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1 Introduction

The aim of this paper is to investigate the following problem of construction of
a social decision function. Given a set of n agents, each agent evaluates alterna-
tives from a finite set X using complete and transitive preferences (rankings),
and we look for a complete and transitive social preference over the alter-
natives. This kind of aggregation has been considered in many publications,
beginning with the seminal work by Arrow [10]. In order to solve the problem,
two ways have been proposed. Arrow’s kind of axiomatics can be described as
the local aggregation, cf. Aleskerov [2]; in other words, the aggregation is done

� This paper will be presented at the Leverhulme Trust sponsored 2010 Voting Power in
Practice workshop held at Chateau du Baffy, Normandy, from 30 July to 2 August 2010.

�� Corresponding author.

F. T. Aleskerov (E-mail: alesk@hse.ru):
Department of Mathematics for Economics, State University Higher School of Economics,
Myasnitskaya Street 20, Moscow 101000, and Institute of Control Sciences, Russian Academy
of Sciences, Moscow, Russia

V. V. Chistyakov (E-mail: czeslaw@mail.ru), V. A. Kalyagin (E-mail: kalia@hse.nnov.ru):
Department of Applied Mathematics and Computer Science, State University Higher School
of Economics, Bol’shaya Pechërskaya Street 25/12, Nizhny Novgorod 603155, Russia



2

on the basis of pairwise comparisons of alternatives. Another way is to use
certain non-local procedures, e.g., positional rules, for which only a few works
with very well constructed axiomatics exist, cf. Austen-Smith and Banks [11],
May [16], Moulin [17], Smith [21] and Young [22–24].

One of the non-local rules is the Borda voting rule (Young [23]). An appli-
cation of Borda’s rule is often not adequate, since any summation of ranks has
a ‘compensatory nature’: a low evaluation of some alternative by an agent can
be compensated by high evaluations of the other agents. Thus, if we would like
to take carefully into account low evaluations of alternatives when the quality
or perfectness of alternatives is important, the Borda rule or its counterparts
cannot be applied.

Let us consider two examples (see also Section 3).
Example 11. Suppose that a committee of four members 1, 2, 3 and 4

evaluates three candidates x, y and z to elect for a position. The commitee’s
evaluations of candidates are given by the following linear preferences:

1 2 3 4

x x z z

y y y y

z z x x

The summation of ranks of the candidates gives the same number of scores 8
for every candidate, and it is impossible to make a choice. However, very often
the compromise choice is the candidate y.

Example 2. It is a common practice for scientific journals to accept or
reject manuscripts submitted for publication on the basis of reports of two
referees. If at least one the referees evaluates the manuscript as ‘bad’ in a
certain sense, the manuscript is rejected. The manuscript is usually accepted
if the two referees provide ‘positive’ opinions. Clearly, this kind of a situation
is of noncompensatory nature, and so, the question is: what rule(s) describe(s)
the journal’s choice to accept a manuscipt?

In a recent series of three articles by Aleskerov, Yakuba and Yuzbashev
[7–9] an axiomatic construction of the new aggregation procedure, called the
threshold rule, has been presented for three-graded rankings, i.e., when the
evaluations of alternatives are made by grades 1, 2 and 3 meaning ‘bad’, ‘av-
erage’ and ‘good’, respectively. The axioms used are Pairwise Compensation,
Pareto Domination, Noncompensatory Threshold and Contraction.

The Pairwise Compensation axiom means that if all agents, but two, evalu-
ate two alternatives equally, and the two agents put ‘mutually inverse’ grades,
then the two alternatives have the same rank in the social decision (which may
also be interpreted as ‘anonymity of grades’).

The Pareto Domination axiom states that if the grades of all agents for
one alternative are not less than for the second alternative and the grade of
at least one agent for the first alternative is strictly greater than that of the

1 The idea of this example was proposed by Professor P. Pattanaik.
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second one, then in the social ranking the first alternative has a higher rank
than the second alternative.

The Noncompensatory Threshold axiom reveals the main idea of the thresh-
old aggregation: if at least one agent evaluates an alternative as ‘bad’, then, no
matter how many ‘good’ grades it admits, in the social ranking this alternative
is ranked lower than any alternative evaluated as ‘average’ by all agents. In
this context the Contraction means that if for two alternatives the evaluations
of some agent are equal, then the agent may be ‘excluded’ from the considera-
tion when the social ranking is constructed, and the social decision is achieved
by remaining agents’ evaluations.

It was shown by Aleskerov, Yakuba and Yuzbashev [7–9] that the threshold
rule is the only rule satisfying the above axioms. In the context of three-graded
rankings the threshold rule aggregates individual preferences in the following
way: if the number of ‘bad’ evaluations of the first alternative is greater than
that of the second one, then the first alternative has lower rank in the social
ranking, and if the numbers of ‘bads’ for both alternatives are equal and the
number of ‘average’ evaluations of the first alternative is greater than that of
the second alternative, then the second alternative is socially more preferable.

In this paper we extend the notion of the threshold rule to the case when
the agents’ evaluations are represented by the m-valued grades with an arbi-
trary integer m ≥ 3 and show that the threshold rule is the only rule, which
satisfies the abovementioned appropriately interpreted axioms. In this model
low evaluations of some agents are of main concern: they cannot be compen-
sated by high grades of the other agents. This concerns the situation when
the quality or perfectness of alternatives is of great value and interest. On the
other hand, an aggregation procedure can be made taking carefully into ac-
count high grades of agents: this is the case when we are interested in at least
one good feature of alternatives. It is exactly the dual model, and it has all
advantages of the dual model including the axiomatic construction of a social
decision function.

Yet, one more remark ought to be made concerning an interpretation of the
Noncompensatory property. Under this property, any agent giving a low grade
to an alternative puts it down in the social decision as compared to an alter-
native with average grades. Thus, marginal opinions may strongly influence
the social decision.

The main results of this paper have been presented in [3] and part of them
is published without proofs in Sections 1–3 from [12].

The paper is organized as follows. In Section 2 we present necessary defini-
tions and the main result, Theorem 1. In Section 3 we compare the threshold
rule, the simple majority rule and Borda’s rule and show that they produce
in general different social rankings on the same individual profile. In Section 4
we show that the equivalence classes of the weak order P , generated by the
threshold rule, and the indifference classes generated by P coincide and estab-
lish the key properties of monotone representatives of the indifference classes.
In Section 5 we develop the dual threshold aggregation axiomatics. Section 6
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contains an analysis of manipulability of the threshold rule and its comparison
with several other rules.

2 The main result

Let X be a finite set of alternatives of cardinality |X | ≥ 2, N = {1, 2, . . . , n}
be a set of n ≥ 2 agents and M = {1, 2, . . . ,m} be a set of ordered grades
1 < 2 < . . . < m with m ≥ 3. An evaluation procedure for alternatives from
X is a map of the form E : X × N → M , which assigns to each alternative
x ∈ X and each agent i ∈ N a grade xi = E(x, i) ∈ M . As a result of the
evaluation procedure E each alternative x ∈ X is characterized by a collection
of n grades x1, . . . , xn, i.e.,

X � x �−→ x̂ = E(x, ·) = (x1, . . . , xn) ∈Mn,

where Mn = {(x1, . . . , xn) : xi ∈M for each i ∈ N} is the set of all n-di-
mensional vectors with components from M . In practice the vector-grades x̂ =
(x1, . . . , xn) for the alternative x may represent expert grades, questionnaire
data, test data, etc.

The set X̂ = {x̂ : x ∈ X} ⊂ Mn is an individual profile on X . The
problem is to rank the elements of X making use of the individual profile X̂.
By a ranking of X we mean a complete and transitive binary relation on X .
Since X̂ ⊂ Mn and each alternative x ∈ X is completely characterized by its
profile vector x̂, with no loss of generality throughout the paper we assume
that X = X̂ = Mn, and so,

x ∈ X iff x = x̂ = (x1, . . . , xn) ∈Mn with xi ∈M,

where ‘iff’ means as usual ‘if and only if’.
The following notation will be used throughout the paper. Given x, y∈X ,

we write x � y to denote the condition xi ≥ yi for all i ∈ N , and we write
x � y to mean that x � y and there is an i0 ∈ N such that xi0 > yi0 . Note
that the partial order relations � and � on X do not solve the problem of
ranking of X , because not all profile vectors from X are comparable using
these relations. Also, given x ∈ X and j ∈M , we denote by vj(x) the number
of grades j in the vector x = (x1, . . . , xn):

vj(x) = |{i ∈ N : xi = j}|. (1)

Note that 0 ≤ vj(x) ≤ n for all x ∈ X and j ∈M and
m∑

j=1

vj(x) = v1(x) + v2(x) + · · · + vm(x) = n for all x ∈ X. (2)

Finally, given x ∈ X , we set

Vk(x) =
k∑

j=1

vj(x) if 1 ≤ k ≤ m and V0(x) = 0, (3)
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so that equality (2) can be simply written as Vm(x) = n, x ∈ X .
By a social decision function on X we mean a function ϕ : X → R sat-

isfying the following properties: given x, y ∈ X , we have: (a) the inequality
ϕ(x) > ϕ(y) holds iff the alternative x is socially (strictly) more preferable than
the alternative y (in the sense to be made precise below), and (b) ϕ(x) = ϕ(y)
iff the alternatives x and y are socially indifferent.

We look for a social decision function ϕ : X → R, which satisfies the
following three axioms (A.1), (A.2) and (A.3).

(A.1) (Pairwise Compensation): if x, y ∈ X and vj(x) = vj(y) for all
1 ≤ j ≤ m− 1, then ϕ(x) = ϕ(y).

(A.2) (Pareto Domination): if x, y ∈ X and x � y, then ϕ(x) > ϕ(y).
(A.3) (Noncompensatory Threshold and Contraction): for each natural

number 3 ≤ k ≤ m the following condition holds:
(A.3.k) if x, y ∈ X , vj(x) = vj(y) for all 1 ≤ j ≤ m−k (if k = m, this con-

dition is omitted), vm−k+1(x)+1 = vm−k+1(y) 	=n−Vm−k(y), Vm−k+2(x) = n
and Vm−k+1(y) + vm(y) = n, then ϕ(x) > ϕ(y).

Recall that the binary relation ∠ = ∠k on the set R
k of all k-dimensional

vectors with real components is said to be the lexicographic ordering if, given
u = (u1, . . . , uk) and v = (v1, . . . , vk) from R

k, we have: u∠ v in R
k iff there

exists an 1 ≤ i ≤ k such that uj = vj for all 1 ≤ j ≤ i− 1 (with no condition
if i = 1) and ui < vi. It is well known (e. g., [14]) that ∠ is a linear order on
R

k; more precisely, ∠ is transitive (i.e., if u∠ v and v∠w, then u∠w), the
negation of ∠ is of the form: ¬(u∠ v) iff v∠u or v = u, and ∠ is trichotomous
(i.e., either u = v, or u∠ v, or v∠u).

Setting

v(x) = (v1(x), . . . , vm−1(x)) ∈ {0, 1, . . . , n}m−1 for x ∈ X, (4)

the property v(x)∠ v(y) in R
m−1 will be called the threshold rule for the

comparison of alternatives x and y (with respect to the number of low grades).
We say that a binary relation P on X is generated by the threshold rule if
P = {(x, y) ∈ X × X : v(x)∠ v(y)}. In other words, given x, y ∈ X, we
have (x, y) ∈ P iff v(x)∠ v(y), which can be interpreted in the sense that the
alternative x is socially (strictly) more preferable than the alternative y.

The main properties of P are straightforward consequences of the proper-
ties of the lexicographic ordering: given x, y, z ∈ X , we have:

(P.1) if (x, y) ∈ P and (y, z) ∈ P , then (x, z) ∈ P (transitivity of P );
(P.2) (x, y) 	∈ P is equivalent to (y, x) ∈ P or v(y) = v(x) (negation of P );
(P.3) either v(x) = v(y), or (x, y) ∈ P , or (y, x) ∈ P (generalized “con-

nectedness” of P );
(P.4) (x, x) 	∈ P (irreflexivity of P );
(P.5) if (x, y) 	∈ P and (y, z) 	∈ P , then (x, z) 	∈ P (negative transitivity

of P );
(P.6) (x, y) 	∈ P or (y, x) 	∈ P (completeness of P c = X2 \ P ).
A binary relation P satisfying properties (P.1), (P.4) and (P.5) is commonly

known as a weak order on X . It is also known (cf. Aleskerov [2]) that any
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weak order P on X is characterized by the family of its equivalence classes,
whose construction is recalled now. Set X ′

1 = π(X) where, given nonempty
A ⊂ X , π(A) = {x ∈ A : (y, x) 	∈ P for all y ∈ A} is the choice function for
P (cf. Aizerman and Aleskerov [1, Section 2.3]). Inductively, if � ≥ 2 and
nonempty subsets X ′

1, . . . , X
′
�−1 of X such that

⋃�−1
k=1X

′
k 	= X are already

defined, we put X ′
� = π

(
X \(

⋃�−1
k=1X

′
k)

)
. Since X is finite, there exists a unique

positive integer s = s(X) such that X =
⋃s

�=1X
′
�. Now, setting X� = X ′

s−�+1

for � = 1, 2, . . . , s, the disjoint collection {X�}s
�=1 is said to be the family of

equivalence classes of the weak order P , and has the following property: given
x, y ∈ X , (x, y) ∈ P iff there exist two integers k and � with 1 ≤ k < � ≤ s
such that x ∈ X� and y ∈ Xk. This property shows that the alternative x is
more preferable than the alternative y iff x lies in an equivalence class with a
greater ordinal number, and so, this defines the canonical (strict) ranking of
X . The value s = s(X) for the relation P generated by the threshold rule will
be calculated below in Lemma 1(b).

We say that a function ϕ : X → R is coherent with the family {X�}s
�=1 of

equivalence classes of the weak order P on X if, given x, y ∈ X , the inequality
ϕ(x) > ϕ(y) holds iff there exist 1 ≤ k < � ≤ s such that x ∈ X� and y ∈ Xk.

The main result of this paper is the following

Theorem 1 A social decision function ϕ : X → R satisfies axioms (A.1),
(A.2) and (A.3) iff it is coherent with the family of equivalence classes of the
weak order P on X generated by the threshold rule v(x)∠ v(y) in R

m−1.

This theorem will be proved in Section 6. A certain interpretation of it is
in order. Given a binary relation P on X and a function ϕ : X → R, if for all
x, y ∈ X we have

(x, y) ∈ P iff ϕ(x) > ϕ(y), (5)

then P is said to be representable by means of ϕ or, shortly, ϕ-representable,
and ϕ is said to be a preference function for P . Taking this into account as
well as the definitions preceding Theorem 1, we can reformulate Theorem 1
as follows: a social decision function on X satisfies the axioms Pairwise Com-
pensation, Pareto Domination, Noncompensatory Threshold and Contraction
iff it is a preference function for the binary relation on X generated by the
threshold rule.

3 A comparison with the known rules

In this Section we construct an example, for which the simple majority rule,
the Borda voting rule and the threshold rule produce different social decisions.

Let X = {x, y, z} be a set of three different alternatives, N = {1, . . . , 13} a
set of n = 13 voters and M = {1, 2, 3} the set of grades (i.e., m = 3). Consider
the following linear preferences of voters from N :
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3 voters 4 voters 6 voters rank
x x y 3
y z z 2
z y x 1

This means that for the first three voters x is the most preferable alternative,
y is the next one and z is the less preferable alternative, and likewise for the
other voters. The problem of voting is to construct a (linear) binary relation
on X corresponding to the social decision of the society N .

(a) According to the simple majority rule the pair of alternatives (x, y) is
included into the social decision (relation) if the preference of the form “x is
more preferable than y” occurs among the simple majority of voters. In our
example we have: for 3+4 = 7 voters x is more preferable than y, for 3+6 = 9
voters y is more preferable than z and for 3+4 = 7 voters x is more preferable
than z (and there is no simple majority among the other possibilities). Thus,
the social decision is {(x, y), (y, z), (x, z)}, and so, x is more preferable than
y, which in its turn is more preferable than z, and the winner is x.

Let us note that the axioms for the simple majority rule and plurality rule
have been laid by May [16].

(b) In the Borda voting procedure to each alternative x from X each voter
i ∈ N associates some rank ρi(x) in such a way that the more preferable the
alternative the higher the rank. In our example for the first voter among the
first three voters we have: ρ1(x) = 3, ρ1(y) = 2 and ρ1(z) = 1, and likewise for
the remaining voters. Then we set ρ(x) =

∑
i∈N ρi(x) for all x ∈ X . According

to the Borda voting rule an alternative x is socially more preferable than an
alternative y if ρ(x) > ρ(y). For the example above we have:

ρ(y) = 3 · 2 + 4 · 1 + 6 · 3 = 28 > ρ(x) = (3 + 4) · 3 + 6 · 1 = 27 >

> ρ(z) = 3 · 1 + (4 + 6) · 2 = 23,

and so, y is more preferable than x and x is more preferable than z, and the
winner is y.

An axiomatization of Borda’s rule was developed by Young [23].
(c) Interpreting the ranks of alternatives from (b) as the grades, for the

example above we have (the asterisk denotes the ordered vector grades):

v1(x) = 6, v2(x) = 0, v3(x) = 7, or x∗ = ( 1, 1, 1, 1, 1, 1︸ ︷︷ ︸
6

, 3, 3, 3, 3, 3, 3, 3︸ ︷︷ ︸
7

),

v1(y) = 4, v2(y) = 3, v3(y) = 6, or y∗ = ( 1, 1, 1, 1︸ ︷︷ ︸
4

, 2, 2, 2︸ ︷︷ ︸
3

, 3, 3, 3, 3, 3, 3︸ ︷︷ ︸
6

),

v1(z) = 3, v2(z) = 10, v3(z) = 0, or z∗ = ( 1, 1, 1︸ ︷︷ ︸
3

, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2︸ ︷︷ ︸
10

).

Since v1(z) = 3 < v1(y) = 4 < v1(x) = 6, then v(z)∠2v(y)∠2v(x), and so,
according to the threshold rule z is socially more preferable than y and y is
more preferable than x, and the winner is z.
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4 Monotone representatives and indifference classes

Since the binary relation P on X generated by the threshold rule is a weak
order, the indifference relation I is defined as

I = {(x, y) ∈ X ×X : (x, y) 	∈ P and (y, x) 	∈ P}. (6)

Clearly, I is an equivalence relation on X (i.e., it is reflexive, symmetric and
transitive) and, by virtue of (P.2) and (P.3), we have:

I = {(x, y) ∈ X ×X : v(x) = v(y)}. (7)

Then the indifference class of an alternative x ∈ X is the set

Ix = {y ∈ X : (y, x) ∈ I} = {y ∈ X : v(y) = v(x)}, (8)

and, as usual, given x, y ∈ X , we find: Ix = Iy iff (x, y) ∈ I, Ix ∩ Iy = ∅ iff
(x, y) 	∈ I, and X =

⋃
x∈X Ix (disjoint union). We denote by X/I the quotient

set {Ix : x ∈ X} of all the indifference classes with respect to I.
In this way the binary relation R = P ∪ I is a canonical ranking of X : R

is transitive ((x, y) ∈ R and (y, z) ∈ R imply (x, z) ∈ R) and complete (given
x, y ∈ X , (x, y) ∈ R or (y, x) ∈ R). However, throughout the paper we prefer
to deal with the strict preference relation P .

Given Ix ∈ X/I for some x ∈ X , by virtue of (8), the vector v(Ix) =
v(y) = v(x) is well defined for any y ∈ Ix. Then the quotient binary relation
P/I given by

P/I = {(Ix, Iy) ∈ (X/I) × (X/I) : v(Ix)∠ v(Iy) in R
m−1}

is a linear order on X/I. In fact, since the transitivity and irreflexivity of P/I
are clear, it suffices to verify only the connectedness of P/I, i.e., if Ix, Iy ∈ X/I
and Ix 	= Iy, then (Ix, Iy) ∈ P/I or (Iy , Ix) ∈ P/I. Indeed, Ix 	= Iy implies
Ix ∩ Iy = ∅ and (x, y) 	∈ I. Thus, v(x) 	= v(y), which gives v(Ix) 	= v(Iy),
and by the completeness of the lexicographic ordering ∠ = ∠m−1 we obtain
v(Ix)∠ v(Iy) or v(Iy)∠ v(Ix).

We note that, by virtue of (4) and (2), the equality v(y) = v(x) in (8)
actually means that vj(y) = vj(x) for all j ∈ M , that is, the vector y can be
obtained from the vector x (and vice versa) by a permutation of its coordinates:

Ix = {y ∈ X : ∃ a permutation σ of N such that y = x ◦ σ},

where the equality y = x ◦ σ involving the composition x ◦ σ means as usual
that yi = xσ(i) for all i ∈ N .

In order to facilitate the treatment of indifference classes Ix from X/I, in
each class Ix we select a ‘principal’ representative x∗ = (x∗1, x

∗
2, . . . , x

∗
n) ∈ Ix,

whose coordinates are ordered in ascending order: x∗1 ≤ x∗2 ≤ . . . ≤ x∗n or

x∗ = (

n︷ ︸︸ ︷
1, . . . , 1︸ ︷︷ ︸

v1(x)

, 2, . . . , 2︸ ︷︷ ︸
v2(x)

, . . . , m− 1, . . . ,m− 1︸ ︷︷ ︸
vm−1(x)

, m, . . . ,m︸ ︷︷ ︸
vm(x)

), (9)
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where the numbers vj(x) under the braces denote the lengths of the corre-
sponding underbraced subvectors. The alternative x∗, called the monotone
representative of the class Ix (or simply of the vector x), is uniquely deter-
mined, although it can be obtained from x by different permutations of its
coordinates. It is clear from the above that vj(x∗) = vj(x) for all j ∈ M , or
v(x∗) = v(x), and so, Ix = Ix∗ for all x ∈ X . We denote by X∗ = {x∗ : x ∈ X}
the subset of X of all monotone representatives and by P ∗—the restriction of
P to X∗ ×X∗.

Let us note that, given x, y ∈ X , we have:

(x, y) ∈ P iff (Ix, Iy) ∈ P/I iff (x∗, y∗) ∈ P ∗

and

(x, y) ∈ I iff Ix = Iy iff x∗ = y∗. (10)

It follows from (P.1), (P.4) and (P.3) that P ∗ is a linear order on X∗ and that
the bijection b : X/I → X∗, defined by b(Ix) = x∗ for all x ∈ X , is linear
order preserving in the sense that (Ix, Iy) ∈ P/I iff (b(Ix), b(Iy)) ∈ P ∗; in
other words, the pairs (X/I, P/I) and (X∗, P ∗) are linear order isomorphic.

Thus, we can work with the set X∗ equipped with the linear order P ∗

instead of the quotient linear order set (X/I, P/I).

Lemma 1 (a) |X/I| = |X∗| = Cm−1
n+m−1 = C n

n+m−1, where Ck
n = n!

k!(n−k)! is
the usual binomial coefficient and |A| denotes the number of elements in the
set A under consideration.

(b) {X�}s
�=1 = X/I, i.e., the family of all equivalence classes of the weak

order P coincides with the quotient set of all the indifference classes with
respect to I; hence, s = s(X) = Cm−1

n+m−1.

The following two lemmas are of fundamental importance for the whole
subsequent material. In Lemma 2 we show that the operation of taking the
monotone representativeX � x �→ x∗ ∈ X∗ preserves the natural partial order
relations � and � on X , and in Lemma 3 we show that the relations x∗ � y∗

and x∗ � y∗ can be characterized in terms of quantities from (1) and (3).

Lemma 2 Given x, y ∈ X, we have:
(a) if x � y, then x∗ � y∗;
(b) if x � y, then x∗ � y∗.

Lemma 3 Given x, y ∈ X, we have:
(a) x∗ � y∗ iff Vk(x) ≤ Vk(y) for all 1 ≤ k ≤ m− 1;
(b) x∗ � y∗ iff there exists a 1 ≤ k ≤ m − 1 such that vj(x) = vj(y) for

all 1 ≤ j ≤ k − 1 (no condition if k = 1), vk(x) < vk(y) and Vp(x) ≤ Vp(y)
for all k + 1 ≤ p ≤ m− 1 (with no last condition if k = m− 1).
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5 The dual threshold aggregation

If the utmost perfection (quality) of alternatives is of main concern, we can
apply the threshold rule to rank the set of alternatives. However, if we are
interested in at least one good feature of alternatives, we should employ a
different, but related, aggregation procedure, which will be called the dual
threshold aggregation. Such a dual model for three-graded rankings had already
been mentioned by Aleskerov and Yakuba [8]. In this Section we develop an
axiomatic theory of the dual threshold aggregation in the general case.

Given an alternative x ∈ X = Mn, we set

v(x) = (vm(x), vm−1(x), . . . , v2(x)) ∈ {0, 1, . . . , n}m−1.

The property v(y)∠ v(x) in R
m−1 will be called the dual threshold rule for

the comparison of alternatives x, y ∈ X (with respect to the number of high
grades), and a binary relation on X of the form

P = {(x, y) ∈ X ×X : v(y)∠ v(x) in R
m−1}

is said to be generated by the dual threshold rule. In other words, given two
alternatives x, y ∈ X , we have (x, y) ∈ P iff v(y)∠ v(x), and we say that x is
(dually) strictly more preferable than y.

We are going to reduce the dual aggregation theory to the aggregation
theory developed above. In order to do this, we introduce a permutation r of
the set M as follows:

r(j) = m− j + 1 for all j ∈ {1, 2, . . . ,m}.

Note that r is a bijection between {1, 2, . . . ,m − 1} and {m,m − 1, . . . , 2},
reversing the order of the numbers, and so, its self composition r2 = r ◦ r is
the identity on {1, 2, . . . ,m−1} and on {m,m−1, . . . , 2}: r(r(j)) = j for all j.
Given x = (x1, . . . , xn) ∈ X = {1, 2, . . . ,m}n, we set

r(x) = (r(x1), r(x2), . . . , r(xn)) = (m− x1 + 1,m− x2 + 1, . . . ,m− xn + 1),

and note that r(r(x)) = x, i.e., r(x′) = x iff x′ = r(x).
The following two properties (11) and (12) of r will be of significance:

vj(r(x)) = vr(j)(x) for all x ∈ X and 1 ≤ j ≤ m. (11)

In fact, we have:

vj(r(x)) = |{i ∈ N : r(xi) = j}| = |{i ∈ N : m− xi + 1 = j}| =

= |{i ∈ N : xi = m− j + 1}| = |{i ∈ N : xi = r(j)}| = vr(j)(x).

It follows that vj(x) = vr(j)(r(x)) and

v(x) = v(r(x)) and v(r(x)) = v(x) for all x ∈ X , (12)
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because

v(x) = (vm(x), vm−1(x), . . . , v2(x)) = (vr(1)(x), vr(2)(x), . . . , vr(m−1)(x)) =

= (v1(r(x)), v2(r(x)), . . . , vm−1(r(x))) = v(r(x)).

Now, given x, y ∈ X , we have:

(x, y) ∈ P iff v(y)∠ v(x) iff v(r(y))∠ v(r(x)) iff (r(y), r(x)) ∈ P (13)

or, equivalently, (x, y) ∈ P iff (r(y), r(x)) ∈ P .
By virtue of (13), the relation P on X satisfies the properties (P.1)–(P.6)

(if we replace P in these properties by P ), and so, P is a weak order on X .
For instance, the negation of P is of the form: given x, y ∈ X , (x, y) 	∈ P iff
(y, x) ∈ P or v(y) = v(x); in fact, it follows from (13) that

(x, y) 	∈ P iff (r(y), r(x)) 	∈ P iff [(r(x), r(y)) ∈ P or v(r(x)) = v(r(y))]

iff [(y, x) ∈ P or v(x) = v(y)],

and it remains to note that, in view of (2), the condition “vj(x) = vj(y) for all
2 ≤ j ≤ m” is equivalent to the condition “vj(x) = vj(y) for all 1 ≤ j ≤ m−1”.
This observation also shows that the indifference relation I on X generated
by P coincides with the indifference relation I:

I = {(x, y) : (x, y) 	∈ P and (y, x) 	∈ P} = {(x, y) : v(x) = v(y)} = I.

In order to treat the axiomatics of preference functions for the relation P ,
we note that if ϕ is a preference function for P and ψ is a preference function
for P , then, given x, y ∈ X , we have:

ψ(x) > ψ(y) iff (x, y) ∈ P iff (r(y), r(x)) ∈ P iff ϕ(r(y)) > ϕ(r(x))

iff [−ϕ(r(x)) > −ϕ(r(y))]. (14)

We conclude that ϕ is a preference function for P iff the function ϕ, defined
by ϕ(x) = −ϕ(r(x)) for all x ∈ X , is a preference function for P , and vice
versa: ϕ is a preference function for P iff the function ϕ, defined for x ∈ X by
ϕ(x) = −ϕ(r(x)), is a preference function for P . It follows from Theorem 1
that a function ϕ : X → R is a preference function for P iff the function
ϕ(x) = −ϕ(r(x)) satisfies axioms (A.1)–(A.3), and by virtue of (14) with ψ
replaced by ϕ, given x, y ∈ X , we have:

ϕ(x) > ϕ(y) iff ϕ(x′) > ϕ(y′), where x′ = r(y) and y′ = r(x).

So, replacing x by r(y) and y by r(x) in axioms (A.1)–(A.3) and taking into
account equalities (11) and (12), we obtain the following (dual) axioms for
function ϕ. Axioms (A.1) and (A.2) remain the same, because conditions
“v(x) = v(y)” and “v(x) = v(y)” are equivalent, and if x � y, then r(y) � r(x),
and so, ϕ(r(y)) > ϕ(r(x)) implying ϕ(x) > ϕ(y). The third dual axiom as-
sumes the following form:
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(A.3) (Noncompensatory Dual Threshold and Contraction): for each inte-
ger 3 ≤ k ≤ m the following condition holds:

(A.3.k) if x, y ∈ X , vj(x) = vj(y) for all k + 1 ≤ j ≤ m (if k = m, this
condition is absent), vk(y) + 1 = vk(x) 	= Vk(x), Vk−2(y) = 0 and Vk−1(x) =
v1(x), then ϕ(x) > ϕ(y).

The observations above lead to the following corollary of Theorem 1.

Theorem 2 A social decision function ϕ : X → R satisfies axioms (A.1),
(A.2) and (A.3) iff it is coherent with the family of equivalence classes of the
weak order P on X generated by the dual threshold rule v(y)∠ v(x) in R

m−1.

6 Manipulation of the threshold rule

Following Aleskerov et al. [4] we present here a study of the manipulabil-
ity of threshold aggregation rule and compare its manipulability with several
other rules. The extent to which social choice rules are manipulable is studied
in Kelly [15], Aleskerov and Kurbanov [6], Favardin and Lepelley [13] who
consider well-known anonymous and neutral (hence multiple-valued) social
choice rules and analyse their single-valued versions obtained by assuming
a tie-breaking linear order over alternatives. This assumption simplifies the
computational difficulties embedded in the problem of estimating the degree
of manipulability. On the other hand, by breaking the symmetry between can-
didates, it risks to distort the computational results. Pritchard and Wilson
[20] analyse the manipulability of scoring rules under a random tie-breaking
rule which preserves neutrality among alternatives.

We explore the degree of manipulability of several multi-valued social
choice rules, by extending manipulability indices defined for single-valued so-
cial choice rules to the multi-valued case. Our analysis requires to extend
preferences over alternatives to sets of alternatives, which we do by using two
alternative methods based on lexicographic comparisons. We reveal the degree
of manipulability of seven social choice rules, either by theoretical investiga-
tions or by computational experiments. We consider an environment of four
and five alternatives, hence extending the findings of Aleskerov et al. [5] de-
rived for an environment restricted to three alternatives.

We analyze the following rules:

– Plurality Rule
– 2-Approval
– Borda’s Rule
– Black’s Procedure
– Threshold rule
– Uncovered Set I: Construct lower contour set L(x) of relation µ and

binary relation δ as follows:

xδy ⇐⇒ L(x) ⊃ L(y).

Then undominated alternatives on δ are chosen, i.e. x ∈ C(−→P ) ⇐⇒[
¬∃ y ∈ A | yδx

]
.
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– Strongest q-Pareto Simple Majority (Aleskerov 1999)
Social choice is defined as C(−→P ) =

⋂
I∈T f(−→P ; I, q), where f(−→P ; I, q) ={

x ∈ A : |
⋂

i∈I Di(x)| ≤ q
}

and T = {I ⊂ N | |I| = �n/2�}. The alterna-
tive is to be chosen if it is Pareto optimal in each simple majority coalition
with q = 0. If there is no such an alternatives, then q = 1, q = 2, etc., is
considered until the choice will not be empty. In other words, for every sim-
ple coalition we find all alternatives which are Pareto undominated (there
are no alternatives which are better for every voter in coalition). Then we
find the intersection of such sets for all simple coalitions. If it is empty it
means that there no such alternatives which are Pareto undominated for
all coalitions and then we look for alternatives dominated no more than by
1 alternative and so on.

Every agent i is assumed to have an extended preference EPi over A which
is induced by her preference Pi overA. We consider two methods to obtain EPi

from Pi, both of which are based on lexicographic comparisons used by Pat-
tanaik [19]. The methods we consider are the leximax and leximin extensions,
as described by Ozyurt and Sanver [18].

Under the leximax extension, two sets are compared according to their
best elements. If these are the same, then the ordering is made according to
the second best elements, etc. The elements according to which the sets are
compared will disagree at some step — except possibly when one set is a subset
of the other, in which case the smaller set is preferred2. To speak formally,
take any Pi ∈ L and any distinct X,Y ∈ A. Write X = {x1, . . . , x|X|}, Y =
{y1, . . . , y|Y |} and let, without loss of generality, xj+1Pixj ∀ j ∈ {1, . . . , |X |−1}
and yj+1Piyj ∀ j ∈ {1, . . . , |Y | − 1}. The leximax extended preference EPi is
defined as follows:

1. If |X | = |Y |, then X EPi Y iff xhPiyh for the smallest h ∈ {1, . . . , k} for
which xh 	= yh.

2. If |X | 	= |Y | and ∃h ∈ {1, . . . ,min{|X |, |Y |}} for which xh 	= yh, then
X EPi Y iff xhPiyh for the smallest h ∈ {1, . . . ,min{|X |, |Y |}} for which
xh 	= yh.

3. If |X | 	= |Y | and xh = yh ∀h ∈ {1, . . . ,min{|X |, |Y |}}, then X EPi Y iff
|X | < |Y |.

The concept of a leximin extension is similarly defined while it is based
on ordering two sets according to a lexicographic comparison of their worst
elements. Again the elements according to which the sets are compared will
disagree at some step — except possibly when one set is a subset of the other,
in which case the larger set is preferred3. So given any Pi ∈ L and any distinct
X,Y ∈ A where X = {x1, . . . , x|X|} and Y = {y1, . . . , y|Y |} are such that

2 This is exactly how words are ordered in a dictionary. For example, given three alter-
natives a, b and c, the leximax extension of the ordering a b c is {a}, {a, b}, {a, b, c}, {a, c},
{b}, {b, c}, {c}.

3 For example, the leximin extension of the ordering a b c is {a}, {a, b}, {b}, {a, c},
{a, b, c}, {b, c}, {c}.
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xj+1Pixj ∀ j ∈ {1, . . . , |X |−1} and yj+1Piyj ∀ j ∈ {1, . . . , |Y |−1}, the leximin
extended preference EPi is defined as follows:

1. If |X | = |Y |, then X EPi Y iff xhPiyh for the greatest h ∈ {1, . . . , k} for
which xh 	= yh.

2. If |X | 	= |Y | and ∃h ∈ {1, . . . ,min{|X |, |Y |}} for which xh 	= yh, then
X EPi Y iff xhPiyh for the smallest h ∈ {1, . . . ,min{|X |, |Y |}} for which
xh 	= yh.

3. If |X | 	= |Y | and xh = yh ∀h ∈ {1, . . . ,min{|X |, |Y |}}, then X EPi Y iff
|X | > |Y |.

We consider the following manipulability indices.
Number of alternatives being m, the total number of possible linear orders

is equal to m!, and total number of profiles with n agents is equal to (m!)n.
Kelly [15] introduces the following index (which we call Kelly’s index and
denote as K) to measure the degree of manipulability of social choice rules:

K =
d0

(m!)n
,

where d0 is the number of profiles in which manipulation takes place.
Aleskerov and Kurbanov [6] introduce an index to measure the freedom

of manipulation. In Aleskerov et al. (2010) we introduced two similar indices:
The degree of nonsensitivity to preference change and the probability of getting
worse. Let us note that for an agent there are (m! − 1) linear orders to use
instead of her sincere preference. Denote as k+

ij (i = 1, . . . , n; 0 ≤ k+
ij ≤

(m!− 1)) the number of orderings in which voter i is better off in j-th profile.
Similarly, k0

ij is the number of orderings in which the result of voting remains
the same and k−ij is the number of orderings in which the voter is worse off. It
is obvious that k+

ij +k0
ij +k−ij = (m!−1). Dividing each kij to (m!−1) one can

find the share of each type of orderings for an agent i in j-th profile. Summing
up each share over all agents and dividing it to n one can find the average
share in the given profile. Summing the share over all profiles and dividing
this sum to (m!)n we obtain three indices

I+
1 =

∑(m!)n

j=1

∑n
i=1 k

+
ij

(m!)n · n · (m!−1)
; I0

1 =

∑(m!)n

j=1

∑n
i=1 k

0
ij

(m!)n · n · (m!−1)
; I−1 =

∑(m!)n

j=1

∑n
i=1 k

−
ij

(m!)n · n · (m!−1)
.

It is obvious that I+
1 + I0

1 + I−1 = 1.
The indices K and I+

1 , I
0
1 , I

−
1 are calculated for the rules defined in the

next section.
The calculation of indices is performed for 4 and 5 alternatives. For 3, 4

and 5 voters, the respective indices are exhaustively computed (i.e., all possible
profiles are checked for manipulability) and for greater number of voters the
statistical scheme is used.

In both exhaustive and statistical schemes, for each profile under consider-
ation, all m! − 1 manipulating orderings for each voter are generated and the
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respective choice sets of manipulating profiles are compared with the choice of
the original profile.

Tables 1 and 2 give the exhaustive computation results for Kelly’s index
when there are 3 or 4 voters and 4 or 5 alternatives. In order to enable com-
parisons with the single-valued case, we quote in the TBR column, the results
from Aleskerov and Kurbanov [6] where an alphabetical tie-breaking rule is
used.

One can see that in most cases, particularly in the case of 4 voters, assum-
ing single-valuedness of the social choice rule, the evaluations underestimate
its degree of manipulability. Also note that plurality rule is non-manipulable
in the case of 3 voters and leximax extension. This fact expands the same
finding of Aleskerov et al. (2010) to the case of 4 and 5 alternatives. The ex-
planaition remains almost the same: The only possible type of profile where a
manipulating voter exists is one where every voter has a different best alter-
native. In this case choice will consist of these best alternatives, for example
{a, c, e}. When we consider voter with preference a � c � e, manipulability
of the profile depends on the answer of the question, whether {c} is better
than {a, c, e}? For leximax extension the answer is no, and the profile is not
manipulable.

In Figures 1, 2 and 3, Kelly’s index is shown on the Y-axis and the logarithm
of the number of voters is shown on the X-axis. The calculation was made for
each number of voters from 3 to 25 and then for 29, 30, 39, 40 and so on up
to 100. That explains changes at the figures.

We can make several conclusions from these figures.
1. For Black’s Procedure (under Leximin), Strongest q-Pareto Simple Ma-

jority and Uncovered Set I, the values of Kelly’s index depend on whether an
even or odd number of voters are considered. At the same time for rules such
as Plurality, q-Approval and Threshold, there is a cycle of length m-’jumps’ of
the values when the number of voters n is divisible by the number of alterna-
tives m – in Kelly’s index. One can see a cycle of length 4 on Figure 1 and of
length 5 on Figures 2 and 3. The phenomenon — the presence of the cycle with
length of the number of alternatives — is explained by differences in number
and cardinality of ties produced by rules. For example, the set {a, b, c, d, e}
can appear as the result of Plurality voting only in the case when the number
of voters is divisible by the number of alternatives. For Plurality rule and 5
alternatives we observe 52%, 71,2%, 67,5%, 58% of single-valued choice as the
result of voting for 3, 4, 5 and 6 voters correspondingly.

2. Uncovered Set I is less manipulable for odd number of voters than for
even.

On Figures 4 and 5, I+
1 , I

0
1 , I

−
1 are given on the same graph for 5 alterna-

tives, leximin extension method, 3 and 100 voters, correspondingly.
Note that, increasing the total number of voters decreases the influence of

a single voter. For example, when there are 100 voters, about 90 percent of
the insincere profiles makes no effect on the voting outcome.

Figure 6 gives the results of calculation of I+
1 index for 5 alternatives,

under the leximin extension. One can see that I+
1 tends to decrease with the
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number of voters. The Black’s procedure is the best rule from a freedom of
manipulation point of view.
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