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Decision rules for Yes-No voting systems are placed in a probabilistic framework. Selfdual and
permutationally invariant distributions are introduced. Under such distributions, the mean

success margin of the majority rule and of the unanimity rule are shown to bound the mean

success margin of all other decision rules. For bloc decision rules in the Penrose/Banzhaf
model, a product formula for the voters’ influence probabilities is derived. Other indices and

the Shapley/Shubik model are also discussed.

1. Introduction. Decision rules and the measurement of voting power originates from,

and usually is oriented toward, game theory. Felsenthal/Machover (1998) present a de-

tailed overview of the subject, including a critical assessment of concepts and methods.

Von Neumann/Morgenstern (1944) laid the foundation for the game-theoretic approach,

and Shapley/Shubik (1954), Shapley (1962), Coleman (1971), Owen (1971), and Dubey

(1975) followed their lead. An alternative approach based on probability models was put

forward by Straffin (1977a,b, 1988) for its appeal of modelling the voters’ behavior. The

present paper focusses on the probabilistic view, as does Straffin, but more for its analytical

potential and the decision-theoretic outlook.

With our statistical background we occasionally feel some irritation that, when authors

make probabilistic statements, it remains unclear to which probability space they refer to.

Is it the set of voters? Or the permutations into which the voters may be aligned? Is it

the space of voting profiles? Is it the set of all agenda proposals to be treated during the

voting process? Our paper grew out of an attempt to extract just one reference space and

see how much of the current theory can be developed within the space chosen.

Our reference space ΩN consists of vectors a, called voting profiles. The components

may take two values, aj = 1 or aj = −1, for every voter j in a finite assembly N . A voting

profile a records whether participant j votes Yea (aj = 1) or Nay (aj = −1). This space of

all voting profiles figures prominently also in the Felsenthal/Machover (1998) monograph,

and in current research literature such as Laruelle/Valenciano (2004, 2005).
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Section 2 introduces a decision rule WN as a set of voting profiles that forms a mono-

tone, nonempty, and proper subset of the space ΩN . Important events are Cj(WN ), con-

sisting of the voting profiles where voter j may exert critical decisiveness. An important

function is the success margin σWN
(a), the difference between the number of voters for

whom the voting profile a is a success and the number of those for whom it is a failure.

Section 3 turns to general probability assumptions. Two properties become vital, self-

duality of a distribution, and permutational invariance. For such distributions, Theorem 2

proves that the mean success margin of a decision rule WN is bounded from above by

the mean success margin of the straight majority rule, while it is bounded from below

by the mean success margin of the unanimity rule. The theorem shows that the mean

success margin has extreme bounds depending on general probabilistic properties, rather

than being owed to the structure of a particular model.

Section 4 turns to the Penrose/Banzhaf model, due to Penrose (1946) and Banzhaf

(1965). In this model it is easy to see that the sensitivity of a decision rule coincides

with its mean success margin (Theorem 3). In Section 5 we overview other power in-

dices, by identifying them as conditional probabilities or conditional expectations in the

Penrose/Banzhaf model.

In Section 6 we investigate bloc decision rules. Theorem 4 derives a product formula

for the influence probability of voter j, in the presence of a prespecified partitioning into

blocs. The formula splits into two factors, the impact of voter j in his or her bloc B,

and the impact of bloc B relative to the other blocs of the partitioning. This general-

izes and compactifies a result due to Felsenthal/Machover (2002). Partitionings of the

assembly N into blocs are also employed by Straffin (1978), Laruelle/Valenciano (2004)

and, for the investigation of list apportionments in proportional representation systems,

by Leutgäb/Pukelsheim (2009).

Section 7 merges the Shapley/Shubik indices into the present approach. As pointed

out by Straffin (1977a) and Dubey/Shapley (1979), the Shapley/Shubik model may be

based on a two-stage usage of uniform distributions. Section 8 concludes the paper with

some final remarks.
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2. Voting profiles and decision rules. Let N be an assembly, a finite set, of n voters.

A voting profile is a vector a = (aj)j∈N with binary components, aj := 1 in case voter j ∈ N

is a Yea-voter, or aj := −1 in case j is a Nay-voter. Altogether the voting profiles form

the space of voting profiles

ΩN := {−1, 1}N .

Let 1N := (1, . . . , 1) denote the unity vector in the set ΩN . For a given voting profile

a ∈ ΩN the component-wise partial ordering ≤ of vectors induces the interval region

[a, 1N ] := {b ∈ ΩN : a ≤ b ≤ 1N}. A binary decision rule (also known as a simple voting

game) is a subset WN ⊆ ΩN enjoying three properties:

(1) [a, 1N ] ⊆ WN for all a ∈ WN ,

(2) 1N ∈ WN ,

(3) − 1N 6∈ WN .

The monotonicity property (1) is central: If a voting profile a is in WN and b is above a in

the component-wise partial ordering, b ≥ a, then b is also in WN . Given (1), properties (2)

and (3) simply mean that the decision rule WN , as a subset of voting profiles, is nonempty

and proper, ∅ 6= WN 6= ΩN . The voting profiles in WN are termed positive, for the reason

that they are taken to represent the positive outcomes of the voting procedure; they are

also known as winning coalitions, or winning configurations. The voting profiles in the

complement W c
N := ΩN \ WN are called negative.

A family of decision rules that is of particular relevance for practical committee work

is formed by weighted decision rules. Let w = (wj)j∈N ∈ (0,∞)N be a vector of voting

weights. The sum of all components of w is denoted by w+ :=
∑

j∈N wj . For a given

voting profile a the sum of the voting weights of its Yea-voters is
∑

j:aj=1 wj , and defines

the profile weight of a.

By definition, the weighted decision rule WN (q; w) contains the voting profiles for

which the weight exceeds qw+, for some pre-specified (relative) quota q ∈ [0, 1):

WN (q; w) :=
{

a ∈ ΩN :
∑

j:aj=1

wj > qw+

}

.

Equivalently we might refer to the absolute quota Q := qw+. However, for the discussion

of ternary decision rules in Käufl/Ruff/Pukelsheim (2010) we find the relative quota q the

more natural quantity to work with, whence we prefer q over Q.
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In the symmetric case all voters possess the same voting weight, turning the weight

vector into w = λ1N for some λ > 0. The most prominent examples are the unanimity

rule UN and the straight majority rule MN :

UN := WN (1 − 1/n; 1N ) = {1N},

MN := WN (1/2; 1N ) = {a ∈ ΩN : a+ > 0}.

Similarly to the weight total w+, the component sum of a voting profile a is denoted by

a+ :=
∑

j∈N aj . If positive, it is the margin by which the Yea-voters outnumber the Nay-

voters. If zero, there is a tie. If negative, it indicates more Nay-voters than Yea-voters.

In general, the number of Yea-voters is given by (1/2)(1N + a)+ = (n + a+)/2, while the

number of Nay-voters is obtained from (1/2)(1N − a)+ = (n − a+)/2. This yields the

obvious identity a+ = (n + a+)/2− (n− a+)/2, which is just another manifestation of a+

signifying the margin between Yea- and Nay-voters.

Let ej := (0, . . . , 0, 1, 0, . . . , 0) denote the Euclidean unit vector. The voting profiles

in which the vote of j becomes critical (decisive) are assembled in the event

Cj(WN ) :=
{

a ∈ ΩN :
(

a ∈ W c
N , a + 2ej ∈ WN

)

or
(

a ∈ WN , a − 2ej ∈ W c
N

)

}

.

That is, a voter is either entry-critical (critical outside a voting profile), when leaving the

Nay-voters and joining the Yea-voters turns a negative voting profile into the positive. Or

the voter is exit-critical (critical in a voting profile), when switching from the Yea-voters

to the Nay-voters turns a positive voting profile into the negative.

The critical event Cj(WN ) is understood better by concentrating on the set of com-

petitors of voter j, that is, N \ {j}. To this end let ΠN\{j} be the projection of the space

ΩN = {−1, 1}N onto ΩN\{j} = {−1, 1}N\{j}, the (n−1)-dimensional marginal space omit-

ting voter j. This is one instance—out of more to follow—where it becomes instrumental

to use sets as subscripts, such as the assembly N or a subset N \ {j}, rather than their

cardinalities.

Given a marginal voting profile b ∈ ΩN\{j} without voter j, we denote by (b; 1) the

full voting profile when j concurs with a Yea, and by (b;−1) when j joins in with a Nay.

The set of voting profiles where the vote of j is critical may then be rewritten as

Cj(WN ) :=
{

a ∈ ΩN :
(

ΠN\{j}(a); 1
)

∈ WN ,
(

ΠN\{j}(a);−1
)

∈ W c
N

}

.

Let Dj(WN ) := ΠN\{j}

(

Cj(WN )
)

denote the image under the projection ΠN\{j} of the

critical event Cj(WN ).
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Theorem 1. Let WN be a decision rule for an assembly N . Then Cj(WN ) is the

pre-image of Dj(WN ):

Cj(WN ) = Π−1
N\{j}

(

Dj(WN )
)

.

Proof. A vector a ∈ ΩN is mapped to the image b := ΠN\{j}(a) ∈ ΩN\{j}, with

components bi = ai for all i 6= j. The vector b ∈ ΩN\{j} has two pre-images, (b;−1) and

(b; 1). Hence we obtain Dj(WN ) =
{

b ∈ ΩN\{j} : (b;−1) ∈ W c
N , (b; 1) ∈ WN

}

. Evidently

the pre-image of Dj(WN ) reproduces the event Cj(WN ).

A voting profile a ∈ ΩN is said to be a success for voter j provided it is positive and j

is a Yea-voter (a ∈ WN , aj = 1), or it is negative and j is a Nay-voter (a ∈ W c
N , aj = −1).

A positive voting profile is taken to be a failure for a Nay-voter, as is a negative voting

profile for a Yea-voter. The notion of success is emphasized by Laruelle/Valenciano (2005)

as a property capturing an aspect somewhat complementary to criticality.

The difference between the number of voters for which a voting profile a ∈ ΩN is

a success, and the number of the voters for which it appears to be a failure, defines the

success margin σWN
(a) of the voting profile a in the decision rule WN :

σWN
(a) :=

{

a+ in case a ∈ WN ,

−a+ in case a ∈ W c
N .

A particular emphasis is placed on those positive voting profiles a ∈ WN appearing to be

a failure to a majority of voters. For such voting profiles the success margin is negative,

whence its negative part represents the majority deficit, δWN
(a) := σ−

WN
(a) =

(

|σWN
(a)|−

σWN
(a)
)

/2.

We now turn to evaluating the events of interest by means of appropriate probability

distributions.

3. Selfdual and permutationally invariant distributions. The aim is to equip the

space of voting profiles ΩN with probability distributions P permitting a meaningful a

priori analysis of decision rules WN .

The share of all positive voting profiles P (WN ) is called the P -efficiency and serves

as an indicator for the decision-making ability of the decision rule WN under P . The

influence probability of voter j in the decision rule WN (also known as swing probability)

is defined to be the probability of j being critical, P
(

Cj(WN )
)

. The sum of all influence

probabilities, ΣP (WN ) :=
∑

j∈N P
(

Cj(WN )
)

, is termed the P -sensitivity of the decision

rule WN .
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The critical events Cj(WN ), j ∈ N , generally neither cover the space of voting profiles

ΩN , nor are pairwise disjoint. Hence, there is no reason for the P -sensitivity to be equal

to unity. However, the P -sensitivity can be used to normalize the influence probabilities

into P
(

Cj(WN )
)

/ΣP (WN ), the power share of voter j under P . The power shares form

a probability distribution on the set of voters N , preserving for any two voters i 6= j the

ratio of their influence probabilities, P
(

Ci(WN )
)

/P
(

Cj(WN )
)

.

Two structural properties of P become essential. A distribution P is said to be selfdual

when P ({a}) = P ({−a}) holds for all voting profiles a ∈ ΩN . Selfduality means that the

probability of a positive profile a for a proposal is just the same as the probability for the

dual voting profile −a for the negation of that proposal.

A distribution P is called permutationally invariant when P ◦ π−1 = P holds for all

permutations π : N → N . To see the effect of permutational invariance, we write the space

ΩN as the disjoint union of the sets of voting profiles with a fixed number k of Yea-voters:

ΩN =

n
⊎

k=0

{

N

k

}

,

{

N

k

}

:=
{

a ∈ ΩN : (n + a+)/2 = k
}

.

The subset
{

N
k

}

has cardinality
(

n
k

)

. Within such a subset, a permutationally invariant

distribution behaves like a uniform distribution:

P ({a}) =
1
(

n

k

)P

({

N

k

})

for all a ∈

{

N

k

}

.

Theorem 2. Let WN be a decision rule for an assembly N .

(i) The success margin σWN
and the majority deficit δWN

satisfy σWN
= σMN

−2δWN
≤

σMN
, where σMN

is the success margin of the straight majority rule MN . In particular,

every distribution P fulfills

EP [σWN
] ≤ EP [σMN

].

(ii) Every selfdual distribution P fulfills

EP [σWN
] = 2

∑

a∈WN

a+P ({a}) = 2

n
∑

k=1

(2k − n)P

(

WN ∩

{

N

k

})

.

(iii) Every selfdual and permutationally invariant distribution P fulfills

EP [σWN
] ≥ EP [σUN

] = 2nP ({1N}).
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Proof. (i) The absolute value of any success margin is equal to the success margin

of the straight majority rule, since |σWN
(a)| = |a+| = σMN

(a). The assertions follow from

δWN
= (σMN

− σWN
)/2, and σWN

≤ |σWN
| = σMN

.

(ii) For a ∈ ΩN we define the indicator function1{a ∈ WN} =

{

1 in case a ∈ WN ,

0 in case a ∈ W c
N .

Thus the success margin turns into σWN
(a) = (2 · 1{a ∈ WN} − 1)a+. It follows

that EP [σWN
] = 2

∑

a∈WN
a+P ({a}) −

∑

a∈ΩN
a+P ({a}). The last sum vanishes, due to

a+ = −(−a+) and the selfduality of P :

2
∑

a∈ΩN

a+P ({a}) =
∑

a∈ΩN

a+P ({a}) −
∑

a∈ΩN

(−a)+P ({−a}) = 0.

In the assertion, the second equality is a rearrangement according to the number of Yea-

voters, k = (n + a+)/2. Since −1N 6∈ WN , we have k ≥ 1. The last sum has at most n

terms, while the penultimate sum may have up to 2n − 1 terms.

(iii) Since 1N ∈ WN , part (ii) yields

EP [σWN
] = 2nP

(

{1N}
)

+ 2
n−1
∑

k=1

(2k − n)P

(

WN ∩
{N

k

}

)

.

It remains to show that the sum is nonnegative. If n is even, its term for k = n/2 vanishes.

Therefore we may quite generally subdivide the range of summation into two regions of

equal cardinality, 1 ≤ k < n/2 and n/2 < k ≤ n − 1. Applying permutational invariance

and selfduality, we obtain

n−1
∑

k=1

(2k − n)P

(

WN ∩

{

N

k

})

=
∑

1≤k<n/2

(n − 2k)

(

P

(

WN ∩

{

N

n − k

})

− P

(

WN ∩

{

N

k

})

)

=
∑

1≤k<n/2

n − 2k
(

n

k

) P

({

N

k

})

(

#

(

WN ∩

{

N

n − k

})

− #

(

WN ∩

{

N

k

})

)

.

Since a decision rule WN is monotone, by its defining property (1), any set of positive

voting profiles with many Yea-voters (n−k) outnumbers any set of positive voting profiles

with only a few Yea-voters (k), for all 1 ≤ k < n/2. Hence the final sum is nonnegative.
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4. The Penrose/Banzhaf model. The simplest distributional model is the Penrose/

Banzhaf distribution PN , the uniform distribution on the space ΩN :

PN ({a}) :=
1

#ΩN
=

1

2n
for all a ∈ ΩN .

The Penrose/Banzhaf distribution makes the voting behavior of all voters j ∈ N stochas-

tically independent, PN =
⊗

j∈N P{j}, with identical marginals P{j} = Bernoulli(1/2).

The distribution PN is selfdual and permutationally invariant. The Penrose/Banzhaf effi-

ciency (also known as Coleman’s power of a collectivity to act) is PN (WN ) = ω/2n, where

ω := #WN is the number of positive voting profiles.

For a given decision rule WN , the Penrose/Banzhaf influence probability of the voter

j ∈ N evaluates to

PN

(

Cj(WN )
)

= PN ◦ Π−1
N\{j}

(

Dj(WN )
)

= PN\{j}

(

Dj(WN )
)

=
ηj

2n−1
,

where ηj := #Dj(WN ) denotes the swing score (also known as Banzhaf score) of voter j.

The following result is well-known, see Theorem 3.3.5 in Felsenthal/Machover (1998).

Theorem 3. For every decision rule WN its Penrose/Banzhaf sensitivity coincides

with its Penrose/Banzhaf mean success margin:

ΣPN
(WN ) =

1

2n−1

∑

a∈WN

a+ = EPN
[σWN

].

Proof. By definition, ΣPN
(WN ) = η+/2n−1. We set ωj := #{a ∈ WN : aj = 1}.

If voter j changes camps, then the positive voting profiles for which j is critical become

negative and drop out: #{a ∈ WN : aj = −1} = ωj − ηj . We obtain ω = 2ωj − ηj ,

that is, ηj = 2ωj − ω. Substituting ωj =
∑

a∈WN
1{aj = 1} and summing over j, we get

η+ = 2
(

∑

a∈WN

∑

j∈N 1{aj = 1}
)

− nω = 2
(
∑

a∈WN
(n + a+)/2

)

− nω =
∑

a∈WN
a+.

This proves the first equality. The second equation follows from Theorem 2.

Theorems 2 and 3 imply that the unanimity rule UN and the straight majority rule

MN provide bounds for the Penrose/Banzhaf sensitivity of any decision rule WN :

n

2n−1
= ΣPN

(UN ) ≤ ΣPN
(WN ) ≤ ΣPN

(MN ) =
n

2n−1

(

n − 1

⌊n/2⌋

)

∼

√

2n

π
.
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5. Conditional power indices in the Penrose/Banzhaf model. Other power indi-

ces emerge from the Penrose/Banzhaf model as conditional probabilities, or as conditional

expectations. For an appraisal of these indices see Felsenthal/Machover (1998).

5.1. Conditioning on the set of positive voting profiles. A first group of power indices

conditions on the decision rule WN itself, thereby emphasizing its interpretation as the set

of all positive voting profiles.

The Penrose/Banzhaf probability of the critical event Cj(WN ) given the positive vot-

ing profiles WN is better known as Coleman’s power to prevent action:

EPN

[1{a ∈ Cj(WN )
}

∣

∣

∣
WN

]

= PN

(

Cj(WN )
∣

∣

∣
WN

)

=
PN

(

Cj(WN ) ∩ WN

)

PN (WN )

=
ηj/2n

ω/2n
=

ηj

ω
.

The penultimate equality uses the fact that the number of positive voting profiles for

which voter j is exit-critical amounts to #
(

Cj(WN ) ∩ WN

)

= #
(

Cj(WN ) ∩ W c
N

)

=

(1/2) #Cj (WN ) = ηj .

Coleman’s power to initiate action is given by PN

(

Cj(WN ) | W c
N

)

= ηj/(2n − ω).

Here the conditioning event is the set of negative voting profiles W c
N , and ηj represents the

number of negative voting profiles where voter j is entry-critical. The harmonic mean of the

two Coleman indices reproduces the Penrose/Banzhaf influence probability PN

(

Cj(WN )
)

.

This reproduction property applies in every probability space (ΩN , P ) where the relation

P
(

Cj(WN ) ∩ WN

)

= P
(

Cj(WN ) ∩ W c
N

)

holds true.

Generally the two Coleman indices do not sum to unity. In either case normalization

reproduces the Penrose/Banzhaf influence probabilities.

An alternative idea is that in case of an increasing number of critical Yea-voters they

should be assigned decreasing pay-offs. This reasoning originates from a game-theoretic

approach, the winning subset of Yea-voters having to share a fixed prize. For a voting

profile a ∈ ΩN we define the vector γ(a) to indicate whether voter j is exit-critical (γj(a) :=

1), or not (γj(a) := 0). Hence, the component sum γ+(a) :=
∑

j∈N γj(a) indicates the

number of exit-critical Yea-voters. The Burgin/Shapley index is defined as

EPN

[

1

γ+(a)
1{a ∈ Cj(WN )

}

∣

∣

∣
WN

]

=
∑

a∈Cj(WN )

1

γ+(a)
PN

(

{a}
∣

∣

∣
WN

)

=
∑

a∈Cj(WN )∩WN

1

γ+(a)

1/2n

ω/2n
=

1

ω

∑

a∈Cj(WN )∩WN

1

γ+(a)
.

The normalized versions of the Burgin/Shapley indices are called Johnston indices.
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5.2. Conditioning on the set of minimal-positive voting profiles. A second group of

indices arises when the conditioning event is taken to be the set of minimal-positive voting

profiles, that is, voting profiles wherein every Yea-voter is exit-critical:

Wmin
N :=

{

a ∈ WN : a − 2ej ∈ W c
N for all j ∈ N

}

.

The interval regions that are induced by the minimal-positive voting profiles characterize

the decision rule: WN =
⋃

a∈W min

N

[a, 1N ]. Kirsch/Langner (2009) make do with minimal-

positive voting profiles to calculate influence probabilities.

The indices corresponding to Coleman’s power to prevent action are

EPN

[1{a ∈ Cj(WN )
}

∣

∣

∣
Wmin

N

]

=
#
(

Cj(WN ) ∩ Wmin
N

)

#Wmin
N

.

Normalization yields the Holler/Packel public good indices.

In minimal-positive voting profiles every Yea-voter is exit-critical, γ+(a) = (n+a+)/2.

The indices that run parallel to the Burgin/Shapley indices are the Deegan/Packel indices

EPN

[

1

γ+(a)
1{a ∈ Cj(WN )

}

∣

∣

∣
Wmin

N

]

=
1

#Wmin
N

∑

a∈Cj(WN )∩W min

N

1

γ+(a)
.

Their total happens to be equal to unity, since for all a ∈ Wmin
N we get

∑

j∈N 1{a ∈

Cj(WN )
}

= γ+(a), and
∑

j∈N EPN

[

1
γ+(a)

1{a ∈ Cj(WN )
}
∣

∣Wmin
N

]

= 1 .

Although the Penrose/Banzhaf uniform distribution is the most prominent model,

bloc decision rules give rise to other interesting distributions.

6. Bloc decision rules. We assume an assembly N and its set of voting profiles ΩN to

be given, together with some decision rule WN . A partitioning P of the assembly N is a

decomposition of N into pairwise disjoint subsets. Its subsets B ∈ P are called blocs.

The smallest partitioning is {N}, embracing just the single bloc N . The largest

partitioning is
{

{j} : j ∈ N
}

, featuring only trivial—that is, one-element—blocs {j}.

These two configurations are extreme and only of theoretical interest. Practical examples

use partitionings P consisting of more than one and less than n blocs. In Exhibit 1 we

partition the former EEC into four blocs, P =
{

{DE}, {IT}, {FR}, {NL, BE, LU}
}

. The

big Member States stay alone, while the Benelux states join into a bloc of three.
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The assembly N is a disjoint union of the blocs B ∈ P, and its voting profile space is

a Cartesian product of the profile spaces of the blocs:

N =
⊎

B∈P

B, ΩN =
∏

B∈P

ΩB .

Now a voting profile in ΩN is a block vector a = (aB)B∈P , with components aB := (aj)j∈B.

Given a bloc B ∈ P, we consider B as an assembly in its own right, with associated

space of voting profiles ΩB. We assume that every bloc is given an internal decision rule

WB . The final decision, in the grand assembly N , is preceded by internal bloc decisions. If

in bloc B the internal voting profile aB is positive, then all members of the bloc vote Yea in

the final voting profile. If aB is negative, all of them vote Nay. Therefore the contribution

of bloc B to the final voting profile is given by (2 · 1{aB ∈ WB} − 1)1B , namely 1B in

case aB ∈ WB , and −1B otherwise. This leads to the definition of the bloc decision rule,

WN |(WB)B∈P :=
{

(aB)B∈P ∈ ΩN :
(

(2 · 1{aB ∈ WB} − 1)1B

)

B∈P
∈ WN

}

⊆ ΩN .

Theorem 4 treats the partitioning P as yet another assembly, as in Straffin (1978),

Felsenthal/Machover (2002), and Laruelle/Valenciano (2004). Its space of voting profiles

ΩP is equipped with a decision rule WP that is induced by the decision rule WN .

Theorem 4. Let P be a partitioning of the assembly N . With decision rule WN

for N , and internal decision rules WB for the blocs B ∈ P, we introduce

WP := {c ∈ ΩP : (cB1B)B∈P ∈ WN}, QP :=
⊗

B∈P

Bernoulli
(

PB(WB)
)

.

Then we have, for every bloc A ∈ P and for all voters j ∈ A:

PN

(

Cj

(

WN

∣

∣(WB)B∈P

)

)

= PA

(

Cj(WA)
)

QP

(

CA(WP)
)

.

Proof. For every voting profile a in ΩN , the function cB(aB) := (2 · 1{aB ∈ WB} −

1)1B induces the voting profile c(a) :=
(

cB(aB)
)

B∈P
in ΩP . A voter j ∈ A is critical in

ΩN , with respect to the bloc decision rule WN |(WB)B∈P , if and only if j is critical in WA

and the bloc A is critical in WP :

Cj

(

WN

∣

∣(WB)B∈P

)

=
{

a ∈ ΩN : aA ∈ Cj(WA), c(a) ∈ CA(WP)
}

.
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By Theorem 1, the event CA(WP) = Π−1
P\{A}

(

DA(WP)
)

depends on the blocs in P \ {A},

only. Since the distribution PN is a product, PN =
⊗

B∈P PB, we obtain

PN

(

Cj

(

WN

∣

∣(WB)B∈P

)

)

= PA

(

Cj(WA)
)

PN\A

(

{

(cB)B∈P\{A} ∈ DA(WP)
}

)

.

In the last factor we re-introduce the marginal space ΩA:

PN\A

(

{

(cB)B∈P\{A} ∈ DA(WP)
}

)

= PN

({

b ∈ CA(WP)
})

= PN ◦ b−1
(

CA(WP)
)

.

The distribution of the random vector b = (cB)B∈P under PN turns out to be

PN ◦ b−1 =
⊗

B∈P

PB ◦ c−1
B =

⊗

B∈P

Bernoulli(pB),

with pB := PB

(

{cB = 1}
)

= PB

(

{aB ∈ ΩB : aB ∈ WB}
)

= PB(WB). This yields the

distribution QP as claimed in the assertion.

Trivial blocs B = {j} do not contribute anything novel to the product formula. Indeed,

the sole decision rule for them is W{j} = {1}. Hence the first factor in the product formula

equals unity, P{j}

(

Cj(W{j})
)

= 1. Moreover, trivial blocs enter into the distribution QP

as a Bernoulli(1/2) component, since P{j}(W{j}) = 1/2. For this reason trivial blocs are

often omitted when listing a partitioning.

In other words, if in a partitioning P a voter j stands alone, then the behavior of the

trivial bloc {j} in the partitioning assembly P is identical with the behavior of the voter j

in the original assembly N , with probability 1/2 of being a Yea-voter. Thus a voter who

stays back as a one-element bloc remains passive, and falls victim to the nontrivial blocs

of the partitioning P.

In Theorem 4 the distribution QP is a product of Bernoulli distributions. In general,

it is no longer the case that a Yea must emerge with probability 1/2. A Yea in bloc B

occurs with probability equal to the Penrose/Banzhaf efficiency, PB(WB), and a Nay has

probability 1 − PB(WB). In Exhibit 1, the Benelux bloc votes Yea under the unanimity

rule with probability 1/8.

Other instances may give rise to distributions with correlated components. A promi-

nent example is the Shapley/Shubik distribution.
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7. The Shapley/Shubik model. The Shapley/Shubik distribution SN combines two

uniform distributions, see Dubey/Shapley (1979). Every subset
{

N
k

}

with a fixed number

k of Yea-voters, k = 0, . . . , n, is assigned the same probability 1/(n + 1). Conditionally on

such a subset, its
(

n
k

)

voting profiles are again assumed to be uniformly distributed:

SN ({a}) :=
1

(n + 1)

(

n

(n + a+)/2

) for all a ∈ ΩN .

It is easy to verify that the Shapley/Shubik distribution is selfdual and permutationally

invariant. Moreover, Theorem 5 shows that the family of Shapley/Shubik distributions is

projectively consistent with respect to its marginal distributions.

Theorem 5. For all voters j ∈ N we have SN ◦ Π−1
N\{j} = SN\{j}.

Proof. For b ∈ ΩN\{j} we have Π−1
N\{j}{b} = {(b;−1), (b; 1)}. Let k := (n + b+)/2.

The identities
(

n
k

)

+
(

n
k+1

)

=
(

n+1
k+1

)

= n+1
k+1

(

n
k

)

justify the assertion:

SN

(

{(b;−1), (b; 1)}
)

=
1

(n + 1)

(

n

k

) +
1

(n + 1)

(

n

k + 1

) =

(

n

k + 1

)

+

(

n

k

)

(n + 1)

(

n

k

)(

n

k + 1

)

=
1

(k + 1)

(

n

k + 1

) =
1

n

(

n − 1

k

) = SN\{j}({b}).

The Shapley/Shubik influence probability of voter j becomes

SN

(

Cj(WN )
)

= SN\{j}

(

Dj(WN )
)

=

n−1
∑

k=0

SN\{j}

({

N \ {j}

k

}

∩ Dj(WN )

)

.

Since in the probability space (ΩN\{j}, SN\{j}) a uniform distribution rules on the subsets
{

N\{j}
k

}

, we introduce the counting variables

ηj(k) := #

({

N \ {j}

k

}

∩ Dj(WN )

)

=: sk+1,j,

for all k ∈ {0, . . . , n− 1} and j ∈ N . The number sij counts the voting profiles consisting

of i Yea-voters (including j) and featuring voter j as exit-critical. Altogether they form

the {1, . . . , n} × N swing matrix s, with the entries sij in row i and column j. We obtain

SN

(

Cj(WN )
)

=
n−1
∑

k=0

ηj(k)

n
(

n−1
k

) =
1

n!

n−1
∑

k=0

k!(n − 1 − k)! ηj(k) =
1

n!

n
∑

i=1

(i − 1)!(n − i)! sij .

Theorem 6 states that the Shapley/Shubik influence probabilities always sum to unity.

Hence the notion of sensitivity becomes superfluous, in the Shapley/Shubik model.
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Theorem 6. Every decision rule WN has Shapley/Shubik sensitivity equal to unity:

∑

j∈N

SN

(

Cj(WN )
)

= 1.

Proof. The assertion is entirely of combinatorial nature:
∑n

i=1(i−1)!(n−i)!si+ = n!.

We show that the left hand side counts all permutations of n voters, as does the right hand

side. On the left hand side the counting is carried out in a way that is dictated by the

problem. Without loss of generality we assume that the assembly is enumerated in the form

N = {1, . . . , n}. Let π(1), . . . , π(n) be an arbitrary permutation of the voters. We count

the cases where the sole Yea-voters are π(1), . . . , π(i) with voter π(i) being exit-critical:

eπ(1) + · · ·+ eπ(i−1) + eπ(i) ∈ WN , eπ(1) + · · · + eπ(i−1) ∈ W c
N .

Voter j := π(i) maintains the exit-critical role in the permutations rearranging the prede-

cessors π(1), . . . , π(i− 1), or rearranging the successors π(i + 1), . . . , π(n). This generates

(i − 1)!(n − i)! permutations. Finally, the number si+ :=
∑

j∈N sij is the count of how

often voter j takes the position of the exit-critical voter π(i).

Theorem 6 entails the rather strange consequence that, for symmetric decision rules

WN (q; λ1N ) where all voters enjoy the same voting weight λ, the Shapley/Shubik influence

probabilities of all voters are equal to 1/n. They do not depend on the quota q, and

therefore the Shapley/Shubik model is incapable of distinguishing the unanimity rule UN

(with quota q = 1 − 1/n), from the straight majority rule MN (with quota q = 1/2).

In the Shapley/Shubik model the mean success margin does not coincide with the

sensitivity (which equals unity, by Theorem 6). According to Theorem 2 the lower bound

for the mean success margin is given by ESN
[σUN

] = 2n/(n+1). The upper bound becomes

ESN
[σMN

] =
n + 1

2
−







1

2(n + 1)
in case n is even,

0 in case n is odd.

(∗)

Indeed, in the straight majority rule MN a voting profile a is positive if and only if k :=

(n + a+)/2 > n/2, that is, a+ = 2k − n > 0. Hence Theorem 2(ii) gives

ESN
[σMN

] = 2
∑

k>n/2

(2k − n)SN

({

N

k

})

=
2

n + 1

∑

k>n/2

(2k − n).

Now
∑

k>n/2(2k − n) = ⌈n/2⌉
(

⌊n/2⌋ + 1
)

establishes the two cases in (∗).
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The Shapley/Shubik model assigns weights to the subsets
{

N
k

}

of k Yea-voters that

differ from those in the Penrose/Banzhaf model:

SN

({

N

k

})

=
1

n + 1
6=

1

2n

(

n

k

)

= PN

({

N

k

})

.

Nevertheless, within any such subset the conditional probabilities are the same. For all

voting profiles a ∈
{

N
k

}

we have

SN

(

{a}
∣

∣

∣

{N

k

}

)

= 1
/

(

n

k

)

= PN

(

{a}
∣

∣

∣

{N

k

}

)

.

The Shapley/Shubik model has marginal distributions S{j} = Bernoulli(1/2), for all

voters j ∈ N , as has the Penrose/Banzhaf model. However, any two voters are stochasti-

cally dependent in their behavior, CovSN
[ai, aj] = CovS{i,j}

[ai, aj] = 1/12. The correlation

coefficient turns out to be (1/12)/(1/4) = 1/3.

The positive correlation becomes visible also in the conditional probabilities

SN

(

{(b; 1)}
∣

∣ {(b;−1), (b; 1)}
)

=
SN

(

{(b; 1)}
)

SN\{j}

(

{b}
) =

(n + b+)/2 + 1

n + 1
.

In the Shapley/Shubik model voter j turns into a Yea-voter with a likelihood that increases

with (n+b+)/2, the number of Yea-voters surrounding j. This is reminiscent of the accessus

procedure in clerical elections. The accession of minority voters to the majority may ease

the way to a two-thirds winning configuration, see Colomer/McLean (1998).

8. Conclusion. In this paper we leave the common ground of game theory and favor a

probabilistic approach. The set ΩN = {−1, 1}N of binary voting profiles in an assembly N

allows to treat many prominent power measures known in the literature. This leads to a

general theory in which power measures arise from appropriate distributional assumptions.

The approach also yields new results. Section 3 shows that the upper and lower

bounds of the expected success margin apply to all selfdual and permutationally invari-

ant distributions, rather than being restricted to special assumptions such as the Pen-

rose/Banzhaf model. Furthermore bloc decision rules, studied in Section 6, generate a

new class of interesting distributions and yield a generalization of the product formula of

Felsenthal/Machover (2002). We allow blocs of any sizes and arbitrary internal decision

rules. The example of a Benelux bloc in the former EEC illustrates the different power

distributions among the six States when the Benelux bloc decides internally by straight

majority, or by unanimity.
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Finally we remark that the approach extends to ternary decision rules where absten-

tions are allowed. With abstention probability t ∈ [0, 1), Käufl/Ruff/Pukelsheim (2010)

develope formulas embracing the results of the present paper as the starting case t = 0.
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Row no. 
Voting profile 

DE:4 IT:4 FR:4 NL:2 BE:2 LU:1 

Profile weight 

   WEU6   WEU6|MBenelux WEU6|UBenelux 

1  1  1  1  1  1  1 17 17 17 

2  1  1  1  1  1 -1 16 17 12 

3  1  1  1  1 -1  1 15 17 12 

4  1  1  1 -1  1  1 15 17 12 

5  1  1  1  1 -1 -1 14 12 12 

6  1  1  1 -1  1 -1 14 12 12 

7  1  1  1 -1 -1  1 13 12 12 

8  1  1 -1  1  1  1 13 13 13 

9  1 -1  1  1  1  1 13 13 13 

10 -1  1  1  1  1  1 13 13 13 

11  1  1  1 -1 -1 -1 12 12 12 

12  1  1 -1  1  1 -1 12 13 - 

13  1 -1  1  1  1 -1 12 13 - 

14 -1  1  1  1  1 -1 12 13 - 

15  1  1 -1  1 -1  1 - 13 - 

16  1  1 -1 -1  1  1 - 13 - 

17  1 -1  1  1 -1  1 - 13 - 

18  1 -1  1 -1  1  1 - 13 - 

19 -1  1  1  1 -1  1 - 13 - 

20 -1  1  1 -1  1  1 - 13 - 

          

Decision 

rule 

Penrose/Banzhaf 

influence probability 

P/B 

sensi- 

tivity 

P/B mean 

majority 

deficit 

P/B 

effi- 

ciency 

 All values to be divided by 64 

WEU6 20 20 20 12 12  0  84 18 14 

WEU6|MBenelux 24 24 24 12 12 12 108  6 20 

WEU6|UBenelux 18 18 18  6  6  6  72 24 11 

 

Exhibit 1: Weighted decision rule EEC 1958-1972, and bloc 

variants.  The actual rule WEU6 used weights 4, 4, 4, 2, 2, 

1 and absolute quota 12.  The two bloc variants let Bene-

lux decide internally by straight majority (WEU6|MBenelux), 

or by unanimity (WEU6|UBenelux).  The three rules feature 14, 

20, 11 positive profiles, respectively.  Penrose/Banzhaf 

influence probabilities appear to vary unpredictably.   


