
CRITICALITY IN GAMES WITH MULTIPLE LEVELS
OF APPROVAL

SREEJITH DAS

Abstract. In this paper criticality within a voting game is rig-
orously defined and examined. Criticality forms the basis of the
traditional voting power measures frequently employed to analyse
voting games; therefore understanding criticality is a pre-requisite
to understanding any such analysis. The concept of criticality is
extended to encompass games in which players are allowed to ex-
press multiple levels of approval. This seemingly innocuous exten-
sion raises some important questions, forcing us to re-evaluate ex-
actly what it means to be critical. These issues have been largely
side-stepped by the main body of research as they focus almost
exclusively on “yes/no” voting games, the so called single level
approval voting games. The generalisation to multilevel approval
voting games is much more than just a theoretical extension, as
any single level approval game in which a player can abstain is in
effect a multilevel approval voting game.

1. Introduction

Weighted voting games have been studied widely in the literature
with real world situations such as the EU Council of Ministers (Leech,
2002a, 2003b; Felsenthal and Machover, 1998, 2000, 2001), the US presi-
dential electoral college (Banzhaf, 1965, 1968; Mann and Shapley, 1960;
Gelman et al., 2003a,b; Saari, 2001), and shareholder voting (Leech,
2003a,c). Perhaps the most common analysis carried out is to mea-
sure the influence of individual players on the outcome of the game.
To accomplish this a number of ‘bespoke’ influence or power metrics
have been proposed and adopted. The most widely accepted voting
power metrics rely on the concept of ‘criticality’ of a player within a
coalition. Almost without exception, the work carried out in this area
has concentrated on single level approval voting games, games in which
players are only allowed to vote ‘yes’ or ‘no’. This paper explores the
concept of criticality when players are allowed to express multiple levels
of approval.

Multiple approval levels are more than just a theoretical extension.
In almost every real life voting game there is the potential for a player
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to abstain, either deliberately, in an ‘attempt’ to express indifference1,
or passively, by simply not bothering to vote. As demonstrated in Das
(2008), games with abstentions can be modelled as games with multiple
levels of approval. A proposition also supported by the work of Freixas
and Zwicker (2003). Ergo, this work is relevant to anyone that analyses
real life voting games, as opposed to the purely theoretical ones in which
every player casts a vote.

This paper is intentionally mathematically light, avoiding topics such
as measure theory, in order to keep the target audience as wide as pos-
sible. As such, a more diagrammatic approach is taken, concentrating
on the key ideas and concepts that form the basis for this kind of
analysis. Accordingly, this paper will refer to the ‘counting’ of events
instead of the technically correct measuring of events, thereby avoiding
any unnecessary distractions from the key principles being discussed.

2. Power Measures - Probability Assumptions

It has been argued in Felsenthal and Machover (1998); Linder (2008);
Paterson (2005) and Straffin (1977, 1978) that the common voting
power measures based on the concept of criticality can be modelled
as follows:

Power Measure = f(g(criticality), h(PDF )),

where g(criticality) is a function of criticality and h(PDF ) is a func-
tion of the probability density function of the underlying coalitions.

For instance, in a game where N represents the set of players, it
is often suggested that power measures can be calculated as follows.
Identify a coalition C that is critical for a player i ∈ N . For all

such C, to calculate the Banzhaf measure add
1

2|N |−1
to the run-

ning count for player i. Or to calculate the Shapley-Shubik index

add
(|C| − 1)!(|N | − |C|)!

|N |! instead. In both cases, the g(criticality)

function is the operation that identifies the critical coalition and the

h(PDF ) function is
1

2|N |−1
or

(|C| − 1)!(|N | − |C|)!
|N |! .

Using this representation the g(criticality) function is independent
of the h(PDF ) function. And furthermore, the same g(criticality)
function is applied to find critical coalitions in both the Banzhaf mea-
sure and the Shapley-Shubik index.

Despite initial appearances the g(criticality) function is non-trivial.
In fact, understanding it is of greater importance than understanding
the h(PDF ) function. After all, without a rigorous understanding of
criticality is it possible to truly understand any voting power measure?

1Abstaining almost never expresses indifference, see Das (2008) for details.
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2.1. Special Note. This paper focuses on the nature of criticality and
measuring the critical coalitions. During the discussions reference will
be made to certain conditions imposed on the probability density func-
tion. For example, criticality might be measured over all coalitions in
which player i votes no. It is important to note that this can considered
independently of the actual choice of probability density function. Just
to reiterate this point, all the work in this paper, and any conditions
imposed upon the probability density function, is independent of the
actual choice of probability density function.

3. Criticality

The traditional voting power measures depend on the concept of
criticality in a coalition. The idea is simple, if a player i can change
the outcome of a coalition, either by leaving a winning coalition or by
joining a losing coalition, then player i is said to be critical. A player
i that is critical more often must have more influence, or power, within
the weighted voting game than a player that is critical less often. A
simple, logical and intuitively satisfying idea, but, as with most things
in life, the devil is in the detail.

3.1. Criticality Diagrams. Criticality diagrams are a tool that
aid in the visualisation of criticality. In a criticality diagram, there is a
source coalition that undergoes a transition, or set operation, involv-
ing player i to become the sink coalition. Importantly, the transition
changes the state of the coalition from losing to winning or vice versa.
A few examples will help illustrate these ideas.

In the following the electorate is represented by the set N . The
set of all possible coalitions is given by the powerset PN of N , where
|PN | = 2|N |. However, for future convenience, PN will be denoted as
ΩN instead.

Let’s start by taking a source coalition ωN\{i} ∈ ΩN\{i} that is losing,
and a sink coalition ωN\{i} ∪ {i} that is winning.

Source
(Losing)

Sink
(Winning)

ω -
∪{i}

ω ∪ {i}
Given that the source coalition is losing and the sink coalition is

winning, the operation of adding player i has made the coalition change
result, therefore i is critical in this situation. But which coalition is i
critical in, ω or ω∪{i}? Since coalition ω undergoes the transformation
operation (∪{i}) to change its state, it is appropriate to say i is critical
to ω. Furthermore, as player i has increased its support (by joining the
coalition), i is said to be Increasingly Critical to coalition ω. The
set of all increasingly critical coalitions for player i is denoted by ICi.
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Adopting this convention requires the creation of a second criticality
diagram, showing the transformation operation acting in the reverse
direction.

Source
(Winning)

Sink
(Losing)

ω ∪ {i} -
\{i}

ω
In this situation the source coalition is winning and the sink coalition

is losing. The operation of removing player i has made the coalition
change result, therefore i is critical here too. As per the adopted con-
vention, i is critical to coalition ω ∪ {i}, because this is the coalition
that undergoes the transformation operation (\{i}) to change its state.
Furthermore, as player i has decreased its support (by leaving the coali-
tion), i is said to be Decreasingly Critical to coalition ω ∪ {i}. The
set of all decreasingly critical coalitions for player i is denoted by DCi.

The combined set, ICi ∪DCi, is called the Total Critical set and
is represented by TCi. Clearly the sets ICi and DCi are mutually
exclusive, as an event can not be simultaneously winning and losing.

In general, a player i is critical to the source coalition(s), as these
are the coalitions in which the player i can effect change. Think of the
source coalitions as being the arena of action or zone of influence2

in which player i can make a change to the outcome.

3.2. Single Level Symmetry. Single level approval criticality dia-
grams always occur in matched pairs. For every increasingly critical
diagram a decreasingly critical diagram can be constructed by invert-
ing the transition, and vice versa. This creates a bijection between the
sets ICi and DCi. This symmetry, in the single level approval game,
masks the material differences between the many different notions of
criticality to be discussed in this paper. Only when multilevel approval
is examined in Section 6 will this symmetry be broken, and the need
for the different notions of criticality will become clear.

4. Conditional and Unconditional Measures

In the following the event (xi = {imax}), or simply {imax}, indicates
player i has voted in favour and the event (xi = {imin}), or simply
{imin}, indicates that player i has voted against. Pr(X) is taken to
represent the probability of event X occurring.

Counting the elements of the set ICi creates a measure of the number
of losing coalitions, that do not include player i, that can be made
winning when i decides to join them. As eluded to in Section 2, during
the counting process it is possible to multiply by the probability of

2Thanks to Dr Bowler for coining this phrase.
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such a coalition occurring, turning the simple count into a probability
measure.

But what does the probability of such a coalition occurring actu-
ally mean? For example, with increasing criticality, player i cannot be
part of the source coalition; so should the probability be the conditional
probability of the source occurring given that player i is not a part of it?
Or should it simply be the unconditional probability of the source oc-
curring? In other words, should it be Pr(ICi|(xi = {imin})) or Pr(ICi)?
What about decreasing criticality, should it be Pr(DCi|(xi 6= {imin}))
or Pr(DCi)? Or maybe Pr(TCi) is best? Rather than speculate, let’s
examine the original voting power papers to see what their authors
originally envisaged.

4.1. Penrose. Penrose (1946) defines his power measure as “half the
likelihood of a situation in which an individual vote can be decisive.”
An individual voter can be decisive by joining a losing coalition to
make it winning, or by leaving a winning coalition to make it losing.
Therefore half the likelihood of a voter being decisive is given by,

Penrosei =
Pr(ICi|{imin}) + Pr(DCi|{imax})

2
.

The symmetry between the set ICi and DCi means the following is
also true,

Penrosei = Pr(ICi|{imin}) = Pr(DCi|{imax}).
In fact, because Pr({imin}) = Pr({imax}) = 1

2
, with the probability

density function used by Penrose, the following is also true,

Penrosei = Pr(TCi).

4.2. Banzhaf. Banzhaf (1965) doesn’t provide an explicit definition
of his power measure, instead it is inferred from the examples in his
paper. It seems that Banzhaf constructs his measure as:

Banzhafi =
|ICi|+ |DCi|

2n
.

This is of course Pr(TCi), when Pr({imin}) = Pr({imax}) = 1
2

for all
i. (Both Penrose and Banzhaf assume this to be the case).

4.3. Shapley Shubik. Shapley and Shubik (1954) state that their def-
inition of voting power is based upon “the chance he has of being critical
to the success of a winning coalition.” They go on to mention an al-
ternative index of “blocking power” which is constructed as a negative
version of their original index. Before finally stating that the “blocking
power” index is “is exactly equal to the index of our original definition.”

From their description we interpret the Shapley-Shubik index to be
the following:
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ShapleyShubiki = Pr(ICi|{imin}) = Pr(DCi|{imax}).
4.4. Straffin. Straffin (1977) constructs a voting power measure iden-
tical to the Shapley-Shubik index, based on what he terms the “ho-
mogeneity” assumption, as Pr(TCi). He also constructs a Penrose-
Banzhaf type measure under the “independence” assumption, and once
again it is clearly constructed as Pr(TCi).

4.5. Summary. There are different criticality sets and different prob-
ability assumptions that can be used when creating a voting power
measure. Different notions of criticality can give rise to the same vot-
ing power measures because of the symmetry that exists in the single
level approval game. So, if everything is the same, why does it matter
what is being measured? Well, it transpires that as soon as you allow
more than one level of positive approval to be expressed, i.e. any game
with abstentions, things are no longer as straight forward.

Before going on to examine multilevel criticality in greater detail,
the next section presents a few key definitions.

5. Definitions

In keeping with the concept of a mathematically light paper, a num-
ber of key definitions are given in this section using mathematically
light syntax. The mathematically rigorous versions of these defini-
tions, along with a number of other useful definitions, can be found in
Appendix A.

A generalised single choice weighted voting game (GSCWVG)
is a weighted voting game in which there are only two possible outcomes
(think of them as ‘winning’ and ‘losing’). The game is made up of a
set of N players. The approval level of a player i, denoted αi, is the
fraction of its weight that it chooses to support the decision at hand
with. If, after adding up all the support of the players, a predefined
quota q of the game is achieved the outcome is considered winning and
the decision is approved. Otherwise the outcome is considered losing
and the decision is rejected.

It may be possible for a player to express the same approval level
in more than one way, for example, in some games, a player might
express αi = 0 by voting ‘no’ or by abstaining. In order to cater for
this eventuality, rather than consider the approval level directly, we will
often consider that a player expresses a voting action xi ∈ Xi, where
each xi is unique, but different xi can map onto the same αi.

A discrete multilevel approval weighted voting game (DSCWVG)
is a generalised single choice weighted voting game in which the ap-
proval levels available to the players are drawn from a finite set. For
example, a weighted voting game which allows the players to vote ‘yes’,
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‘no’‘ or ‘abstain’ can be considered as a discrete multilevel approval
weighted voting game.

6. Multilevel Approval Criticality Diagrams

Despite having a name like multilevel approval criticality diagrams,
which immediately conjure up an association with the ability to weight
the game, they can, in fact, be used to analyse any type of generalised
voting game, weighted or otherwise.

To help illustrate multilevel approval criticality diagrams we take an
example GSCWV G with three levels of approval, each player votes
with an approval level αi ∈ {0, a, 1}. The actual numerical value of a
is unimportant for this analysis.

In the following an ωN\{i} ∈ ΩN\{i} can be thought of as the mul-
tilevel equivalent of a coalition that excludes player i. In the single
level case, notation such as ω∪{i} was employed to represent a sink or
source coalition. In the multilevel case, it is more appropriate to use
the notation ω × xi, where xi ∈ Xi, the set of possible voting actions
player i can take.

Source
(Losing)

Sink
(Winning)

ω × {xi : αi = 0}

¨ -αi : 0 → a
ω × {xi : αi = a}

§ -
αi : 0 → 1 ω × {xi : αi = 1}

The previous diagram starts out with player i expressing an approval
level αi = 0 in the losing source event. This is transformed into two
winning sink events when player i expresses an αi 6= 0. This results in
one losing event mapping onto two winning events.

Let’s take a different ωN\{i} ∈ ΩN\{i} that gives rise to the following
diagram, mapping two losing events onto one winning event.

Source
(Winning)

Sink
(Losing)

¨ -αi : 1 → 0
ω′ × {xi : αi = 0}

ω′ × {xi : αi = 1}

§ -
αi : 1 → a ω′ × {xi : αi = a}

Within single level approval, critical coalitions occurred in matched
pairs, but with the addition of extra approval levels this is no longer
true. This raises questions about which events should be ‘counted’ to
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create the power measure. But before those questions can be addressed,
the very concept of criticality requires further attention.

7. Criticality Assumptions

In single level approval, criticality is taken to be the ability to change
the outcome of an election by changing a player’s vote from no to yes,
or vice versa. With multilevel approval, when a player i votes with
xi = {imin} they are saying no and when they vote with xi = {imax}
they are saying yes, but what about the levels in between? Just when
exactly does it change from being a no vote to a yes vote? The answer
to this question will depend upon the nature of the voting game, and
will be represented by one of the following criticality assumptions.

(In the following discussions, instead of the more general voting con-
cepts of xi = {imin}, the easier to understand concepts of αi = 0 are
used. Also reference is made to the outcome O of a game, which for ease
of understanding can be considered as the outcome being winning).

7.1. Criticality 0 - (No Means No). In this assumption αi = 0 is
a vote no and αi 6= 0 is a vote yes, with varying degrees of strength.
There are sound reasons for believing this is a plausible assumption
to make, especially whenever there is some element of cost involved in
expressing approval. For example, most decision making bodies usually
vote upon changing the status quo. As such, there is an element of
personal risk involved in supporting the change. Should the change be
implemented, and turn out to be less favourable, everyone who voted in
favour, regardless of their approval level, will be held to account. The
only ones to escape recrimination are those that voted with an approval
level αi = 0. In other words, only the players that vote in favour of
change take a risk. From this standpoint, the single level approval
concept of criticality is extended from the change in vote αi = 0 to
αi = 1, to the multilevel equivalent of αi = 0 to αi 6= 0 (and vice
versa).

Definition 7.1. Criticality 0 - In a criticality 0 voting power measure
one of the two events that define player i as being critical must have
player i voting with its lowest possible approval. The set of criticality 0
increasing critical events for player i, with respect to an outcome O, is
denoted by O IC0

i , and the set of criticality 0 decreasing critical events
for player i, with respect to an outcome O, is denoted by O DC0

i .

7.2. Criticality δ - (I Just Don’t No). There is, of course, another
way to look at things. For instance, pick an arbitrary point in the
approval range and decide that anything less than this is a vote no,
and anything greater is a vote yes. This raises questions about how
you pick the point, what it means if you express an approval level
neither above nor below the point and so on. All these questions are
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avoided by carefully choosing the definition of criticality under this
assumption. Instead of looking at what happens to the outcome of
the decision when a voter changes from voting no to yes, simply look
at what happens when a voter either increases their approval level or
decreases it.

Definition 7.2. Criticality δ - In a criticality δ voting power mea-
sure there is no restriction on either of the events that define player i
as being critical. The set of criticality δ increasing critical events for
player i, with respect to an outcome O, is denoted by O ICδ

i , and the
set of criticality δ decreasing critical events for player i, with respect to
an event O is denoted by O DCδ

i .

7.3. Criticality 1 - (Yes Doesn’t Mean No). This is the mirror
image of Criticality 0. In this assumption αi = 1 is a vote yes and
everything else is a vote no. This assumption is presented here for
completeness only and no power measures will be based upon it for two
reasons. Firstly, no sound realistic reason can be thought of for this
assumption to hold, as it would mean that the norm of the election
body is to vote for change. Secondly, as this is the mirror image of
Criticality 0, any Criticality 1 analysis can be carried out as Criticality
0. For example, a Criticality 1 analysis of the vote on “Should the
airport be expanded?” is equivalent to a Criticality 0 analysis of the
vote on “Should the airport not be expanded?”

8. Worked Example

In this section an example using multilevel criticality diagrams is
given to emphasise the different notions of criticality.

A player i in the game can express one of 10 possible approval levels.
As in our previous examples ωN\{i} ∈ ΩN\{i} denotes the multilevel
equivalent of a coalition that excludes player i.

The table below lists the different variations of ω×{xi}, in which αi

takes all of the 10 possible values. The table is arranged to show the
events that are losing and those that are winning for this particular
choice of ω.

Losing Winning
ω × {xi : αi = 0} ω × {xi : αi = a6}
ω × {xi : αi = a1} ω × {xi : αi = a7}
ω × {xi : αi = a2} ω × {xi : αi = a8}
ω × {xi : αi = a3} ω × {xi : αi = 1}
ω × {xi : αi = a4}
ω × {xi : αi = a5}

We now construct the criticality diagrams for this particular occur-
rence of ω. In order to fully identify any of the criticality sets, and
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therefore create a voting power measure, we need to examine the dia-
grams for all possible ωN\{i} ∈ ΩN\{i} and not just a single ωN\{i} as
we do here.

8.1. Criticality 0. Criticality is defined as what happens when we go
from expressing αi = 0 to αi 6= 0 or vice versa.

8.1.1. IC0
i . This involves identifying all the losing critical events in

which player i has expressed an approval level αi = 0. There is only
one such event ω × {xi : αi = 0}, and below is the criticality diagram
for it.

Source
(Losing)

Sink
(Winning)

¨ -αi : 0 → a6
ω × {xi : αi = a6}

¨ -αi : 0 → a7
ω × {xi : αi = a7}

ω × {xi : αi = 0}
§ -

αi : 0 → a8
ω × {xi : αi = a8}

§ -
αi : 0 → 1 ω × {xi : αi = 1}

Despite there being a number of transitions in this diagram, the
losing critical event ω × {xi : αi = 0} occurs only once, therefore the
contribution to the increasing criticality ‘count’ from this particular
diagram is only 1.

8.1.2. DC0
i . This involves identifying all the winning critical events in

which player i has expressed an approval level αi 6= 0, which become
losing when αi = 0.

Source
(Winning)

Sink
(Losing)

-αi : a6 → 0ω × {xi : αi = a6} ω × {xi : αi = 0}

-αi : a7 → 0ω × {xi : αi = a7} ω × {xi : αi = 0}

-αi : a8 → 0ω × {xi : αi = a8} ω × {xi : αi = 0}

-αi : 1 → 0ω × {xi : αi = 1} ω × {xi : αi = 0}
This collection of diagrams contribute a total of 4 to the decreasing

criticality ‘count’, as there are clearly four different source events, giv-
ing player i the opportunity to influence the outcome in four different
situations.
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8.2. Criticality δ. Under this assumption there is no restriction on
the source events and the sink events. Criticality occurs when there
is a change in outcome due to player i increasing, or decreasing, its
approval level.

8.2.1. ICδ
i . This involves identifying all the losing critical events in

which player i has expressed an approval level αi = ap, and the event
in which player i expresses an approval level αi = aq, where ap < aq, is
winning. Below are the six criticality diagrams for this situation.

Source
(Losing)

Sink
(Winning)

¨ -αi : 0 → a6
ω × {xi : αi = a6}

¨ -αi : 0 → a7
ω × {xi : αi = a7}

ω × {xi : αi = 0}
§ -

αi : 0 → a8
ω × {xi : αi = a8}

§ -
αi : 0 → 1 ω × {xi : αi = 1}

Source
(Losing)

Sink
(Winning)

¨ -αi : a1 → a6
ω × {xi : αi = a6}

¨ -αi : a1 → a7
ω × {xi : αi = a7}

ω × {xi : αi = a1}
§ -

αi : a1 → a8
ω × {xi : αi = a8}

§ -
αi : a1 → 1 ω × {xi : αi = 1}

Source
(Losing)

Sink
(Winning)

¨ -αi : a2 → a6
ω × {xi : αi = a6}

¨ -αi : a2 → a7
ω × {xi : αi = a7}

ω × {xi : αi = a2}
§ -

αi : a2 → a8
ω × {xi : αi = a8}

§ -
αi : a2 → 1 ω × {xi : αi = 1}
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Source
(Losing)

Sink
(Winning)

¨ -αi : a3 → a6
ω × {xi : αi = a6}

¨ -αi : a3 → a7
ω × {xi : αi = a7}

ω × {xi : αi = a3}
§ -

αi : a3 → a8
ω × {xi : αi = a8}

§ -
αi : a3 → 1 ω × {xi : αi = 1}

Source
(Losing)

Sink
(Winning)

¨ -αi : a4 → a6
ω × {xi : αi = a6}

¨ -αi : a4 → a7
ω × {xi : αi = a7}

ω × {xi : αi = a4}
§ -

αi : a4 → a8
ω × {xi : αi = a8}

§ -
αi : a4 → 1 ω × {xi : αi = 1}

Source
(Losing)

Sink
(Winning)

¨ -αi : a5 → a6
ω × {xi : αi = a6}

¨ -αi : a5 → a7
ω × {xi : αi = a7}

ω × {xi : αi = a5}
§ -

αi : a5 → a8
ω × {xi : αi = a8}

§ -
αi : a5 → 1 ω × {xi : αi = 1}

Again, despite there being a myriad of transitions, this collection
of diagrams will only contribute 6 to the increasing criticality ‘count’.
There are clearly six different source events, giving player i the oppor-
tunity to influence the outcome in six different situations.

8.2.2. DCδ
i . This involves identifying all the winning critical events in

which player i has expressed approval level αi = aq, and the event in
which player i expresses an approval level αi = ap, where ap < aq, is
losing. Below are the four criticality diagrams for this situation.
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Source
(Winning)

Sink
(Losing)

¨ -αi : a6 → 0
ω × {xi : αi = 0}

¨ -αi : a6 → a1
ω × {xi : αi = a1}

¨ -αi : a6 → a2
ω × {xi : αi = a2}

ω × {xi : αi = a6}
§ -

αi : a6 → a3
ω × {xi : αi = a3}

§ -
αi : a6 → a4

ω × {xi : αi = a4}
§ -

αi : a6 → a5
ω × {xi : αi = a5}

Source
(Winning)

Sink
(Losing)

¨ -αi : a7 → 0
ω × {xi : αi = 0}

¨ -αi : a7 → a1
ω × {xi : αi = a1}

¨ -αi : a7 → a2
ω × {xi : αi = a2}

ω × {xi : αi = a7}
§ -

αi : a7 → a3
ω × {xi : αi = a3}

§ -
αi : a7 → a4

ω × {xi : αi = a4}
§ -

αi : a7 → a5
ω × {xi : αi = a5}

Source
(Winning)

Sink
(Losing)

¨ -αi : a8 → 0
ω × {xi : αi = 0}

¨ -αi : a8 → a1
ω × {xi : αi = a1}

¨ -αi : a8 → a2
ω × {xi : αi = a2}

ω × {xi : αi = a8}
§ -

αi : a8 → a3
ω × {xi : αi = a3}

§ -
αi : a8 → a4

ω × {xi : αi = a4}
§ -

αi : a8 → a5
ω × {xi : αi = a5}
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Source
(Winning)

Sink
(Losing)

¨ -αi : 1 → 0
ω × {xi : αi = 0}

¨ -αi : 1 → a1
ω × {xi : αi = a1}

¨ -αi : 1 → a2
ω × {xi : αi = a2}

ω × {xi : αi = 1}
§ -

αi : 1 → a3
ω × {xi : αi = a3}

§ -
αi : 1 → a4

ω × {xi : αi = a4}
§ -

αi : 1 → a5
ω × {xi : αi = a5}

Once again there are a large number of transitions, but this col-
lection of diagrams will only contribute 4 to the decreasing criticality
‘count’. There are only four different source events, giving player i the
opportunity to influence the outcome in only four different situations.

8.3. Summary. The number of transitions that occur within a set
of criticality diagrams is unimportant to the resultant criticality mea-
sure (‘count’). Only the number of situations in which it is possible
for player i to make a change to the outcome (the so called zone of
influence) is important.

9. United Nations Security Council

In order to give some idea of the numerical differences that arise
between the various notions of criticality, the example given in Felsen-
thal and Machover (1998) of voting in the United Nations Security
Council (U.N.S.C.) is reworked below. It is important to stress that
this example incorporates only one extra level of approval (abstention).
The numerical differences between the different notions of criticality in-
crease as the number of approval levels increase. Thus, in many ways,
the U.N.S.C. example is at the lower end in terms of the numerical
differences that can potentially arise.

In examining the voting powers of the members of the U.N.S.C. a
uniform probability density function is assumed. In keeping with the
approach taken in Freixas and Zwicker (2003), the decision process is
modelled as a DSCWV G in which a permanent member has weight 7
and a non-permanent member has weight 1. There are five permanent
members and ten non-permanent members. The quota of the game
is 39. The permanent member can express an approval level αi ∈
{0, 6

7
, 1} and a non-permanent member can express an approval level

αi ∈ {0, 0, 1}. (The approval level of 0 is repeated to highlight that a
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non-permanent member can abstain even though it has the same affect
as voting no).

Figure 1. Voting Powers in the U.N.S.C. Game

(The data for the graphs can be found in Appendix B).
As you can see, the different criticality sets and assumptions give rise

to a large number of different voting power measures, with significant
differences in their results. Some of the measures vary by as much as
a factor of six! No further comment is made on these results, other
than to reinforce the point that different notions of criticality can not
be ignored, or brushed under the carpet for calculative convenience.

10. Hazards of Ignoring the Different Notions of
Criticality

It is difficult to consider a voting power measure in multilevel ap-
proval voting games without discussing the different criticality sets and
criticality assumptions. After all, unlike single level approval, the dif-
ferent notions of criticality now give different results.

In order to conduct a criticality based voting power analysis of a
voting game, first and foremost, an appropriate criticality assumption
must be selected, then a decision must be made about which criticality
set should be measured, before finally selecting an appropriate proba-
bility density function. Unfortunately, the majority of research in this
area has concentrated almost exclusively on debating which probability
density function is most appropriate (Banzhaf, 1965; Johnston, 1978;
Laver, 1978; Paterson, 2004; Felsenthal and Machover, 1998; Leech,
2002b; Straffin, 1977). Arguably the least important factor of the vot-
ing power measure, as the probability density function is a property of
the game to be analysed, and therefore not a “free choice”.

Without a thorough understanding of the different notions of critical-
ity there is a temptation to simply extrapolate the techniques used in
single level approval voting to multilevel approval voting. This, how-
ever, is not without risks. For example in Felsenthal and Machover
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(1998), by not defining strictly what they were calculating, it appears
that they present Pr(IC0

i ) as the Banzhaf measure. The interpretation
of the Banzhaf measure presented in this paper implies that it should
be calculated as either Pr(TC0

i ) or Pr(TCδ
i ). There may even be some

merit in arguing that it can be calculated as the conditional probabil-
ity Pr(IC0

i |{imin}); but there is no evidence at all that the Banzhaf
measure can be sensibly interpreted as the unconditional Pr(IC0

i ). To
understand why, imagine increasing the number of possible approval
levels such that, for all intents and purposes, it becomes a selection from
a continuous range. Under the Banzhaf probability density function,
this would result in Pr({imin}) → 0 and therefore send Pr(IC0

i ) → 0
as well, irrelevant of how influential a player is. (See Das (2008) for
more details).

In Linder (2008), the author seems to be aware that multilevel ap-
proval critical events no longer occur in matched pairs. However, Lin-
der seems to be unaware of the different notions of criticality discussed
in this paper. Instead, Linder concentrates on calculating “common
sense” extensions of single level power measures, without strong the-
oretical justification for doing so. At least Linder, in one instance,
appears to be calculating the more appropriate conditional measure
Pr(IC0

i |{imin}). But why Pr(IC0
i |{imin})? What about the other po-

tential measures discussed in this paper?
And herein lies the crux of the problem, any kind of voting power

analysis must make use of all the different notions of criticality, or give
sound scientific justification for not doing so. Otherwise there is a risk
the analysis will be discredited.

11. Which Criticality Measure Should Be Used?

So which notions of criticality should be adopted to analyse voting
games? To quote the 1985 feature film, Brewster’s Millions, “None
of the above.” Influence in a game should be measured using class
conditional probabilities. As demonstrated in Das (2008), any mea-
sure based on criticality can be reduced to an expression involving
class conditional probabilities. For example, the results below apply
to almost all real life generalised single choice voting games. (Read-
ers interested in the proofs should consult Das (2008) or one of the
forthcoming, mathematically rigorous, publications).

Pr(IC0
i |{imin}) = Pr(Winning|{imax})− Pr(Winning|{imin}),
Pr(DC0

i ) = Pr(Winning)− Pr(Winning|{imin}).

Pr(DCδ
i ) = Pr(Winning)− Pr(Winning|{imin}),

Pr(ICδ
i ) = Pr(Winning|{imax})− Pr(Winning).
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With Pr(Winning), Pr(Winning|{imax}) and Pr(Winning|{imin}), al-
most all the criticality based voting power measures can be constructed.
So why not analyse voting games using just these three probabilities
instead? Anyone that wishes to construct a specific measure, based
on their own choice of criticality set and assumption, can do so easily
using the aforementioned probabilities.

12. Conclusion

In this paper an examination of criticality in voting games was car-
ried out. A number of different criticality sets and criticality assump-
tions were introduced, all of which must be taken into account before
a criticality based voting power analysis can be carried out.

It is of vital importance that we, as voting power researchers, must
all strive to understand the different notions of criticality and their
application. After all, if we can not rigorously define, and justify, our
voting power measures, what hope do we have of convincing election
designers to take our ideas seriously?

Appendix A. Definitions

Despite promising a mathematically light paper, it would be remiss
not to give rigorous definitions of voting games and the concepts of
criticality. There is no disadvantage to the reader should they choose
to skip the definitions and rely on the summary text found interlaced
between them instead. In fact, it is positively encouraged, as this will
ease the understanding of the main concepts and ideas presented in this
paper without the risk of becoming bogged down in the mathematical
theory.

A.1. Generalised Voting Games.

Definition A.1. A player is a probability space (Xi,Ai,Pi), where
Xi is a set, Ai is a sigma-field of subsets of Xi, and Pi is a countably
additive, nonnegative measure with Pi(Xi) = 1. Given a set of N play-
ers, where |N | = n, the set of all ordered n-tuples (x1, . . . , xn), with
xj ∈ Xj for each j ∈ 1, . . . n is denoted as X1 × · · · × Xn and abbre-
viated to ΩN . Given a player i, the set of all ordered (n − 1)-tuples
(x1, . . . , xi−1, xi+1, xn), with xj ∈ Xj for each j ∈ 1, . . . , i−1, i+1, . . . n
is denoted as X1×· · ·×Xi−1×Xi+1×· · ·×Xn and abbreviated to ΩN\{i}.
The action of creating a single (n− 1)-tuple, denoted as ωN\{i}, from a
single n-tuple ωN by removing the element xi is represented as ωN \xi.
The action of creating a single n-tuple, denoted as ωN , from a single
(n − 1)-tuple ωN\{i} by adding an element xi ∈ Xi is represented as
ωN\{i} × xi.

The key concepts from the previous definition are; a player i can vote
by expressing one of xi ∈ Xi, ωN represents a voting configuration (an
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event) with |N | players, ωN \ xi represents a voting configuration with
player i removed (when it was previously expressing xi), and ωN\{i} ×
xi represents a voting configuration in which player i has joined by
expressing xi.

Definition A.2. Given a set of N players, where |N | = n, a set of
the form A1 × · · · × An = {(x1, . . . , xn) ∈ X1 × · · · × Xn : xi ∈ Ai for
each i}, with Ai ∈ Ai for each i is called a measurable rectangle. The
product sigma field A1 ⊗ · · · ⊗ An on X1 × · · · × Xn is defined to be
the sigma field generated by all measurable rectangles. Let the product
space (X1 × · · · × Xn,A1 ⊗ · · · ⊗ An) be denoted as (Ω,F).

Definition A.3. A generalised voting game is a quadruple (Ω,F ,P,W)
such that (Ω,F ,P) is the product space generated by a set of N players,
P is the product measure and W is a measurable function on the subsets
of Ω. Such a game is denoted as a GVG(Ω,F ,P,W).

A generalised voting game is a catch all definition that encompasses
almost all the different voting games that you can possibly think of.
With this definition in place it is possible to define mathematically the
concepts of increasing, decreasing and total criticality introduced in
Section 3.

A.2. Criticality Sets.

Definition A.4. For a GV G(Ω,F ,P,W) with a set of possible out-
comes Y, a player i, and an ωN ∈ ΩN . A player i is increas-
ingly critical with respect to an outcome O ∈ Y in an event ωN

if, and only if, W(ωN) 6= O and there exists an xi ∈ Xi such that
W(ωN\{i} × xi) = O. Let the set O ICi represent the set of increas-
ingly critical events for a player i with respect to an outcome O.

Increasing criticality is a measure of a player’s ability to get the
outcome they want.

Definition A.5. For a GV G(Ω,F ,P,W) with a set of possible out-
comes Y, a player i, and an ωN ∈ ΩN . A player i is decreas-
ingly critical with respect to an outcome O ∈ Y in an event ωN

if, and only if, W(ωN) = O and there exists an xi ∈ Xi such that
W(ωN\{i} × xi) 6= O. Let the set O DCi represent the set of decreas-
ingly critical events for a player i with respect to an outcome O.

Decreasing criticality is a measure of a player’s ability i to prevent
an outcome they don’t want.

Definition A.6. For a GV G(Ω,F ,P,W) with a set of possible out-
comes Y, a player i, and an ωN ∈ ΩN . A player i is totally critical
with respect to an outcome O ∈ Y in an event ωN if it is either increas-
ingly critical or decreasing critical with respect to the aforementioned
outcome and event. Let the set O TCi represent the set of total critical
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events for a player i with respect to an outcome O. In an event ωN ,
it is not possible to be both simultaneously increasingly and decreasing
critical with respect to an outcome O, therefore (O ICi ∩O DCi) = ∅.

Total criticality is a measure of the players zone of influence with
respect to a specified outcome.

(Whenever there is no possibility of confusion the sets O ICi, O DCi

and O TCi will be denoted as ICi, DCi and TCi respectively).

A.3. Voting Power Measures.

Definition A.7. For a GV G(Ω,F ,P,W) with an outcome O and a
player i, a voting power measure is defined as,

∫
gi(ω

N) µ(dωN).

where gi is a F \B(R) measurable function, B(R) is the Borel sigma
field on the set of reals along with the two singletons {−∞} and {∞},
and µ is the sigma finite or sigma finite marginal measure over the
applicable events. If the integration is carried out over all ωN ∈ ΩN

then it is common to take µ = P.

A voting power measure is defined as the integration of a integrable
function over the events in a voting game. Different voting power
measures are created by integrating different functions.

Definition A.8. A criticality based voting power measure is a
voting power measure in which gi(ω

N) is a simple function; indicating
the conditional classification of an event as outcome O, conditional
upon the behaviour of a player i.

A.3.1. Comment. In Section 2, techniques were given for calculating
power measures in simple ‘yes/no’ voting games. The process essen-
tially involves identifying a critical coalition and then adding something

to a ‘running count’. If
1

2|N |−1
and

(|C| − 1)!(|N | − |C|)!
|N |! are inter-

preted as µ(w) for the Banzhaf/Penrose measure and Shapley-Shubik
index respectively, then it is clear that they are both criticality based
voting power measures.

Furthermore, since it was suggested that the same g(criticality)
function can be used to identify critical coalitions in both measures, it
follows that they are the same criticality based voting power measure,
albeit assuming a different probability distribution in the underlying
events.

A.4. Single Choice Voting Games.
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Definition A.9. A generalised single choice voting game, de-
noted as GSCVG(Ω,F ,P,W), is a GV G(Ω,F ,P,W) in which W :
Ω → {{0}, {1}}. An event ω ∈ Ω is labelled a winning event if and
only if W(ω) = 1, it is labelled a losing event otherwise.

A generalised single choice voting game is a game in which there
are only two possible outcomes. Think of them as being winning and
losing.

Definition A.10. A generalised single choice monotone voting
game, denoted as GSCMVG(Ω,F ,P,W), is a GSCV G(Ω,F ,P,W)
in which W is a monotonically increasing measurable function on the
subsets of Ω.

A generalised single choice monotone voting game is monotonic vot-
ing game in which there are only two possible outcomes. The mono-
tonicity of the GSCMV G refers to the monotone nature of the measur-
able function W . It means that if a subset of the players have formed
a winning event it will remain winning if any of the players decide to
increase their support.

Definition A.11. The Heaviside step function H : R→ {0, 1} with

H(x) =

{
1 if x ≥ 0;
0 otherwise.

Definition A.12. A generalised single choice weighted voting
game, denoted as GSCWVG(Ω,F ,P,W), is a GSCMV G(Ω,F ,P,W)
in which every player (Xi,Ai,Pi) has an associated measure space (Yi,Bi, λi),
with Yi ⊂ R+, and a Ai \ Bi measurable function Mi. A minimal el-
ement of Yi is 0 and a maximal element of Yi is denoted as wi, the

weight of player i. Given an xi ∈ Xi, the expression
Mi(xi)

wi

is called

the approval level of player i and is denoted by αi. Furthermore,
the measurable function W can be expressed using the Heaviside step
function as follows,

W(ωN) = H

(∑
i∈N

(αiwi)− q

)
.

where q is called the quota of the game.

The previous definition is an overly complex one, but put simply it
can be expressed thus. There is a set of n players. The approval level
of a player i is the fraction of its weight that it chooses to support
the decision at hand with. If, after adding up all the support of the
players, a predefined quota q of the game is achieved the outcome
is considered winning and the decision is approved. Otherwise the
outcome is considered losing and the decision is rejected.
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Definition A.13. A discrete multilevel approval weighted vot-
ing game is a GSCWV G(Ω,F ,P,W) in which the approval levels
available to all players are countable. Such a game is denoted as a
DSCWVG(Ω,F ,P,W).

Think of a discrete multilevel approval weighted voting game as a
game in which the approval levels available to the players are drawn
from a finite set. For example, a weighted voting game which allows the
players to vote ‘yes’, ‘no’‘ or ‘abstain’ can be considered as a discrete
multilevel approval weighted voting game.

Definition A.14. A continuous multilevel approval weighted
voting game is a GSCWV G(Ω,F ,P,W) in which the approval levels
available to all players are uncountable. Such a game is denoted as a
CSCWVG(Ω,F ,P,W).

For example, a weighted voting game in which the players are al-
lowed to express approval levels in the continuous range [0, 1] can be
considered as a continuous multilevel approval weighted voting game.

Even though abstentions have not been mentioned explicitly, in Freixas
and Zwicker (2003) it was argued that abstention could be represented
as a level of approval. In Das (2008) the same result was independently
produced along with a method for calculating the actual approval level
expressed when a player abstains.

A.4.1. Comment. The approval level of a player i (αi) is the fraction
of its weight that it chooses to support the decision at hand with.
By Definition A.12, the approval level must be in the range [0, 1]. A
game which allows negative approval levels can still be modelled as a
GSCWV G, providing the weights and the quota are adjusted appro-
priately. For example, to represent a game with quota 0, in which a
player can express support in the range [−5, 5], the GSCWV G will set
the weight of the player to 10 and raise the quota by an appropriate
amount to compensate (i.e. if there is only one player in the game, the
quota will be 5).

There is however one slight caveat. It is a subtle but crucial point to
bear in mind. If the voters believe that they have the ability to express
a negative approval, then an approval level αi close to zero should be
thought of as a relatively strong vote no, instead of a relatively weak
vote yes. This subtle difference in interpretation makes no difference
to either the outcomes or analysis of the games in question, but it will
have an affect on which of the criticality sets and assumptions are best
suited to create power measures for them. This idea was explored in
Section 7.
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Appendix B. United Nations Security Council Results

The tables below present the results of the analysis of the U.N.S.C.
game.

Voter Pr(IC0
i |(αi = 0)) Pr(DC0

i |(αi 6= 0)) Pr(IC0
i ) Pr(DC0

i ) Pr(TC0
i )

Perm 2.27% 1.53% 0.76% 1.02% 1.78%
Non-Perm 1.11% 0.56% 0.37% 0.37% 0.74%

Table 1. Criticality 0 measures for U.N.S.C.

Voter Pr(ICδ
i |(αi 6= 1)) Pr(DCδ

i |(αi 6= 0)) Pr(ICδ
i ) Pr(DCδ

i ) Pr(TCδ
i )

Perm 1.86% 1.53% 1.24% 1.02% 2.27%
Non-Perm 1.11% 0.56% 0.74% 0.37% 1.11%

Table 2. Criticality δ measures for U.N.S.C.

Firstly a few of comments about the numbers. Despite common prac-
tice, the results have not been normalised. This is because normalising,
or producing an index as some prefer to call it, achieves nothing more
than the destruction of valuable information.

Secondly, the numbers in the tables are fairly small. This is sim-
ply because notions of criticality are inextricably linked to the un-
conditional probability of a event being winning. In fact, a critical-
ity diagram analysis tells us that |DCi| ≤ |Winning| and |ICi| ≤
|Winning| × (|Xi| − 1). In the U.N.S.C. game, Pr(Winning) = 1.02%,
which explains why the numbers are so small.

And finally, even though the unconditional probabilities of Pr(ICi)
and Pr(DCi) are presented, it is not envisaged anyone would use them
as a sensible measure of power for obvious reasons.
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