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Abstract

For the egalitarian reason that each bottom-tier voter should, in principle, have the
same indirect influence on top-tier decisions, delegates have voting weights which
increase in the size of their constituency in many assemblies. An earlier Monte-Carlo
study (Maaser and Napel, Social Choice & Welfare 28: 401–420, 2007) demonstrated
that weights proportional to the square root of population sizes come close to ensur-
ing equal representation in a unidimensional spatial voting framework given a 50%
decision quota. This paper provides an analytic explanation for this finding. It inves-
tigates sophisticated weight allocation rules, which use conventional power indices,
and shows that even these fail to extend to quotas q > 50%. More critically, if voters
are subject to constituency-specific shocks then, for arbitrary q ≥ 50%, a linear rule
based on the Shapley-Shubik index outperforms square root rules. This raises the
important normative question: which kind of inter-constituency heterogeneity shall
be acknowledged behind a constitutional ‘veil of ignorance’?

Keywords: equal representation, one person one vote, voting systems, voting power,
power indices

1 Introduction

The principle of “one person, one vote” is generally considered to be at the heart of modern
democratic constitutions. It guarantees that the collective decision only depends on how
many votes an alternative gets, not on whose votes these are. A second basic characteristic
of today’s idea of democracy is the use of political representatives who make decisions on
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behalf of the citizens. The participation of the latter is largely indirect as they only elect
their representatives. We concentrate on systems where representatives who are elected in
separate districts participate in a governing body at the union level and cast a block vote
for their district. Most often, voting districts are – for geographical, ethnic, or historical
reasons – not equally sized so that representatives’ voting weights have to somehow reflect
their constituency’s population size. Prominent examples for such two-tier systems are the
EU Council of Ministers and the US Electoral College. The question we wish to answer
is: Which rule needs to be applied to define districts’ weight at the union level in order to
ensure fair representation?

The most intuitive solution to the equal representation problem seems to be to allocate
weights proportional to population sizes. Yet, the traditional normative claim from the
voting power literature is that indirect powers of citizens are equal iff the powers of the
representatives as measured by the Penrose-Banzhaf index are proportional to the square
root of the respective population (see e. g. Felsenthal and Machover 1998). This solution
to the problem of ensuring equal representation in two-tier systems was first offered by
Penrose (1946) on the basis of a model with binary (yes or no) decisions. His square root
rule played a prominent role in the public discussion on the EU constitution (see, for
example, the open letter by Bilbao et al. 2004). The controversy regained its momentum
at the Council of the European Union (the EU Summit) in June 2007 due to Poland’s
lobbying for a square-root allocation of weights in the EU Council of Ministers. In various
studies on this decision-making body the square root rule has been used as a benchmark
(e. g. Felsenthal and Machover 2001, 2004; Leech 2002).

Square root rules have also been demonstrated to be optimal under criteria other than
the equality of influence. If weights of the delegates, rather than their powers, are made
proportional to the square root of their constituency’s population size, we get the second
square root rule (Felsenthal and Machover 1999) which minimizes the mean deviation
of the indirect two-tier decision-making rule from a direct democracy simple majority
rule. Beisbart and Bovens (2005) and Beisbart and Hartmann (2006) arrive at the square
root rule in a welfarist framework starting from the norm that expected utility should be
equalized for all countries. Basically the same result is reached by Barberà and Jackson
(2006) who study the design of voting rules that maximize the expected utility of voters
for their ‘fixed-size-of-blocks model’.

Penrose’s square root rule critically depends on equiprobable ‘yes’ and ‘no’-decisions
by all voters (or at least a ‘yes’-probability which is random and distributed independently
across voters with mean exactly 0.5). In this binomial voting model, the probability of a
tie in a constituency with nj voters is approximately inversely proportional to

√
nj.

3 Good
and Mayer (1975) and Chamberlain and Rothschild (1981) demonstrate that if the ‘yes’-
probability is slightly lower or higher, or if it exhibits even minor dependence across voters –
say, they are influenced by the same newspapers – the tie probability is substantially
smaller than for equiprobable yes/no-decisions. Related empirical studies in two-party

3As an individual voter is decisive only if the election is otherwise tied, this means that voting power
is in approximation inversely proportional to √nj .
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elections have in fact failed to confirm the prediction for the average closeness of ballots
(see Gelman, Katz, and Tuerlinckx 2002 and Gelman, Katz, and Bafumi 2004). Larger
elections are slightly closer – in proportional terms – than small elections, but by very
little, perhaps making a 0.9 power rule appropriate. These findings certainly cast doubts
on the accuracy of the binomial distribution model which is the source of the square root
rule. It is therefore rather disturbing that implementation of the square root rule may
result in highly unequal representation (see Felsenthal and Machover 1998, p. 71f) when
its assumptions, namely the binomial voting model, are not fulfilled.

Maaser and Napel (2007) investigate equal representation when policy alternatives are
non-binary and decisions are made by simple majority rule, and conclude that weight
proportional to the square root of population size is close to optimal in that setting. This
finding may be interpreted as extending the scope of Penrose’s square root rule beyond
the narrow limits of binary decision-making. While that result has so far been based on
extensive Monte-Carlo simulations, this paper provides an analytic explanation.

Penrose’s square root rule is derived in a voting model where voters only differ in
the constituency they live in. This implies that the voting behavior of citizens from the
same constituency is not more highly correlated than the voting behavior of citizens from
different constituencies. Though the model introduced in Maaser and Napel (2007) is
quite different from Penrose’s, it shares with the latter the premise that all voters are a
priori identical. The equiprobability assumption (as implied by the principle of insufficient
reason) is usually maintained on the normative grounds that constitutional design should
not rest on volatile correlation patterns of preferences.

We conduct a sensitivity analysis on the findings in Maaser and Napel (2007), i.e., we
vary the assumptions made there, and observe the effect on the result. Specifically, the
aim of this paper is to address the following questions:4

1. How does a ‘simple’ voting rule that derives directly from constituency sizes perform
compared with more sophisticated rules that use standard power indices as reference
points?

2. What is the fair voting rule under supermajority rules at the top tier?

3. How does the fair voting rule react to heterogeneity across constituencies?

2 Model and Results in Maaser and Napel (2007)

Consider a large population N of voters. Let C = {C1, . . . , Cm} be a partition of the
population into m constituencies Cj with nj = |Cj| > 0 members each. Citizens’ preferences
are single-peaked with ideal point λj

i (for i = 1, . . . , nj and j = 1, . . . , m) in a bounded
convex one-dimensional policy space X ⊂ R. Assume for simplicity that all nj are odd
numbers.

4An additional benefit of the present study is its greater precision.
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For any random policy issue, let · : nj denote the permutation of voter numbers in
constituency Cj such that

λ
1:nj

j ≤ . . . ≤ λ
nj :nj

j

holds. In other words, k : nj denotes the k-th leftmost voter in Cj and λ
k:nj

j denotes the

k-th leftmost ideal point (i. e., λ
k:nj

j is the k-th order statistic of λ1
j , . . . , λ

nj

j ).
A policy x ∈ X is decided on by a committee of representatives R consisting of one

representative from each constituency. Without going into details, we assume that the
representative of Cj, denoted by j, adopts the ideal point of his constituency’s median
voter, denoted by

λj ≡ λj
(nj+1)/2:nj

.

In theory, elected representatives are fully responsive to their constituency’s median voter.
Practically, at least two problems arise: First, systematic abstention of certain social groups
can drive a substantial wedge between the median voter’s and the median citizen’s prefer-
ence, and non-voters go unrepresented. Second, empirical evidence suggests that a repre-
sentative may take positions that differ significantly from his district’s median when voter
preferences within that district are sufficiently heterogeneous (Gerber and Lewis 2004).

Let λk:m denote the k-th leftmost ideal point amongst all the representatives (i. e., the
k-th order statistic of λ1, . . . , λm).

In the top-tier assembly or committee of representatives R, each constituency Cj has
voting weight wj ≥ 0. Any subset S ⊆ {1, . . . , m} of representatives which achieves a
combined weight

∑
j∈S wj above q ≡ 0.5

∑m
j=1 wj, i.e., a simple majority of total weight,

can implement a policy x ∈ X.
Consider the random variable P defined by

P ≡ min
{

l ∈ {1, . . . , m} :
l∑

k=1

wk:m > q
}

.

Player P :m’s ideal point, λP :m, is the unique policy that beats any alternative x ∈ X in
a pairwise majority vote, i. e., constitutes the core of the voting game defined by weights
and quota. Without detailed equilibrium analysis of any decision procedure that may be
applied in R (see Banks and Duggan 2000 for sophisticated non-cooperative support of
policy outcomes inside or close to the core), we assume that the policy agreed by R is in
the core, i. e., it equals the ideal point of the pivotal representative P :m.

By a fair representation of voters in a two-tier system we mean that Each voter in
any constituency should have an equal chance to determine the policy implemented by the
electoral college. Or, more formally, there should exist a constant c > 0 such that

∀j ∈ {1, . . . , m} : ∀i ∈ Cj : Pr
(
j = P :m ∧ i = (nj + 1)/2:nj

) ≡ c. (1)

Whereas in Maaser and Napel (2007) we assumed that the ideal points of all voters
throughout the union are independently and identically distributed (i. i. d.), we now allow
for different distributions of the ideal points in different constituencies. Yet, we retain the
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assumption that voters’ ideal points within each constituency Cj are i. i. d., which gives
each voter i ∈ Cj the same probability to be the constituency’s median. Hence,

∀j ∈ {1, . . . ,m} : ∀i ∈ Cj : Pr
(
i = (nj + 1)/2:nj

)
=

1

nj

.

Using that the events {i = (nj + 1)/2:nj} and {j = P :m} are independent, one can thus
rewrite the fairness condition (1) as

∀j ∈ {1, . . . , m} :
Pr (j = P :m)

nj

≡ c. (2)

So if constituency Cj is twice as large as constituency Ck, representative j must have twice
the chances to be pivotal than representative k in order to equalize individual voters’
chances to be pivotal.

If representatives’ ideal points λ1, . . . , λm were i. i. d., Pr (j = P :m) would simply be the
Shapley-Shubik index (SSI) value, φj(w, q), of representative j in voting body R defined
by weight vector w = (w1, . . . , wm) and quota q (see Shapley and Shubik 1954). Equation
(2) then implies that a linear rule based on the SSI would guarantee equal representation.
In other words, w would have to be chosen such that φj(w, q) is directly proportional
to population size nj for all constituencies j = 1, . . . , m. Solving this inverse problem
sufficiently accurately is a relatively simple task – at least as long as the number of
constituencies is ‘large’ and no ‘pathologies’ in the population configuration occur.5

But under the assumption in Maaser and Napel (2007) that voters’ ideal points are
i. i. d., representatives’ ideal points λ1, . . . , λm are independently but (except in the trivial
case n1 = . . . = nm) not identically distributed. Given Fj with density fj, the median
position λj in constituency Cj is asymptotically normally distributed (see e. g. Arnold et al.
1992, p. 223) with mean

µj = F−1
j (0.5)

and standard deviation

σj =
1

2 fj(F
−1
j (0.5))

√
nj

. (3)

So, the larger a constituency Cj is, the more concentrated is the distribution of its median
voter’s ideal point, λj, on the median of the underlying ideal point distribution in this
constituency.

The measure used to evaluate the performance of different rules for the allocation of
voting weights considers cumulative quadratic deviations between the realized and the ideal
chances of an individual. Any voter in any constituency Cj would ideally determine the
outcome with the same probability 1/

∑m
k=1 nk, but vector π̂ actually gives him or her the

probability π̂j/nj of doing so. Treating all nj voters in any constituency Cj equally then
amounts to looking at

m∑
j=1

nj ·
(

1∑m
k=1 nk

− π̂j

nj

)2

. (4)

5An example for such a pathology is provided by Lindner and Machover (2004).
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Under this criterion, the increase in deviation is higher if the pivot probability of a large
constituency is off the mark than if a small constituency is misrepresented to the same
degree.

Focusing on the investigation of power laws

wj = nj
α (5)

with α ∈ [0, 1],6 Maaser and Napel (2007) find that α = 0.5, i.e., voting weight proportional
to the square root of population, emerges as close to optimal for both real world examples
as well as a vide variety of artificial population configurations.

3 Analytic Arguments

For the reasons stated above, it seems unrealistic to aim for a general analytical solution to
the equal representation problem (1), or equivalently, (2) for arbitrary finite configurations
(n1, . . . , nm). But is there a way of making progress for a particularly clear layout? The
following heuristic arguments suggest that this might indeed be possible.

Assume that representatives’ ideal points λj are normally distributed with mean µj = 0
and standard deviation

σj =
ϑ
√

2π

2
√

nj

> 0,

where ϑ > 0 is a constant. Denote the cumulative density function of λj by Fλj
, and the

density of λj by fλj
. The latter is given by

fλj
(x) =

1

σj

√
2π

e
− x2

2σj
2

=

√
nj

ϑπ
e−

x2 nj

ϑ2π . (6)

Let Ω denote the set of vectors of median ideal points. Finally, to facilitate notation, let
πj ≡ Pr (j = P :m). A representative k with ideal point λk is pivotal in the committee of
representatives if, for a given realization ω ∈ Ω of median voters’ ideal points, the total
weight of the representatives who have ideal points to the left of λk is greater than or equal
to q − wk, but less than q.

Given weights w1, . . . , wm, let w̃j(x), x ∈ X, be the random variable defined by

w̃j(x)(ω) =

{
wj if λj(ω) ≤ x

0 if λj(ω) > x.

where ω ∈ Ω refers to a particular ideal point realization. The random variable w̃j(x) is
the contribution of constituency Cj to the total weight of constituencies which have ideal

6For big m this approximately includes Penrose’s square root rule as the special case α = 0.5 (see
Lindner and Machover 2004 and Chang, Chua, and Machover 2006).
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Figure 1: Accumulated weight of constituencies other than k and determination of W̃−1
−k (q−wk)

and W̃−1
−k (q).

points weakly to the left of x. Denote the weight accumulated up to x by constituencies
other than any fixed constituency Ck by

W̃−k(x)(ω) =
∑

j 6=k

w̃j(x)(ω).

Consider any ideal point realization ω such that λk(ω) = x. Constituency Ck is pivotal in
the committee of representatives iff

W̃−k(x)(ω) ≤ q < W̃−k(x)(ω) + wk

or
q − wk < W̃−k(x)(ω) ≤ q.

The expected value of the probability of this event with respect to the probability density
function fλk

(x) yields k’s overall power Pr (k = P :m),

πk =

∫ ∞

−∞
Pr(q − wk < W̃−k(x) ≤ q) fλk

(x) dx. (7)

So, πk is the probability that representative k’s median is located between the positions
W̃−1
−k (q − wk) and W̃−1

−k (q) in X at which constituencies j 6= k have accumulated weight
q − wk and q, respectively.7 This is illustrated in Figures 1 and 2.

7Note that W̃−k(x) is a step function. Thus, W̃−1
−k (·) is the quasi-inverse of W̃−k(x), i. e., W̃−1

−k (y) =
inf{x ∈ X | y ≤ W̃−k(x)}.
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Figure 2: Density of λk. The shaded area corresponds to πk, which is the expectation of the
event that λk is situated between W̃−1

−k (q − wk) and W̃−1
−k (q).

As mentioned already, the explicit computation of W̃−k(x)’s distribution, and hence that
of πk, is very involved: for any W ∈ (q−wk; q], one needs to account for all combinatorial
possibilities to reach the aggregate weight W without Ck. This would amount to the
enumeration of all coalitions S not containing representative k with weight

∑
j∈S wj = W ,

followed by the summation of the respective formation probabilities
∏

j∈S Fλj
(x)

∏
j 6∈S(1−

Fλj
(x)).
An approximation which ignores these combinatorial complications is of little use for

estimating power for any particular weight distribution, but helps in identifying the general
behavior of power, as weight and population size is varied.

The key observation is that, for a large number m of constituencies, W̃−k(x) – as the
sum of m−1 independent random variables – is approximately normally distributed,8 with
mean

EW̃−k(x) =
∑

j 6=k

Ew̃j(x) =
∑

j 6=k

wjFλj
(x). (8)

As m goes to infinity, the variance of the random variable W̃−k(x) approaches zero. Hence,
the error of replacing W̃−k(x) in (7) by its expected value EW̃−k(x) is small when we look

8As the random variables w̃j(x) are independently, but not identically distributed with finite variance,
Lyapunov’s central limit theorem applies.
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at a large number of constituencies. In particular, we can then approximate (7) by

πk ≈ π̂k =

∫ ∞

−∞
1{x : q−wk<EW̃−k(x)≤q}(x) fλk

(x) dx

=

∫ ∞

−∞
1{x : EW̃−1

−k (q−wk)<x≤EW̃−1
−k (q)}(x) fλk

(x) dx

=

∫ EW̃−1
−k (q)

EW̃−1
−k (q−wk)

fλk
(x) dx (9)

where 1X denotes the indicator function of set X.
From the point symmetry of the normal cumulative density function, Fλj

(x) = 1 −
Fλj

(−x), together with (8), it follows that EW̃−k(x) is point symmetric in relation to the
point (0;

∑
j 6=k wj/2) (cf. Figure 1). Consider the case of simple majority rule, q =

∑
j wj/2.

The quota can be rewritten as q =
∑

j 6=k wj/2 + wk/2, whilst q−wk =
∑

j 6=k wj/2−wk/2.

Thus, if EW̃−k(z) = q for some z ∈ R, then it holds that EW̃−k(−z) = q − wk.
Using (6), approximation (9) becomes

π̂k =

∫ z

−z

fλk
(x) dx =

√
nk

ϑπ

∫ z

−z

e−
x2 nk
ϑ2π dx = 2

√
nk

ϑπ

∫ z

0

e−
x2 nk
ϑ2π dx (10)

where z is implicitly defined by EW̃−k(z) = q. This integral can be written as the Taylor
series

π̂k = 2

√
nk

ϑπ

∫ z

0

(
1− ηx2

1!
+

η2x4

2!
− η3x6

3!
+ . . .

)
dx

= 2

√
nk

ϑπ

(
z − ηz3

3 · 1!
+

η2z5

5 · 2!
− η3z7

7 · 3!
+ . . .

)
(11)

with η ≡ nk

ϑ2π
.

If constituency k were included in the aggregation, the quota q =
∑

j wj/2 would in
expectation be accumulated exactly at x = 0. If constituency Ck’s weight wk is ‘small’
relative to

∑
j wj, then q will in expectation be accumulated slightly to the right of zero,

i.e., z is close to zero. For this case, terms in (11) with degree greater than one have only
a second-order effect. So π̂k can rather well be approximated by

π̂k =
2z
√

nk

ϑπ
. (12)

In the neighborhood of x = 0, Fλj
(x) can be approximated by its Taylor polynomial of

degree 1, i. e.

F̂λj
(x) = Fλj

(0) + xfλj
(0) =

1

2
+ xfλj

(0).

Then, solving
∑

j 6=k

wj/2 + wk/2 = q = EW̃−k(z) ≈
∑

j 6=k

wjF̂λj
(z) =

∑

j 6=k

wj/2 +
∑

j 6=k

wjzfλj
(0),
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the location z is obtained approximately as

z ≈ wk

2
∑

j 6=k wj fλj
(0)

.

This, together with (12), leads to the conclusion that

πk ≈
wk
√

nk

ϑπ
∑

j 6=i wj fλj
(0)

. (13)

According to (13), the probability of constituency Ck to be pivotal at the top tier is ap-
proximately proportional to its weight wk and to the square root of its population nk. The
square root of population, which first showed up in the density (6), describing the distri-
bution of representative j’s position, reappears in expression (13). Returning to the equal
representation condition (2), it follows from (13) that (2) can be approximately satisfied
by choosing weights w∗

j such that
w∗

j ∝ √
nj,

where the notation ∝ refers to (direct) proportionality between w∗
j and the square root of

nj for all j = 1, . . . , m.
In order to obtain this heuristic result, two major approximations were made: first,

the effect of the combinatorial features of a particular weight distribution on power is
ignored (leading to formula (9)). Second, the ‘lumpiness’ of player k’s weight which implies
that z is actually larger than 0 is not taken into account (leading to (12) and (13)).
Nevertheless, expression (13) allows a prediction about the equitable weight allocation for
large representative committees and exposes the reason why one would expect a square
root rule to eventually emerge from the ‘double pivot’ model introduced in Maaser and
Napel (2007).9

While the approximative weight allocation rule w∗
j ∝ √

nj may be expected to work
well under ‘limit conditions’, it is of limited use when the number of constituencies is
‘small’. The following section for this reason uses Monte-Carlo simulation in order to
approximate the probability of any constituency Cj being pivotal for a given partition of
an electorate, or configuration {C1, . . . , Cm}, and a fixed weight vector (w1, . . . , wm). Based
on this, the simulation tries to find weights (w∗

1, . . . , w
∗
m) which approximately satisfy the

two equivalent equal representation conditions (1) and (2).

4 Simple and sophisticated square root rules

In Maaser and Napel (2007), the simple square root rule, wj ∝ √
nj, has been found to en-

sure equal representation to an almost optimal extent when the number of constituencies is
large. With few constituencies (and representatives), however, it becomes more important

9Note that Penrose’s square root rule also includes an approximation: in its derivation, Stirling’s formula
is used to approximate the probability that an individual voter is decisive at the lower-tier referendum (or
a general two-candidate election).
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to have an index that, at least approximately, captures the power distribution generated
by voting weights at the top tier. Standard power indices can be ruled out as candidates
for the ‘theoretically correct’ index because they are based on identical stochastic behav-
ior of top-tier voters, which is generally inconsistent with identical stochastic behavior of
bottom-tier voters. Still, as a second-best solution, sophisticated rules that are based upon
the Shapley-Shubik index or the Penrose-Banzhaf index might be expected to do better
than the simple rule: the latter ignores all combinatorial aspects of weighted voting, while
the former capture them at least for identical top-tier behavior. The latter is not too far
off when constituencies have similar sizes.

Implementing such rules requires a solution to the inverse problem of finding weights
which induce a desired power distribution (see, e. g., Leech 2003, and Leech and Machover
2003). For a finite number n of committee members, the number of different voting rules is
also finite, albeit increasing very quickly in n. Therefore, the set of reachable power vectors
is discrete, as illustrated in Figure 3. The problem of enumerating all simple games with n
players could be solved by determining all antichains on 2N .10 This (unsolved) problem is
known as Dedekind’s problem, and the corresponding numbers are called Dedekind num-
bers. The number of games in the important subclass of non-dictatorial, weighted majority
games with a quota of half the total weight is considerably smaller: for example, counting
permutations, there are four such games with three players,11 whereas the Dedekind num-
ber (excluding the empty antichain which contains no subsets and the antichain consisting
of only the empty set) is 18.

It is worthwhile to compare the performance of the simple square root rule to that of
sophisticated rules in the double median setting introduced in Maaser and Napel (2007).
For the comparison, we use 30 randomly generated configurations of 15 constituencies
each.12 Experience suggests that at this value the distribution of power is not entirely
governed any more by the combinatorial particularities of the configuration at hand, but
asymptotic properties only begin to operate (see Chang, Chua, and Machover 2006). For
larger numbers of constituencies, it becomes increasingly difficult to make meaningful com-
parisons between weight-based and index-based rules, as the power ratio (measured by the
Penrose-Banzhaf or the Shapley-Shubik index) between any two representatives typically
approaches the ratio of their voting weights. This convergence is asserted by Penrose’s
(1952) Limit Theorem, which has been proved to hold under certain conditions (Lind-
ner and Machover 2004), and seems to apply whenever the weight distribution is not too
skewed.13

10A subset of a partially ordered set (or poset) (P,<P ) – where P is a set, and <P is a partial order
relation – is an antichain if any two elements of the subset are incomparable under <P . Applied to simple
voting games, the power set 2N is partially ordered in respect to the inclusion ⊆, and each set of minimum
winning coalitions, characterizing a game, corresponds to an antichain.

11The minimum integer weight representations of these four games are (3; 2, 1, 1), (3; 1, 2, 1), (3; 1, 1, 2),
and (2; 1, 1, 1). In Figure 3, these games correspond to the four points in the interior of the simplex.

12In 15 of the configurations, population sizes were drawn from a uniform distribution, and in the other
15 from a Pareto distribution with κ = 1.0.

13For special classes of weighted voting games, Lindner and Machover (2004) prove Penrose’s (1952)
Limit Theorem with respect to the Penrose-Banzhaf index for q = 0.5 and with respect to the Shapley-
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(1,0,0)

(0, 0, 1)

 (1/6, 2/3, 1/6)

   (1/3, 1/3, 1/3)

         (1/2, 0, 1/2) 

(2/3, 1/6, 1/6)

      (0,1,0)(1/2, 1/2, 0)

(0, 1/2, 1/2)

   (1/6, 1/6, 2/3)

Figure 3: Illustration of the nature of the inverse problem. Numbers are Shapley-Shubik indices
for all proper three-player weighted majority games.

Let wβ and wφ denote the weight vectors that are solutions to the inverse problems
“choose weights such that

(I) βj(w, q) ∝ √
nj, and

(II) φj(w, q) ∝ √
nj, for each constituency j”,

where β(·) and φ(·) refer to the Penrose-Banzhaf measure and the Shapley-Shubik index,
respectively. The comparison involves three different weight allocations: simple square
root weights, wβ, and wφ. A reference point to evaluate the capacity of these rules to
achieve equal representation is provided by the ‘best egalitarian weights’, as resulting from
an unconstrained search for the minimizer of the objective function (4). These, as well
as the inverse weights wβ and wφ, are obtained numerically by the Nelder-Mead simplex
method (see, for example, Avriel 1976, Ch. 9).14 The deviation from ideal probabilities
that is associated with the best unconstrained weights can be considered as inevitable.
Owing to the discrete nature of the set of possible power allocations, the discrepancy can,
in general, not be eliminated completely.

Shubik index for q ∈ (0, 1). Their conjecture that the Theorem holds ‘almost always’ under rather general
conditions is corroborated in a simulation study by Chang, Chua, and Machover (2006).

14The Nelder-Mead algorithm does not rely on numerical or analytic gradients, which makes it par-
ticularly suitable to non-linear optimization problems like the present. In each step of the search, the
probabilities πj ≡ Pr (j = P :m) of representative j being pivotal in the top-tier committee are approxi-
mated by their empirical average over 10 million iterations. A MATLAB computer program is used for
the computations. The source code is available upon request.

12



(a)

0.00E+00

5.00E-13

1.00E-12

1.50E-12

2.00E-12

2.50E-12

3.00E-12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

cum. ind. quad. dev.

simple weights PBZ inverse best unconstrained SSI inverse

(b)

0.00E+00

1.00E-10

2.00E-10

3.00E-10

4.00E-10

5.00E-10

6.00E-10

7.00E-10

8.00E-10

9.00E-10

1.00E-09

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

cum. ind. quad. dev.

Figure 4: Cumulative individual quadratic deviation under simple weights, wβ, wφ, and best
unconstrained weights. Panel (a): 15 configurations with uniformly distributed constituency
sizes; Panel (b): 15 configurations with Pareto distributed constituency sizes
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Figure 4 already suggests systematic differences in the performance of cumulative de-
viation (4) under the four sets of weights. The graphic impression is corroborated by a
comparison (including all 30 configurations) of cumulative individual quadratic deviations
for (1a) wβ, and (1b) wφ, versus simple square root weights, (2a) wβ, and (2b) wφ, versus
best unconstrained weights, and (3) wβ versus wφ, using the Wilcoxon signed rank test (see,
e. g., Hollander and Wolfe 1999, Ch. 3). In tests (1a) and (1b), the null hypothesis that
the median difference between pairs of observations is zero could be rejected at the 99%
significance level, indicating that both the inverse weights wβ and wφ perform significantly
better than simple square root weights.15 Similarly, the null hypothesis in tests (2a) and
(2b) was rejected at the 99% significance level, which suggests that both wβ and wφ are
none the less not the correct or first-best weights in the double median setting. In test (3),
the null hypothesis could not be rejected, that is, no significant difference between wβ and
wφ was detected.

In order to find out whether these differences fade away for larger numbers of con-
stituencies, an additional test including 12 configurations with 30 constituencies each is
conducted.16 For these, cumulative deviations (4) under weights wφ are first compared with
those under simple square root weights. The null hypothesis that the median difference
between pairs of observations is zero could not be rejected at the 95% significance level
(it can be rejected at the 90% level). Second, wφ is checked against the best power law
weights wj = nα∗

j with the result that no significant difference in deviations for these two
weight allocation rules could be established.

5 Supermajorities and Representation

In view of the important role that supermajority rules play in theory, and their widespread
use in real-world decision-making, it is worthwhile to investigate the ‘double pivot’ model
(Maaser and Napel 2007) with respect to the effect of using a quota q À 0.5 in the top-
tier assembly. Of course, even approximately equal representation is impossible under
unanimity rule (keeping the bottom-tier role of the median). For 0.5 ¿ q ¿ 1, optimal
assignments can be expected to give large constituencies greater weight than implied by
α = 0.5.

In contrast to simple majority rule, the voting game under supermajority rule is not
decisive. This means that possibly no policy x ∈ X exists which defeats all alternatives
x′ 6= x in a pairwise comparison. The probability that the outcome of collective decision-
making is merely a confirmation of the status quo is a measure of the institutional inertia
created by the decision threshold. The following analysis, however, concentrates on creative
power rather than representatives’ abilities to preserve the status quo.

15Generally, α = 0.5 is not exactly the best exponent among all power laws. Obviously, the best power
law weights wj = nα∗

j for a given configuration result in a lower deviation from egalitarian representation
than simple square root weights, but they turn out to perform still worse than wβ and wφ.

16The 12 configurations consist of 3 × 4 configurations with population sizes drawn from a uniform, a
normal, and a Pareto (κ = 1.0) distribution, respectively.
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To this end, the status-quo, Q, is fixed to a point equal to or left of the leftmost
representative’s ideal point, which implies that it will always be displaced in favor of some
policy to its right by a winning coalition. This assumes that committee members agree
about the direction of policy change. Suppose, for illustrative purposes, that X = [0, 1]
and Q = 0. Moreover, let a continuum of representatives have equal weights and their
policy positions be distributed uniformly on X. Then, for a given value of q ∈ (0.5, 1),
all policies x ∈ (0, 2(1 − q)) are preferred to the status quo by a majority of at least q.
However, any policy x < 1− q could still be improved upon by a share of representatives
greater than q. A continuous process of ‘displacement’ of the status quo in the top-tier
committee can be expected to come to a halt at x = 1−q. A further movement to the right
will be blocked by at least the representative whose ideal point is equal to 1− q, and who
is strictly necessary to form a winning coalition. For example, the policy outcome under a
quota of 0.75 would be the first quartile point of the distribution of representatives’ ideal
points. Under weighted voting, and for discrete representatives’ ideal points, the above
reasoning suggests that the policy adopted in the committee of representatives coincides
with the ideal point λP :m of representative P : m who is pivotal ‘from the right’. The
random variable P is defined by

P ≡ min
{

l ∈ {1, . . . ,m} :
l+1∑

k=1

wk:m > (1− q)
m∑

j=1

wj

}
.

In principle, it seems feasible, for ‘limit’ situations, to extend the analytical arguments
put forward in Section 3 concerning the probability of top-tier pivotality under simple
majority rule to the case of supermajorities. This being beyond the scope of the present
work, we resort to Monte-Carlo simulation to evaluate rules of the form wj = nα

j and
search for the optimal α given alternative values of the quota. Again, the extent to which
the considered rule falls short of the egalitarian norm (1) or (2) will be measured by
cumulative quadratic deviation at the individual level as given by (4). First, randomly
generated configurations will be investigated, then, we briefly look at the EU Council of
Ministers.

Randomly generated configurations

Under different assumptions about the distribution of constituency sizes, each of the Ta-
bles 1, 2, and 3 reports optimal values of α for four configurations with m = 30 constituen-
cies. As mentioned above the difference between simple and sophisticated rules becomes
insignificant for this number of players. We therefore concentrate on findings regarding
optimal rules of the type wj = nα

j . The values of α run from 0 to 1 in 0.01-intervals,
and probabilities πj were estimated by simulations with 10 mio. iterations. Values in
parentheses are the deviations (4) associated with the optimal α.

Three observations apply irrespectively of the distributional assumption. First, α∗ in-
creases in the quota. This is due to the fact that the median voter of large constituencies
is more central, which lowers the chances of the constituencies to be pivotal when a con-
siderable supermajoritarian rule is used. To compensate this effect, the weight of populous
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countries has to rise. Second, the deviation from ideal egalitarian probabilities generally
also increases. From q = 55% to q = 80%, the quality of representation deteriorates by up
to a factor of 1000. This decline indicates that any power law either gives not enough or
too much pivot probability to large constituencies. Third, while one might have expected
cumulative individual quadratic deviations to be lowest under simple majority, they reach
their minimum at a quota of 55% (among all quotas considered here).

Table 1 relates results for uniformly distributed constituency sizes n1, . . . , n30. Popu-
lations in configurations (I) and (II) come from a uniform distribution over [0, 108], and
those in (III) and (IV) come from a uniform distribution over [3 · 106, 107]. It will be
readily noticed that the deviations in columns (I) and (II) are smaller than deviations
in (III) and (IV) except for the highest quotas where no systematic difference is appar-
ent. Moreover, the optimal α exhibits greater stability from configuration (I) to (II) than
between (III) and (IV). As the variance of U(0, 108) is by a factor of 200 greater than
that of U(3 · 106, 107), the data suggest a positive relationship between the variance of
the population numbers and the accuracy of the equal representation rule. These findings
are corroborated by the data for normally distributed populations contained in Table 2,
where again the two left columns pertain to more variable population configurations than
the two right columns. The likely explanation for these patterns is that a great amount of
variance in population numbers translates ceteris paribus into a great variety of weights
in the power law allocation wj = nα

j . This implies, for a given quota, that more distinct
winning coalitions exist, enabling a closer match between achievable and ideal probability
vectors. It is worth noting that the variances of U(3 ·106, 107) and the normal distribution
N(107, 2×106) are roughly the same, but a comparison of columns (III) and (IV) in Table 1
with corresponding columns in Table 2 reveals that estimated probabilities are, in most
cases, closer to their ideal values with uniformly distributed constituency sizes. Thus, if
one considers configurations of the same distribution type, the more variable distribution
can be expected to allow more egalitarian representation, but across different types, vari-
ance is a less reliable indicator. Under a normal distribution, many constituencies are of
similar size, and the minor differences between them cannot easily be reflected adequately
by pivot probabilities. Then, the precise value of α∗ and the quality of representation then
may depend heavily on the particular constituency configuration at hand, as is the case
with configuration (III) in Table 2.

Table 3 shows results for population sizes drawn from a Pareto distribution P(κ, x).
The parameter κ > 0 determines the shape or skewness of the distribution, and x > 0 is
the minimum possible value.17 Here, only a single or very few large constituencies exist,
which are particularly disadvantaged by their central position when supermajority rules
apply. A high value of α would give them a power monopoly, but a moderate α gives them
insufficient pivot probabilities. This logic drives the rather low values of α under simple
majority rule as well as the comparatively high values for the most demanding quotas.

17It is not possible to compare the columns in Table 3 with respect to the variance of constituency sizes
because the variance of P(κ, x) is infinity for κ ≤ 2.
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Distribution of constituency sizes

q
(I) (II) (III) (IV)

U(0, 108) U(0, 108) U(3 · 106, 107) U(3 · 106, 107)
50% 0.49 0.49 0.46 0.42

(4.85× 10−15) (4.28× 10−15) (3.46× 10−14) (9.93× 10−13)
55% 0.50 0.50 0.52 0.54

(2.05× 10−15) (1.58× 10−15) (2.33× 10−14) (3.23× 10−14)
60% 0.52 0.52 0.50 0.46

(9.00× 10−15) (9.52× 10−15) (4.84× 10−14) (4.41× 10−13)
65% 0.56 0.56 0.58 0.60

(5.40× 10−14) (3.48× 10−14) (1.36× 10−13) (4.12× 10−14)
70% 0.62 0.62 0.62 0.58

(2.16× 10−13) (1.50× 10−13) (2.60× 10−13) (8.56× 10−14)
75% 0.70 0.70 0.70 0.72

(5.79× 10−13) (4.10× 10−13) (6.95× 10−13) (2.52× 10−13)
80% 0.80 0.80 0.82 0.82

(1.32× 10−12) (9.36× 10−13) (1.72× 10−12) (5.68× 10−13)

Table 1: Optimal value of α for constituency sizes from Uniform distributions U(a, b)
(cumulative individual quadratic deviations from ideal probabilities in parentheses)

Distribution of constituency sizes

q
(I) (II) (III) (IV)

N(107, 4× 106) N(107, 4× 106) N(107, 2× 106) N(107, 2× 106)
50% 0.50 0.50 0.40 0.50

(2.38× 10−14) (9.33× 10−14) (8.78× 10−12) (1.20× 10−11)
55% 0.50 0.50 0.64 0.65

(1.73× 10−14) (8.27× 10−14) (3.47× 10−14) (1.87× 10−13)
60% 0.52 0.52 0.50 0.50

(3.75× 10−14) (7.64× 10−14) (7.72× 10−12) (1.08× 10−11)
65% 0.55 0.55 0.68 0.72

(1.29× 10−13) (7.10× 10−14) (4.95× 10−14) (7.00× 10−14)
70% 0.60 0.62 0.50 0.56

(4.47× 10−13) (3.40× 10−13) (4.37× 10−12) (7.00× 10−12)
75% 0.68 0.70 0.80 0.84

(1.12× 10−12) (5.00× 10−13) (1.57× 10−13) (1.72× 10−13)
80% 0.80 0.80 0.66 0.72

(2.64× 10−12) (1.78× 10−12) (7.87× 10−13) (2.18× 10−12)

Table 2: Optimal value of α for constituency sizes from Normal distributions N(µ, σ)
(cumulative individual quadratic deviations from ideal probabilities in parentheses)

17



Distribution of constituency sizes

q
(I) (II) (III) (IV)

P(1.0, 500000) P(1.0, 500000) P(1.8, 500000) P(1.8, 500000)
50% 0.48 0.46 0.48 0.46

(1.96× 10−12) (7.46× 10−12) (3.37× 10−13) (1.86× 10−11)
55% 0.50 0.50 0.50 0.48

(2.59× 10−13) (2.44× 10−12) (4.34× 10−13) (2.55× 10−12)
60% 0.56 0.56 0.52 0.52

(1.44× 10−11) (2.94× 10−11) (3.99× 10−13) (4.59× 10−11)
65% 0.66 0.68 0.56 0.56

(1.22× 10−10) (2.56× 10−10) (1.95× 10−12) (2.67× 10−10)
70% 0.78 0.80 0.60 0.62

(5.22× 10−10) (9.72× 10−10) (1.50× 10−11) (5.73× 10−10)
75% 0.80 0.80 0.70 0.72

(1.62× 10−9) (2.74× 10−9) (7.69× 10−11) (7.71× 10−10)
80% 0.90 0.90 0.84 0.84

(2.99× 10−9) (4.31× 10−9) (2.30× 10−10) (8.53× 10−10)

Table 3: Optimal value of α for constituency sizes from Pareto distributions P(κ, x) (cu-
mulative individual quadratic deviations from ideal probabilities in parentheses)

EU Council of Ministers

The EU Council of Ministers decides the largest part of issues by qualified majority voting.
A proposal is adopted if, first, 255 out of 345 votes (73.9%) are cast in its favor. The number
of votes allocated to each member state roughly reflect the square root of population size.
Additionally, the majority weight supporting a proposal must represent a simple majority
of member states. Finally, any member state may ask for confirmation that the approving
votes represent at least 62% of the EU’s total population. The latter two requirements
are, however, insignificant as they are in the great majority of cases fulfilled whenever the
qualified majority is met (see Felsenthal and Machover 2001). With regard to EU decision-
making the assumption of a status quo fixed to the left of the leftmost representative’s
ideal point is particularly interesting, because often not the direction of new legislation,
but only the extent of change is subject to the process of legislative bargaining.

Figure 5 shows, for EU27 population data, the effect of a quota q > 0.5 on represen-
tation. The respective best value of α ∈ {0, 0.02, . . . , 0.98, 1} is represented by the solid
graph which is measured on the left vertical axis. The figure suggests that the optimal
α is approximately a quadratic function of q. The right vertical axis measures the corre-
sponding cumulative individual quadratic deviation. As it has its zero point in the upper
right corner, the dashed graph can be interpreted as indicating the closeness between ideal
egalitarian probabilities and the (estimated) pivot probabilities under the optimal α-rule.
The drop in closeness (or rise in deviation) means that representation becomes increasingly
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Figure 5: Effect of quota variation for EU27

unequal as the quota is increased. The following numbers may help to get an idea of the
deterioration of fit: The ideal probabilities of Malta and Germany are 0.08% and 16.62%,
respectively. Already for q = 0.7, however, their (estimated) pivot probabilities under the
best weight assignment rule wj = n 0.62

j are 0.06% and 15.45%, which is 25% and 7% short
of the ideal values.

6 Heterogeneity across constituencies

In contrast to the model considered so far, with i. i. d. ideal points of all individual voters,
we now explore the idea that voters within a country are somewhat similar. The atti-
tudes of citizens from one constituency could be systematically connected as the result of
a voting with one’s feet or sorting process à la Tiebout (1956). In Alesina and Spolaore
(2003), preference homogeneity within a country is assumed to develop over time due to
geographical proximity and national policies fostering cultural uniformity. The fact that
citizens of one country usually share historical experience, traditions, language, commu-
nication etc. can be expected to induce some kind of common set of values or ‘common
belief’ in them.18 The existence of diverse ‘common belief’ systems is just the reason why

18A ‘common belief’ is also represented by Straffin’s (1977) homogeneity assumption under which the
probability of a voter ‘affecting the outcome’ coincides with the Shapley-Shubik index (Shapley and Shubik
1954).
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Figure 6: Increasing degree of information usage in the assessment of decision-making situations

countries differ in their population sizes and why they can hardly be redistricted so as to
produce equal-size constituencies. Under the premise of Penrose’s square root rule that the
preferences of the individuals within one country are unconnected, there is no justification
apart from the tough practical realization not to regroup citizens into purely administrative
districts with equal numbers of voters. When all voters are i. i. d., what is the rationale
for a committee of representatives instead of a single president-like decision-maker? We
therefore argue that the mere assumption that there does exist some relationship between
voter preferences within states, or more precisely, that preferences within a constituency
exhibit a higher degree of correlation than across constituencies, is still behind the veil of
ignorance and thus relevant in constitutional design. In Figure 6, which illustrates differ-
ent degrees of using information in the assessment of voting situations, this assumption
is referred to as ‘a priori II’. The analysis based on the ‘a priori II’ assumption is to be
distinguished from studies that model, particularly with regard to the EU, similarities or
dissimilarities between countries based on economic or social dimensions (Widgrén 1995),
size or geographical position (Beisbart and Hartmann 2006), and that possibly contribute
to understand actual or a posteriori power.

We now generalize our earlier model by introducing constituency-specific distributions
of individual ideal points. Given a policy issue, the ideal points λj

i of voters in constituency
Cj come from an arbitrary identical distribution Fj with density fj and distribution median
λ̃j.

19 It is assumed that, rather than being identical, the λ̃j are random variables with
distribution Hj = H for all j = 1, . . . , m. The expected value of λ̃j is assumed to be zero,
and the standard deviation is given by σH > 0, reflecting the degree of heterogeneity across
constituencies. Let h denote the density function of H. Maaser and Napel (2007) dealt with
the special case without heterogeneity across constituencies, i.e.,, σH = 0. Generally, the
distribution Fj is specific to constituency Cj, thus expressing the ‘common belief’ of that
constituency. The ideal points of voters from different constituencies are then independent.
In expectation, voter ideal points still have the same distribution, but group membership
now makes a difference.

As we noted before, in the case of i. i. d. voters’ ideal points the representative of a

19If the distributions of individual ideal points are symmetric, λ̃j could also refer to the mean of the
distribution fj .
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larger constituency is on average more central in the electoral college, and given simple
majority rule, more likely to be pivotal in it for a given weight allocation. In the light of
the standard deviation of the population median λj as given by (3), it is plausible that
slight differences in the countries’ ideal point distributions suffice to make representatives’
ideal points virtually identically distributed. The extent of the necessary perturbation
depends on the population sizes involved. For example, according to (3), the largest
standard deviation of the median ideal point in the EU27 (belonging to Malta as the
smallest member state) is σmax = 7.8 × 10−4. Any amount of heterogeneity greater than
that, say σH = 0.001, thus practically removes the greater centrality else implied by a
larger population.

Let us make this intuition more precise. Given the distribution Fj of individual voters
in constituency Cj, the representative’s (or median voter) ideal point λj is asymptotically
normally distributed with mean µj = F−1

j (0.5) = λ̃j, and standard deviation given by (3).

For a specific realization of λ̃j, let fλj
be the density of λj. This density is a shifted version

of f 0
λj

, defined by f 0
λj

(x) := fλj
(x | λ̃j ≡ 0). In particular, it holds that fλj

(x+4̄) = f 0
λj

(x),

where 4̄ is a realization of a random variable 4 with distribution H. Then, the density
f̃λj

of representative j’s ideal point λj under heterogeneity is given by

f̃λj
(x) =

∫ +∞

−∞
fλj

(x +4)h(4)d4. (14)

Consider first the case that h(4) is a uniform density on the interval [−a, +a], a > 0.
Then, (14) becomes

f̃λj
(x) =

1

2a

∫ +a

−a

fλj
(x +4)d4,

so

f̃λj
(x) =

1

2a

[
Fλj

(x + a)− Fλj
(x− a)

]
.

As the standard deviation of Fλj
is small for a constituency Cj with ‘large’ population, we

have Fλj
(x + a) ≈ 1 and Fλj

(x − a) ≈ 0 if a À 0, and therefore f̃λj
(x) ≈ 1/(2a) in the

‘center’ of the interval [−a, +a], irrespective of which constituency Cj one considers. For x
‘close’ to the boundaries, f̃λj

(x) depends on the constituency-specific Fλj
, and thus differs

across constituencies. Figure 7 illustrates the above reasoning.
If, in equation (14), h(4) is a normal distribution with zero mean and standard devi-

ation σH , then one gets

f̃λj (x) =
∫ +∞

−∞

1√
2π

1
σj

exp

(
−1

2
(x +4)2

σ2
j

)
1√
2π

1
σH

exp
(
−1

2
42

σ2
H

)
d4

=
1√
2π

1√
σ2

j + σ2
H

exp

(
−1

2
x2

σ2
j + σ2

H

) ∫ +∞

−∞

1√
2π

√
σ2

j + σ2
H

σjσH
exp


−1

2

(4+ xσ2
H

σ2
j +σ2

H
)2

σ2
j σ2

H
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H


 d4

=
1√
2π

1√
σ2
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H
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)
.
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Figure 7: Densities f̃λj (x) of λj , j = A,B. The underlying fλj are normal distributions with
standard deviations σA = 0.08 (blue graph) and σB = 0.12 (red dashed graph). The heterogeneity
function h(x) is a uniform density over [−1, +1].

This establishes that ideal point λj of the representative from constituency Cj is normally
distributed with mean zero and standard deviation (σ2

j + σ2
H)1/2. For two constituencies

Cj and Ck with large but different populations sizes, it holds that

λj ∼ N(0,
√

σ2
j + σ2

H) ≈ N(0,
√

σ2
k + σ2

H) ∼ λk

under the condition that σj and σk are small compared to σH .
Figure 5 shows, for two constituencies A and B of different size, sample median distri-

butions for seven realizations of λ̃j (j = A, B), respectively. Due to A’s larger population
size, the fλA

are much more concentrated around the realizations of λ̃A than is the case for
the fλB

. Ex ante, however, considering the random variables λ̃j rather than realizations of
them, the density functions f̃λA

and f̃λB
practically coincide.

Generally, note that expression (14) is the distribution of the difference Y1−Y2 between
two random variables Y1, Y2 with Y1 ∼ H and Y2 ∼ Fλj

. If the variance of Y2 is small
compared to that of Y1 (as is the case if Fλj

is the distribution of the median of a large
population), then the random variables Y2 are almost constant. Hence, the variance of
Y1 − Y2 is practically determined by the variance of Y1.

The above arguments demonstrate that representatives’ ideal points are virtually i. i. d.
under the assumption of some heterogeneity between constituencies. Moreover, all m!
orderings of representatives are equiprobable. The chances πj of any representative j to be
the pivot at the top tier are then captured by the Shapley-Shubik index φj(w, q). Hence a
simple rule ensuring equal representation emerges:

Shapley-Shubik linear rule (Sh-LR): With any amount of heterogeneity σH À maxj{σj}
and for given decision quota q, the egalitarian weights satisfying (2) are defined implicitly
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Figure 8: Density functions of median voter positions in large constituency (solid blue curves)
and small constituency (dashed red curves) for varying median/mean voter positions. Uncertainty
about the median/mean voter position results into flattened ex ante median densities.

as solutions to the inverse problem

φj(w, q) = c · nj j = 1, . . . , m, c > 0. (15)

The finding that in the presence of heterogeneity weights should be chosen such that the
Shapley-Shubik index is proportional to population size for each constituency is illustrated
by Figure 9 for the EU Council of Ministers. Note that the proportional Shapley-Shubik
rule holds for any quota used at the top tier, but the remarks concerning the inverse
problem under high quotas still apply: Implementing the above rule requires a solution
to the inverse problem of finding weights that yield the desired values. In general, only
approximative solutions to this problem exist because the number of distinct voting games
on the set of players M is finite, whereas the number of combinations of desired values is
infinite. This technical problem is perceivable in Figure 9: when a 50%-majority rule is
used, the Shapley-Shubik indices associated with best unconstrained weights are located
nicely on the 45◦-line, but under the 73.9%-quota they rather meander around that line.

In line with the above discussion, Figure 10 demonstrates that the transition from
square root rule to a near-linear rule takes place very quickly. The square root rule survives
σH = 0.00001, but already for σH = 0.00005 we get α∗ = 0.58. Given the small variation
in the setting – in Maaser and Napel (2007) mean ideal points came from the degenerate
normal distribution N(µU = 0, σH = 0) – the result differs strikingly from our previous
finding α∗ ≈ 0.5. The square root rule vanishes already for small degrees of heterogeneity.
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Figure 9: Shapley-Shubik linear rule: Shapley-Shubik indices for best unconstrained weights in
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Figure 11 plots the objective criterion (4) versus α.20 The mean ideal points µj of the
27 countries are drawn from the normal distribution N(µU = 0, σU = 0.001) and voters’
ideal points in constituency j are uniformly distributed on [µj−0.5, µj +0.5]. Amongst all
coefficients in {0, 0.01, . . . , 1} α = 0.94 performs best, the cumulative individual quadratic
deviation is 7.02× 10−13.

A second form of interim heterogeneity occurs if constituencies differ in their degree of
“preference cohesion”. In particular, it is conceivable that the strength of the ‘common
belief’ decreases in the size of the society.21 The variance σ2

j of the ideal point distribution
Fj (j = 1, . . . ,m) in constituency Cj can then be written as

σ2
j = g(nj)

where g(·) is a monotonically increasing function.
Consider the simple case of proportionality, i.e., g = a · nj where a > 0 is a constant,

and assume that, in each constituency j, voters’ ideal points are uniformly distributed on
the interval [x1j, x2j] with common mean µj = µ for all for j = 1, . . . ,m. The density in

20Simulation input is Eurostat population numbers for EU27 countries as of 01/01/2007.
21The assumption that preferences are more heterogeneous in large populations is also made in Alesina

and Spolaore (2003), and the trade-off between the costs of differences and the economies of scope in large
jurisdictions determines nation size.
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constituency j is

fj(x) =





1
x2j−x1j

x1j ≤ x ≤ x2j

0 elsewhere,

and the variance of the uniform distribution on [x1j, x2j] is σ2
j = (x2j − x1j)

2/12. Then,
the length of the interval [x1j, x2j] for constituency j with population nj is proportional
to
√

nj. As the density fj(x) appears in (3), the standard deviation of the median ideal
point is equalized for all constituencies and for all values of a. When the variance of
voters’ uniformly distributed ideal points increases proportionately in population size, the
representatives’ ideal points are i. i. d. For the reasons stated before, we arrive again at the
recommendation to allocate weights such that each representative’s Shapley-Shubik power
is proportional to his constituency size.

Though the assumption that preferences are more widely spread in large constituencies
could seem plausible at first glance, it is less convincing if one thinks about the policy
space X as the carrier of individual preferences. Rather, preferences in a small society can
be as varied as in a large society. Therefore the assumption that ‘preference heterogeneity’
is independent on population size, i.e., the variances σ2

j of the λj
i are taken to be identical

for all constituencies.
It is interesting to note that the Sh-LR coincides with the ‘neutral’ voting rule that

Laruelle and Valenciano (2008) obtain in the context of a bargaining committee. A bar-
gaining committee consists of a voting rule W specifying the winning coalitions, and a
m-person Nash bargaining problem B = (U, d), where U ⊆ Rm is the set of feasible payoff
vectors and d is the vector of status quo or disagreement payoffs. Unlike classical bargain-
ing which is thought of as a unanimous decision process, an agreement in a bargaining
committee only needs the support of a winning coalition to be implemented. Under the
condition that the Shapley-Shubik index φ is accepted as a valid measure of bargaining
power, Laruelle and Valenciano (2007) axiomatically derive a solution F (B,W) to the
bargaining committee problem (B,W):

F (B,W) = Nashφ(W)(B) = arg max
u∈U,
u≥d

m∏
j=1

(uj − dj)
φj(W), (16)

that is, an asymmetric Nash solution with weights given by the Shapley-Shubik indices
of the committee members under the voting rule. Solution (16) can be regarded as a
reasonable expectation of the utility levels when a general agreement is achieved in the
bargaining committee.

A voting rule is called ‘neutral’ if every citizen in every constituency Cj is indifferent
between bargaining for himself with all other citizens in the union or leaving the bargaining
to a representative who bargains on behalf of Cj in the bargaining committee. As shown
by Laruelle and Valenciano (2008), a rule with this property exists if citizens’ preferences
are C-symmetric. This property requires that all citizens in constituency Cj have a com-
mon status quo payoff dj, and that the set of payoff vectors which are attainable for them
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Figure 12: Absolute deviations of estimated from ideal probabilities for EU27 (σU = 0.001,
q = 0.5)

must be symmetric for any fixed distribution of payoffs among non-members of Cj. Under
C-symmetry, citizens within the same constituency have the same bargaining characteris-
tics. This makes it possible to condense the bargaining problem that would be faced by
the ‘committee of the whole’, i.e., by all citizens bargaining directly, into the m-person
bargaining problem B = (U, d). Let udNB

i denote the payoff to citizen i under direct (and
unweighted) Nash bargaining. Now suppose that i is a member of constituency Cj. It is
quite obvious that i would get a payoff equal to udNB

i if, for all j, the weight of representa-
tive j in an asymmetric Nash bargaining solution is proportional to the number of citizens
in Cj. In view of (16), this implies that a voting rule W is neutral if the Shapley-Shubik
index of representative j under W is proportional to his constituency’s population number
nj.

Neutrality of the voting rule can be interpreted in terms of equivalence between direct
and indirect democracy. In the double median model, it requires that the outcome of the
two-tiered decision-making process should equal the outcome of bargaining with assembly
N , which corresponds to the median ideal point of all citizens. Generally, these two
outcomes differ, but finding a weight allocation rule that is ‘most neutral’ in the sense of
minimizing the discrepancy seems a worthwhile topic for future research.
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7 Concluding remarks

Square root rules have been found to lack robustness in other contexts before. Yet, the
literature so far has considered only the binary voting model and other forms of correla-
tion among voters’ preferences. For example, considering a binary voting model, Kirsch
(2007) finds that square root weights minimize the difference between the margin of rep-
resentatives accepting or rejecting a proposal and the size of the popular margin.22 Yet,
if each constituency exhibits a ‘collective bias’ (similar to Straffin’s (1977) homogeneity
assumption) whose strength is independent of constituency size, the optimal weights with
respect to the above minimization problem are proportional to population numbers rather
than to the square roots of the latter. Investigating the ideals of maximizing and equaliz-
ing expected utility, respectively, Beisbart and Bovens (2005) come to basically the same
conclusion: with i. i.d. voters and simple majority rule, both ideals are met by simple
square root weights. But if correlations of individual utilities within each constituency
are introduced such that an individual is correlated with more others the larger the con-
stituency is, then the square root rule quickly makes way for a proportional rule if the aim
is maximizing expected utility, and to an equal weight allocation is the aim is equalizing
expected utilities.

Proportional rules have been derived in various models, yet so far, they have not been
shown to produce equal representation as it is understood here. Barberà and Jackson
(2006) show in their ‘fixed-number-of-blocks model’ that, if each constituency consists of
a given number of blocks of identical voters, setting weights proportional to population
sizes maximizes expected utility irrespective of the voting threshold. Whereas all above
findings pertain to binary decision-making, Laruelle and Valenciano (2008) study a com-
mittee whose members bargain over a convex space of alternatives. They demonstrate
that a voting rule ensures ‘neutral representation’ in the sense that all individual citizens
are indifferent between bargaining themselves or putting bargaining in the hands of a rep-
resentative if each representative is provided with bargaining power proportional to his
constituency’s population size.
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