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Abstract. Voting power science is a field of co-operative game
theory concerned with calculating the influence a voter can exert
on the outcome of a voting game. The techniques used to calcu-
late voting power have names like the Shapley-Shubik index, and
the Banzhaf measure. They are invaluable when used to design
democratically fair voting games, however, there is currently no
consensus over which technique is best.

Ignoring the well known differences in probability models, this
paper will focus upon the less well known differences in underlying
measures. With the analysis showing that the Shapley-Shubik in-
dex is afflicted with a fundamental flaw, restricting its use in many
real world voting games, it soon becomes apparent that the dissim-
ilarities between the techniques extend far beyond their methods
of counting voting coalitions.

1. Introduction

Voting power is a field of co-operative game theory that has seen
a recent resurgence, due, in no small part, to the work of Felsenthal
and Machover and their seminal book (Felsenthal and Machover, 1998).
Despite the importance of the field, it is a subject that is not studied
widely enough, and is poorly understood outside of the voting power
community.

The concept behind voting power is simple enough. The idea is to
measure the ability of an individual voter to affect the outcome of a
voting game. This kind of analysis is invaluable when it comes to
designing fair, and democratic, institutions. For instance, most people
would agree that it is desirable to design voting within the European
Union such that a country with twice the population should have twice
the influence, compared with a country half the size. But the question
remains, how do you go about measuring voting power?

In the literature, there have been a number of techniques proposed
to measure voting power, such as Shapley and Shubik (1954); Banzhaf
(1965); Coleman (1971); Deegan and Packel (1978); Johnston (1978);
Straffin (1977). The two most widely used techniques are by Banzhaf,
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and Shapley and Shubik. It has previously been proposed, by Straffin
(1977, 1978), that the differences between these two techniques rest
solely in the underlying probability models. However, this paper will
show that the differences are much more fundamental. No doubt, mak-
ing such a claim will raise some interesting questions in the reader’s
mind. Which is why the appendix will list some anticipated questions,
and associated answers.

This paper attempts to present measure theoretic ideas to as wide an
audience as possible. On occasion, this will result is some mathemat-
ical notation being simplified for ease of comprehension. Any readers
familiar with measure theory are asked to forgive these unavoidable
simplifications.

2. Some Basic Terminology

Contrary to common practice, this paper makes a distinction be-
tween a voting power measure, and the techniques used to calculate
them.

Voting Power Measure - A measurable function.
Voting Power Technique - A method used to calculate the value

of a measurable function.1

3. Voting Power Techniques

There is no need to review each individual voting power technique,
as they all work in a similar fashion. The general concept is simple;
take a set of possible voting scenarios, and test each one in turn to see
if the outcome is sensitive to a change in the vote of a given player i.
If the outcome of the game changes, a running count of “criticality”
for player i is increased (because player i is critical to the outcome of
the given voting scenario). The result of this “criticality count”, after
all voting scenarios have been examined, gives the voting power of the
player.

Voting power techniques are differentiated by the amount they add
to the criticality count. For example, the Banzhaf technique adds 1

2|N| ,

and the Shapley-Shubik technique adds (|C|−1)!(|N |−|C|)!
|N |! ; where |N | is

the number of players, and |C| is a function of the voting scenario.
While this clearly isn’t a exhaustive exposition of the many different

techniques that exist, it is sufficient for the purposes of this paper.

4. Counting Blocks

Now for a short digression from voting power theory.
Imagine that you work for a Danish toy manufacturer of interlock-

ing children’s building blocks, and they have just started a recycling
scheme. The amount of money they are willing to pay for a batch of

1The Banzhaf and Shapley-Shubik indices are examples of techniques.
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blocks is dependent upon the percentage of blue blocks in the shipment
(for some reason, the blue blocks are more valuable).

Now imagine you’ve just been handed a large pile of blocks, which
we will call Ω. It’s your job to calculate the percentage of blue blocks
in the batch. Being an industrious type, you decide to build a machine
to do this for you.

The first stage in your plan is to count how many blocks there are in
total. Let’s call this block counting machine P. After one run through,
we’ll know how many we have in Ω, we’ll call this number P(Ω). Your
new machine will output something like P(Ω) = 1034, or P(Ω) = 32,
depending on how many blocks there are in the batch.
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Figure 1. A Block Counting Machine

With amazing forethought you realise that, as you need to calculate
a percentage, it will be more useful to have P(Ω) = 100% after all the
blocks have been counted. So, you adjust the machine such that instead
of adding 1 every time a little ω goes past it will add 1

|Ω| .
2 Now, after

all the blocks have passed through, the machine will read P(Ω) = 1
(which is, of course, equivalent to P(Ω) = 100%).

The second stage in your plan is to add a “magic eye” machine that
can “see” if a blue block has gone past, we’ll call this the I machine.
The I machine is very basic, it simply outputs I(ω) = 1 if it sees a blue
block, and I(ω) = 0 otherwise.

The final stage in your plan is to link the “magic eye” machine with
the block counting machine, to create a super-counter machine. You
connect the output of the I machine, with the “on/off” switch of the
P machine. This means, whenever a blue block goes by, the I machine
will turn on the P machine, allowing it to count. But if a non-blue box
should pass, the I machine will turn off the P machine, preventing it
from counting.

And that’s it! The combined I and P machines work together to
calculate the percentage of blue blocks. After all the blocks have gone
through the super-counter machine, the output of the P machine will
be the percentage of blocks that are blue.

The operation of the super-counter can be described as follows:-

(1) Start with a pile of blocks called Ω.

2For the purposes of this example, we shall ignore how you can come to know
1
|Ω| before all the blocks have been counted!
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Figure 2. A Super-Counter Machine

(2) Take each little block ω in turn, and send it through the super-
counter, one by one.

(3) If ω is blue, the I machine will turn on the P machine.
(4) If ω is not blue, the I machine will turn off the P machine.
(5) The result is given by reading the output of the P machine after

all the blocks have passed through the super-counter.

4.1. The Maths. As a bit of a mathematician, you want to write down
the operation of the super-counter using mathematical notation. Let’s
start by writing down what happens when a single block passes through
the machine. We can mimic the action of the I machine turning the
P machine on and off by multiplying I and P together (remember that
the I machine outputs 1 if it is blue, and 0 otherwise).

I(ω)× P(ω).

Next we have to represent every little block ω moving through the
machine, with the result added to a running count. We could use the∑

notation for this, but, for our purposes, the integral notation would
be better.

∫

ω∈Ω

I(ω)× P(ω).

We’re almost done, just a few more tweaks. First, let’s rename the
I function to IBlue, because the I machine is looking for blue blocks.
Second, we get rid of the redundant × sign between I and P . And
third, in keeping with standard notation, we change the final ω to dω.3

∫

ω∈Ω

IBlue(ω) P(dω).

We finish off our mathematical expression of the super-counter by
writing down what this super-counter was designed to do. Which, in
this case, is to calculate the probability of a block being blue.

Pr(Blue) =

∫

ω∈Ω

IBlue(ω) P(dω).

3We normally to write
∫

x
y(x) dx instead of

∫
x

y(x) x.
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5. Non-Uniform Blocks

Satisfied in your new super-counter machine, you patiently wait for
your first batch of Ω blocks to arrive. When they finally do, you receive
an unwelcome surprise. Instead of a nice neat pile of individual blocks,
you are given a huge mess of blocks stuck together in clumps of different
sizes. The blocks have come from a school maths department where
they were using them to illustrate factorials. The blocks have arrived
in clumps of size 1!, 2!, 3!, 4!, and so on. As luck would have it, each
clump is made up of one colour only. Despite this, before you can use
your machine, you’ll have to break up these clumps into their individual
little blocks. If only there was some way to modify the super-counter
to cope with these clumps automatically? Fortunately, there is. And
it’s all to do with the P machine.

Instead of using the P machine to count blocks as they go past, the
P machine can weigh them instead. This simple change means that
even if a clump of x blocks were to go through the machine, it would
still know how many went past, because they would weigh x times as
much as an individual block.
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Figure 3. A Super-Measurer

As we’re not really counting anymore, the machine should be re-
named. It could be called a super-weigher, but calling it a super-
measurer would be even better. This new super-measurer works as
follows. (In our previous example, we used ω to represent an individ-
ual block, this time we can use it to represent a clump).

(1) Start with a pile of blocks called Ω.
(2) Take each clump ω in turn, and send it through the super-

measurer.
(3) If the clump is blue, use the I machine to turn on the weighing

machine P.
(4) If the clump is not blue, use the I machine to turn off the

weighing machine P.
(5) The result is given by reading the total weight measured by P

after all clumps have passed through the super-measurer.

Expressing the operation of the super-measurer mathematically gives,

(1) Pr(Blue) =

∫

ω∈Ω

IBlue(ω) P(dω).
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You’ll note that this is the same mathematical representation as the
super-counter machine. This is because the weighing of the boxes is
incorporated into the P function. Mathematically, we say that P is a
measure on the subsets of Ω, and I is a measurable function.

5.1. Discussion. Let’s examine the super-measurer in greater detail.
It calculates the probability of a block being blue, no matter what the
size of the clumps are. They could all be a uniform 1 block in size,
or they could be some weird number like (|C| − 1)!(|N | − |C|)! in size.
The super-measurer doesn’t even care in which order the clumps pass
through, it will still calculate Pr(Blue) in the end.

In other words, changing the distribution of the blocks doesn’t change
the statistic being calculated. When the blocks are distributed uni-
formly we are calculating Pr(Blue), and when the blocks are dis-
tributed non-uniformly we are still calculating Pr(Blue).

Looking back to Equation (1), it is clear that the I function defines
the statistic being calculated. We call this function, the characteristic,
or indicator, function of the statistic.

6. Voting Power Measures

It should be pretty clear that the block counting example was a
thinly veiled analogy for the techniques used to calculate voting power.
All of the commonly used voting power techniques can be recast into
a block measuring scenario, with the appropriate selection of P and Ω.
Hence we define a voting power statistic as,

∫

ω∈Ω

I(ω) P(dω).

Just like our block counting example, this representation is insen-
sitive to changes in the distribution of voting scenarios. Therefore,
the voting power measure is wholly defined by the measurable func-
tion I(ω). Which, in the context of voting power is called a criticality
indicator function.

7. Criticality Indicator Functions

Broadly speaking there are three categories of criticality functions.
Increasing Criticality - This is a measure of a player’s ability to

change the outcome of the voting game by increasing their support.
Decreasing Criticality - This is a measure of a player’s ability to

change the outcome of the voting game by decreasing their support.
Total Criticality - This is a measure of a player’s ability to change

the outcome of the voting game by either increasing, or decreasing,
their support.

A more in-depth discussion of criticality, and the motivation for the
different types can be found in Das (2011).
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7.1. Criticality Assumptions. Almost every voting game allows a
player to abstain (even if it were mandatory to vote, the player could
still abstain, albeit at huge personal cost). Once we accept that a
player can do more than just vote “yes” or “no”, we have to augment
our notions of criticality to handle this.

Criticality 0 - This criticality assumption requires that the voter
must either start by initially voting “no”, or that it must change its
mind to end up ultimately voting “no”.

Criticality δ - This criticality assumption places no restriction upon
how the voter initially votes, or how it ultimately votes.

Once again, the reader is referred to Das (2011) for a greater expo-
sition of the criticality assumptions.

7.2. Summary. We’ve introduced three different types of criticality,
along with two different criticality assumptions, taken together this
gives up to six different notions of criticality. They are listed in the
following table, along with their abbreviated notation.

Increasing Decreasing Total
Criticality 0 IC0

i DC0
i TC0

i

Criticality δ ICδ
i DCδ

i TCδ
i

Table 1. The Different Notions of Criticality.

While this table is not exhaustive, it certainly covers the different
criticalities measured by the commonly used voting power techniques.

8. Voting Power Techniques

With the criticality functions defined, let’s look at the more common
techniques and interpret them accordingly.

8.1. Banzhaf. Banzhaf (1965) states that the power in a legislative
sense is the ability to affect outcomes. He says specifically the power of
a legislator is given by the number of possible voting combinations of
the entire legislature in which the legislator can alter the outcome by
changing their vote. Banzhaf talks about the outcome changing when
the legislator changes their vote, he does not restrict this change to
only an increase in support, or a decrease in support. Hence it is a
measure of Total Criticality. Nor does Banzhaf place any restrictions
upon how the legislator is initially voting, or ultimately voting. Hence,
it must be a Criticality δ measure. Making this a Total Criticality δ
measure, i.e. Banzhaf is given by Pr(TCδ

i ).
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8.2. Shapley Shubik. Shapley and Shubik (1954) state that the power
of an individual member of a legislative body depends on the chance
they have of being critical to the success of a winning coalition. They
explain that a voter can be “pivotal” when they can turn a possible
defeat into a success. And they construct their index as follows.

(1) There are a group of individuals all willing to vote for some bill.
(2) They vote in order.
(3) As soon as a majority has voted for it, it is declared passed.
(4) The (pivotal) member who voted last is given credit for passing

the bill.

For a moment, let’s examine their term pivotal. It requires a losing
voting scenario in which the voter expresses zero support towards the
bill to become winning when they increase their support. Rather than
call the voter pivotal, let’s call it critical instead. Furthermore, as the
voter becomes critical by increasing its support, let’s call it increasingly
critical. Finally, as the pivotal voter always starts off by expressing zero
support for the bill, it must be a Criticality 0 measure. Making this
an Increasing Criticality 0 measure, i.e. Shapley-Shubik is given by
Pr(IC0

i ).

8.3. Straffin. Straffin defines his measure as the probability that player
i’s vote will make a difference in the outcome. Making it, like Banzhaf,
a measure of Total Criticality. And, as there is no requirement for
player i to be initially voting one way or another, it is a measure of
Total Criticality δ, i.e. Straffin is given by Pr(TCδ

i ).

8.4. Other Techniques. A detailed discussion of other techniques,
and their criticality indicator functions can be found in Das and Rezek
(2011). But briefly,

Coleman initiate action is Pr(ICδ| Winning ).
Coleman prevent action is Pr(DCδ| Winning).
Deegan-Packel is Pr(DC0

i ).
Holler-Packel is Pr(DC0

i ).
Johnston is Pr(DC0

i ).

9. Measuring Criticality

Building upon the work we did counting coloured blocks, let’s build
a super-measurer to measure criticality. We start with Decreasing Crit-
icality δ.

9.1. DCδ
i . Let’s examine this machine in greater detail, we already

know how the P machine works, so let’s focus upon the IDCδ
i machine.

By definition, for a little ω to be Decreasing Criticality δ we require
two conditions to hold true.
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Figure 4. Decreasing Criticality δ

Condition 1 - The ω being measured must be winning. We’ll use a
function called W(ω) to tell us if the box is winning, returning 1 if it
is and 0 otherwise.

Condition 2 - A modified version of ω must be losing. The modified
ω is the same as the original ω, except that player i has changed its
vote, and is now voting “no”. We’ll call this new voting scenario ω′.
Once again, we can use the W function to tell us if this condition
holds true. Hence, we can build an indicator function for Decreasing
Criticality δ using just ω, ω′, and W as follows.

IDCδ
i (ω) = W(ω)−W(ω′).

The proof of this is easily given by the following truth table.

W(ω) W(ω′) W(ω)−W(ω′)
0 0 0
1 1 0
1 0 1

(It should be noted that the construction of ω′ ensures that it is not
possible for ω′ to be winning, while ω is losing).

9.1.1. The Maths. Just as we did in the block counting example, we
integrate the indicator function to calculate our statistic.

Pr(DCδ
i ) =

∫

ω∈Ω

IDCδ
i (ω) P(dω) =

∫

ω∈Ω

W(ω)−W(ω′) P(dω).

We can split the above integral to give,

Pr(DCδ
i ) =

∫

ω∈Ω

W(ω) P(dω)−
∫

ω∈Ω

W(ω′) P(dω).

Look at the first integral
∫

ω∈Ω
W(ω) P(dω), this looks a lot like the

expression we created for calculating the probability of a blue block,
except that now we are looking for winning voting scenarios. By the
same logic,

∫
ω∈Ω

W(ω) P(dω) must be the probability Pr(Winning).
So,

Pr(DCδ
i ) = Pr(Winning)−

∫

ω∈Ω

W(ω′) P(dω).
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Now let’s examine the second integral
∫

ω∈Ω
W(ω′) P(dω). Solving

this will require a little more effort. Recall that the function P “weighs”

a block, and

∫

Ω

P(dω) is the process of “weighing” all the blocks.

What if we took a block, and broke off a small piece? The small
fragment we will call i, and the rest of the block we will call ωN\{i}. If
you still wanted to weigh the block, you could weigh the i piece first,
and then the ωN\{i} piece second. Likewise, if we broke a piece off of
every block in Ω, we can still get the total weight of Ω by first weighing
all the i pieces, and then all the ωN\{i} pieces. Expressing this idea
using the integral notation gives,

∫

ω∈Ω

W(ω′) P(dω) =

∫

ωN\{i}

∫

i

W(ω′) µ(di) λ(dωN\{i}).

In the above equation, we’ve replaced the P “weighing” machine with
two new weighing machines; µ which specialises in weighing the small
fragments, and λ which weighs the remainder of a block.4 Therefore
we can express Pr(DCδ

i ) as,

Pr(DCδ
i ) = Pr(Winning)−

∫

ωN\{i}

∫

i

W(ω′) µ(di) λ(dωN\{i}).

There’s one more change to make, recall that ω′ is explicitly con-
structed as ω with player i changing its vote to “no”. If we take ω′,
and break it into two fragments, i and ωN\{i}, we can rename the i part
as ino (to represent that i is no longer a variable, but now a constant
“no”). Therefore, we have,

Pr(DCδ
i ) = Pr(Winning)−

∫

ωN\{i}

∫

i

W(ωN\{i}× ino) µ(di) λ(dωN\{i}).

Examine the inner integral over the variable i. The term inside,
W(ωN\{i} × ino), is constant with respect to i, so it can be brought
outside of this integral to give,

Pr(DCδ
i ) = Pr(Winning)−

∫

ωN\{i}
W(ωN\{i}× ino)

∫

i

µ(di) λ(dωN\{i}).

The specialised “weighing” machine µ is a sigma finite marginal mea-
sure constructed to ensure that

∫
i
µ(di) = 1. Therefore,

Pr(DCδ
i ) = Pr(Winning)−

∫

ωN\{i}
W(ωN\{i} × ino) λ(dωN\{i}).

4The new “weighing” machines have been simplified for the purposes of this
paper, they are actually sigma finite marginal measures, and are more correctly
given by µdωN\{i}(di) λ(dωN\{i}).
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As we are concerned with a-priori voting power, it is sensible to
assume that the voters decide how they will vote independently.5 This
means that a group of voters will not change their minds if they find
out that player i has changed its mind. As a consequence we can state
that λ(dωN\{i}) = λino(dωN\{i}).6 Thus,

Pr(DCδ
i ) = Pr(Winning)−

∫

ωN\{i}
W(ωN\{i} × ino) λino(dωN\{i}).

By the measure theoretic interpretation of probability we know that∫
ωN\{i}W(ωN\{i}×ino) λino(dωN\{i}) is the probability Pr(Winning | ino).

Hence,

Pr(DCδ
i ) = Pr(Winning)− Pr(Winning | ino).

9.1.2. Discussion. This means that any voting power technique that
calculates Decreasing Criticality δ is simply calculating the uncon-
ditional probability of the game being winning, less the conditional
probability of it being winning, given that player i has voted “no”.

Crucially, this is true irrespective of the underlying probability model
assumed by the technique. Just like counting blocks, it doesn’t mat-
ter if the voting scenarios are distributed uniformly, or in funny sized
clumps. A Decreasing Criticality δ based technique will still be calcu-
lating Pr(Winning)− Pr(Winning | ino).

9.2. ICδ
i . In a similar fashion we can create a super-measurer for the

Increasing Criticality δ voting power measure. If we should happen to
do so we would arrive at the following result.

Pr(ICδ
i ) = Pr(Winning | iyes)− Pr(Winning).

So any voting power technique based upon Increasing Criticality δ,
irrespective of underlying probability model, is simply calculating the
conditional probability of a game being winning, given that player i
has voted “yes”, less the unconditional probability of the game being
winning.

9.3. TCδ
i . There is no need to create a new super-measurer for Total

Criticality δ, because the expression for Total Criticality is simply the
sum of both Increasing and Decreasing Criticality.

Pr(TCδ
i ) = Pr(Winning | iyes)− Pr(Winning | ino).

5This is not entirely necessary, but the mathematics required to relax this con-
dition is far beyond the scope of this mathematically-light paper.

6This notation may seem strange if you haven’t come across it before. In essence
λ(dωN\{i}) = λino(dωN\{i}) is a mathematical way of saying that the other players
behave the same way, irrespective of player i.
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Therefore, any voting power technique that calculates Total Criti-
cality δ, such as the Banzhaf measure, or the Straffin index, is sim-
ply calculating the conditional probability of the game being winning,
given that player i has voted “yes”, less the conditional probability of
the game being winning, given that player i has voted “no”.

9.4. DC0
i . Creating a super-measurer for Decreasing Criticality 0 would

give the following result.

Pr(DC0
i ) = Pr(Winning)− Pr(Winning | ino).

Therefore, any voting power technique that calculates Decreasing
Criticality 0, like Deegan-Packel, Holler-Packel, and Johnston, are sim-
ply calculating the unconditional probability of the game being win-
ning, less the conditional probability of it being winning, given that
player i has voted “no”.

9.5. IC0
i . Creating a super-measurer for Increasing Criticality 0 is a

little more involved, so let’s look at how this would be done.
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Figure 5. Increasing Criticality 0

We already know how the P machine works, so let’s focus upon the
IIC0

i machine. By definition, for a little ω to be Increasing Criticality
0 we require three conditions to hold true.

Condition 1 - As this is a Criticality 0 measure, the ω being mea-
sured must have player i already expressing zero support (i.e. voting
“no”).

Condition 2 - The ω being measured must be losing.
Condition 3 - A modified version of ω must be winning. The mod-

ified ω is the same as the original ω, except that player i has changed
its vote, and is now voting “yes”. We’ll call this new voting scenario
ω′.

If we let the indicator function Iino be the indicator of player i voting
“no”, then the indicator function for Increasing Criticality 0 is given
by,

IIC0
i (ω) = Iino(ω) (W(ω′)−W(ω)) .

The proof of this is easily given by the following truth table.
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Iino(ω) W(ω′) W(ω) Iino(ω) (W(ω′)−W(ω))
0 0 0 0
0 1 1 0
0 1 0 0
1 0 0 0
1 1 1 0
1 1 0 1

(The construction of ω′ ensures that it is not possible for a ω′ to be
losing while ω is winning).

Integrating IIC0
i (ω) over the set Ω gives the following result,

Pr(IC0
i ) = Pr(ino)× (Pr(Winning | iyes)− Pr(Winning | ino)) .

Therefore, any voting power technique that calculates Increasing
Criticality 0, such as the Shapley-Shubik index, is simply calculat-
ing the conditional probability of the game being winning, given that
player i has voted “yes”, less the conditional probability of the game
being winning, given that player i has voted “no”, multiplied by the
probability of player i voting “no”.

9.5.1. Discussion. Before moving on, let’s examine the Pr(IC0
i ) result

in greater detail. I suggest that, of all the possible voting power mea-
sures, this is the least useful, and arguably, most flawed. It’s all to do
with the fact that Pr(IC0

i ) is directly proportional to Pr(ino).
To understand why this is such a problem, think about a game where

instead of voting “yes” or “no”, the player can abstain (i.e. any real
life game). Arguably, if a player does not have any inherent bias,
their probability of voting “no” should now tend towards 1

3
. Now, let’s

imagine a game where the player can abstain, or vote “yes”, “no”, and
“maybe”.7 In this scenario the probability of voting “no” should tend
towards 1

4
.

In the most general case, where a player expresses their vote by
selecting from a continuous range of options (for example, if they had
to rate their approval for a motion with a percentage), then Pr(ino) →
0, and accordingly send Pr(IC0

i ) → 0. In other words, any voting
power technique based upon Pr(IC0

i ) will report that all players, even
dictators, have zero voting power.

And herein lies the problem for the Shapley-Shubik index. While
most detractors of this technique will question the validity of the prob-
ability model, it turns out that, irrespective of probability model, the
underlying measure itself is flawed.

7Abstention, is not the same as “maybe”, see Das (2008) for details.
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10. Summary

This paper argued that there should be a clear distinction made
between a voting power measure, and the techniques used to calculate
them. The current status quo in voting power research is to convolute
these two different ideas, to the detriment of the subject.

Using a simple block counting example, this paper showed how it
is possible to construct a simple measuring machine to calculate any
statistic. The key idea behind this example was that the measuring
machine still calculated the same statistic even when the distribution
of blocks changed. Adapting the measuring machine to calculate voting
power created a measuring machine capable of calculating any voting
power measure, irrespective of underlying probability model.

Using this machine, it became a simple matter to show that the
Banzhaf measure is calculating,

Pr(Winning | iyes)− Pr(Winning | ino).

And that the Shapley-Shubik index is calculating,

Pr(ino)× (Pr(Winning | iyes)− Pr(Winning | ino)) .

Which brings us to the main premise of this paper, and the funda-
mental flaw inherent in the Shapley-Shubik index. The Shapley-Shubik
index is directly proportional to the probability of the player voting
“no”. While this may not seem like a flaw, it is important to under-
stand why it is.

You see, in the most general types of voting games, the probabil-
ity of voting “no” will tend towards zero, which in turn will send the
Shapley-Shubik index towards zero. This gradually erodes the infor-
mation content of this statistic; making it eventually report that both
null players and dictators have the same minimal voting power. An
undesirable property for any reasonable voting power statistic.

Appendix A. Questions

This appendix anticipates some potential questions that may have
arisen for the reader, during the course of this paper.

A.1. Can’t this work be summed up as nothing more than
moving the probability model from the statistic to the game?
Correct! That is a brilliant observation. But it is important to under-
stand its relevance. In almost every other field of science the probability
model is a property of the system being analysed, and not of the statis-
tic. Returning to our block counting example, you would have thought
it very strange, if, instead of calculating the probability of a blue block,
I claimed to be calculating a Bernard measure when the blocks were
uniformly distributed. Or that I was calculating a Steven-Seagel index
when the blocks were distributed in clumps.
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A.2. You imply that the Banzhaf measure is fundamentally
different to the Shapley-Shubik index, how can this be? Quite
simple, if we examine these techniques independent of their probability
model, we can see quite clearly what they are calculating.

The Banzhaf measure is calculating,

Pr(Winning | iyes)− Pr(Winning | ino).

And the Shapley-Shubik index is calculating,

Pr(ino)× (Pr(Winning | iyes)− Pr(Winning | ino)) .

A.3. You suggest that the Shapley-Shubik index is different
from the Straffin (Homogeneity) measure, how is that possi-
ble? Good question. The Straffin index, both Homogeneity and Inde-
pendence assumption, is calculating,

Pr(Winning | iyes)− Pr(Winning | ino).

Whereas, the Shapley-Shubik index is calculating

Pr(ino)× (Pr(Winning | iyes)− Pr(Winning | ino)) .

But I guess your real question is why did Straffin claim they were
the same? Straffin proposed a Total Criticality measure, and then
showed how it could be calculated for two different underlying proba-
bility models. The first was essentially a uniform distribution, and the
second distribution he called homogeneous. He was able to show that
his homogeneous distribution gave an answer numerically equal to a
Shapley-Shubik index.

The key flaw in his argument was that he only examined games in
which every player must vote “yes” or “no”. If he examined more real-
istic games, in which players could abstain, then this numerical identity
would disappear, and it would be quite obvious that the Straffin Ho-
mogeneity index and the Shapley-Shubik index are inequivalent.

A.4. How is it possible that the Shapley-Shubik index can
be flawed, but the Straffin Homogeneity measure is perfectly
okay? An even better question! In many ways the answer to this is
similar to the previous answer. These techniques are only numerically
equivalent within voting games in which every player must vote “yes”
or “no”. In this narrow scenario, the flawed Shapley-Shubik index, hap-
pens to give a result numerically identical to the Straffin Homogeneity
index. However, as the games become increasingly complex the Straf-
fin index will continue to give sensible answers, but the Shapley-Shubik
index will start to produce answers that tend towards zero.
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A.5. Given that Shapley-Shubik and Straffin agree in simple
“yes/no” games, the Shapley-Shubik index must have some
intrinsic merit, right? Not really. It’s a bit like having two clocks,
one working and one broken. Once every 12 hours the broken clock and
the working clock will numerically agree. But this agreement doesn’t
mean that the broken clock isn’t flawed, it just means that it occasion-
ally happens to show the right time.
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