectation is taken under the distribution of
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posteriors (i.e. the probabilities of s = h and s = `) given the reference prior µr.
2

The fact that the above L(π) function is convex in µs implies a simpler yet more intuitive

interpretation of the informativeness: the more dispersed the distribution of posteriors, the

more informative the disclosure system. Formally, consider two systems π and π′ with

possible signal realizations {h, `} and {h′, `′}, and induced posteriors {µh, µ`} and {µh′ , µ`′}.

Suppose that

0 ≤ µ` ≤ µ`′ ≤ µh′ ≤ µh ≤ 1

with either the second or fourth inequality (or both) holding strictly, then we claim that

system π is more informative than system π′ in the spirit of Blackwell (1951). Furthermore,

from the Bayesian updating formulas of the two posteriors, both a higher πG and a lower

πB imply a more informative signal system. It is because such changes in the precision

parameters lead to a higher µh and a lower µ`, which are consistent with our definition

of the informativeness above. In this paper we use “informativeness” and “transparency”

interchangeably to describe the quality of a disclosure system.

2.3 The Investment Bank and the Participant Investors

In addition to the issuer, there are two other types of players: an investment bank and a

group of participant investors. To issue the securities, the issuer has to find an investment

bank (also called “underwriter” or “he”) to help her underwrite the deal in the primary

market. The investment bank can be an underwriting bank in a public offering of bond or

equity, a lead bank in loan syndication, or an arranger in securitization. The issuer reveals

the disclosure system π to the investment bank. The investment bank then engages in due

diligence to find out the realization of the signal s. After observing s the investment bank

makes decision on whether to underwrite. If he agrees to underwrite, he further chooses the

fraction of securities β to retain. Instead, he can also withdraw from underwriting if he finds

2The introduction of this reference belief µr ensures that the disclosure informativeness does not vary
with the prior µ0.
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it unfavorable, and thus the issue fails.3 We denote the action set of the investment bank as

follow

aIB ∈ {(Underwrite & Retain β), (Not Underwrite)}.

Following Aghion, Bolton, and Tirole (2004), we assume that capital is scarce for the in-

vestment bank and he incurs an opportunity cost (i.e. cost of capital) r > 0 per unit of

investment.4 Moreover, there are a unit mass of participant investors who can also invest in

a risk-free asset with zero return. They will invest in the remaining (1 − β) shares as long

as they are break-even.

2.4 Time Line

At T = 0, nature determines the prior distribution of the states. The issuer designs a signal

system π which will generate a signal s at T = 1. She finds an investment bank and reveals

this experiment π to him.

At T = 1, signal s realizes. The investment bank first engages in due diligence to discover

s and then decides if he will underwrite the issuance. If the investment bank chooses to

underwrite, he materializes and communicates the signal s to participant investors. He sells

(1− β) to the participant investors and acquires the remaining β, both at price P0.

At T = 2, a secondary market opens. The market structure is like Kyle (1985). The

investment bank and the participant investors submit their market orders to a continuum of

deep-pocketed risk-neutral market makers (MM) who price the security competitively after

observing the total net order flow y. The market maker sets price P1 = E[ṽ|y]. The trading

episode proceeds with three sub-stages:

3In practice when primary market demand for the security is weak and the underwriter is not willing to
retain additional shares, he may choose to delay (suspend) the issuance indefinitely, and only to close the
deal when the securities can be fully subscribed. For simplicity, we also regard this scenario as failure

4We assume throughout the paper that the investment bank will always incur this opportunity cost of
his capital expenditure in both the primary and the secondary markets. This helps to eliminate multiple
equilibria in the secondary market. Removal of such assumption in the secondary market does not affect
the equilibrium we will characterize. Moreover, r cannot be too large as otherwise the investment bank will
always find it unfavorable to underwrite. We characterize the exact requirements that r should satisfy in
order to ensure the existence of interior solutions of the model in the appendix.
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T = 0 T = 1 T = 2 T = 3

• Nature determines the
prior µ0.

• The issuer designs a
disclosure system π
which will generate a
signal s at T = 1.

• Signal s realizes, and is
revealed by the issuer to
an investment bank.

• The investment bank
decides whether or not
to underwrite after
observing the signal s. If
not, the game ends.

• If the investment bank
decides to underwrite,
he communicates this s
to participant investors.
He sells fraction (1− β)
to participant investors
and retains β, both at a
price P0.

• Secondary market opens.

• The investment bank
observes the state and
decides about his
trading strategy.

• The participant
investors experience
liquidity shocks with
probability γ.

• The MM receive orders
from the investment
bank and the participant
investors, and set price
P1.

• Payoff realizes and all
parties are paid.

Figure 3: Time line

1. The investment bank observes the true state ω and determines his trading strategy,

i.e. the amount of securities {xIB} to trade.

2. Liquidity shocks happen with probability γ ∈ (0, 1). The participant investors submit

their aggregate market order {xPI}, whereby

a. with probability γ a fraction φ ∈ (0, 1
2
) of the participant investors experience

liquidity shocks and have to liquidate their holdings;

b. with probability (1−γ), there is no liquidity shock and these participant investors

don’t sell.

3. The MM receive the net order flow from the investment bank and the participant

investors y ≡ xIB + xPI , and set P1.

At T = 3, payoffs of the underlying securities are realized, and all parties get paid.

The time line is summarized in Figure 3.
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2.5 Payoff Functions

We next define the expected payoff functions of the issuer, the investment bank, and the

participant investors at T = 1 in the primary market. Consider the situation after the signal

s has realized. The issuer’s expected payoff is

UE(β, µs) = 1aIB={Underwrite, β} P0.

1aIB={Underwrite, β} is an indicator function which takes value 1 if aIB = {Underwrite, β} (i.e.

the investment bank underwrites and acquires β), and 0 otherwise. Since the investment

bank will make his underwriting and retention decisions after observing s, it follows that aIB

will be a function of posterior belief µs. P0 is the price of the securities and the money she will

obtain in the primary market conditional on the investment bank choosing to underwrite.

We follow the Bayesian persuasion literature (e.g. Kamenica and Gentzkow, 2011; Huang,

2016; Szydlowski, 2016) by assuming that information design incurs no cost, and when the

issuer is indifferent between two disclosure systems, she always selects the one that is less

informative.5

Back to T = 0 when the issuer designs the disclosure system π, she rationally anticipates

the best response by the investment bank conditional on induced posterior belief. Her

expected payoff is therefore

Eπ[UE(aIB, µs)].

5This assumption ensures the tractability of our model as well as the uniqueness of the equilibrium.
Alternatively, we can define the issuer’s expected payoff as

UE(β, µs) = 1aIB={Underwrite, β} P0 − C,

where C represents a sunk cost of disclosure which varies with the informativeness of the disclosure system
π as in Gentzkow and Kamenica (2014):

C(π) ≡ kL(π) = k{H(µr)− E〈π|µr〉[H(µs)]}.

Note that k > 0 is the cost of a one-unit reduction in entropy. Therefore, at T = 0 when two disclosure
systems deliver the issuer the same expected proceeds, she prefers the one that is less informative and thus
less costly. When the unit cost k → 0+, the optimal disclosure policies converge to the ones in our paper.
And for small k our main intuitions still go through and thus our results are robust to costly information
disclosure.
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And the subscript π implies that the expectation is taken under the distribution of signal

realizations (posteriors).

The investment bank’s expected payoff after observing s depends on whether he becomes

an underwriter as well as his retention β if he chooses to underwrite:

UIB(aIB) = 1aIB={Underwrite, β} × {β[(µs∆V + VL)− (1 + r)P0] + Es[Π]},

where β[(µs∆V + VL) − (1 + r)P0] is his net payoff from retaining β shares in the primary

market, and Es[Π] is his expected trading profits in the secondary if there is any at T = 2.

Here the subscript s implies that we take the expectation under the distribution of underlying

states induced by signal s.

Finally, for the participant investors to acquire the remaining (1 − β) shares, they will

demand a price P0 which makes them at least break even. Therefore the issuer will offer a

price such that their expected payoff is UPI(β, µs) = 0.

3 Secondary Market Trading and Primary Market Dis-

count

In this section, we solve for the subgame perfect equilibrium of the game by backward

induction. Suppose that the investment bank chooses to underwrite at T = 1. Then at

T = 2, the disclosure system π, the signal realization s, the share price P0 in the primary

market, and the investment bank’s retention β are all taken as given.

Now that the investment bank has observed the true underlying state at T = 2, he

decides about the optimal market order xIB he should submit. We characterize the unique

informed-sale equilibrium where the investment bank do not trade in state G and sell (1−β)φ

in state B as follows.

In state G, the true value of the security is VH . The investment bank has no incentive
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to sell simply because the secondary market price cannot exceed the security’s intrinsic

value, i.e. P1 ≤ VH . Moreover, the investment bank has no incentive to purchase additional

shares in this state too. This is because if he buys, the aggregate order flow y > −u if

liquidity shocks happen, and y > 0 if there is no liquidity shock. In order to pool in state

B, he may need to buy shares too. Yet he could lose money because the cash flow in

state B is only VL but the price P1 ≥ VL, and buying in bad state is thus sequentially

irrational. Therefore, although he could gain in state G he would suffer a loss in state B.

Such cross-subsidization renders him at most the same expected net trading profits as in the

informed-sale equilibrium while his purchases incur additional opportunity cost.6 And such

trading strategy is obviously sub-optimal. Accordingly, in state G when there are liquidity

shocks the net order flow will be y = −u, yet it will be y = 0 if there is no liquidity shock.

In state B, since the price is always at least as much as the security’s intrinsic value (i.e.

P1 ≥ VL), the investment bank can potentially benefit from sale. The maximal amount that

can be sold in order to at least partially conceal his private information is u. In this case

the aggregate order flow will be y = −2u if participant investors are hit by liquidity shocks,

and y = −u otherwise. Therefore, the MM cannot tell which state the economy is in when

the net order flow is −u, and the investment bank enjoys informed trading profits if the true

state happens to be bad.

In sum, to best exploit his private information, the investment bank refrains from trading

in good state and liquidates (1−β)φ in bad state to maximize his expected informed trading

profits while not fully reveal his identity.

We tabulate the equilibrium in the secondary market in Table 1, and summarize in the

following proposition.

Proposition 1 (Secondary market equilibrium):

1. The investment bank’s optimal trading strategy is to submit an order xIB = 0 in state

6Recall that the investment bank will also incur opportunity cost as long as he acquires shares in the
secondary market, although the informed-sale equilibrium is robust to the removal of the assumption about
the investment bank’s opportunity cost in the secondary market.
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Table 1: Secondary Market Trading and Pricing

State Liquidity Shocks ṽ Probability xPI xIB y P1

G Yes VH µsγ −u 0 −u µsγ∆V
µsγ+(1−µs)(1−γ)

+ VL

G No VH µs(1− γ) 0 0 0 VH

B Yes VL (1− µs)γ −u −u −2u VL

B No VL (1− µs)(1− γ) 0 −u −u µsγ∆V
µsγ+(1−µs)(1−γ)

+ VL

Note: u ≡ (1− β)φ.

G, and an order xIB = −(1− β)φ in state B.

2. The MM’s posterior belief about the probability of state G is

µMM =


1 if y = 0,

µsγ
µsγ+(1−µs)(1−γ)

if y = −(1− β)φ,

0 if y = −2(1− β)φ.

3. The MM set price

P1 =


VH if y = 0,

µsγ∆V
µsγ+(1−µs)(1−γ)

+ VL if y = −(1− β)φ,

VL if y = −2(1− β)φ.

Having obtained the trading equilibrium, we now derive the primary market issue price

taking into account the adverse selection in the secondary market. Recall from Table 1 that

the investment bank’s trading strategy mixes case {State G, Liquidity Shocks} with case

{State B, No Liquidity Shocks}, and he only makes profits in the second case where he
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manages to camouflage as liquidity traders. His informed-sale profits per share are

G ≡ P1 − VL =
µsγ∆V

µsγ + (1− µs)(1− γ)
.

The next proposition derives the investment bank’s total expected trading profits and the

primary market issue price when he observes signal s at T = 1.

Proposition 2 (Expected trading profits, and Primary market underpricing):

1. The investment bank’s total expected trading profits are

Es[Π] = (1− β)φ Es[G] =
(1− β)φ(1− µs)(1− γ)µsγ∆V

µsγ + (1− µs)(1− γ)
.

2. Since the investment bank’s gain per share is just the participant investors’ loss per

share, in order for these investors to purchase at T = 1,

P0 ≡ Es[ṽ]−∆P

= (µs∆V + VL)− Es[Π]

1− β

= (µs∆V + VL)− (1− µs)µs(1− γ)γφ∆V

µsγ + (1− µs)(1− γ)
.

The fact that securities are issued with a discount due to adverse selection in the sec-

ondary market has been commonly in the literature (e.g. Holmström and Tirole, 1993; Maug,

1998; Edmans and Manso, 2011).

4 Short Sale Constraint (SS)

As we will see, whether short sale by the underwriter is allowed in the secondary market

has somewhat different implications for the equilibrium in the primary market at T = 1 as

well as the issuer’s choice of optimal disclosure policy at T = 0. Note that whether there is
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short sale constraint in the secondary market does not affect the equilibrium strategies we

have characterized in the previous section. We first consider the baseline model where the

investment bank cannot sell the security short. Then we proceed with the model in which

there is no short sale constraint.

The next lemma establishes the condition under which strategic trading by the investment

bank is feasible when there is short sale constraint in the secondary market.

Lemma 1 (Minimal stake): When selling the security short is not allowed in the secondary

market, the investment bank can engage in strategic informed trading iff φ
1+φ
≤ β < 1.

Suppose that part of the participant investors are hit by liquidity shocks. They will

liquidate a fraction of u ≡ (1 − β)φ shares in total. To gain informed trading profits, the

investment bank has to camouflage as liquidity traders. Because he cannot short sell, to

achieve this goal his holdings β should not be too samll, i.e. no less than (1−β)φ. Also note

that β should be strictly less than 1 because otherwise the market is completely illiquid and

there will be no liquidity traders.

4.1 No Demand Uncertainty (NDU)

In this section we first consider the benchmark model where there is no demand uncertainty

in the primary market, i.e. all the shares can be fully subscribed by the participant investors

even if the investment bank does not acquire any.

At T = 1, from Lemma 1 we have already established that when β ∈ [0, φ
1+φ

) or β = 1,

the investment bank cannot gain from trading on his private information, because either his

stake is not enough or the secondary market is completely illiquid. Thus the issue price will

not include the adverse selection discount. The following proposition characterizes the price

in the primary market for different levels of retention by the investment bank.
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Proposition 3 (Primary market issue price): The issue price in the primary market is

P0(β, µs) =


µs∆V + VL − (1−µs)µs(1−γ)γφ∆V

µsγ+(1−µs)(1−γ)
if β ∈ [ φ

1+φ
, 1),

µs∆ + VL if β ∈ [0, φ
1+φ

) or β = 1.

4.1.1 Investment Bank’s Optimal Decision I

Absent any demand uncertainty, the investment bank can always stay break-even by choos-

ing to underwrite yet retaining no shares. Therefore, the investment bank’s decision to

underwrite is trivial in our benchmark model here.

At T = 1 after signal s has realized and posterior belief µs has been formed, the invest-

ment bank decides on his stake β to maximize his expected payoff, denoted U1
IB(β, µs):

max
β∈[0,1]


β · [(µs∆V + VL)− (1 + r)P0(β, µs)]

+ 1{β≥(1−β)φ} · (1− β)φ · (1−µs)µs(1−γ)γ∆V
µsγ+(1−µs)(1−γ)

 .

The first term above represents the investment bank’s expected payoff in the primary market

which is the intrinsic value of the β shares net of his capital expenditure and opportunity

cost. The second term is his expected trading profits as we have shown in Proposition 2 if he

has acquired adequate stake in the primary market. Observe that the above expected utility

function U1
IB(β, µs) is in fact piece-wise linear in β. Hence its maximum must be attained

at β∗ = 0, or 1, or φ
1+φ

, or β∗ ↑ 1 (i.e. β∗ = 1−). The investment bank’s optimal retention

problem thus becomes

β∗ = arg max
β∈{0,1, φ

1+φ
,1−}

{
U1
IB(0, µs), U

1
IB(1, µs), U

1
IB(

φ

1 + φ
, µs), U

1
IB(1−, µs)

}
.

The investment bank’s expected payoff U1
IB(β, µs) is calculated as follows:
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(i). If β∗ = 0, there will be no informed trading in the secondary market and no price

discount in the primary market, U1
IB(0, µs) = 0.

(ii). If β∗ = 1, the secondary market is completely illiquid and the issue price has no

discount,

U1
IB(1, µs) = (µs∆V + VL)− (1 + r)P0(1, µs) = −r(µs∆V + VL).

(iii). If β∗ = φ
1+φ

, informed trading is feasible and thus issue price must be discounted,

U1
IB(

φ

1 + φ
, µs) =

φ

1 + φ

[
(µs∆V + VL)− (1 + r)P0(

φ

1 + φ
, µs)

]

+
1

1 + φ
· (1− µs)µs(1− γ)γφ∆V

µsγ + (1− µs)(1− γ)
.

(iv). Finally, if β∗ = 1−, there is (infinitesimal) informed trading profit yet still a relatively

sizable adverse selection discount,

U1
IB(1−, µs) = 1− · [(µs∆V + VL)− (1 + r)P0(1−, µs)] + 0+ · (1− µs)µs(1− γ)γφ∆V

µsγ + (1− µs)(1− γ)
.
= (µs∆V + VL)− (1 + r)P0(1−, µs)

= (µs∆V + VL)− (1 + r)

[
(µs∆V + VL)− (1− µs)µs(1− γ)γφ∆V

µsγ + (1− µs)(1− γ)

]
.

To pin down the optimal retention by the investment bank in response to the observed

signal s, it suffices to show for different µs which of the above U1
IB’s achieve the largest value.

The lemma below provides some important properties of the investment bank’s expected

payoff function if he chooses to retain β = φ
1+φ

.

Lemma 2 (Indifference cut-off posteriors I):

1. There exists a pair {µ, µ} with 0 < µ < 1
2
< µ < 1 such that U1

IB( φ
1+φ

, µ) =

U1
IB( φ

1+φ
, µ) = 0.
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2. U1
IB( φ

1+φ
, µs) > 0 if µs ∈ (µ, µ), and U1

IB( φ
1+φ

, µs) < 0 if µs ∈ [0, µ) or µs ∈ (µ, 1].

Therefore, at posteriors µs = µ and µ, the investment bank is indifferent between holding

β = φ
1+φ

and β = 0. Furthermore, the investment bank will only consider purchasing a

fraction of the shares when uncertainty about the security is large (i.e. the posterior belief

µs lies in an intermediate range).

The following proposition characterizes the investment bank’s optimal strategy and the

relevant equilibrium payoffs under different posterior beliefs.

Proposition 4 (Investment bank’s optimal strategy and relevant payoffs I): The investment

bank’s optimal stake is

β∗ =


φ

1+φ
if µs ∈ (µ, µ),

0 if µs ∈ [0, µ] ∪ [µ, 1].

His equilibrium payoff is

Û1
IB(µs) =


U1
IB( φ

1+φ
, µs) if µs ∈ (µ, µ),

0 if µs ∈ [0, µ] ∪ [µ, 1].

In Figure 4 the blue line shows the payoff of the investment bank if he chooses to retain

β = φ
1+φ

, i.e. U1
IB( φ

1+φ
, µs). The red dashed line depicts his equilibrium payoff under his

optimal retention strategy, denoted by Û1
IB(µs). In equilibrium when µs ∈ [0, µ] ∪ [µ, 1], the

investment bank does not retain any share, and his payoff is zero. Yet when µs ∈ (µ, µ),

he chooses his retention β = φ
1+φ

and his payoff is U1
IB( φ

1+φ
, µs), which corresponds to the

hump-shaped part of the red dashed line. So in equilibrium both the investment bank’s

optimal stake and his expected payoff depend only on his belief µs.

The intuition of Proposition 4 is straightforward: when uncertainty about the security’s

payoff is relatively small, the investment bank’s informed trading profits in the secondary

market is not enough to cover his cost of capital in the primary market, even though he
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Figure 4: The investment bank’s payoff (i)

free rides on the discounted issue price. This results in zero retention by the bank. When

the uncertainty about the security is relatively large, it is profitable for the investment bank

to acquire some shares in order to later trade on his private information strategically. Yet

such gain in the secondary market trades off against the opportunity cost incurred from his

primary market capital expenditure. In equilibrium the investment bank optimally chooses

his retention such that it is just enough for him to camouflage as liquidity traders in the

secondary market. This minimizes his total cost of capital while maximizes his expected

trading profits. Our result contrasts with the retention equilibrium in Leland and Pyle (1977)

where a firm holds a large fraction of its shares to have some skin in the game and signal

to the market its quality when information asymmetry problem is severe. In our model, the

investment bank acquires a stake to later gain from informed sales in the secondary market

when the security’s cash flows are relatively more uncertain. In this regard, such retention

exacerbates the adverse selection problem.

4.1.2 Optimal Disclosure System I

Given the optimal retention scheme by the investment bank described in Proposition 4, it

follows naturally that the issuer’s expected revenue conditional on signal s at T = 1 will
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be either the intrinsic value of the security if the bank does not acquire any share, or the

expected cash flows from the security net of an adverse selection discount if the bank holds

a positive stake φ
1+φ

. This gives the following proposition.

Proposition 5 (Issuer’s payoff after information design I): At T = 1 the issuer’s expected

payoff conditional on signal s is:

U1
E(µs) =


µs∆V + VL − (1−µs)µs(1−γ)γφ∆V

µsγ+(1−µs)(1−γ)
if µs ∈ (µ, µ),

µs∆V + VL if µs ∈ [0, µ] ∪ [µ, 1].

Note that at the two posteriors µ and µ, the investment bank is actually indifferent

between retaining 0 and a positive stake φ
1+φ

. Following the convention of information

disclosure literature, we select the sender-preferred equilibrium in which the investment bank

does not acquire any share in the primary market when he is indifferent, and thus there will

be no discount. In reality, given the high cost of bank capital, we have reason to believe that

if the issuer is not opposed to it, investment banks are more prone to no retention although

a positive stake gives him the same expected payoff.

At T = 0 the issuer designs the optimal disclosure policy to maximize her expected

proceeds from issuing the security. She has to choose the precision of her signal πG and

πB for the disclosure system π. By Bayes’ rule, essentially her problem is equivalent to the

optimal choice of two posteriors µh and µ`.

Because we have assumed that demand never falls short of the supply in the primary

market, the investment bank does not have to worry about the risk of retaining more shares

than his privately optimal level. Thus he will always underwrite, and his decision problem

is reduced to the choice of stake β. And we can write the issuer’s payoff at T = 1 as

U1
E(β, µs) = 1aIB={Underwrite, β} P0(β, µs).

25



Since we already know from Proposition 4 that the investment bank’s optimal retention β∗

depends on µs, the issuer’s expected proceeds will only depend on µs in equilibrium, which we

denote by U1
E(µs) ≡ U1

E(β∗, µs) = P0(β∗, µs). So the issuer solves the following maximization

problem:

Û1
E(µ0) ≡ max

{µ`,µh}
Eπ[U1

E(µs)]

s.t. β∗(µs) = arg max
β∈[0,1]

U1
IB(β, µs),

P[s = h] · µh + P[s = `] · µ` = µ0,

P[s = h] + P[s = `] = 1.

The first constraint states that the investment bank will choose the stake that maximizes

his expected payoff based on his posterior belief. The second constraint is the Bayesian

plausibility condition in which the expectation of posteriors must equal the prior. The last

constraint requires that the probabilities of signal realizations should sum to one.

To solve this problem, we use the concavification technique in Kamenica and Gentzkow

(2011). In particular, the issuer’s ex ante optimal design of disclosure system can be derived

by finding the concave closure of U1
E(µs), which we define as Û1

E(µs). A graphic representation

is given in Figure 5. The black line depicts the issuer’s expected payoff conditional on different

posteriors. When the uncertainty is relatively large, the investment bank retains a stake and

there is underpricing. Thus we observe a dent from the graph when µs ∈ (µ, µ). The blue

dashed line illustrates Û1
E(µs) – the issuer’s maximized expected payoff from the optimal

disclosure system.

Intuitively, for any given prior µ0, it must be equal to some convex combination of two

posteriors µ` and µh induced by the optimal system due to the Bayesian plausibility condition

(i.e. µ0 = λµ`+(1−λ)µh for some λ ∈ [0, 1]). So the issuer’s ex ante expected payoff under the

distribution of posteriors must be a convex combination of two expected payoffs conditional

on relevant signal realizations too (i.e. Eπ[U1
E(µs)] = λU1

E(µ`) + (1− λ)U1
E(µh)). Obviously,
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Figure 5: The issuer’s payoff (i)

the optimal Eπ[U1
E(µs)] is attained on the concave closure of U1

E(µs). The optimal µ` and

µh are obtained at the intersections of U1
E(µs) and its concave closure, which are to the left

and right of µ0 respectively.7 λ and (1 − λ) are the probabilities of posteriors µ` and µh.

The proposition below characterizes the optimal disclosure policy employed by the issuer at

T = 0.

Proposition 6 (Optimal information design I): At T = 0 the issuer’s optimal disclosure

policy is:

1. If µ0 ∈ [0, µ] ∪ [µ, 1], the optimal disclosure system has πG = πB ∈ (0, 1), and is

therefore completely uninformative, yielding posteriors µ` = µh = µ0.

2. If µ0 ∈ (µ, µ), the optimal disclosure system has πG =
µ(µ0−µ)

µ0(µ−µ)
and πB =

(1−µ)(µ0−µ)

(1−µ0)(µ−µ)
,

yielding posteriors µ` = µ and µh = µ.

One caveat is worth some discussion here. When µ0 ∈ (µ, µ), there are multiple disclosure

systems which gives the issuer the same expected payoff. In fact she can set any arbitrary

πG and πB, as long as they induce posteriors µ` ∈ [0, µ] and µh ∈ [µ, 1] subject to P[s =

h]·µh+P[s = `]·µ` = µ0. But since we have assumed before that if multiple disclosure policies

7In a completely uninformative system, µ` = µh = µ0.
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give the issuer the same expected payoff, she selects the one that is the least informative

(and thus the least costly if we assume an infinitesimal cost of reduction in entropy due to

the disclosure that varies with the informativeness of the system). Accordingly, Proposition

6 characterizes the least informative optimal disclosure system at T = 0.

From Figure 5 it is clear that if the issuer does not release information, underpricing

happens when uncertainty about the firm is relatively large. This is consistent with Cai,

Helwege, and Warga (2007) that find significant underpricing on speculative-grade debt

IPOs but no significant underpricing on investment-grade bond IPOs. We take a further

step by showing that in fact issuer can strategically design her disclosure policy to curb

underpricing even if ex ante the uncertainty about the security is relatively large. This is

achieved by designing a system which decreases the uncertainty associated with the security

to the degree that the investment bank is just indifferent between holding either zero or a

positive stake. And a security with its payoff uncertainty below some thresholds will in turn

have no discount. In practice, because of other possible frictions such as issuer’s limited

capability in reducing uncertainty, we will still observe some underpricing. Later we will

show that when there is demand uncertainty in the primary market, underpricing always

arises in equilibrium, but strategic disclosure can reduce it on average.

Since we have derived the optimal disclosure policy, it is natural to ask what factors may

potentially affect the informativeness of the optimal system. Moreover, how do firms with

different levels of uncertainty alter their optimal strategies in response to changes in those

factors? We address these important questions in Proposition 7.

Proposition 7 (Comparative statics I):

(1)
∂µ

∂VL
> 0 and ∂µ

∂VL
< 0.

(2) Define η ≡ ∆V
VL

, then
∂µ

∂η
< 0 and ∂µ

∂η
> 0.

(3)
∂µ

∂r
> 0 and ∂µ

∂r
< 0.

(4)
∂µ

∂φ
< 0 and ∂µ

∂φ
> 0.
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Result (1) states that as VL increases, the lower-bound cut-off posterior µ, at which the

investment bank is indifferent between holding 0 and φ
1+φ

, becomes larger and the similar

upper-bound cut-off posterior µ becomes smaller. This implies that the range (µ, µ) shrinks

inward. VL is the reservation value of the security, and can be viewed as a proxy for the issue

size. We first discuss the implications of the comparative statics if the system is completely

uninformative. In this case the posterior belief is simply the prior. A larger VL makes it more

costly for the underwriter to retain a stake. So at the cut-off posterior beliefs, only marginally

higher uncertainty will induce the underwriter to have a positive retention and stay break-

even. The enhanced uncertainty makes the bank’s private information more valuable in the

secondary market trading, hence offsetting the additional cost brought about by the larger

VL.

Turning to the optimal disclosure, a larger VL means that only firms that are relatively

more uncertain (i.e. µ0 ∈ (µ, µ)) will employ a system which induces a pair of posteri-

ors {µ, µ}. Yet as VL becomes larger, the resulting optimal system will be less transparent

because of the inward-shrunken (µ, µ), (i.e. less dispersed distribution of posteriors).8 There-

fore, for firms whose security payoffs are ex ante highly uncertain, larger issue size allows

them to use less transparent disclosure to curb underpricing in the primary market.

Result (2) concerns the effect of the firm’s growth option η on the optimal disclosure

policy used by the issuer. Better growth option is potentially beneficial to the underwriting

bank because it makes his informed trading more profitable. Consequently, at the cut-

off beliefs, even marginally lower uncertainty still ensures a non-negative payoff from his

retention and subsequent informed trading. As a result, the range (µ, µ) expands, and the

issuer will use more transparent system as the growth option improves if the security’s ex

ante payoff uncertainty is high.

Result (3) shows that the greater cost of capital of the investment bank will push the

two cut-off posteriors inward. Similar to Result (1), at the cut-off beliefs, only marginally

8Recall from our definition of informativeness in Section 2.2, an inward (outward) shrunken range of
posteriors (µ, µ) indicates less (more) informativeness of the system.
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higher uncertainty will compensate the underwriter’s increased cost of capital by making his

private information more valuable in the secondary market trading. Therefore, greater cost

of capital of the investment bank results in less transparent disclosure by the issuer with

high ex ante payoff uncertainty.

Finally, result (4) relates disclosure to market liquidity. A more liquid secondary market

pushes the two threshold posteriors outward. In effect, higher liquidity is beneficial to the

underwriter as it improves his trading profits. Hence at the margins, cut-off beliefs with

relatively lower uncertainty are sufficient to make the underwriter just break-even by holding

a stake. And the optimal disclosure reduces more uncertainty, rendering it more transparent

if the prior is associated with high uncertainty. Result (4) implies a benefit of the market

liquidity in that potentially a more liquid secondary market can push the issuer to design a

more transparent disclosure system when issuing securities although this is not the complete

story as we will see in the next section.

4.2 Demand Uncertainty (DU)

In this section, we extend the model by introducing the possibility of negative demand shock

in the primary market. When demand shock happens, the securities are under-subscribed

and the underwriting bank has to acquire additional shares to close the deal if he chooses

to underwrite the issue. Note that the demand shock does not affect our secondary market

equilibrium as well as the discounted issue price due to informed trading discussed in Section

3. We thus proceed with our analysis from T = 1 and then work backward to determine the

optimal disclosure policy at T = 0.

Formally, we assume that if demand shock happens in the primary market, the demand

for the issuer’s security is only ψ which satisfies the following inequality:

0 < ψ < 1− φ

1 + φ
.
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Therefore, if the investment bank plans to retain a fraction β ≤ φ
1+φ

, the aggregate

demand for the security will fall short of the supply (i.e. β + ψ < 1). We further assume

that if initially the investment bank has entered into an agreement to underwrite the issue,

he has to acquire all of the remaining (1− ψ) shares. Also, recall from Lemma 1 that with

short sale constraint informed trading is feasible for the investment bank if and only if the

fraction of his retention is at least φ
1+φ

yet strictly less than 1, and the pricing of shares in

the primary still follows Proposition 3.

More specifically, suppose that at T = 1 after the investment bank has agreed to under-

write and makes his initial retention plan β̂,

a. with probability ε ∈ (0, 1), the total demand of shares by the participant investors is

only ψ. So the investment bank has to acquire β = 1 − ψ. And the issue price is

P0(1− ψ, µs);

b. with probability (1 − ε), there is no demand shock. The investment bank’s ultimate

retention is β = β̂ and the issue price is P0(β̂, µs).
9

4.2.1 Investment Bank’s Optimal Decision II

In this scenarior, even if the investment bank initially decides to retain only β̂ = 0, the

possible demand shock may force him to acquire more than he plans and depress his expected

payoff below zero. Nevertheless, the investment bank has an exit option “Not Underwrite”

to stay break-even. So the decision to underwrite is no longer trivial, and it depends crucially

on the posteriors induced by the issuer’s disclosure. We denote the investment bank’s payoff

by U2
IB(β̂, µs) if he enters into the underwriting contract and makes his initial retention plan

β̂.

Consider the situation in which the investment bank chooses to underwrite. He needs to

determine his initial retention plan β̂ to maximize his expected payoff before the demand

9To avoid confusion, we use β and β̂ respectively to distinguish between the issuer’s planned and ultimate
retention.
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uncertainty is resolved. With probability ε, the demand shock happens and the investment

bank has to buy (1− ψ). His expected payoff is:

A(1− ψ, µs) ≡ (1− ψ)[(µs∆V + VL)− (1 + r)P0(1− ψ, µs)] +
ψ(1− µs)µs(1− γ)γφ∆V

µsγ + (1− µs)(1− γ)
.

With probability (1− ε), the demand shock does not occur, and the underwriter’s payoff is

the same as in the no demand uncertainty case:

B(β̂, µs) ≡ β̂ · [(µs∆V + VL)− (1 + r)P0(β̂, µs)]

+1{β̂≥(1−β̂)φ} ·
(1− β̂)(1− µs)µs(1− γ)γφ∆V

µsγ + (1− µs)(1− γ)
.

Therefore, after observing signal s, the investment bank has to first decide whether he

will underwrite. If he underwrites, he further chooses a planned retention β̂ to maximize

his expected payoff. Formally, he chooses his optimal action a∗IB to solve the following

maximization problem

max
aIB∈{{NU},{U,β̂}}

1aIB={U,β̂} · [εA(1− ψ, µs) + (1− ε)B(β̂, µs)].

To derive the investment bank’s optimal action, we first characterize the investment bank’s

optimal planned retention β̂ if he chooses to underwrite based on the observed signal in the

proposition below.

Proposition 8 (Investment bank’s optimal planned retention): If the investment bank de-

cides to underwrite, it is a dominant strategy for him to choose an initial retention β̂ = φ
1+φ

before demand uncertainty is unraveled.

Proposition 8 implies that the investment bank’s planned retention is independent of the

issuer’s disclosure. And such planned purchase serves as an insurance scheme against the

demand uncertainty. The result can be understood in the following way. If demand shock
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happens, the investment bank is forced to complete the deal by acquiring all the remaining

(1 − ψ) shares. In this case any ex ante planned retention β̂ ≤ 1 − ψ will not affect his

expected payoff. Meanwhile, any initial stake that is larger than (1 − ψ) is never optimal.

As we have seen in Proposition 4, any stake β that is larger than φ
1+φ

for the range of

more uncertain beliefs (µ, µ) is sub-optimal in that it incurs more cost of capital while the

informed trading profits become less owing to lower liquidity φ(1− β). Therefore, acquiring

a stake that is larger than (1 − ψ) is even less desirable. When there is no demand shock,

a retention which is just enough for the investment bank to camouflage as liquidity traders,

i.e. φ
1+φ

, is optimal as we have shown before. Consequently, it is optimal for the investment

bank to choose an initial retention β̂ = φ
1+φ

. In order for the investment bank to underwrite,

his expected payoff should be at least zero. Compared with the cut-off posteriors µ and µ

before, it is obvious that the new thresholds satisfy µ∗ > µ and µ∗ < µ. It is because at

the old posteriors the investment bank’s expected payoff when demand shock happens, i.e.

A(µs), will be strictly negative as a result of the higher-than-optimum retention (1 − ψ).

Thus only a larger lower bound µ∗ and a smaller upper bound µ∗ will suffice to make the

investment bank just break-even by accepting to underwrite.

Recall that U2
IB(β̂, µs) ≡ εA(µs) + (1 − ε)B(β̂, µs) is the investment bank’s expected

payoff conditional on posterior µs if he accepts to underwrite. And β̂ represents his planned

retention before demand uncertainty is resolved. We summarize our discussion above in

Lemma 3.

Lemma 3 (Indifference cut-off posteriors II):

1. There exists a pair {µ∗, µ∗} with 0 < µ < µ∗ < 1
2
< µ∗ < µ < 1 such that

U2
IB( φ

1+φ
, µ∗) = U2

IB( φ
1+φ

, µ∗) = 0.

2. U2
IB( φ

1+φ
, µs) > 0 if µs ∈ (µ∗, µ∗), and U2

IB( φ
1+φ

, µs) < 0 if µs ∈ [0, µ∗) or µs ∈ (µ∗, 1].

Unlike before, if the investment bank’s expected payoff is negative conditional on the

observed signal s, he will choose not to underwrite. This happens when the induced posterior
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µs lies in either [0, µ∗) or (µ∗, 1]. In general, the bank will not always underwrite, and he

withdraws from underwriting when µs ∈ [0, µ∗) ∪ (µ∗, 1]. Proposition 9 summarizes the

investment bank’s best response to different posteriors induced by the issuer’s disclosure

system and his equilibrium payoff given his optimal action.

Proposition 9 (Investment bank’s optimal strategy and relevant payoffs II): The investment

bank’s optimal action is

a∗IB(µs) =


Underwrite and β̂∗ = φ

1+φ
if µs ∈ [µ∗, µ∗],

Not Underwrite if µs ∈ [0, µ∗) ∪ (µ∗, 1].

His equilibrium payoff is

Û2
IB(µs) =


U2
IB( φ

1+φ
, µs) if µs ∈ [µ∗, µ∗],

0 if µs ∈ [0, µ∗) ∪ (µ∗, 1].

Since β̂∗ in equilibrium depends on the posterior µs only, we can simply write the invest-

ment bank’s expected payoff as Û2
IB(µs), a function of µs too. In Figure 6, the red dashed line

depicts the investment bank’s expected payoff given his optimal action a∗IB, while the yellow

solid line is his expected payoff if he sticks to a planned retention β̂ = φ
1+φ

regardless of his

posterior. For comparison, we also draw the investment bank’s expected payoff if he always

retains φ
1+φ

shares when there is no demand uncertainty (i.e. the blue dashed line, which

corresponds to the blue solid line in Figure 4). The yellow line is beneath the blue dashed

one in that the presence of possible demand shock extracts a rent from the investment bank

thus decreases its expected payoff in general. In this case the two cut-off posteriors are less

dispersed. Indeed, to induce the investment bank to underwrite, higher uncertainty in the

primary market is needed. Then the losses due to unfortunate retention can be offset by

larger trading profits from the underwriter’s private information in the secondary market.
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Figure 6: The investment bank’s payoff (ii)

Accordingly, when the uncertainty in the primary market is relatively small (i.e. µs ∈

[0, µ∗) ∪ (µ∗, 1]), the investment bank’s private information is less valuable and on average

he expects to suffer a loss from accepting to underwrite. His optimal strategy is to withdraw

from underwriting the issue. Only when the uncertainty is relatively large (i.e. µs ∈ [µ∗, µ∗])

can the investment bank’s expected loss from unfortunate retention be compensated by his

informed trading profits owing to more valuable private information. In this case, he will

agree to underwrite even though he may end up with more retention than he originally plans.

4.2.2 Optimal Disclosure System II

Since we have solved for the optimal strategy of the investment bank, it is easy to derive the

issuer’s expected proceeds from security issuance conditional on different signal realizations

at T = 1.

Proposition 10 (Issuer’s payoff after information design II):

1. When µs ∈ [0, µ∗) ∪ (µ∗, 1], the investment bank does not underwrite, and U2
E(µs) = 0.
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Figure 7: The issuer’s payoff (ii)

2. When µs ∈ [µ∗, µ∗], U2
E(µs) ≡ U2

E( φ
1+φ

, µs) = εP0(1− ψ, µs) + (1− ε)P0( φ
1+φ

, µs)

= µs∆V + VL −
(1− µs)µs(1− γ)γφ∆V

µsγ + (1− µs)(1− γ)
.

The second part of Proposition 10 implies that the issue prices are the same under two

different levels of retention by the investment bank, (1 − ψ) and φ
1+φ

. This is because as

long as the bank acquires a stake of at least φ
1+φ

, the issue price will always have an adverse

selection discount. Yet such discount does not vary with the investment bank’s retention

in that each participant investor’s expected loss per share from trading in the secondary

market is independent of the investment bank’s ultimate stake β, a result that has already

been shown in Proposition 2. From Proposition 10 it is easy to see that conditional on signal

s, the issuer’s expected revenue U2
E(β̂∗, µs) depends on posterior µs only, thus we denote it

by U2
E(µs).

At T = 0, taking into account the optimal action that will be taken by the investment

bank at different posteriors, the issuer designs the disclosure system to maximize her expected

36



payoff. In particular, she chooses a distribution of posteriors to solve

Û2
E(µ0) ≡ max

{µ`,µh}
Eπ[U2

E(µs)]

s.t. a∗IB(µs) = arg max
aIB∈{{U,β̂}, {NU}}

1{aIB={U,β̂}} · U
2
IB(β̂, µs),

P[s = h] · µh + P[s = `] · µ` = µ0,

P[s = h] + P[s = `] = 1.

The first constraint concerns the investment bank’s optimal underwriting decision, and

his planned retention if he chooses to underwrite. The second constraint is the Bayesian

plausibility condition. The third constraint ensures that the sum of probabilities of high

signal h and low signal ` equals 1. We solve this constrained maximization problem by

finding the concave closure of U2
E(µs). In Figure 7 the black solid line depicts the issuer’s

expected payoff U2
E(µs) as characterized in Proposition 10. The blue dashed line is the

concave closure of U2
E(µs), which is denoted by Û2

E(µs). Hence we can read off the optimal

disclosure system directly from the graph.

Proposition 11 (Optimal information design II): At T = 0, the issuer’s optimal disclosure

policy is:

1. If µs ∈ [0, µ∗), the optimal disclosure system has πB =
µ0(1−µ∗)
µ∗(1−µ0)

and πG = 1, yielding

posteriors µ` = 0 and µh = µ∗.

2. If µs ∈ (µ∗, µ∗), the optimal disclosure system has πG =
µ∗(µ0−µ∗)
µ0(µ∗−µ∗) and πB =

(1−µ∗)(µ0−µ∗)
(1−µ0)(µ∗−µ∗) ,

yielding posteriors µ` = µ∗ and µh = µ∗.

3. If µs ∈ (µ∗, 1], the optimal disclosure system has πB = µ0−µ∗
µ0(1−µ∗) and πG = 0, yielding

posteriors µ` = µ∗ and µh = 1.

4. If µ0 = µ∗ or µ∗, the optimal disclosure system has πG = πB ∈ (0, 1), and is therefore

completely uninformative, yielding posteriors µ` = µh = µ0.
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Again, we have characterized the sender-preferred equilibrium. At the two cut-off poste-

riors µ∗ and µ∗, the investment bank is indifferent between declining and underwriting with

a planned retention φ
1+φ

. Yet the latter is strictly preferred by the issuer in that she would

otherwise fail to issue the security. So we assume that for the sake of the issuer’s interest, the

investment bank will underwrite when he is indifferent. Here the merit of strategic disclo-

sure lies in that even though an ex ante prior µ0 ∈ (0, µ∗)∪ (µ∗, 1) implies failure of issuance

owing to the investment bank’s unwillingness to underwrite, the optimal disclosure policy

is still able to induce the investment bank to underwrite with strictly positive probability.

In this sense, strategic disclosure may solve the hold-up problem introduced by the demand

shock in the primary market. The other advantage of this disclosure policy manifests in

that when uncertainty is higher µ0 ∈ (µ∗, µ∗), the expected issue-price discount is reduced

compared with that under no informative disclosure, as is clear from the wedge between the

blue dashed line and the black line in Figure 7.

Moreover, although the optimal disclosure reduces payoff uncertainty on average, with

some particular signal realization, the uncertainty is actually enhanced. For instance, if the

prior µ0 ∈ (0, µ∗), an h signal leads to a posterior belief of µ∗. And µ∗ is more uncertain

than µ0 as it has higher entropy. When the signal realization is `, the disclosure is fully

revealing and the underlying state is B. The same logic applies to posterior µ∗ induced

by signal ` as it has higher entropy than µ0 when µ0 ∈ (µ∗, 1). And an h signal indicates

that the state is G. Thanks to the Bayesian plausibility constraint, the strategic disclosure

by the issuer can induce the investment bank to underwrite with positive probability and

balances this with a worse belief that leaves the bank’s underwriting decision unchanged,

which generally improves the issuer’s expected payoff. The optimal disclosure is such that

on the one hand it induces the worst beliefs which lead to the investment bank’s withdrawal

from underwriting, and on the other hand it generates signals that make the investment

bank just willing to underwrite at the other beliefs. At these beliefs that the underwrite

chooses to underwrite, the security’s uncertainty is in fact enhanced, and the underwriter’s
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private information becomes sufficiently valuable, although on average the disclosure system

reduces the uncertainty compared with the situation at the prior belief. In the meantime the

issuer’s expected proceeds from the issue is maximized. In this regard, the optimal disclosure

features a mechanism in which the increased payoff uncertainty can offset the loss brought

about by the demand uncertainty so that the investment bank will change to the better

action that is favored by the issuer.

Nevertheless, a posterior of either µ∗ or µ∗ does not necessarily mean that the demand risk

is alleviated. In fact it is entirely possible that the investment bank will acquire more than

his planned retention eventually. Our result sheds some light on the empirically documented

“Pipeline Risk” (or “Unfortunate Retention”) in leveraged loan syndication by Bruche, Mal-

herbe, and Meisenzahl (2018). We have shown that because of the issuer’s disclosure policy,

even in the presence of demand uncertainty a fully rational investment bank will still agree

to underwrite. But when demand shock happens, the investment bank will suffer large losses

as a result of excessive retention.

The next proposition provides some empirical predictions that relate the optimal disclo-

sure to various aspects of the primary and secondary markets.

Proposition 12 (Comparative statics II):

(1)
∂µ∗

∂ε
> 0 and ∂µ∗

∂ε
< 0.

(2)
∂µ∗

∂ψ
< 0 and ∂µ∗

∂ψ
> 0.

(3)
∂µ∗

∂VL
> 0 and ∂µ∗

∂VL
< 0.

(4) Recall that η = ∆V
VL

, then
∂µ∗

∂η
< 0 and ∂µ∗

∂η
> 0.

(5)
∂µ∗

∂r
> 0 and ∂µ∗

∂r
< 0.

(6)
∂µ∗

∂φ
< 0 and ∂µ∗

∂φ
> 0.

From result (1), it is easy to see that as the probability of demand shock in the pri-

mary market becomes higher, the two cut-off posteriors shrink inward. So when the prior
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belief about the security’s cash flow is relatively more uncertain (i.e. µ0 ∈ (µ∗, µ∗)), higher

likelihood of under-subscription results in less transparent disclosure designed by the issuer.

Indeed, since the demand shock is more likely to occur in the primary market, in order for

the investment bank to at least stay break-even from underwriting the issue, the disclosure

should bring in more uncertainty so that his stake carries more trading value with his private

information in the secondary market. And the additional informed trading profits can offset

his expected loss from “unfortunate retention” due to demand shock. Anticipating this, the

issuer will employ a relatively more opaque disclosure ex ante.

However, when the uncertainty about the security’s payoff is relatively low (i.e. µ0 ∈

(0, µ∗) or µ0 ∈ (µ∗, 1)), larger ε leads to more transparent disclosure. In this case, πB is

smaller, suggesting that the h signal is more indicative of the good state and the ` signal is

more indicative of the bad state. As in this case, only a marginally higher payoff uncertainty

will be enough to compensate for the additional expected loss due to higher probability of

demand shock and make the unwilling bank to accept the deal again at the high-uncertainty

posterior belief.

Result (2) contrasts with result (1) above: if demand shock happens, a stronger demand

(larger ψ), or equivalently, a smaller unfortunate retention (smaller (1 − ψ)) by the under-

writer, expands the two cut-off posteriors outward. Therefore, if demand shock happens, this

in turn reduces the additional cost of capital incurred from the investment bank’s unfortu-

nate retention and increases his future trading profits thanks to more liquidity traders. As a

result, when the ex ante payoff uncertainty is relatively large, a more transparent disclosure

will be employed in equilibrium as in this case marginally less uncertain cut-off posteriors

are enough to make the investment bank indifferent between whether or not to underwrite.

Nevertheless, when ex ante uncertainty is relatively small, a higher ψ result in less transpar-

ent disclosure. Both lower µ and higher µ bring about less transparent disclosure systems

for µ0 ∈ (0, µ∗) and µ0 ∈ (µ, 1) respectively. In both cases, due to Bayesian plausibility

condition, the probabilities of full revelation will be smaller, and the probabilities of the
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more uncertain posteriors will be higher, making the systems less informative.

The dichotomy remains valid regarding result (3). Higher VL (issue size or reservation

value of the firm) expands the range of posterior beliefs (µ, µ). As VL grows, it is more costly

for the investment bank to underwrite and retain a positive stake. So when prior belief

about the uncertainty of the security’s payoff is relatively large, marginally more uncertain

cut-off posteriors (i.e. higher µ and lower µ) should be generated for the system so that the

investment bank will be just willing to underwrite. Yet when the ex ante payoff uncertainty

is relatively small, both higher µ and lower µ result in more transparent disclosure systems

for µ0 ∈ (0, µ∗) and µ0 ∈ (µ, 1) respectively. So the probabilities of fully revealing states will

be higher, and the probabilities of the more uncertain posteriors will be lower, rendering the

systems more informative.

Result (4) asserts that higher growth option (η) gives rises to the expansion of (µ, µ).

When prior belief about uncertainty is relatively large, as growth option improves, the in-

vestment bank will benefit more from his informed sales in the secondary market. Hence the

optimal disclosure will be more informative as now marginally less uncertain cut-off poste-

riors are still able to induce the investment bank to underwrite. When the ex ante payoff

uncertainty is relatively small, better growth option leads to less informative disclosure. The

reasoning is similar to what we have discussed in result (3): less uncertain cut-off posteriors

give rise to higher probabilities of high-uncertainty posteriors and lower probability of fully

revealing signals. In addition, a less informative information disclosure arises naturally in

equilibrium.

With the same token, result (5) states that higher r makes the disclosure system less

informative when ex ante uncertainty is relatively high, but it leads to less informative dis-

closure when the uncertainty is relatively low. Higher opportunity cost per unit of investment

by the bank makes him less willing to retain a positive stake at the old cut-off posteriors.

To induce him to underwrite and compensate his additional cost of capital, posteriors with

higher uncertainty must be generated from the optimal system.
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Likewise, the implications of result (6) depend on the prior µ0. When the ex ante payoff

uncertainty is relatively high, a more liquid secondary market leads to more transparent

disclosure. This is because better liquidity in the secondary market allows the underwriter

to gain more from trading on his private information. Therefore, a more transparent system,

although decreases the value of the investment bank’s private information, is still able to

make the investment bank just break-even by underwriting the deal. Yet when uncertainty

about the firm is relatively low, the disclosure becomes less transparent as the secondary

market liquidity increases. Recall that in order to change the investment bank’s decision of

not underwriting, the system should produce one particular signal which increases the payoff

uncertainty to the extent that the investment bank is just willing to serve as an underwriter.

As liquidity pumps up, the optimal disclosure only needs to generate a marginally less

uncertain high-uncertainty posterior (higher µ∗ or lower µ∗) such that the bank still wants

to underwrite. As a result the disclosure becomes less informative than before.

5 No Short Sale Constraint (NSS)

In this section, we briefly layout the equilibria by relaxing the previous assumption that the

underwriter is not allowed to sell the security short in the secondary market. We also assume

that short sale does not incur any other cost to the underwriter. As before, we divide into

two scenarios: 1. the security can always be fully subscribed by the participant investors

even in the absence of underwriter retention; and 2. there is demand uncertainty in the

primary market. In face, in case 2, the results on the optimal disclosure we have obtained

with short-selling constraint extend to the scenario without the ban on short sale.

5.1 No Demand Uncertainty (NDU)

We first consider the case in which there is neither demand uncertainty in the primary market

nor ban on short sale in the secondary market. Since the demand for the security will never
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Figure 8: The investment bank’s payoff (iii)

fall short of the supply, the investment bank is always willing to underwrite.

Proposition 13 (Investment bank’s optimal retention): It is optimal for the investment

bank to retain zero stake in the primary market regardless of the signal realization (i.e.

β∗(µs) = 0).

The intuition is fairly straightforward: recall from Part 1 of Proposition 2, the under-

writing bank’s informed trading profits are proportional to the fraction of liquidity traders

(1 − β)φ. Hence such profits are maximized at β = 0 when the liquidity in the secondary

market is maximized. Since now the underwriter can sell the security short, he no longer has

to hold a stake, but is still able to camouflage as liquidity traders. Meanwhile, zero retention

is optimal in the primary market in that any positive retention in the primary market would

incur an opportunity cost for the investment bank while his gain per share from primary

market underpricing is the same as his informed trading profit per share in the secondary

market. Hence the investment bank’s expected payoff is just his expected trading profits

from the secondary market:

Û3
IB(µs) = U3

IB(0, µs) ≡
(1− µs)µs(1− γ)γφ∆V

µsγ + (1− µs)(1− γ)
.
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Figure 9: The issuer’s payoff (iii)

Figure 8 depicts the investment bank’s expected payoff as a function of the posterior

belief µs. And given the investment bank’s zero retention and short-sale trading strategy,

from Part 2 of Proposition 2 the issuer’s expected proceeds conditional on signal s at T = 1

is

U3
E(µs) ≡ (µs∆V + VL)− (1− µs)µs(1− γ)γφ∆V

µsγ + (1− µs)(1− γ)
.

To solve the optimal information design problem faced by the issuer at T = 0, it suffices

to find the concave closure of U3
E(µs), which we denote by Û3

E(µs). In Figure 9, the black

line represents U3
E(µs) and the blue dashed line is its concave closure Û3

E(µs). Since U3
E(µs)

is concave on the support of µs, the optimal disclosure system is fully revealing.

Proposition 14 (Optimal information design III): At T = 0, the issuer’s optimal disclosure

policy is completely informative, i.e. πG = 1 and πB = 0, yielding posteriors µ` = 0 and

µh = 1.

5.2 Demand Uncertainty (DU)

We next explore the scenario where there is demand uncertainty in the primary market.
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First suppose that the investment bank chooses to underwrite. Then if demand shock

does not happen, the investment bank’s optimal underwriting, retention and short selling

strategy coincides with what we have obtained in the previous subsection. Yet if demand

shock happens, the investment bank is forced to acquire a stake of (1 − ψ). As he is able

to short sell in the secondary market, his planned retention should still be zero before the

demand uncertainty is unraveled. His expected payoff from underwriting with zero planned

retention is

U4
IB(0, µs) ≡ ε·

{
(1− ψ) · [(µs∆V + VL)− (1 + r)P0(1− ψ, µs)] + ψ · (1− µs)µs(1− γ)γφ∆V

µsγ + (1− µs)(1− γ)

}

+(1− ε) · (1− µs)µs(1− γ)γφ∆V

µsγ + (1− µs)(1− γ)
,

where P0(1−ψ, µs) is the issue price defined in Part 2 of Proposition 2. The first term above

represents the investment bank’s expected payoff if demand shock happens while the second

is his expected payoff if the demand shock does not occur, both at posterior belief µs. The

second term is always strictly positive while the first one can be negative for some set of

beliefs which are associated with low uncertainty.

Consequently, choosing to underwrite regardless of his posterior belief is not a best re-

sponse for the investment bank. This is because when the ex ante uncertainty about the

security’s payoff is relatively small, the expected profits from trading on his private infor-

mation are far from enough to cover the investment bank’s opportunity cost of unfortunate

retention. Although the bank can always enjoy a strictly positive payoff from short sell-

ing when the demand shock does not occur, the investment bank’s expected payoff before

the resolution of the demand uncertainty under these low-uncertainty beliefs will still be

negative. As a result, the investment bank will shy away from underwriting the deal.

Lemma 4 (Indifference cut-off posteriors III):

1. There exists a pair {µ∗∗, µ∗∗} with 0 < µ∗∗ < µ∗ < 1
2
< µ∗ < µ∗∗ < 1 such that
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Figure 10: The investment bank’s payoff (iv)

U4
IB(0, µ∗) = U4

IB(0, µ∗∗) = 0.

2. U4
IB(0, µs) > 0 if µs ∈ (µ∗∗, µ∗∗), and ŨIB(0, µs) < 0 if µs ∈ [0, µ∗∗) or µs ∈ (µ∗∗, 1].

Proposition 15 (Investment bank’s optimal strategy and relevant payoffs III): The invest-

ment bank’s optimal action is

a∗IB(µs) =


Underwrite and β̂∗ = 0 if µs ∈ [µ∗∗, µ∗∗],

Not Underwrite if µs ∈ [0, µ∗∗) ∪ (µ∗∗, 1].

His equilibrium payoff is

Û4
IB(µs) =


U4
IB(0, µs) if µs ∈ [µ∗∗, µ∗∗],

0 if µs ∈ [0, µ∗∗) ∪ (µ∗∗, 1].
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In Figure 10, the green line depicts U4
IB(0, µs) (i.e. the investment bank’s expected payoff

from underwriting with zero planned retention) while the red dashed line depicts the invest-

ment bank’s expected payoff under his optimal underwriting and retention strategy. For

comparison, the yellow dashed line is the investment bank’s expected payoff by underwrit-

ing and retaining φ
1+φ

when there is demand uncertainty yet short sale is not allowed, the

scenario that we have discussed in Section 4.2. An interesting observation is that compared

with before, even if the issuer does not disclosure additional information, there is a wider

range of beliefs under which the investment bank is willing to underwrite. This is because

the feasibility of short sale by underwriter enables the investment bank to enjoy positive

expected payoffs under two sets of relatively less uncertainty beliefs (µ∗∗, µ∗) and (µ∗, µ∗∗).

The removal of short sale constraint reduces the total cost of capital due to primary mar-

ket retention to zero, yet allows the underwriter to trade more intensively on his private

information. In turn the indifference cut-off posteriors only need to involve less uncertainty.

Given the optimal strategy of the investment bank, the next proposition follows naturally.

Proposition 16 (Issuer’s payoff after information design III):

1. When µs ∈ [0, µ∗∗)∪(µ∗∗, 1], the investment bank does not underwrite, and U4
E(µs) = 0.

2. When µs ∈ [µ∗∗, µ∗∗], U4
E(µs) ≡ U4

E(β̂∗ = 0, µs) = (µs∆V + VL)− (1−µs)µs(1−γ)γφ∆V
µsγ+(1−µs)(1−γ)

.

Concavification of U4
E(µs) gives us the optimal disclosure system designed by the issuer

at T = 0, as illustrated in Figure 11.

Proposition 17 (Optimal information design III): At T = 0, the issuer’s optimal disclosure

policy is:

1. If µs ∈ [0, µ∗∗), the optimal disclosure system has πB =
µ0(1−µ∗∗)
µ∗∗(1−µ0)

and πG = 1, yielding

posteriors µ` = 0 and µh = µ∗∗.

2. If µs ∈ (µ∗∗, µ∗∗), the optimal disclosure system has πG =
µ∗∗(µ0−µ∗∗)
µ0(µ∗∗−µ∗∗) and πB =

(1−µ∗∗)(µ0−µ∗∗)
(1−µ0)(µ∗∗−µ∗∗) , yielding posteriors µ` = µ∗∗ and µh = µ∗∗.
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Figure 11: The issuer’s payoff (iv)

3. If µs ∈ (µ∗∗, 1], the optimal disclosure system has πB = µ0−µ∗∗
µ0(1−µ∗∗) and πG = 0, yielding

posteriors µ` = µ∗∗ and µh = 1.

4. If µ0 = µ∗∗ or µ∗∗, the optimal disclosure system has πG = πB ∈ (0, 1), and is therefore

completely uninformative, yielding posteriors µ` = µh = µ0.

Proposition 18 (Comparative statics III):

(1)
∂µ∗∗

∂ε
> 0 and ∂µ∗∗

∂ε
< 0.

(2)
∂µ∗∗

∂ψ
< 0 and ∂µ∗∗

∂ψ
> 0.

(3)
∂µ∗∗

∂VL
> 0 and ∂µ∗∗

∂VL
< 0.

(4) Recall that η = ∆V
VL

, then
∂µ∗∗

∂η
< 0 and ∂µ∗∗

∂η
> 0.

(5)
∂µ∗∗

∂r
> 0 and ∂µ∗∗

∂r
< 0.

(6)
∂µ∗∗

∂φ
< 0 and ∂µ∗∗

∂φ
> 0.

Note that Proposition 17 and 18 are identical to what we have obtained in Proposition

11 and 12. Therefore, all the intuitions go through.
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6 Welfare Analysis

We have explored the four possible scenarios: 1. (No Short Sale, No Demand Uncertainty),

2. (No Short Sale, Demand Uncertainty), 3. (Short Sale, No Demand Uncertainty), and

4. (Short Sale, Demand Uncertainty). Now suppose that the economy is populated with a

continuum of mass 1 issuers with their types µ0 drawn from a uniform distribution U [0, 1],

and each issuer invites an investment bank to underwrite.10

Let i ∈ {1, 2, 3, 4} denote one of the above four scenarios. Recall that U i
E(µ0) is a

type-µ0 issuer’s expected payoff and Û i
IB(µ0) is the relevant investment bank’s expected

payoff conditional on his prior (or equivalently if the issuer does not disclose additional

information). Moreover, Û i
E(µ0) is the type-µ0 issuer’s maximized expected payoff under

optimal disclosure system in scenario i.11 Since the optimal disclosure always makes the

investment bank just break-even at any of the posteriors induced by the signal generated

from the optimal system, the investment bank’s expected utility will be zero given the issuer’s

optimal disclosure strategy.

Therefore, if the issuers do not disclose additional information at T = 0, their welfare in

scenario i is

WE(i) ≡
∫ 1

0

U i
E(µ0) dµ0,

and the investment banks’ welfare in scenario i is

WIB(i) ≡
∫ 1

0

Û i
IB(µ0) dµ0.

10Alternatively, assume that a generic issuer has type µ0 ∼ U [0, 1]. Hence the welfare is just the issuer’s
expected payoff.

11Note that we have already characterized U iE(µ0), U iIB(µ0), and Û iE(µ0), each corresponds to the issuer’s
expected payoff at T = 1 given the investment bank’s best response (the black solid line in Figure 5, 7, 9, and
11), the investment bank’s expected payoff at T = 1 with his optimal underwriting and retention decision
(the red dashed line in Figure 4, 6, 8, and 10), and the issuer’s expected payoff at T = 0 under the optimal
disclosure system (the blue dashed line in Figure 5, 7, 9, and 11).
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The issuers’ welfare with their optimal disclosure policies in scenario i is

ŴE(i) ≡
∫ 1

0

Û i
E(µ0) dµ0.

We first look at the investment banks’ welfare if the issuers do not disclose any informative

signal. The ranking of their welfare in the four scenarios depends on the probability of

demand shocks ε.

Proposition 19 (Investment banks’ welfare):

(1) When 0 < ε < φ
(1−ψ)(1+φ)

,

µs
0 1µ∗∗ µ µ∗ µ∗ µ µ∗∗

WIB(SS,NDU) > WIB(SS,DU) > WIB(NSS,NDU) > WIB(NSS,DU).

(2) When φ
(1−ψ)(1+φ)

< ε < 1,

µs
0 1µ µ∗∗ µ∗ µ µ∗ µ∗∗

WIB(SS,NDU) > WIB(NSS,NDU) > WIB(SS,DU) > WIB(NSS,DU).

(3) When ε = φ
(1−ψ)(1+φ)

,

µs
0 1µ=µ∗∗ µ∗ µ∗ µ=µ∗∗

WIB(SS,NDU) > WIB(NSS,NDU) = WIB(SS,DU) > WIB(NSS,DU).

The red, blue, and black cut-offs posteriors represent the threshold beliefs that make the

investment bank just break-even as an underwriter in scenarios (SS, DU), (NSS,NDU), and

(NSS, DU) respectively. And {0, 1} are relevant beliefs in scenario (SS,NDU). In general,
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the more dispersed the cut-off posteriors, the better off the investment banks as a whole.

(NSS,DU) is the least desirable. This is because demand uncertainty gives rise to possible

unfortunate retention by the investment banks. Furthermore, the ban on short sale forces

the investment bank to retain a stake so that he can trade strategically. Yet his stake

incurs additional cost of bank capital. In contrast, (SS,NDU) renders the investment banks

the highest welfare in that they can always sell the security short to gain informed trading

profits in the secondary market while they do not have to acquire any stake in the primary

market. The comparison between the welfare of the remaining two scenarios is more involved.

When ε is small (Case (1)), the investment banks’ welfare is still higher if short sale is allowed

compared to the scenario where there is no demand uncertainty but short selling is banned.

Yet when ε is large (Case (2)), the investment banks are strictly better off without demand

uncertainty even if short sale is prohibited. The trade-off hinges on whether the gain brought

about by short sale is able to compensate for the loss due to the demand shock.

Finally, we summarize the rankings of the issuers’ welfare in the next proposition.

Proposition 20 (Issuers’ Welfare): If the issuers do not disclosure additional information,

their welfare have the following ranking:

WE(NSS,NDU) > WE(SS,NDU) > WE(SS,DU) > WE(NSS,DU).

Yet if they use Bayesian persuasion to maximize their expected proceeds,

ŴE(NSS,NDU) = ŴE(SS,NDU) > ŴE(SS,DU) > ŴE(NSS,DU).

A graphical illustration of Proposition 20 is given in Figure 12. The proposition asserts

that if issuers do not reveal informative signals, they achieve the highest welfare when there is

no demand uncertainty in the primary market and short sale is not allowed in the secondary
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Figure 12: The Entrepreneur’s Expected Payoffs

market. A primary market without demand uncertainty along with a short selling ban in

the secondary market delivers the issuers the second highest welfare. They are worse off

if demand shocks may happen in the primary market and underwriters are allowed to sell

the security short. Their welfare is the lowest if it is probable that the security will be

under-subscribed by participant investors in the primary market and there is short sale

constraint in the secondary market. From the perspective of the issuers, they strictly prefer

a primary market that has no demand uncertainty. Then the investment banks are always

willing to underwrite, and the issuers can sell off their securities with certainty. Absent

any possibility of demand shocks, they prefer a secondary market where underwriters are

prohibited from short selling the securities. However, if demand is uncertain, the option

of short sale allows the investment banks to reduce the opportunity cost associated with

primary market retention and gain more from informed trading when demand shocks do not

happen. This induces more banks to underwrite and thus enables more issuers to successfully

issue their securities.

Under the issuers’ optimal persuasion mechanisms, most parts of the ranking remain the

same. They still dislike demand uncertainty in the primary market. However, with strategic

disclosure the issuers will be indifferent between whether or not there is short sale constraint
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if there is no demand uncertainty. In both scenarios, the aim of the optimal disclosure is

to discourage the investment bank from trading on his private information in the secondary

market. To achieve this goal the optimal disclosure needs to be fully informative if short sale

is allowed in the secondary market while a partially informative disclosure suffices to do the

job if there is the short-sale ban.

7 Conclusion

This paper presents a novel Bayesian persuasion model of security offering and trading

with issuer’s strategic disclosure. We show that disclosure can be used to boost the issue’s

expected revenue, mitigate underpricing resulting from underwriter’s informed trading, and

increase the likelihood of security issue even when demand is weak and underwriters may shy

away. On average, the optimal disclosure reduces the uncertainty of the security’s payoff.

Nevertheless, full transparency is not always optimal. Signal realizations that introduce more

uncertainty can potentially solve the hold-up problem brought about by demand uncertainty.

In general, the optimal information design depends crucially on the ex ante level of payoff

uncertainty. We provide new empirical predictions which relate the informativeness of the

optimal disclosure to the issue size and the issuer’s growth option, the underwriter’s cost of

capital, the uncertainty about demand, and the secondary market liquidity. Moreover, the

underwriter in our model can be viewed as an existing blockholder in the firm who makes

decision on whether to support and participate in a security issue (e.g. seasoned debt/equity

offering). We show that the blockholder, by participating, may exert governance by exit to

push the firm to disclose more transparent information. In sum, corporate finance application

of information design theory appears to be a promising topic to work on. Future work can

be done by extending our model with issuer’s moral hazard and signal manipulation as well

as investors’ information acquisition. Empirical side, textually analysis of the information

memoranda and the prospectuses in both debt and equity issuance can be performed to test
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the new empirical predictions generated from our model.
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Appendix

Proof of Proposition 1. Suppose that the investment bank trades x when the state is G,

and z when the state is B. He incurs additional cost of capital if he further acquires shares

in the secondary market (i.e. either x > 0 or z > 0). And recall that u ≡ (1− β)φ.

State Liquidity Shocks ṽ Probability xPI xIB y

(I). G Yes VH µsγ −u x yI ≡ −u+ x

(II). G No VH µs(1− γ) 0 x yII ≡ x

(III). B Yes VL (1− µs)γ −u z yIII ≡ −u+ z

(IV). B No VL (1− µs)(1− γ) 0 z yIV ≡ z

To camouflage as liquidity traders, the investment bank has to design his trading strategy

such that two of the above four scenarios have the same aggregate order flows. This gives

four possibilities: yI= yIII (i.e. −u + x = −u + z), yI = yIV (i.e. −u + x = z), yII = yIII

(i.e. x = −u+ z) or yII = yIV (i.e. x = z). Note that the first and the last coincide. Hence

we investigate the following three cases: 1. x = z, 2. z = −u+ x, and 3. z = u+ x.

Case 1. x = z:

State Liquidity Shocks Probability xPI xIB y P1

(I). G Yes µsγ −u x −u+ x µsγ∆V
µsγ+(1−µs)γ + VL

(II). G No µs(1− γ) 0 x x µs(1−γ)∆V
µs(1−γ)+(1−µs)(1−γ)

+ VL

(III). B Yes (1− µs)γ −u x −u+ x µsγ∆V
µsγ+(1−µs)γ + VL

(IV). B No (1− µs)(1− γ) 0 x x µs(1−γ)∆V
µs(1−γ)+(1−µs)(1−γ)

+ VL

It is easy to see that P1 = µs∆V + VL since the net order flows are only indicative of

whether or not there is liquidity shock, but reveals no information concerning the underlying

state due to the investment bank’s consistent trading strategy regardless of his private infor-

mation. So the market maker will set a price to the intrinsic value of the security conditional
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on the posterior belief µs. The investment bank’s expected payoff from this trading strategy

is

Es[Π1] = [VH − (µs∆V + VL)][µsγ + µs(1− γ)]x

+[VL − (µs∆V + VL)][(1− µs)γ + (1− µs)(1− γ)]x− 1{x>0} r(µs∆V + VL)x

= −1{x>0} r(µs∆V + VL)x

≤ 0.

Case 2. z = −u+ x:

State Liquidity Shocks Probability xPI xIB y P1

(I). G Yes µsγ −u x −u+ x µsγ∆V
µsγ+(1−µs)(1−γ)

+ VL

(II). G No µs(1− γ) 0 x x VH

(III). B Yes (1− µs)γ −u −u+ x −2u+ x VL

(IV). B No (1− µs)(1− γ) 0 −u+ x −u+ x µsγ∆V
µsγ+(1−µs)(1−γ)

+ VL

The investment bank’s expected trading profits from this trading strategy are

Es[Π2] =

(
VH −

µsγ∆V

µsγ + (1− µs)(1− γ)
− VL

)
µsγx

+

(
VL −

µsγ∆V

µsγ + (1− µs)(1− γ)
− VL

)
(1− µs)(1− γ)(−u+ x)

−1{x>0} rx

[
µsγ

µsγ∆V

µsγ + (1− µs)(1− γ)
+ VL + µs(1− γ)VH

]
−1{−u+x>0} r(−u+ x)

[
(1− µs)γVL + (1− µs)(1− γ)

(
µsγ∆V

µsγ + (1− µs)(1− γ)
+ VL

)]
=

µsγ(1− µs)(1− γ)∆V

µsγ + (1− µs)(1− γ)
· u− 1{x>0} rx

[
µsγ

µsγ∆V

µsγ + (1− µs)(1− γ)
+ VL + µs(1− γ)VH

]
−1{−u+x>0} r(−u+ x)

[
(1− µs)γVL + (1− µs)(1− γ)

(
µsγ∆V

µsγ + (1− µs)(1− γ)
+ VL

)]
≤ µsγ(1− µs)(1− γ)∆V

µsγ + (1− µs)(1− γ)
· u.
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In this case, it is optimal to set x = 0 and z = −u such that the investment bank can achieve

the maximal expected trading profits µsγ(1−µs)(1−γ)∆V
µsγ+(1−µs)(1−γ)

· u while do not incur additional cost

of capital from acquiring shares in the secondary market. It is an informed sales equilibrium

where the investment bank only sell his stake when his private information is unfavorable.

Moreover, such trading strategy is sequentially rational as well.

Finally, we consider Case 3. (z = u+ x):

State Liquidity Shocks Probability xPI xIB y P1

(I). G Yes µsγ −u x −u+ x VH

(II). G No µs(1− γ) 0 x x µs(1−γ)∆V
µs(1−γ)+(1−µs)γ + VL

(III). B Yes (1− µs)γ −u u+ x x µs(1−γ)∆V
µs(1−γ)+(1−µs)γ + VL

(IV). B No (1− µs)(1− γ) 0 u+ x u+ x VL

His relevant expected trading profits are

Es[Π3] =

[
VH −

µs(1− γ)∆V

µs(1− γ) + (1− µs)γ
− VL

]
µs(1− γ)x

+

[
VL −

µs(1− γ)∆V

µs(1− γ) + (1− µs)γ
− VL

]
(1− µs)γx

−1{x>0} rx

[
µsγVH + µs(1− γ)

(
µs(1− γ)∆V

µs(1− γ) + (1− µs)γ
+ VL

)]
−1{x+u>0} r(x+ u)

[
(1− µs)γ

(
µs(1− γ)∆V

µs(1− γ) + (1− µs)(1− γ)
+ VL

)
+ (1− µs)γVL

]
≤ −1{x>0} rx

[
µsγVH + µs(1− γ)

(
µs(1− γ)∆V

µs(1− γ) + (1− µs)γ
+ VL

)]
−1{x+u>0} r(x+ u)

[
(1− µs)γ

(
µs(1− γ)∆V

µs(1− γ) + (1− µs)(1− γ)
+ VL

)
+ (1− µs)γVL

]
≤ 0.

This strategy is obviously suboptimal.

In sum, the investment bank’s optimal trading strategy is xIB = 0 in state G and

xIB = −u in state B. This gives the equilibrium characterized in Proposition 1. �
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Proof of Lemma 2.

U1
IB(

φ

1 + φ
, µs) =

φ

1 + φ

[
(µs∆V + VL)− (1 + r)P0(

φ

1 + φ
, µs)

]
+

1

1 + φ
· (1− µs)µs(1− γ)γφ∆V

µsγ + (1− µs)(1− γ)

=
φ

1 + φ
·
[
−r(µs∆V + VL) + (1 + r) · µs(1− µs)γ(1− γ)φ∆V

µsγ + (1− µs)(1− γ)

]
+

1

1 + φ
· µs(1− µs)γ(1− γ)φ∆V

µsγ + (1− µs)(1− γ)

=
φ

1 + φ
· {−rEs[ṽ] + (1 + r)∆P}+

1

1 + φ
·∆P

= − rφ

1 + φ
· Es[ṽ] +

(
1 +

rφ

1 + φ

)
·∆P.

Note that

∂ Es[ṽ]

∂µs
=
∂(µs∆V + VL)

∂µs
= ∆V,

∂2 Es[ṽ]

∂µ2
s

= 0,

and

∂∆P

∂µs
=

∂

∂µs

(
µs(1− µs)γ(1− γ)φ∆V

µsγ + (1− µs)(1− γ)

)
= γ(1− γ)φ∆V · (1− 2γ)µ2

s − 2(1− γ)µs + (1− γ)

[µsγ + (1− µs)(1− γ)]2
.

Moreover,

∂2 ∆P

∂µ2
s

= γ(1− γ)φ∆V · −2γ(1− γ)

[µsγ + (1− µs)(1− γ)]3
< 0.

Therefore

∂ U1
IB

∂µs
= −rφ∆V

1 + φ
+

(
1 +

rφ

1 + φ

)
· γ(1− γ)φ∆V [(1− 2γ)µ2

s − 2(1− γ)µs + (1− γ)]

[µsγ + (1− µs)(1− γ)]2
,

and

∂2 U1
IB

∂µ2
s

=

(
1 +

rφ

1 + φ

)
·
(
∂2 ∆P

∂µ2
s

)
< 0,
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i.e. U1
IB is concave and ∂U1

IB/∂µs is decreasing in µs ∈ (0, 1).

To ensure that the interior optimum is attained at some µ∗ ∈ (0, 1), the following must

be satisfied:

∂ U1
IB

∂µs

∣∣∣∣
µs=0

= −rφ∆V

1 + φ
+

(
1 +

rφ

1 + φ

)
γφ∆V > 0;

∂ U1
IB

∂µs

∣∣∣∣
µs=1

= −rφ∆V

1 + φ
−
(

1 +
rφ

1 + φ

)
(1− γ)φ∆V < 0.

The first implies that r < γ(1+φ)
1−γφ while the second is always satisfied. Then ∂U1

IB/∂µs = 0

when µs = µ∗. And for µs ∈ [0, µ∗), ∂U1
IB/∂µs > 0 yet ∂U1

IB/∂µs < 0 for µs ∈ (µ∗, 1].

Therefore, U1
IB is single-peaked and has a hump shape on [0, 1].

Since from above we know that

U1
IB(

φ

1 + φ
, µs) = − rφ

1 + φ
· (µs∆V + VL) +

(
1 +

rφ

1 + φ

)
· (1− µs)µs(1− γ)γφ∆V

µsγ + (1− µs)(1− γ)
,

it is obvious that there always exists a set of µs ∈ (0, 1) such that U1
IB( φ

1+φ
, µs) > 0 as

long as r is not too large. In particular, we impose that for µs = 1
2
, U1

IB( φ
1+φ

, 1
2
) > 0.

This implies r < γ(1−γ)(1+φ)∆V
∆V−γ(1−γ)φ∆V+2VL

. Therefore, 0 < r < min{γ(1+φ)
1−γφ ,

γ(1−γ)(1+φ)∆V
∆V−γ(1−γ)φ∆V+2VL

}, i.e.

r ∈ (0, γ(1−γ)(1+φ)∆V
∆V−γ(1−γ)φ∆V+2VL

).

In the meantime, U1
IB( φ

1+φ
, 0) = −φrVL

1+φ
< 0 and U1

IB( φ
1+φ

, 1) = −φr(∆V+VL)
1+φ

< 0. Hence

there must be a pair of {µ, µ} with 0 < µ < 1
2
< µ < 1 such that U1

IB( φ
1+φ

, µ) = U1
IB( φ

1+φ
, µ) =

0. In addition, U1
IB( φ

1+φ
, µs) > 0 if µs ∈ (µ, µ), and U1

IB( φ
1+φ

, µs) < 0 if µs ∈ [0, µ) ∪ (µ, 1].

Last but not least, it follows naturally that ∂U1
IB/∂µs > 0 at µs = µ but ∂U1

IB/∂µs < 0

at µs = µ, an important observation that will be useful to calculate the comparative statics

of the optimal disclosure later. �

Proof of Proposition 4. When β ∈ [ φ
1+φ

, 1), there will be discount in the issue price. And

U1
IB(β, µs) = β{−rEs[ṽ] + (1 + r)∆P}+ (1− β)∆P.
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Note that

{−rEs[ṽ] + (1 + r)∆P} −∆P = −r(Es[ṽ]−∆P )

= −r
[
VL + µs∆V ·

µsγ + (1− µs)(1− γ)(1− γφ)

µsγ + (1− µs)(1− γ)

]
< 0.

Hence to maximize U1
IB(β, µs), we want (1−β) to be as large as possible. This is achieved by

choosing the smallest β = φ
1+φ

such that informed trading is still feasible. And it is easy to

see that U1
IB( φ

1+φ
, µs) > U1

IB(1−, µs) for all µs ∈ (0, 1). So in equilibrium, stake φ
1+φ

strictly

dominates stake 1−. Moreover, we know that for β = 0, U1
IB(0, µs) = 0, and for β = 1,

U1
IB(1, µs) < 0. So β = 0 strictly dominates β = 1. To characterize the investment bank’s

optimal retention at posterior belief µs, it suffices to compare U1
IB(0, µs) with U1

IB( φ
1+φ

, µs).

From Lemma 2, it follows that the investment bank’s optimal stake is

β∗ =


φ

1+φ
if µs ∈ (µ, µ),

0 if µs ∈ [0, µ] ∪ [µ, 1].

And his equilibrium payoff is

Û1
IB(µs) =


U1
IB( φ

1+φ
, µs) if µs ∈ (µ, µ),

0 if µs ∈ [0, µ] ∪ [µ, 1].

Q.E.D. �

Proof of Proposition 5. From Proposition 4 we know that the investment bank will hold

a positive stake φ
1+φ

only when µs ∈ (µ, µ). So for this set of posterior beliefs, there will be

informed trading by the bank and thus an adverse selection discount in the issue price. And

64



the issuer’s expected proceeds are

U1
E(µs) = µs∆V + VL −

µs(1− µs)γ(1− γ)φ∆V

µsγ + (1− µs)(1− γ)
.

At any other posterior belief, the investment bank retains zero stake and cannot engage in

informed trading. The issue price will just be the intrinsic value of the security, i.e.

U1
E(µs) = µs∆V + VL.

Q.E.D. �

Proof of Proposition 6. At any prior belief µ0 ∈ [0, µ] ∪ [µ, 1], a sender-preferred equi-

librium prescribes that the investment bank should not retain any shares. In this case, the

issue price will be the expected value of the cash flows from the security with no discount.

Thus the issuer does not benefit from persuasion and the optimal disclosure system should

be completely uninformative, i.e πG = πB ∈ (0, 1), yielding posteriors µ` = µh = µ0.

At prior belief µ0 ∈ (µ, µ), the investment bank holds a strictly positive stake, and there

will be a discounted associated with the issue price. The issuer’s expected payoff under any

Bayesian plausible posteriors µh and µ` is

Eπ[U1
E(µs)] = Eπ[1{µ0∈[0,µ]∪[µ,1]} · (µs∆V + VL) + 1{µ0∈(µ,µ)}(µs∆V + VL −∆P )]

= P[µh] · [1{µh∈[0,µ]∪[µ,1]} · (µh∆V + VL) + 1{µh∈(µ,µ)}(µh∆V + VL −∆P )]

+P[µ`] · [1{µ`∈[0,µ]∪[µ,1]} · (µ`∆V + VL) + 1{µ`∈(µ,µ)}(µ`∆V + VL −∆P )]

≤ P(µh)(µh∆V + VL) + P(µ`)(µ`∆V + VL),

where the last inequality is satisfied with if µ` ∈ [0, µ], µh ∈ [µ, 1] and P(µh)µh +P(µ`) = µ0.

Hence the least informative optimal disclosure yields posteriors µ` = µ and µh = µ. In this

case Û1
E(µ0) = maxEπ[U1

E(µs)] = µ0∆V + VL. Using Bayes’ theorem, simple algebra gives

65



πB =
(1−µ)(µ0−µ)

(1−µ0)(µ−µ)
and πG =

µ(µ0−µ)

µ0(µ−µ)
. �

Proof of Proposition 7. Recall that µ and µ are two roots to the equation U1
IB( φ

1+φ
, µs) =

0. Write explicitly,

U1
IB(

φ

1 + φ
, µs) =

φ

1 + φ
·
[
−r(µs∆V + VL) + (1 + r) · µs(1− µs)γ(1− γ)φ∆V

µsγ + (1− µs)(1− γ)

]
+

1

1 + φ
· µs(1− µs)γ(1− γ)φ∆V

µsγ + (1− µs)(1− γ)

= 0.

Multiply both sides by 1+φ
φ

, and define

F (µs, θ) ≡
1 + φ

φ
· U1

IB(
φ

1 + φ
, µs)

= −r(µs∆V + VL) + [1 + (1 + r)φ] · µs(1− µs)γ(1− γ)∆V

µsγ + (1− µs)(1− γ)
,

where θ ∈ {VL, ∆
VL
, r, φ}. By the implicit function theorem, at µs = µ or µ,

∂F

∂µs
· ∂µs
∂θ

+
∂F

∂θ
= 0.

This gives

sign

(
∂µs
∂θ

)
= −sign

(
∂F

∂µs
· ∂F
∂θ

)
.

Next we calculate F (µs, θ)’s partial derivatives with respect to different θ ∈ {VL, η, r, φ}:

∂F

∂VL
= −r < 0;

∂F

∂r
= −VL − µs∆V

[
1− (1− µs)(1− γ)γφ

µsγ + (1− µs)(1− γ)

]
< 0;

∂F

∂φ
= (1 + r) · µs(1− µs)γ(1− γ)∆V

µsγ + (1− µs)(1− γ)
> 0.
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Define η ≡ ∆V
VL

, and

f ≡ F

∆V
= −r(µs∆V +

1

η
) + [1 + (1 + r)φ] · µs(1− µs)γ(1− γ)

µsγ + (1− µs)(1− γ)
.

So

∂f

∂η
=

r

η2
> 0 ⇒ ∂F

∂η
=
r∆V

η2
> 0.

Moreover, in the proof of Lemma 2 we have shown that ∂F
∂µs

> 0 at µs = µ but ∂F
∂µs

< 0 at

µs = µ. Consequently, we have (1)
∂µ

∂VL
> 0 and ∂µ

∂VL
< 0; (2)

∂µ

∂η
< 0 and ∂µ

∂η
> 0; (3)

∂µ

∂r
> 0

and ∂µ
∂r
< 0; (4)

∂µ

∂φ
< 0 and ∂µ

∂φ
> 0. �

Proof of Proposition 8. If the investment bank chooses to underwrite and his planned

retention is β̂, we can write his expected payoff as

U2
IB(β̂, µs) = εA(1− ψ, µs) + (1− ε)B(β̂, µs) = [ε(1− ψ) + (1− ε)β̂] · [−rEs[ṽ] + (1 + r)∆P ]

+[εψ + (1− ε)(1− β̂)] ·∆P.

Recall from the proof of Proposition 4 that −rEs[ṽ] + (1 + r)∆P < ∆P , thus we want β̂

to be as small as possible yet such stake still allows the underwriter to engage in informed

trading if demand shock does not happen. The optimal planned retention is β̂ = φ
1+φ

, the

stake that is just enough for the bank to camouflage as liquidity traders. �

Proof of Lemma 3. The proof resembles that of Lemma 2. Specifically, the equation now

becomes

U2
IB(

φ

1 + φ
, µs) = [ε(1− ψ) + (1− ε)β̂][−rEs[ṽ] + (1 + r)∆P ] + [εψ + (1− ε)(1− β̂)]∆P

= 0.

∂2 U2
IB

∂µ2s
< 0 because ∂2 ∆P

∂µ2s
< 0. So U2

IB is concave in µs. To ensure that the interior optimum
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is attained at some µ∗ ∈ (0, 1), the following must be satisfied:

∂ U2
IB

∂µs

∣∣∣∣
µs=0

= −Kr∆V + [(1 + r)K + (1−K)]γφ∆V > 0;

∂ U2
IB

∂µs

∣∣∣∣
µs=1

= −Kr∆V − [(1 + r)K + (1−K)](1− γ)φ∆V < 0,

where K ≡ ε(1−ψ)+(1− ε)( φ
1+φ

) and 1−K = εψ+(1− ε)( 1
1+φ

). The first inequality implies

r <
γφ(1 + φ)

[(1 + φ)(1− ψ)ε+ φ(1− ε)](1− γφ)
,

while the second is always satisfied.

Some simple algebra reveals that U2
IB( φ

1+φ
, 0) < 0 and U2

IB( φ
1+φ

, 1) < 0. Moreover, we

need U2
IB( φ

1+φ
, 1

2
) > 0. This implies

r <
γφ(1 + φ)(1− γ)∆V

[(1 + φ)(1− ψ)ε+ φ(1− ε)][∆V − γφ(1− γ)∆V + 2VL]
.

Therefore, r < min
{

γφ(1+φ)
[(1+φ)(1−ψ)ε+φ(1−ε)](1−γφ)

, γφ(1+φ)(1−γ)∆V
[(1+φ)(1−ψ)ε+φ(1−ε)][∆V−γφ(1−γ)∆V+2VL]

}
, i.e. r <

γφ(1+φ)(1−γ)∆V
[(1+φ)(1−ψ)ε+φ(1−ε)][∆V−γφ(1−γ)∆V+2VL]

. Note that both U1
IB and U2

IB are convex combinations

of two ingredients −rEs[ṽ] + (1 + r)∆P and ∆P with the latter strictly larger than the

former. And it is easy to see that U1
IB puts more weight on ∆P and thus less weight on

−rEs[ṽ] + (1 + r)∆P than U2
IB. Hence U1

IB > U2
IB, ∀µs ∈ [0, 1].

With the same logic used in the proof of Lemma 2, it follows naturally:

1. There exists a pair {µ∗, µ∗} with 0 < µ < µ∗ < 1
2
< µ∗ < µ < 1 such that

U2
IB( φ

1+φ
, µ∗) = U2

IB( φ
1+φ

, µ∗) = 0.

2. U2
IB( φ

1+φ
, µs) > 0 if µs ∈ (µ∗, µ∗), and ŨIB( φ

1+φ
, µs) < 0 if µs ∈ [0, µ∗) or µs ∈ (µ∗, 1].

Q.E.D. �

Proof of Proposition 9 and Proposition 10. It follows naturally from Proposition 8
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and Lemma 3 that at T = 1, the investment bank will agree to underwrite if his planned

retention φ
1+φ

gives him a non-negative expected payoff. So he chooses to underwrite if

µs ∈ [µ∗, µ∗], and not underwrite otherwise. And the issuer is only able to issue the security

when µs ∈ [µ∗, µ∗], and get an expected payoff of Es[ṽ]−∆P . �

Proof of Proposition 11. The optimal information design depends on the prior µ0.

1. First we investigate the optimal system when prior µ0 ∈ [0, µ∗). In this case the

investment bank does not underwrite if no additional information is disclosed. Consider

any two arbitrary posteriors µ` and µh with 0 ≤ µ` ≤ µ0 ≤ µh ≤ 1 and P[s =

`]µ` + P[s = h]µh = µ0. To maximize her expected proceeds, the issuer will set µ` = 0

to have the maximal P[s = h]µh which is µ0. And the issuer will set a µh ∈ [µ∗, µ∗]

so that the investment bank is willing to underwrite. Her expected payoff is therefore

P[s = h]P0(µh) = µ0P0(µh)
µh

. Recall that

U2
IB(

φ

1 + φ
, µs) = K[−rEs[ṽ] + (1 + r)∆P ] + (1−K)∆P = −rKP0(µs) + ∆P (µs),

where K = ε(1− ψ) + (1− ε)( φ
1+φ

), and ∆P (µs) means ∆P is a function of µs.

At µs = µ∗ or µ∗, U2
IB( φ

1+φ
, µs) = 0. This implies

−rKP0(µs) + ∆P (µs) = 0

⇒ P0(µs)

µs
=

∆P (µs)

rKµs
=

(1− µs)γ(1− γ)φ∆V

rK[µsγ + (1− µs)(1− γ)]
.

The last term is decreasing in µs ∈ [µ∗, µ∗]. Since µ∗ < µ∗, we have
P0(µ∗)

µ∗
> P0(µ∗)

µ∗
.

Moreover, at µs ∈ [µ∗, µ∗], U2
IB( φ

1+φ
, µs) ≥ 0. This implies

−rKP0(µs) + ∆P (µs) ≥ 0

⇒ P0(µs)

µs
≤ ∆P (µs)

rKµs
≤

∆P (µ∗)

rKµ∗
=
P0(µ∗)

µ∗
.
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Therefore, the optimal system will induce two posteriors µ` = 0 and µh = µ∗. The

relevant precision parameters are πB =
µ0(1−µ∗)
µ∗(1−µ0)

and πG = 1.

2. Second, we derive the optimal system when µ0 ∈ (µ∗, 1]. Consider any two arbitrary

posteriors µ` and µh with 0 ≤ µ` ≤ µ0 ≤ µh ≤ 1 and P[s = `]µ` + P[s = h]µh = µ0. To

maximize her expected proceeds, the issuer will set µh = 1. This ensures that for any

fixed µ`, the probability of achieving this posterior P[s = `] = µh−µ0
µh−µl

will be maximized,

i.e. the probability of underwriting will be the highest. Her expected payoff is therefore

P[s = `]P0(µ`) = 1−µ0
1−µ`

· P0(µ`). Since both 1−µ0
1−µ`

and P0(µ`) are increasing in µ`, it is

optimal to set µ` = µ∗. Hence the optimal system yields two posteriors µ` = µ∗ and

µh = 1. This gives πB = µ0−µ∗
µ0(1−µ∗) and πG = 0.

3. Third, when µ0 = µ∗ or µ∗, the investment bank is break-even by underwriting the

deal. In this case, a completely uninformative disclosure system is optimal. It has

πG = πB ∈ (0, 1), yielding posteriors µ` = µh = µ0.

4. Finally, we find the optimal system when µ0 ∈ (µ∗, µ∗). Since ∆P (µs) is concave in

µs, P0(µs) = Es[ṽ] − ∆P is convex and increases in µs. First consider any arbitrary

posteriors µ` and µh such that µ∗ ≤ µ` ≤ µ0 ≤ µh ≤ µ∗.

In order for the two pairs of posteriors {µ∗, µ∗} and {µ`, µh} to be Bayesian plausible,

they should satisfy

µ0 = λµ∗ + (1− λ)µ∗,

µ0 = λ̄µ` + (1− λ̄)µh.

Moreover, we can write

µ` = λ`µ
∗ + (1− λ`)µ∗,

µh = λhµ
∗ + (1− λh)µ∗.
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Here λ, λ`, λh, and λ̄ all lie in [0, 1].

So we have

µ0 = λ̄[λ`µ
∗ + (1− λ`)µ∗] + (1− λ̄)[λhµ

∗ + (1− λh)µ∗]

= [λ̄λ` + (1− λ̄)λh]µ
∗ + [λ̄(1− λ`) + (1− λ̄)(1− λh)]µ∗

= λµ∗ + (1− λ)µ∗.

By Jensen’s inequality,

U2
E(

φ

1 + φ
, µ0) = P0(µ0)

≤ λ̄P0(µ`) + (1− λ̄)P0(µh)

≤ λ̄[λ`P0(µ∗) + (1− λ`)P0(µ∗)] + (1− λ̄)[λhP0(µ∗) + (1− λh)P0(µ∗)]

= [λ̄λ` + (1− λ̄)λh]P0(µ∗) + [λ̄(1− λ`) + (1− λ̄)(1− λh)]P0(µ∗)

= λP0(µ∗) + (1− λ)P0(µ∗)

= Û2
E(µ0),

where λ = µ∗−µ0
µ∗−µ∗ = P[s = `]. And the issuer achieves expected payoff Û2

E(µ0) by setting

µ` = µ∗ and µh = µ∗.

We further consider two other possibilities. If we set µ` = 0, then the issuer’s expected

payoff upon observing s = ` is zero. Her expected payoff is thus µ0
µh
· P0(µh) < P0(µh).

Since P0(µs) is convex in µs, we have P0(µh) ≤ λP0(µ∗)+(1−λ)P0(µ∗) = Û2
E(µ0). Hence

µ0
µh
· P0(µh) < P0(µh) ≤ Û2

E(µ0), rendering this strategy suboptimal. If we set µh = 1,

under this system, the issuer’s expected payoff is 1−µ0
1−µ`

· P0(µ`) < P0(µ0) < Û2
E(µ0)

because P0(µs) is convex and increasing in µs. Again, such system is not optimal too.

In sum, the optimal system will induce two posteriors µ` = µ∗ and µh = µ∗. By Bayes’

theorem, πG =
µ∗(µ0−µ∗)
µ0(µ∗−µ∗) and πB =

(1−µ∗)(µ0−µ∗)
(1−µ0)(µ∗−µ∗) . �
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Proof of Proposition 12. Recall that if the investment bank chooses to underwrite and

his planned retention is φ
1+φ

, then

U2
IB(

φ

1 + φ
, µs) = −r

[
ε(1− ψ) + (1− ε) φ

1 + φ

]
(µs∆V + VL)

+

{
1 + r

[
ε(1− ψ) + (1− ε) φ

1 + φ

]}
· (1− µs)µs(1− γ)γφ∆V

µsγ + (1− µs)(1− γ)

Define G(µs, θ1) ≡ U2
IB( φ

1+φ
, µs) = 0 where θ1 ∈ {ε, ψ, VL, ∆V

VL
, r, φ}. By the implicit function

theorem, at µs = µ∗ or µ∗,

∂G

∂µs
· ∂µs
∂θ1

+
∂G

∂θ1

= 0.

Like before,

sign

(
∂µs
∂θ1

)
= −sign

(
∂G

∂µs
· ∂G
∂θ1

)
.

Moreover,

∂G

∂ε
= −r

[
(1− ψ)− φ

1 + φ

]
(Es[ṽ]−∆P ) < 0;

∂G

∂ψ
= rε(Es[ṽ]−∆P ) > 0;

∂G

∂VL
= −r

[
ε(1− ψ) + (1− ε) φ

1 + φ

]
< 0;

∂G

∂r
= −

[
ε(1− ψ) + (1− ε) φ

1 + φ

]
(Es[ṽ]−∆P ) < 0.

Multiply G(µs, φ) by (1 + φ) we obtain

g1(µs, φ) ≡ (1 + φ)G(µs, φ) = −rK1 Es[ṽ] + {1 + rK1}∆P = 0,

where K1 ≡ ε(1− ψ)(1 + φ) + (1− ε)φ. This implies

Es[ṽ] =
(1 + rK1)∆P

rK1

.
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Note that

∂K1

∂φ
= 1− ψε =

K1 − ε(1− ψ)

φ
.

Therefore,

∂g1

∂φ
= −r · K1 − ε(1− ψ)

φ
· (1 + rK1)∆P

rK1

+r · K1 − ε(1− ψ)

φ
·∆P + (1 + rK1) · ∆P

φ

=
∆P

φ
·
{
−r[K1 − ε(1− ψ)] · 1

rK1

+ (1 + rK1)

}
=

∆P

φ
·
[
ε(1− ψ)

K1

+ rK1

]
> 0.

We then divide g1(µs, φ) by ∆V , and obtain

g2 ≡ −rK1(µs +
1

η
) + (1 + rK1) · µs(1− µs)γ(1− γ)

µsγ + (1− µs)(1− γ)
,

where η = ∆V
VL
. So

∂g2

∂η
=
rK1

η2
> 0.

Recall from the proof of Lemma 3, we know that ∂U2
IB/∂µs > 0 at µs = µ∗ yet

∂U2
IB/∂µs < 0 at µs = µ∗. Hence at µs = µ∗, ∂G/∂µs > 0, ∂g1/∂µs > 0, and ∂g2/∂µs > 0.

Meanwhile at µs = µ∗, ∂G/∂µs < 0, ∂g1/∂µs < 0, and ∂g2/∂µs < 0.

Accordingly, by the implicit function theorem, (1)
∂µ∗

∂ε
> 0 and ∂µ∗

∂ε
< 0; (2)

∂µ∗

∂ψ
< 0 and

∂µ∗

∂ψ
> 0; (3)

∂µ∗

∂VL
> 0 and ∂µ∗

∂VL
< 0; (4) Recall that η = ∆V

VL
, then

∂µ∗

∂η
< 0 and ∂µ∗

∂η
> 0; (5)

∂µ∗

∂r
> 0 and ∂µ∗

∂r
< 0; (6)

∂µ∗

∂φ
< 0 and ∂µ∗

∂φ
> 0. �

Proof of Proposition 13. If there is no demand uncertainty, the investment bank chooses

his optimal retention β to maximize his expected payoff:

U3
IB(β, µs) = β{−rEs[ṽ] + (1 + r)∆P}+ (1− β)∆P.
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Because we know that {−rEs[ṽ] + (1 + r)∆P} < ∆P , it is optimal to choose the largest

possible (1 − β). Since the underwrite can sell the security short in the secondary market,

he no longer has to retain any share in the primary market. Thus he chooses the optimal

β∗(µs) = 0, and his maximal expected payoff is just

Û3
IB(µs) = U3

IB(0, µs) =
µs(1− µs)γ(1− γ)φ∆V

µsγ + (1− µs)(1− γ)
.

Q.E.D. �

Proof of Proposition 14. Given the investment bank’s best response in the primary

market, the issuer’s expected payoff conditional on posterior belief is

U3
E(µs) = (µs∆V )− µs(1− µs)γ(1− γ)φ∆V

µsγ + (1− µs)(1− γ)
= P0(µs).

As we have shown before, this function is convex in µs ∈ [0, 1]. For any posteriors µ` and µh

that are Bayesian plausible,

U3
E(µ0) ≤ P[s = `]P0(µ`) + P[s = h]P0(µh)

≤ P[s = `]P0(0) + P[s = h]P0(1).

The last inequality follows form the convexity of the function, and it holds with strict in-

equality if µ0 ∈ (0, 1). And the optimal system generates a low posterior µ` = 0 and a high

posterior µh = 1. The system is fully informative in that πG = 1 and πB = 0. �

Proof of Lemma 4. If the investment bank agrees to underwrite and chooses a planed
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retention β̂ = 0, his expected payoff is

U4
IB(β̂ = 0, µs) = ε{(1− ψ)[Es[ṽ]− (1 + r)(Es[ṽ]−∆P )] + ψ∆P}+ (1− ε)∆P

= ε(1− ψ){−rEs[ṽ] + (1 + r)∆P}+ [εψ + (1− ε)]∆P

= −ε(1− ψ)rEs[ṽ] + [(1 + r)ε(1− ψ) + εψ + (1− ε)]∆P

> U2
IB(β̂ =

φ

1 + φ
, µs).

The last inequality holds because when demand shock does not happen and there is short

sale constraint, the underwriter has to retain a positive stake to engage in informed trading,

which incurs cost of capital and undermines the informed trading profits.

It is easy to see that U4
IB(β̂ = 0, µs) is concave in µs because of the concavity of ∆P . Like

in the proofs of Lemma 2 and Lemma 3, to ensure its optimum appears at some µ∗∗ ∈ (0, 1),

we require

∂ U4
IB

∂µs

∣∣∣∣
µs=0

= −ε(1− ψ)r∆V + [(1 + r)ε(1− ψ) + εψ + (1− ε)]γφ∆V > 0;

∂ U4
IB

∂µs

∣∣∣∣
µs=1

= −ε(1− ψ)r∆V − [(1 + r)ε(1− ψ) + εψ + (1− ε)](1− γ)φ∆V < 0.

The first requires that r < γφ
ε(1−ψ)(1−γφ)

, while the second always holds.

It’s easy to see that U4
IB(β̂ = 0, 0) < 0 and U4

IB(β̂ = 0, 1) < 0. We further re-

quire that U4
IB(β̂ = 0, 1

2
) > 0. This implies that r < γ(1−γ)φ∆V

ε(1−ψ)[∆V−γ(1−γ)φ∆V+2VL]
. So r <

min{ γφ
ε(1−ψ)(1−γφ)

, γ(1−γ)φ∆V
ε(1−ψ)[∆V−γ(1−γ)φ∆V+2VL]

}, i.e. r < γ(1−γ)φ∆V
ε(1−ψ)[∆V−γ(1−γ)φ∆V+2VL]

.

As long as all of the above are satisfied, it follows naturally that:

1. There exists a pair {µ∗∗, µ∗∗} with 0 < µ∗∗ < µ∗ < 1
2
< µ∗ < µ∗∗ < 1 such that

U4
IB(0, µ∗) = U4

IB(0, µ∗∗) = 0.

2. U4
IB(0, µs) > 0 if µs ∈ (µ∗∗, µ∗∗), and ŨIB(0, µs) < 0 if µs ∈ [0, µ∗∗) or µs ∈ (µ∗∗, 1].

Q.E.D. �
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Proof of Proposition 15. From Proposition 13 we know that if demand shock does not

happen, it is optimal for the investment bank not to retain any share in the primary market.

If demand shock happens, he is forced to retain (1 − ψ). Therefore, his optimal planned

retention should always be zero if the bank decides to underwrite. And from Lemma 4 we

know that the investment bank will choose to underwrite only at posteriors µs ∈ [µ∗∗, µ∗∗],

otherwise he will withdraw from underwriting. This gives his expected payoff

Û4
IB(µs) =


U4
IB(β̂ = 0, µs) if µs ∈ [µ∗∗, µ∗∗],

0 if µs ∈ [0, µ∗∗) ∪ (µ∗∗, 1].

Q.E.D. �

Proof of Proposition 16. Proposition 16 follows naturally from Proposition 15. �

Proof of Proposition 17. Much of the proof resembles that of Proposition 11. Likewise,

we consider four cases respectively.

1. If µ0 ∈ [0, µ∗∗), like part 1 of Proposition 11’s proof, it is optimal to set µ` = 0 and the

issuer’s expected payoff is µ0P0(µh)
µh

. Define K2 = ε(1− ψ), so

U4
IB(0, µs) = −rK2 Es[ṽ] + (1 + rK2)∆P ≥ 0

⇒ rK2(Es[ṽ]−∆P ) ≤ ∆P

⇒ µ0P0(µs)

µs
≤ µ0∆P

rK2µs
.

The last holds with equality when µs = µ∗∗ or µ∗∗. Since

∆P

µs
=

(1− µs)(1− γ)γφ∆V

µsγ + (1− µs)(1− γ)

which is decreasing in µs and achieves the maximum at µs = µ∗∗. Therefore it is optimal

76



for the issuer to set µh = µ∗∗ so that she gets the highest expected payoff
µ0P0(µ∗∗)

µ∗∗
. In

sum, the optimal system will induce two posteriors µ` = 0 and µh = µ∗∗. The relevant

precision parameters are πB =
µ0(1−µ∗∗)
µ∗∗(1−µ0)

and πG = 1.

2. If µ0 ∈ (µ∗∗, 1], with the same reasoning as part 2 of Proposition 11’s proof, it is optimal

to set µh = 1. Her expected payoff is therefore P[s = `]P0(µ`) = 1−µ0
1−µ`

· P0(µ`). Since

both 1−µ0
1−µ`

and P0(µ`) are increasing in µ`, it is optimal to set µ` = µ∗∗. Hence the

optimal system yields two posteriors µ` = µ∗∗ and µh = 1. This gives πB = µ0−µ∗∗
µ0(1−µ∗∗)

and πG = 0.

3. Third, when µ0 = µ∗∗ or µ∗∗, the investment bank is break-even by underwriting the

deal. In this case, a completely uninformative disclosure system is optimal. It has

πG = πB ∈ (0, 1), yielding posteriors µ` = µh = µ0.

4. Finally, we explore the cae when µ0 ∈ (µ∗∗, µ∗∗). Using a similar argument as in part

3 of Proposition 11’s proof, we have µ` = µ∗∗ and µh = µ∗∗ due to the convexity of

U4
IB(0, µs) in µs on [µ∗∗, µ∗∗]. And again, setting either µ` = 0 or µh = 1 is suboptimal.

Hence the optimal system has πG =
µ∗∗(µ0−µ∗∗)
µ0(µ∗∗−µ∗∗) and πB =

(1−µ∗∗)(µ0−µ∗∗)
(1−µ0)(µ∗∗−µ∗∗) . �

Proof of Proposition 18. Note that µ∗∗ and µ∗∗ are two roots of the following equation:

U4
IB(0, µs) = −rK2 Es[ṽ] + (1 + rK2)∆P = 0.

Define

J(µs, θ1) = −rK2 Es[ṽ] + (1 + rK2)∆P,

where K2 = ε(1− ψ) and θ1 ∈ {ε, ψ, VL, ∆V
VL
, r, φ}. Some simple algebra gives

∂J

∂ε
= −r(1− ψ)(Es[ṽ]−∆P ) < 0;

∂J

∂ψ
= rε(Es[ṽ]−∆P ) > 0;
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∂J

∂VL
= −rε(1− ψ) < 0;

∂J

∂r
= −ε(1− ψ)(Es[ṽ]−∆P ) < 0;

∂J

∂φ
= [1 + rε(1− ψ)] · ∆P

φ
> 0

Let j = J/∆V , we obtain

∂j

∂η
=
rε(1− ψ)

η2
> 0.

Moreover, from the proof of Lemma 4, at µs = µ∗∗, ∂J
∂µs

> 0, while at µs = µ∗∗, ∂J
∂µs

< 0.

So by the implicit function theorem, we have (1)
∂µ∗∗

∂ε
> 0 and ∂µ∗∗

∂ε
< 0; (2)

∂µ∗∗

∂ψ
< 0 and

∂µ∗∗

∂ψ
> 0; (3)

∂µ∗∗

∂VL
> 0 and ∂µ∗∗

∂VL
< 0; (4) Recall that η = ∆V

VL
, then

∂µ∗∗

∂η
< 0 and ∂µ∗∗

∂η
> 0; (5)

∂µ∗∗

∂r
> 0 and ∂µ∗∗

∂r
< 0; (6)

∂µ∗∗

∂φ
< 0 and ∂µ∗∗

∂φ
> 0. �

Proof of Proposition 19. Recall that i ∈ {1, 2, 3, 4} represents one of the following four

scenarios: 1. (No Short Sale, No Demand Uncertainty), 2. (No Short Sale, Demand Uncer-

tainty), 3. (Short Sale, No Demand Uncertainty), and 4. (Short Sale, Demand Uncertainty).

We have already shown that U1
IB(β = φ

1+φ
, µs) > U2

IB(β̂ = φ
1+φ

, µs) and 0 < µ < µ∗ <

1
2
< µ∗ < µ < 1, as well as U4

IB(β̂ = 0, µs) > U2
IB(β̂ = φ

1+φ
, µs) and 0 < µ∗∗ < µ∗ < 1

2
<

µ∗ < µ∗∗ < 1. Thus it remains to compare U1
IB(β = φ

1+φ
, µs) and U4

IB(β̂ = 0, µs) to rank the

welfare of the investment banks. Recall that

U4
IB(β̂ = 0, µs) = ε{(1− ψ){Es[ṽ]− (1 + r)(Es[ṽ]−∆P )}+ ψ∆P}+ (1− ε)∆P,

= (ε− εψ){−rEs[ṽ] + (1 + r)∆P}+ (ψε+ 1− ε)∆P,

and

U1
IB(β =

φ

1 + φ
, µs) =

φ

1 + φ
· {−rEs[ṽ] + (1 + r)∆P}+

1

1 + φ
·∆P.

Since we have shown that {−rEs[ṽ] + (1 + r)∆P} < ∆P, it is easy to see:

(1) If ε − εψ < φ
1+φ

, i.e. ε < φ
(1−ψ)(1+φ)

, then U1
IB(β = φ

1+φ
, µs) < U4

IB(β̂ = 0, µs), and
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0 < µ∗∗ < µ < µ∗ < 1
2
< µ∗ < µ < µ∗∗ < 1. Note that the investment banks’ welfare is

WIB(i) =

∫ 1

0

Û i
IB(µ0) dµ0 =

∫ µ(i)

µ
(i)

U i
IB( · , µ0) dµ0.

where µ
(i)

and µ(i) denote the relevant cut-offs in scenario i, and “ · ” denotes the

investment banks’ relevant retention in U i
IB( · , µs). Hence we obtain the following

ranking:

WIB(SS,NDU) > WIB(SS,DU) > WIB(NSS,NDU) > WIB(NSS,DU).

(2) Similarly, if ε > φ
(1−ψ)(1+φ)

, then 0 < µ < µ∗∗ < µ∗ < 1
2
< µ∗ < µ∗∗ < µ < 1 and

WIB(SS,NDU) > WIB(NSS,NDU) > WIB(SS,DU) > WIB(NSS,DU).

(3) Finally, if ε = φ
(1−ψ)(1+φ)

, then 0 < µ = µ∗∗ < µ∗ < 1
2
< µ∗ < µ∗∗ = µ < 1 and

WIB(SS,NDU) > WIB(NSS,NDU) = WIB(SS,DU) > WIB(NSS,DU).

Q.E.D. �

Proof of Proposition 20. If the issuers do not disclose additional information, the invest-

ment banks’ decisions to underwrite and the issuers’ expected payoffs will depend directly

on µ0. And

WE(1) =

∫ µ

0

(µ0∆V + VL) dµ0 +

∫ µ

µ

[
(µ0∆V + VL)− (1− µ0)µ0(1− γ)γφ∆V

µ0γ + (1− µ0)(1− γ)

]
dµ0

+

∫ 1

µ

(µ0∆V + VL) dµ0,

WE(2) =

∫ µ∗

0

0 dµ0 +

∫ µ∗

µ∗

[
(µ0∆V + VL)− (1− µ0)µ0(1− γ)γφ∆V

µ0γ + (1− µ0)(1− γ)

]
dµ0 +

∫ 1

µ∗
0 dµ0,
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WE(3) =

∫ 1

0

[
(µ0∆V + VL)− (1− µ0)µ0(1− γ)γφ∆V

µ0γ + (1− µ0)(1− γ)

]
dµ0,

WE(4) =

∫ µ∗∗

0

0 dµ0 +

∫ µ∗∗

µ∗∗

[
(µ0∆V + VL)− (1− µ0)µ0(1− γ)γφ∆V

µ0γ + (1− µ0)(1− γ)

]
dµ0 +

∫ 1

µ∗∗
0 dµ0.

Therefore, the ranking is as follow,

WE(NSS,NDU) > WE(SS,NDU) > WE(SS,DU) > WE(NSS,DU).

We can write

P0(µ) = (µ∆V + VL)− (1− µ)µ(1− γ)γφ∆V

µγ + (1− µ)(1− γ)
,

which is increasing in µ and does not exceed (µ∆V + VL). Then if all of the issuers design

their disclosure policies optimally, their welfare under four different scenarios are

ŴE(1) =

∫ 1

0

(µ0∆V + VL) dµ0,

ŴE(2) =

∫ µ∗

0

P0(µ∗) · µ0

µ∗
dµ0 +

∫ µ∗

µ∗

[
P0(µ∗) +

P0(µ∗)− P0(µ∗)

µ∗ − µ∗

]
dµ0

+

∫ 1

µ∗

[
P0(µ∗)− P0(µ∗)

1− µ∗
· (µ0 − µ∗)

]
dµ0,

ŴE(3) =

∫ 1

0

(µ0∆V + VL) dµ0,

ŴE(4) =

∫ µ∗∗

0

P0(µ∗∗) · µ0

µ∗∗
dµ0 +

∫ µ∗∗

µ∗∗

[
P0(µ∗∗) +

P0(µ∗∗)− P0(µ∗∗)

µ∗∗ − µ∗∗

]
dµ0

+

∫ 1

µ∗∗

[
P0(µ∗∗)− P0(µ∗∗)

1− µ∗∗
· (µ0 − µ∗∗)

]
dµ0.

It is easy to see that ŴE(1) = ŴE(3), and both achieve the highest possible welfare.

It suffices to show that ŴE(4) > ŴE(2). Intuitively, this is because the graph of Û2
E(µ) is

beneath that of Û4
E(µ) for ∀µ ∈ (0, 1) due to the convexity of P0(µ).

Next we formally show that indeed Û4
E(µ0) is piece-wise larger than Û2

E(µ0) for any prior
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Figure 13: Welfare Comparison

belief µ0 ∈ (0, 1). A graphical illustration is given in Figure 13.

1. When µ0 ∈ (0, µ∗∗], we have shown in the proofs of Proposition 11 and 17 that because

µ∗∗ < µ∗, we have
P0(µ∗∗)

µ∗∗
>

P0(µ∗)

µ∗
. Hence

P0(µ∗∗)µ0
µ∗∗

>
P0(µ∗)µ0

µ∗
, i.e. Û4

E(µ0) > Û2
E(µ0).

2. When µ0 ∈ (µ∗∗, µ∗), Û4
E(µ0) is a convex combination of P0(µ∗∗) and P0(µ∗∗), which is

strictly larger than P0(µ∗) due to convexity of P0(µ). Since Û2
E(µ0) =

P0(µ∗)µ0
µ∗

< P0(µ∗),

we have Û4
E(µ0) > Û2

E(µ0).

3. When µ0 ∈ [µ∗, µ∗], the convexity of P0(µ) implies that the convex combination of

P0(µ∗∗) and P0(µ∗∗) strictly dominates the convex combination of P0(µ∗) and P0(µ∗).

This implies Û4
E(µ0) > Û2

E(µ0).

4. When µ0 ∈ (µ∗, µ∗∗), Û2
E(µ0) = P0(µ∗)−P0(µ∗)

1−µ∗ ·(µ0−µ∗) < P0(µ∗). And P0(µ∗) is strictly

smaller than the convex combination of P0(µ∗∗) and P0(µ∗∗). Hence Û4
E(µ0) > Û2

E(µ0).

5. When µ0 ∈ [µ∗∗, 1), we define

∆U(µ0) ≡ Û2
E(µ0)−Û4

E = [(µ0) = P0(µ∗)−P0(µ∗)

1− µ∗
·(µ0−µ∗)]−[P0(µ∗∗)−P0(µ∗∗)

1− µ∗∗
·(µ0−µ∗∗)].
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It is easy to see that ∂∆U
∂µ0

= P0(µ∗∗)
1−µ∗∗ −

P0(µ∗)
1−µ∗ > 0 and ∆U(µ0) = 0 if µ0 = 1. Hence at

µ0 ∈ [µ∗∗, 1), ∆U(µ0) < 0, i.e. Û4
E(µ0) > Û2

E(µ0).

Therefore, it follows naturally that

ŴE(NSS,NDU) = ŴE(SS,NDU) > ŴE(SS,DU) > ŴE(NSS,DU).

Q.E.D. �
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