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1. INTRODUCTION

How often do events of interest to voting theorists occur in actual elections? For example, what

is the probability of observing a voting cycle—an outcome in which no candidate beats all other

candidates in pairwise comparison by majority rule? When there is a candidate who beats all

others in such pairwise comparisons—a Condorcet winner—what is the probability that a voting

method chooses this candidate? What is the probability that voters have an incentive to vote

strategically—that is, cast their votes in ways that do not reflect their true preferences? Voting

theorists have analyzed these questions in great detail, using a variety of statistical models that

describe different distributions of candidate rankings. But there has been no systematic effort to

determine which statistical model comes closest to describing the distribution of rankings of

candidates in actual elections. Thus we know how often various voting events occur under

different statistical models, but not how often voting events occur in actual elections. This paper

provides a first step toward finding an answer to this question.

We consider elections in which each voter is asked to submit a strict ranking of M

candidates. Such elections can be viewed as outcomes of a statistical process in which each trial

has M! possible outcomes (the possible strict rankings of the M candidates). The set of all

possible vectors of length M! whose components sum to 1 forms the space of feasible generating

probabilities for elections, which we call the “election generating universe.” The vector of

probabilities that apply to the voters in one election represents one point in this space. We refer

to the probability distribution over feasible vectors of probabilities of rankings that generate

actual—as opposed to theoretically imaginable—elections as the “structure of the election-

generating universe.”1 In this paper we identify a model that comes surprisingly close to

describing this structure.

1 We borrow our terminology from cosmology, using the distribution of stars within the universe as an analogy for
the distribution of candidate rankings within the space of feasible generating probabilities for elections. The
“structure of the election generating universe” is analogous to the term “large-scale structure of the universe” that
cosmologists use to describe the observable—as opposed to theoretically imaginable—distributions of matter and
light in the universe.



2

We consider ten models of the structure of the election-generating universe that have

been proposed by others, as well as two new models, for the case of three candidates. We

evaluate these twelve models with two sets of voting data. Our first data set was assembled by

Nicolaus Tideman in 1987 and 1988, and it consists of individual ballot information for 87

elections that we transform into 883 three-candidate elections.2 Our second data set consists of

913 three-candidate “elections” that we construct from the “thermometer scores” that are part of

the surveys conducted by the American National Election Studies (ANES).3 The results that we

obtain from these two rather different data sets are very consistent and indicate that a spatial

model describes the structure of the election-generating universe very well—much better than

any of the models that have so far been used in theoretical analyses of voting events, and well

enough that it may be difficult to devise an alternative model that would describe actual election

data significantly better.

The spatial model is too complex to permit the type of theoretical analyses of the

probabilities of voting events that theorists have undertaken so far (as an example, see Gehrlein,

2002). Thus we envisage using this model for Monte Carlo simulations to generate data that

have the same characteristics as data from actual elections. Simulating several millions of such

elections will permit us to estimate the probabilities of various voting events. Such simulations

would be unnecessary if there were enough data from actual elections in which voters rank the

candidates to determine the frequencies of rare voting events with a reasonable degree of

accuracy. But there are not nearly enough ranking data for this task. For example, Brams and

Fishburn (2001) and Saari (2001) use data from a single election—the 1999 election for

2 These data have been analyzed previously by Feld and Grofman (1990 and 1992), Felsenthal et al. (1993),
Felsenthal and Machover (1995), Tideman and Richardson (2000), Regenwetter et al. (2002), and Tideman (2006).

3 ANES survey data have been used in several previous analyses of voting. For example, Chamberlin and
Featherston (1986) use scores from ANES surveys administered in 1972, 1974, 1976, and 1978 to construct
combinations of four candidates. Regenwetter et al. (2002 and 2003) analyze the thermometer scores of the three
major candidates in the four ANES surveys administered in 1968, 1980, 1992, and 1996 to construct combinations
of three candidates. Our method of constructing three-candidate “elections” is the same as that in these earlier
analyses.
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president of the Social Choice and Welfare Society—to illustrate and analyze the properties of

different voting methods. Chamberlin and Featherston (1986) analyze data from five

presidential elections of the American Psychological Association, while Regenwetter et al.

(2002) use data from 12 elections for positions in professional organizations. Tideman’s data set

of 87 elections is one of the largest data sets of elections with multiple candidates that voting

analysts have used. Even our two data sets with 883 and 913 three-candidate elections cannot

provide reliable information about the frequencies of rare voting events. But if we are able to

infer the structure of the election-generating universe from these elections, then data simulated to

conform to this structure can reveal the frequencies of voting events of interest.

The remainder of this paper is organized as follows: we introduce the twelve models of

the structure of the election-generating universe in Section 2, and we explain our strategy for

assessing the accuracy of these models in Section 3. We describe our data and report the results

of our statistical analysis in Section 4, and conclude in Section 5.

2. TWELVE STATISTICAL MODELS OF THE STRUCTURE OF THE ELECTION-GENERATING UNIVERSE

Consider an election with M candidates, in which each of N voters submits a strict ranking of the

candidates. There are M! possible strict rankings. Let the random variable Nr describe the

number of votes for ranking r, r = 1, …, M!, let pr be the vote share for ranking r with pr = 1,

and let p = {p1, …, pM!} be a vector of vote shares of length M!. The collection of feasible p

forms the election-generating universe. The requirement that pr = 1 implies that the election-

generating universe is contained in a unit (M! – 1)-simplex. Let P be a random vector of length

M! that is defined on the collection of feasible p. A statistical model of the structure of the

election-generating universe describes the distribution of P over all elections.

Statistical models of the structure of the election-generating universe differ in the

probabilities that they assign to different p as well as in range of P. It is straightforward to

describe the differences among the probability structures, but less straightforward to illustrate the
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differences in ranges for general M. However, it is customary in the theoretical literature of

voting events to restrict the number of candidates, and many theoretical results are available for

elections with three candidates only. We continue this tradition and restrict our analysis in this

paper to elections with M = 3; this permits us to represent the corresponding 5-simplex as a

three-dimensional octahedron, which we use to derive intuitive graphical illustrations of the

differences among the ranges of different models. In this octahedron, each of the six vertices

represents a vector p with one probability equal to 1 and the remaining 5 probabilities equal to

zero, each of the 15 edges (including the 3 virtual edges connecting pairs of opposite vertices)

represents a vector p with 4 probabilities equal to zero while the remaining two pr sum to 1, and

each of the 20 (real and virtual) faces represents a vector p with 3 probabilities equal to zero

while the remaining three pr sum to 1. The point at the center of the octahedron represents the

vector of equal probabilities with each pr = 1/6. Although such a three-dimensional

representation of a five-dimensional space cannot distinguish among all vectors of probabilities

permitted by the five-dimensional space, it is nevertheless sufficient to illustrate the differences

in the ranges of all but one of the models that we analyze. To simplify the exposition, we label

the three candidates A, B, and C, and order the six rankings {ABC, ACB, CAB, CBA, BCA, BAC}

so that ABC is ranking r = 1, ACB is ranking r = 2, and so on.

We classify the statistical models that describe the distribution of P into four categories.

Models in the first category have a range of the entire 5-simplex and accept every feasible vector

p as a potential source of elections. Models in categories 2 through 4 assign zero probability as

the source of an election to all points in the simplex except for subsets of measure zero that

contain the subspaces of permitted probability vectors. Models in category 2 are of zero

dimensionality and consist of either a single point or a single set of symmetric points within the

simplex. Models in categories 3 and 4 are of higher dimensionality; those in category 3 are

specified by linear restrictions on the unit simplex, while those in category 4 impose non-linear
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restrictions on the unit simplex. We describe each model below and summarize the properties of

all twelve models in Table 1.

2.1 Models whose ranges are the entire unit simplex

Our first model, the Impartial Anonymous Culture (IAC), was proposed in Kuga and Nagatani

(1974) and Gehrlein and Fishburn (1976a). This model assumes that all points within the 5-

simplex are equally likely. Figure 1a shows the range of IAC—the entire octahedron. Several

voting theorists have used IAC to calculate the probability that certain voting events will occur,4

but they generally emphasize that they do not necessarily believe that equally likely probabilities

of strict rankings describe vote-casting.5 We are not aware of any formal test of the statistical

adequacy of this assumption.

Several variations on IAC were developed specifically to examine the probability of

observing Condorcet’s paradox, and we consider three of them. Our second model, IACb(kb)

was introduced in Gehrlein (2004). As with IAC, the range of IACb(kb) is the entire simplex, but

the probabilities of IACb(kb) differ in a subtle way from those of IAC. Assume that one

candidate, say C, is ranked last no more often than either A or B, so that the frequency with

which C is ranked last is a real number kb between 0 and 1/3. IACb(kb) assumes that the

probability of ABC is distributed uniformly on the interval [0, kb], and that the probability of

BAC equals kb minus the probability of ABC. The probabilities of the four other rankings ACB,

BCA, CBA, and CAB are distributed uniformly on the tetrahedron whose components sum to 1 –

kb. Thus while the components of P are determined simultaneously under IAC, they are

determined sequentially in two steps under IACb(kb). Lepelley (1995) considers the case of this

model when kb = 0, so that the range of the model is limited to a subset of the unit simplex. We

consider this limiting case of IACb(kb) below as model 7.

4 For example, Saari (1990) uses this assumption to analyze the probability of strategic voting under different voting
methods, Gehrlein (2002) uses it to analyze the probability of observing Condorcet’s paradox, and Cervone et al.
(2005) use it to analyze the probability that a Condorcet candidate, if it exists, will win the election.

5 See, for example, Gehrlein (2002, p. 169) and Cervone et al. (2005, p.182).
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Gehrlein (2006) describes two variations on IACb(kb) that he calls IACt(kt) and IACc(kc).

IACt(kt) assumes that one candidate is ranked first no more often than the other two candidates,

while IACc(kc) assumes that one candidate is ranked in the middle no more often than the other

two candidates.6 In both models, the probabilities of the six rankings are determined analogously

to those in IACb(kb). We analyze IACt(kt) and IACc(kc) as models three and four. The exact

values of p in models 2 – 4 depend on the unknown parameters kb, kt, and kc. In the appendix we

describe how we calibrate these parameters to our two data sets.

2.2 Models whose ranges are composed of 0-dimensional subsets of the unit simplex

The most restrictive of the models that restrict the range to a proper subset of the unit simplex is

the impartial culture (IC), which assumes that the range of P is a single point at the center of the

simplex where all rankings are equally likely, or pr = 1/6. Figure 1b shows this range as the

octahedron’s center. Its computational simplicity made IC popular in early Monte Carlo studies

(see, for example, Campbell and Tullock, 1965), but there is now considerable empirical

evidence that IC does not describe the structure of the election-generating universe (see

Regenwetter et al., 2006, for a summary).

Our sixth model, which was proposed in Chamberlin and Featherston (1986) and which

we call Unique Unequal Probabilities (UUP), assumes that in every election, each candidate

occupies a specifiable ranking niche (first, second, etc.), and that for each possible ranking of the

candidates described by these niches, there is a constant probability that this ranking will be used

in an election. UUP restricts the range of P to a set of 6 points, one for each permutation of the

rankings. Figure 1c shows the range of UUP—six points in symmetric locations in the

octahedron. Unlike IC, UUP does not specify the values of the six probabilities, so it has 5

unknown parameters that need to be estimated (see the appendix).

6 IACb(kb) measures the proximity of voter preferences to the case of single-peakedness (which occurs at kb = 0),
while the other two representations measure the proximities to “single-troughness” and “single-centeredness.”
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2.3 Models whose ranges are more than 0-dimensional and are specified by linear restriction on

the unit simplex

Our seventh model is the limiting case of IACb(kb) with kb = 0 that was proposed in Lepelley

(1995). We refer to this model as SPP because it ensures single-peaked (group) preferences,

making a voting cycle impossible. The range of SPP consists of all vectors p with either p4 = p5

= 0 (A is never ranked last), p2 = p3 = 0 (B is never ranked last), or p1 = p6 = 0 (C is never ranked

last). The pairs of restrictions imply that each case could be viewed as a tetrahedron; if we could

see in five dimensions, then the range of SPP would be three tetrahedrons of which any two

tetrahedrons share an edge where the appropriate four probability restrictions hold. Figure 1d

depicts this range in three dimensions.

Our eighth model, the Dual Culture (DC) proposed in Gehrlein (1978), assumes that the

probabilities of opposite rankings are equal, that is, p1 = p4, p2 = p5, and p3 = p6. In contrast, our

ninth model, the Uniform Culture (UC) proposed in Gehrlein (1982), assumes that the

probabilities of neighboring rankings are equal, that is, p1 = p2, p3 = p4, and p5 = p6. Neither

model specifies the probabilities of any of the three pairs, which thus need to be estimated (see

the appendix). Each set of three equalities specifies a plane in the 5-simplex. Both the range of

DC and the range of UC can be represented by a triangle determined by the midpoints of three

edges of the octahedron. These triangles appear to be coplanar in the octahedron (see Figure 1e),

but in five dimensions their only common point is their centers where all probabilities equal 1/6.

Thus both models include IC as limiting case.

2.4 Models whose ranges are curved subsets of the unit simplex

As tenth and eleventh model of the election-generating universe, we investigate two models for

which the Borda voting method and the Condorcet voting method, respectively, are maximum

likelihood estimators. The “Borda model” supposes that there is a “best candidate” and

evaluates the evidence that each candidate is best. Such evidence is measured by the number of

times a candidate is ranked second plus twice the number of times the candidate is ranked first.
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Conitzer and Sandholm (2005) showed that this measure of the evidence is optimal only if the

probabilities for both rankings with the best candidate first are equal, the probabilities for both

rankings with the best candidate second are equal, and the probabilities for both rankings with

the best candidate third are equal. That is, p1 = p2, p3 = p6, and p4 = p5 if A is best, p1 = p4,

p2 = p3, and p5 = p6 if B is best, and p1 = p6, p2 = p5, and p3 = p4 if C is best. In addition, the

probabilities for the pairs of rankings must follow a geometric sequence, so that

r
r

w
ecp


1 (1)

where wr denotes the position that the “best candidate” occupies in ranking r,  is a constant, and









 



5

0
1 5/1

m

m
ec


(2)

to ensure pr = 1. Because the Borda model does not distinguish between rankings that rank a

given candidate in the same position but differ in the positions they assign to the other

candidates, its range includes the midpoints of the three edges between rankings that list a given

candidate first (where  = ), but the range includes none of the vertices. The three curved lines

in Figure 1e that start at the center of the octahedron (where = 0; here the Borda model nests

IC) and end midway between the pairs of vertices where a given candidate is first (= ) depict

the range of the Borda model for 0 <  < . The differences among the three equality

restrictions imply that these three curved lines lie in three different planes.

Analogous to Conitzer and Sandholm’s (2005) derivation of the Borda model, we define

our eleventh model so that the Condorcet voting method is a maximum likelihood estimator of

the ranking that is most favorable in terms of the statistical model that we assume has generated

the election data (the “correct ranking”). While the Borda voting method assigns a score to each

of the M candidates, the Condorcet voting method assigns a score to each of the M! possible
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rankings.7 Let r* be the correct ranking and let nrr* be the number of pairs of candidates that are

ranked the same in ranking r and ranking r*. The Condorcet model specifies the components of

p as

pr = c2 enrr* (3)

where  is a constant and









 



3

0
2 )3,(/1

m

m
emfc

 (4)

to ensure pr = 1, where f(m, 3) is the frequency distribution of Kendall’s .8

The six corkscrew-shaped lines in Figure 1g that start at the center of the octahedron

(where the Condorcet model nests IC at = 0) and end at the six vertices (= ) depict the range

of the Condorcet model for 0 <  < . The actual range in the 5-simplex is six elongated

corkscrews that each span a three-space specified by two opposite vertices (for example, ABC

and CBA) and the two points that are midway between pairs of vertices whose orderings both

differ from one of the opposite vertices by a permutation of one pair of adjacent candidates (for

example, BAC and ACB both differ from ABC by such permutations).

None of the 11 models discussed so far are based on the belief that the associated

distributions of P might actually describe rankings in actual elections. IAC, IC, UUP, DC, and

UP assume that various components of p are equally likely, for the sake of algebraic tractability.

IACb(kb), IACt(kt), IACc(kc) and SSP seek to describe rankings that have meaningful

interpretations for the problem of defining probabilities of observing Condorcet’s paradox. The

Borda and Condorcet models are rationalizations of claims about how one ought to determine the

winner in an election.

7 Condorcet’s explanation of his method (Condorcet, 1785) was opaque and contained errors; Kemeny (1959)
proposed the same voting method in the twentieth century, and Young (1988) explained how Condorcet’s intention
could be understood despite his errors.

8 See Kendall and Gibbons (1990, pp. 91 – 92).
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In contrast, our final model of the election-generating universe is based on a model of

voter behavior, the spatial model of voting. As in other spatial models of voting, our spatial

model assumes that voters care about the “attributes” of candidates; these attributes form a multi-

dimensional “attribute space.”9 Every voter has an indifference map in attribute space, which

contains an “ideal point” that describes the quantities of each attribute that the voter’s ideal

candidate would possess. Actual candidates also possess specifiable quantities of each attribute

and therefore have locations in attribute space. We assume that attribute space has at least 2

dimensions and the candidates are in “general position,” where any slight change in the position

of any one candidate does not change the dimensionality of the space that they span, so that the

positions of the 3 candidates in attribute space span an two-dimensional “candidate plane” that is

a subspace of attribute space.10 Voters’ indifference maps are defined in candidate space through

their definition in attribute space.

We follow Good and Tideman (1976) and assume that the positions of voters’ ideal

points in attribute space follow a spherical multivariate normal distribution, which implies that

the distribution of “relative” ideal points in candidate space is bivariate normal.11 We further

assume that every voter’s utility loss from the choice of a particular candidate is the same

increasing function of the distance between the candidate’s location in candidate space and the

voter’s relative ideal point in candidate space, so that every voter’s indifference surfaces are

concentric spheres centered on the voter’s ideal point.12

Suppose there is a set of candidates for which every voter submits a truthful ranking that

reflects his ideal point, his indifference surfaces, and the positions of the candidates. To

9 See Davis et al. (1970), and Enelow and Hinich (1984 and 1990).

10 The case when all candidates’ attributes lie in a single line requires special treatment because not all of the 6
possible rankings of the candidates occur, but it does not pose conceptual difficulties. See Good and Tideman
(1976, pp. 380 – 381) for a description of the general case with M > 3.

11 A copy of Good and Tideman (1976) is available at http://bingweb.binghamton.edu/~fplass/GoodTideman.pdf.

12 None of these assumptions is conceptually necessary and each could be replaced—at a cost of more complex
calculations—if there is evidence that it does not represent election data sufficiently well. See Good and Tideman
(1976) for a discussion.
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determine the vote share of each ranking, consider the triangle in the candidate plane that is

formed by the locations of the three candidates, A, B, and C. We divide the candidate plane into

six sectors by drawing the perpendicular bisectors of the three sides of this triangle. These

bisectors intersect at the triangle’s circumcenter, T. For the voters’ ideal points in each sector,

the distances to the locations of the three candidates have a unique rank order. These rank orders

are indicated in Figure 2, together with the mode of the circular bivariate normal distribution at

O. The integral of the density function of this distribution over each sector is the expected value

of the fraction of the voters who rank the candidates in the order corresponding to the sector’s

rank order.13 These six integrals determine the probabilities pr of the six rankings. Note that

even though sectors that are opposite each other have the same angle, they do not have the same

integral of the density function (and therefore do not imply the same pr), unless O is inside either

of the sectors and the two lines that form the sectors come equally close to O. If O is exactly at

the triangle’s circumcenter T, then the spatial model coincides with our eighth model DC that

assumes p1 = p4, p2 = p5, and p3 = p6.

The range of the spatial model in the 5-simplex is sufficiently complex to make it

difficult to represent it in two or three dimensions, but we can offer some insights. Every vertex

and every edge of the hexateron is in the range of the spatial model. Of the 20 faces of the

hexateron, each specified by three vertices, 18 are in the range of the spatial model. The two

faces that are not in the range of the spatial model are the ones that are defined by rankings that

form a voting cycle: ABC, BCA, CAB and CBA, BAC, ACB. There are 15 cells in the hexateron,

each specified by four vertices and spanning a three-space on the surface of the hexateron. Of

these 15 cells, nine are in the range of the model and six are not. The nine that are in the range

are the ones for which the two vertices that are not among the four in the defining set differ by a

permutation of the positions of two candidates.

13 We use the algorithm described in DiDonato and Hageman (1980) to compute the integral of the bivariate normal
distribution over each sector.
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Within the hexateron, the range of the spatial model consists of six curved hyper-cells

(four-spaces), that is, one curved hyper-cell for each ordering of the candidates. Figure 3 offers

some insights into the shape of these hyper-cells. The figure assumes fixed shares for 3 rankings

(here pABC = pACB = pCAB = 1/6), and shows the combinations of values for the remaining shares

that the spatial model allows as the curve within their 2-simplex (formed by pCBA + pBCA + pBAC

= 1/2). We then increase pCAB to 1/3 and plot the range of the spatial model for pCBA + pBCA +

pBAC = 1/3 as the curve in the mid-size triangle. Finally, we increase pCAB to 1/2 and plot the

range of the spatial model for pCBA + pBCA + pBAC = 1/6 as the curve in the smallest triangle. The

combination of the three curves suggests that, if we increased pCAB continuously from 0 to 2/3,

we would be looking at a saddle-shaped figure, from the front of the saddle. The saddle we show

is symmetric because pCBA = pBCA, and it tilts to one side if pCBA  pBCA. The spatial model nests

DC (when the locations of T and O coincide) and thus IC, and we confirmed empirically that it

also nests the Borda model but not the Condorcet model.

3. MODEL EVALUATION

For models whose range is less than the 5-simplex, we assess how closely each model is able to

match the six vote shares that we observe in actual three-candidate elections, taking account of

the fact that the models differ in their degrees of freedom. To assess models whose range is the

entire 5-simplex and which can therefore match any observed vector p, we undertake Monte

Carlo simulations and assess whether the accuracy on the simulated data of the models whose

range is a subset of the 5-simplex is comparable to their accuracy on the observed data.

3.1 Evaluation of models whose range is the entire 5-simplex

For each such model, we simulate 1,000,000 “elections.” To assess whether these simulated data

have the same statistical properties as observed election data, we calculate, for each model whose

range is a proper subset of the simplex, the mean (multi-dimensional Euclidean) distance from an
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observed vector of vote shares to the vector that the model describes as the source of the election.

We measure the mean distance  as the mean square root of the sum of the squared differences,

 
 


E

e r
rere sp

E 1

6

1

2)(
1

 , (5)

where E is the number of elections, sre is the observed vote share of ranking r in election e, and

pre is the corresponding vote share predicted by the respective model We compare the 

computed from the simulated data with the  computed from actual elections. If the two

measures of distance differ significantly from each other, then this is evidence that the simulated

data differ in significant ways from the observed data and that the generating model of the

simulated data is unlikely to be a good description of the statistical process that has generated the

observed data.

3.2 Evaluation of models whose range is a proper subset of the 5-simplex

We assess the relative accuracy of these models through their likelihood functions, which we

derive by linking each model’s vector p to the number of votes for each of the 6 rankings, the Nr.

We consider two statistical models that provide intuitive descriptions of such a link. Our first

model assumes that the vector {Nr, r = 1, …, 6} follows a multinomial distribution with density

function
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whose first two moments are E[Nr] = Npr, Var[Nr] = Npr(1 – pr), and Cov[Nr, Ns] = – Nprps.

The multinomial distribution assumes that the pr are deterministic and implies that the

sources of elections will be confined to the subspaces of measure zero predicted by these models.

Because this assumption is unrealistic, we consider an alternative statistical model that assigns

positive probabilities to points outside the sets of measure zero that the models permit, with

higher probability densities assigned to points closer to the sets predicted by the strict models.
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Instead of assuming that each election is generated by a deterministic vector p as in equation (6),

we assume that this vector is a draw from a vector of random variables Q. A natural assumption

is that Q follows a Dirichlet distribution with parameter vector p, where p is the vector allowed

by a strict model and the parameter  is inversely proportional to the variances of Q. An election

is then modeled by compounding the multinomial distribution with the Dirichlet distribution,

yielding the multivariate Pólya distribution with density function
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whose first two moments are E[Nr] = Npr, Var[Nr] = Npr(1 – pr), and Cov[Nr, Ns] = – Nprps,

where  = (N + ) / (1 + ).14 As  approaches infinity,  approaches 1, the variances of Q

approach 0, and the multivariate Pólya distribution converges to the multinomial distribution.

Thus  is an indicator of how well a strict model describes actual elections: a larger fitted value

of  implies that less additional variation in the parameters of the model (that is, variation not

explained by the strict model) is necessary to fit the model to actual elections.

For a set of elections whose outcomes are independent of each other, the likelihood

function is proportional to the product over all elections of density function (6) or (7). For each

model, we estimate the unknown parameters (if any) by maximizing the likelihood function over

the observed election data. We describe the parameterization of each model and its degrees of

freedom in the appendix. For nested models (for example, the Borda model nested in the spatial

model or DC nested in the spatial model), a likelihood ratio test indicates which model yields a

better fit of the data, given their different degrees of freedom. Nested as well as non-nested

model can be compared by the Akaike and Bayesian information criteria (AIC and BIC) that

14 See Mosimann (1962, pp. 67 – 68).
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account for differences in the degrees of freedom.15 Models with lower values of AIC or BIC

use degrees of freedom more efficiently in describing the data than models with higher AIC or

BIC.

4. EMPIRICAL EVALUATION OF THE TWELVE MODELS

4.1. The data

Our first data set consists of 84 elections that were administered by the Electoral Reform Society

(ERS) and tabulated by Nicolaus Tideman in 1987 and 1988 and three elections that he included

from another source. For each election, we have individual ballot information about the strict

ranking of candidates provided by each voter (the ballots did not permit ties). The number of

voters in these elections ranges from 9 to 3,422, with a mean of 410.5, and the number of

candidates ranges from 3 to 29, with a mean of 8.7. Most voters ranked only some of the

candidates in these elections. We use these ballots to construct all possible combinations of three

candidates within an election, for a total of 20,087 three-candidate combinations, with between 1

and 1,957 voters. We treat each combination as one election with three candidates. We found

that elections with too few voters contain mostly random noise and do not provide much

information about the structure of the election-generating universe. We therefore limit our

analysis to elections with more than 350 voters, and our ERS data set contains 883 three-

candidate elections with between 350 and 1,957 voters, with a mean of 716.4 voters.16

15 These criteria are determined as AIC = – 2ln(L) + 2d and BIC = –2ln(L) + d )ln( eN , where d is the total number

of degrees of freedom, L is the maximum value of the likelihood function, and )ln( eN is the mean value of the log

of the number of voters in an election. Thus BIC imposes a heavier penalty for the use of degrees of freedom than
AIC.

16 Our somewhat arbitrary choice of elections with 350 or more voters reflects our subjective tradeoff between
reducing the noise from elections with too few voters and keeping a reasonable number of observations.



16

The data from these 883 three-candidate elections are not independent, but this lack of

independence is unlikely to affect our conclusions.17 It is possible that such three-candidate

combinations that are derived from rankings of more than three candidates are qualitatively

different from rankings of elections with exactly three candidates—for example, because it is

often simpler to rank three candidates than a larger number of candidates. However, we have

individual ballot data for only eight genuine three-candidate elections, which is not sufficient to

draw reliable statistical inference about the election-generating universe.

Because no reasonable voting method is immune to strategic voting, it is possible that the

rankings in our data set reflect voters’ strategic considerations. We therefore examine a second

ranking data set that is derived from survey data rather than election data, because the strategic

considerations of survey respondents are likely to differ from those of voters. We assemble our

second data set from the “thermometer” scores that are part of 18 surveys conducted by the

American National Election Studies (ANES) between 1970 and 2004. These surveys are

conducted every two years, and participants are asked to rate politicians on a scale from 0 to 100

(the thermometer). We refer to these persons as “candidates.”18

The number of respondents in a survey ranges from 1,212 in 2004 to 2,705 in 1974, and

the number of candidates included in the surveys ranges from 3 in 1986 and 1990 to 12 in 1976.

As before, we construct all possible combinations of three candidates within a year, for a total of

913 three-candidate combinations from all 18 surveys, with between 759 and 2,521 responses

and a mean of 1,566.8 responses. For simplicity, we will refer to the survey respondents as

“voters” and to the three-candidate surveys as “elections.” For each response, we rank the three

17 Dependence among the elections requires that the likelihood function be calculated from the conditional, rather
than the marginal, distributions of the six vote-share vectors over all elections. However, because we use the
likelihood functions to compare the accuracy of each model with that of the other models, ignoring the dependence
is unlikely to affect these relative assessments.

18 In the surveys conducted before 1970, a candidate whom the survey respondent did not know received a score of
50 on the participant’s answer sheet, while such a candidate was coded as “unknown” in the surveys from 1970
onward. To avoid ambiguities between unknown candidates and candidates evaluated at 50, we restrict our analysis
to the 18 surveys conducted from 1970 to 2004.
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candidates according to their thermometer scores, thereby eliminating any information about the

intensity of the voter’s preferences. If a response yields a strict ranking of candidates, then we

count it as one vote for this ranking. Voters are allowed to assign equal scores to different

candidates, and we adopt the following intuitive rule of accommodating ties: If all candidates

are tied, then we count the response as 1/6 vote for each ranking, and if two candidates are tied,

then we count the response as half a vote for each of the two possible strict rankings that break

the tie. Thus our adjusted data set consists of the total number of votes for each of the six strict

rankings in each of the 913 three-candidate elections.

Table 2 shows, for both data sets, the number of elections with different numbers of

candidates and the average number of voters in the original data sets for elections with 350 or

more voters, the number of three-candidate elections we could have extracted from each of these

elections, the number of three-candidate elections that had 350 or more voters that we did

extract, and the average number of voters in each of these three-candidate elections with 350 or

more voters.

It is notable that both data sets have voting cycles—the 913 ANES surveys have 4 cycles

(0.44 percent), and the 20,087 ERS elections have 476 cycles (2.37 percent). However, there are

only 101 voting cycles (1.45 percent) among the 6,794 ERS elections with 21 or more voters,

and only 6 voting cycles (0.68 percent) among the 883 ERS elections with 350 and more voters.

Thus the frequency of voting cycles falls fairly quickly as the number of voters increases.

4.2. Assessment of the eight models whose ranges are subsets of the 5-simplex

SPP predicts that in every election, one of the candidates will never be ranked last. The fact that

our two data sets contain predominantly elections in which every candidate is ranked last by

some voters is conclusive evidence against the empirical relevance of this model (at least for our

two data sets). We therefore do not consider SPP in our further analysis. Table 3 reports the

log-likelihood values and the AIC and BIC as well as our estimates of the Dirichlet s for the
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remaining seven models whose ranges are subsets of the 5-simplex. For both data sets, the three

measures of accuracy agree about the relative ranking of these models. IC, UUP, and DC have

the smallest log-likelihoods, the largest values of AIC and BIC, the smallest values of , and thus

the lowest accuracy. The Borda model consistently has the fourth highest accuracy, while UC

and the Condorcet model are the third and second most accurate.

All our measures of accuracy indicate that the spatial model describes the observed data

much better than any of the other seven models. Likelihood ratio tests of the spatial model and

the nested IC, DC, and Borda models indicate that the improvement in the likelihood justifies the

spatial model’s additional degrees of freedom. For all models, AIC and BIC also suggest that,

by a wide margin, the spatial model provides the best description of the ERS elections and the

ANES surveys, despite its much larger use of degrees of freedom. The  of the spatial model is

close to being infinite, which indicates that the strict spatial model provides a very good

explanation of almost all of the variation among the observed vote shares, and that perturbing the

predicted vote-shares in the manner described by the Dirichlet process provides no significant

improvement in the spatial model’s fit.19 In contrast, the s of the other models are very small in

comparison, meaning that adding unexplained variation through the Dirichlet process improves

the fit of these models considerably.20

19 Although the strict spatial model yields an extremely good fit of both data sets, it would be surprising if it
explained all the variation in the data. We were unable to obtain reliable estimates of  for the spatial model
because rounding errors that occurred with extreme values of  (beyond 100,000,000) led to convergence problems
in our numerical evaluation of the spatial model. A generalized Dirichlet distribution that uses additional parameters
to describe the variations in the six vote-shares is likely to be a more appropriate extension of the strict spatial model
(see Kotz et al., 2000, pp.512-514 for a discussion of such generalized Dirichlet distributions). However, the non-
explained variation is so small that the strict spatial model is already a very, very close approximation of the
structure of the election-generating universe.

20 We calculate AIC and BIC only from the multinomial log-likelihood functions because, for the six models other
than the spatial model, the extra variation introduced by the Dirichlet process is not a part of the strict models and
therefore should not affect the judgment of their relative accuracies.
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4.3. Assessment of the four models whose range is the entire 5-simplex

We analyze next whether the election data support any of the four models whose range is the

entire 5-simplex, IAC, IACb(kb), IACt(kt), and IACc(kc). We used the ERS data to calibrate the

three parameters—the shares of last, first, and middle ranks of the candidates with the fewest

last, first, and middle ranks—as kb = 0.182, kt = 0.187, and kc = 0.248.21 The fact that these

values differ notably from the values predicted by IAC (= 1/3) constitutes some evidence against

the hypothesis that IAC has generated the observed data. For each model, we draw one million

samples of probability vectors from the appropriate distribution on the unit 5-simplex, and

evaluate these samples by , the mean Euclidean distance to the nearest vector permitted by each

of the seven models whose range is a subset of the 5-simplex (see Section 3.1). If any of the four

models has generated the observed data, then we would expect that, for the data simulated with

that model, the mean distances to the nearest vectors permitted by the other seven models to be

similar to the mean distances that we obtained from the observed data.

Columns 1 and 2 of Table 4 show the s that we determined from the observed data, and

Columns 3 to 6 show the corresponding values of  that we determined from our simulations.

The notable differences between the s from the observed elections and the simulated data

indicate that the ability of any of the other seven models to describe the simulated vote shares is

very different from (and also much worse than) its ability to describe the observed elections. We

obtained the same result with other measures of distance.22 Our results indicate that the vectors

of vote shares in the ERS and ANES data are much more clustered than what is permitted by any

21 We describe our calibration of the frequency parameters kb, kt, and kc in the appendix. The ANES data yield the
parameters values kb = 0.218, kt = 0.201, and kc = 0.226. The two sets of values lead to very similar simulation
results, and we only report the results with the parameters values calibrated from the ERS data. We also considered
parameter values closer to zero, and the simulations results were again very similar to the ones reported.

22 We weighted the mean  by its standard deviation and we also evaluated the ratios of predicted and observed
likelihood functions.
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of the four models that assign equal probabilities to either all possible vectors (in case of IAC) or

vectors in which two probabilities sum to no more than a value less than 1/3 (in case of IACb(kb),

IACt(kt), and IACc(kc)). Specifically, our estimate of an effectively infinite  for the spatial

model implies that the vote-share vectors that generate elections are clustered extremely closely

around the vote share vectors predicted by the strict spatial model. Thus the hypothesis that

either the ERS data or the ANES data were generated by IAC, IACb(kb), IACt(kt), or IACc(kc)

cannot be sustained.

5. CONCLUSION

The starting point of our analysis is the observation that no theoretical analysis of probability

structures can tell us anything about the probability of observing vectors of rankings in actual

elections. This is clearly not a new discovery. It parallels the mundane observation that no

analysis in theoretical econometrics provides any information about the particular estimates that

one obtains from analyzing specific data. The theoretical econometrics literature investigates the

properties of different models that can describe data, but to analyze a specific data set, one needs

to identify the model or the set of models that is most likely to have generated these data.

The relationship between our work and the theoretical literature on voting is like that

between theoretical and empirical econometrics. The existing literature on voting is largely

theoretical, in the sense that it does not seek to identify systematic patterns in ranking data from

actual elections. The large literature on the probabilities of finding Condorcet cycles and the

Condorcet efficiency of different voting rules has established that the results vary greatly across

different models of the structure of the election-generating universe. But which of these models
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best describes the distribution of rankings in actual elections? The theoretical literature on

voting cannot answer this question.

Our results suggest that a spatial model describes the structure of the election-generating

universe much better than any other model that has been proposed so far, and so well that it may

be difficult to find a model whose accuracy is significantly higher. We consider our result to be

encouraging, but more work needs to be done. For example, we draw our current conclusions on

the basis of two data sets, one compiled from elections and the other from surveys. Our analyses

suggest that the two data sets have somewhat different properties, but it is not clear whether

these differences stem from their different sources or from the fact that the average ANES

“election” has almost twice the number of voters than the average ERS election. Analyses of

additional election data are necessary to answer this question and to determine the robustness of

our results. We also focus exclusively on three-candidate elections, partly because this

simplifies the exposition and makes it easier to relate our analysis to the previous literature, and

partly because we are currently only able to evaluate the spatial model for three candidates.23

Extending our analysis to elections with more than three candidates will provide important

insights about the general relative accuracy of the different models.

Our analysis applies to all inquiries into the frequency of rare voting events: the

probability that strategic voting will alter the outcome of an election, the existence of dominant

candidates, or the frequencies of voting paradoxes. Our framework makes it possible to

incorporate realistic models of the structure of the election-generating universe into such

analyses and thereby to improve significantly the accuracy of their predictions for actual

elections. Such new inquiries into old questions are likely to yield interesting new insights.

23 The computation of the vote share vector p requires the numerical computation of the integrals of M! areas under
an (M – 1)-variate normal distribution. We are currently working on methods of computing such integrals for
normal distributions with more than two dimensions.
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APPENDIX: MODEL PARAMETERIZATIONS AND PARAMETER ESTIMATION:

Two of our twelve models, IC and IAC, do not have any parameters that need to be estimated to

either fit the model to observed voting data or to undertake Monte Carlo simulations. We do not

calibrate SPP because the model assigns zero probability to the possibility that every candidate

will be ranked last, and we observed numerous elections in both data sets in which every

candidate is ranked last. This appendix describes our strategy for calibrating the parameters of

the remaining nine models. We report the calibrated values for the ERS and ANES data sets in

Table A-1.

(1) IACb(kb), IACt(kt), and IACc(kc): The range of these models is the entire 6-simplex and each

model can be calibrated to describe any set of observed vote shares by setting pr = qr. To

simulate elections with these models, one needs to determine one unknown parameter for

each model—the frequency with which that candidate is ranked last (first, middle) who is

ranked last (first, middle) the least. We assume that each parameter follows a beta

distribution over the range [0, 1/3] whose mean and variance coincides with those that we

observe in the actual elections (we report the means in Table A-1). We draw a share k from

this beta distribution, determine p1 as a draw from a uniform distribution on [0, k], set p2 = k -

p1, draw p3, p4, p5, and p6 from the unit 4-simplex, and rescale these 4 values so that they sum

to 1 – k. We then use these six shares p to draw the number of votes for each of the six

rankings from density function (6) or (7).

(2) UUP: This model has 5 parameters—five of the six vote shares (that sum to 1) that describe

the expected ranking (the same for all elections). We calibrate these parameters by

identifying the vector p that maximizes the likelihood function (6) or (7) over all elections.

The maximum value of the likelihood function also determines the fit of UUP. Note that the

5 parameters of UUP are constant across elections, while the parameters of the remaining six

models are calibrated separately for each election.
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(3) DC and UC: Both models have 2 parameters each—two of the 3 pairs of probabilities of

opposite (for DC) and neighboring (for UC) rankings. We fit these models to the data by

using, for each election, the average value of the two observed vote shares of each pair of

rankings as the predicted vote shares for that pair.

(4) Borda and Condorcet: Each model has one parameter. For the Borda model the parameter 

is the increase in log probability associated with an increase by one in the rank that a voter

assigns to the “best” candidate. For the Condorcet model the parameter  is the increase in

log probability associated with a reduction of one adjacent-pair permutation in the difference

between the “best” ranking and the one that a voter reports. We fit these models to the data

by calibrating, for each election, the values of  and  in equations (1) and (3), respectively,

so that the resulting vector p maximizes the likelihood function (6) or (7) for the observed

vote shares.

(5) Spatial model: This model has 4 parameters; Figure A-1 shows one way of using the four

degrees of freedom (as in Good and Tideman, 1976). The intersection of the perpendicular

bisectors T is placed at the origin of a Cartesian coordinate system. The fact that the vote

shares are independent of rotations around the mode of the distribution of voters’ ideal

points, O, permits us to rotate the coordinate system so that O is located on its horizontal

axis. The first degree of freedom then specifies the distance between T and O. The

remaining degrees of freedom specify the angles 1, 2, and 3 formed by the line TO and

the three perpendicular bisectors. Thus any feasible set of values of the four degrees of

freedom corresponds to a set of pr. We calibrate the spatial model by placing, for each

election, the borders between pairs of adjacent rankings and the distance TO in such a way

as to create sectors that match the six probabilities pr (the integrals over the triangular-shaped

slices under the bivariate normal distribution) as closely as possible to the six observed vote

shares, qr.
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Table A1: Parameter values calibrated from ERS and ANES data

Model  IACb(kb) IACt(kt) IACc(kc) Borda Condorcet

Data set  kb kt kc  
ERS 0.182

(0.002)
0.187

(0.002)
0.248

(0.001)
0.517

(0.009)
0.513

(0.008)
ANES 0.218

(0.002)
0.201

(0.002)
0.226

(0.002)
0.358

(0.006)
0.360

(0.006)

Model  Spatial model

Angles of the perpendicular

bisectors with the line TO
Data set  TO 1 2 3

ERS 0.597
(0.009)

0.548
(0.011)

1.549
(0.011)

2.560
(0.011)

ANES 0.445
(0.008)

0.556
(0.012)

1.550
(0.015)

2.592
(0.012)

Corresponding angles between
pairs of bisectors:

A1 A2 A3

ERS 1.130
(0.006)

1.000
(0.006)

1.011
(0.006)

ANES 1.105
(0.010)

0.994
(0.011)

1.042
(0.010)

Model  UUP

Data set  p1 p2 p3 p4 p5 p6

ERS 0.294 0.167 0.127 0.108 0.120 0.184
ANES 0.233 0.150 0.140 0.148 0.160 0.169

Notes:
(1) The values in parentheses are standard errors.
(2) All values were calibrated from the multinomial model (the values calibrated
from the Pólya model are very similar).
(3) The entries for UUP are the shares, calibrated over all elections in the
respective data set, which minimize the multinomial likelihood function. The
entries for the other 6 models are the means of the values that we calibrated for
each election in the respective data set.
(4) For DC and UC, aggregation across elections is meaningless because of the
arbitrariness of labeling a candidate A, B, or C, so we do not show any calibrated
values for these two models.
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Table 1. Comparison of the twelve models of the structure of the election-generating universe

# Model Number of
dimensions

in
subspace(s)

Parameters per
election to be

calibrated to fit the
model to this

election

Parameters to
be calibrated to
simulate data

from this model

First proposal (of which we are
aware) as a description of the
election-generating universe

A. Range is the entire 5-simplex:
1. IAC 5 5 0 Kuga & Nagatani (1974)

Gehrlein & Fishburn (1976)
2. IACb(kb) 5 5 1 Gehrlein (2004)
3. IACt(kt) 5 5 1 Gehrlein (2006)
4. IACc(kc) 5 5 1 Gehrlein (2006)

B. Range is one or more 0-dimensional subspaces of the 5-simplex:
5. IC 0 0 0 Campbell and Tullock (1965)
6. UUP 5 5 (for all elections) 5 Chamberlin & Featherston (1986)

C. Range is one or more more-than-0-dimensional subspaces, defined by linear restrictions:
7. SPP (IACb(0)) 5 4 0 Lepelley (1995)
8. DC 3 2 2 Gehrlein (1978)
9. UC 3 2 2 Gehrlein (1982)

D. Range is one or more more-than-0-dimensional subspaces, defined by nonlinear restrictions:
10. Borda 1 1 1 Conitzer & Sandholm (2005)
11. Condorcet 1 1 1 This paper
12. Spatial model 4 4 4 This paper
Notes:
(1) The four models in A can describe any set of observed vote-shares and the parameters equal the observed shares.
We describe our strategy for simulating data under these models in the appendix.
(2) The 5 parameters of UUP are calibrated from all elections simultaneously, and the model’s fit to any individual
elections is assessed on the basis of these parameter values. The parameters of SPP, DC, UC, the Borda model, the
Condorcet model, and the spatial model are calibrated for each election individually.
(3) The 5 parameters of UUP are constants in simulations from UUP. To simulate from any of the other models with
unknown parameters, we assign distributions to all parameters and draw pseudo random numbers from these
distributions that we use as inputs into the density functions (6) and (7).
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Table 2. Properties of the original ERS and ANES data sets and of the extracted three-candidate elections

Number of
candidates in
the original
elections

Number of
elections with 350

or more voters

Average number
of voters per

election

Potential number
of three-candidate
elections (with any
number of voters)

Number of three-
candidate elections
with 350 and more

voters

Average number
of voters per three-
candidate election

(1) (2) (3) (4) (5) (6)
ERS data:

3 0
4 6 614 24 4 1,005
5 3 1,238 30 10 1,859
6 2 770 40 20 414
7 3 714 105 37 390
8 3 541 168
9 2 450 168

10 5 679 600 120 665
11 2 913 330 108 404

12 – 20 9 986 3,883 584 531
Total 35 5,348 883

ANES data:
3 2 2,078 2 2 1,599
4 0
5 2 1,396 20 20 1,248
6 2 1,607 40 40 1,403
7 5 1,858 175 175 1,540
8 3 2,184 168 168 1,699
9 2 1,561 168 168 1,228

10 1 2,257 120 120 1,826
11 0
12 1 2,248 220 220 1,663

Total 18 913 913
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Table 3. Assessment of seven models whose range is a subset of the 5-simplex

ERS elections ANES surveys

Number of
elections:

883 913

Mean number of
voters:

716.4 1566.7

DF used
for

ERS;
ANES

LLH
Multi-
nomial

LLH
Pólya

 AIC BIC LLH
Multi-
nomial

LLH
Pólya

 AIC BIC

Model: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
IC 0;

0
-113,551 -23,084 15.93 227,102 227,102 -195,310 -27,811 19.29 390,621 390,621

UUP 5;
5

-72,581 -22,133 25.51 145,172 145,204 -171,991 -27,586 21.42 343,992 344,019

DC 2,649;
2,739

-93,902 -23,028 17.22 193,102 210,036 -127,510 -26,915 29.70 260,498 278,099

UC 2,649;
2,739

-51,295 -21,091 43.92 107,888 124,822 -91,278 -26,000 45.23 188,034 205,635

Borda model 883;
913

-54,255 -21,215 40.16 110,276 115,921 -122,264 -26,679 32.52 246,354 251,218

Condorcet model 883;
913

-32,614 -19,588 93.49 66,994 72,639 -93,229 -25,988 44.94 188,284 193,148

Spatial model 3,532;
3,652

-14,267 -14,267 > 1.E08 35,598 58,177 -16,428 -16,428 > 1.E08 40,160 59,614

Notes:
(1) We calculated the AIC and BIC in Columns (5), (6), (10), and (11) using the multinomial log-likelihood functions.
(2) For the spatial model, rounding errors prevented us from determining the exact values of the Pólya log-likelihood functions, but the
differences between the multinomial and Pólya log-likelihood function values are less than 0.5.
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Table 4. Assessment of four models whose range is the entire 5-simplex

Analyses of observed data Analyses of simulated data

Data source: ERS ANES IAC IACb(kb) IACt(kt) IACc(kc)
kb = 0.182 kt = 0.187 kc = 0.248

Number of voters: 716.4 1566.7 716.4 716.4 716.4 716.4
Model: (1) (2) (3) (4) (5) (6)
IC 0.226

(0.0030)
0.197

(0.0021)
0.330

(0.0001)
0.339

(0.0001)
0.336

(0.0001)
0.304

(0.0001)
UUP 0.135

(0.0018)
0.153

(0.0017)
0.278

(0.0001)
0.282

(0.0001)
0.281

(0.0001)
0.252

(0.0001)
DC 0.203

(0.0028)
0.148

(0.0023)
0.248

(0.0001)
0.258

(0.0001)
0.255

(0.0001)
0.242

(0.0001)
UC 0.139

(0.0023)
0.126

(0.0020)
0.248

(0.0001)
0.258

(0.0001)
0.249

(0.0001)
0.226

(0.0001)
Borda model 0.144

(0.0023)
0.149

(0.0018)
0.270

(0.0001)
0.276

(0.0001)
0.263

(0.0001)
0.244

(0.0001)
Condorcet model 0.092

(0.0013)
0.121

(0.0015)
0.220

(0.0001)
0.194

(0.0001)
0.193

(0.0001)
0.198

(0.0001)
Spatial model 0.017

(0.0005)
0.008

(0.0002)
0.061

(0.0001)
0.064

(0.0001)
0.065

(0.0001)
0.069

(0.0001)
Note: For the observed data, the entries are the mean Euclidean distances between the observed vote
shares and the vote shares (see equation 5), among those vectors permitted by the respective model, that
are most likely to have generated the data. For the simulated data, we undertook the same calculation
with simulated vote shares substituted for observed vote shares. The values in parentheses are standard
errors.



29

ABC

BCA

CAB

CBA
BAC

ACB

Figure 1a. Three-dimensional representation
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Figure 1c. Three-dimensional representation
of the range of UUP
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Figure 1f. Three-dimensional representation
of the range of the Borda model

ABC

BCA

CAB

CBA
BAC

ACB

Figure 1d. Three-dimensional representation
of the range of SSP
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Figure 1e. Three-dimensional representations
of the ranges of DC and UC
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Figure 1e. Three-dimensional representation
of the range of the Condorcet model
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Figure 2. Division of the candidate plane into six sectors by drawing the perpendicular bisectors of
the three sides of the triangle formed by the candidates’ locations, and the associated
rank orders of the sectors. (The figure is taken from Good and Tideman, 1976, p. 372.)
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Figure 3. Two-dimensional representation of part of the range of the spatial model
for the three shares CBA, BCA, and BAC.
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pABC = pACB = 1/6; pCAB =1/2
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Figure A-1. The four parameters TO , 1, 2, and 3 that define a spatial model observation.
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