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The widely used instrument to analyse voting power is that of a simple voting
game (SVG) which is binary as it offers each voter only to choose from ‘yes’ or
‘no’. In real life decisions, however, options besides them clearly influence the
outcome of a vote. The literature has recently restarted to take notice of voting
games considering abstentions as an additional choice besides ‘yes’ and ‘no’.
Felsenthal and Machover (F&M) (2000) introduced a setup called a ternary
voting game by adding abstention as a third option alongside ‘yes’ and ‘no’
(which extends an earlier work of Fishburn (1973, pp. 53-55)). As a further
extension Freixas and Zwicker (2002) introduced so called weighted (j, k) games
in which a voter is endowed with j many voting weights. The intuition is that the
voter is now able to express different levels of approval ranging from complete
enthousiasm to total opposition. The outcome set is also enlarged from the usual
binary case to k different levels of outcome. In their paper Freixas and Zwicker
provide a combinatorical characterization of games that can be formulated as
weighted (j, k) games which is the property of grade trade robustness. This
implies that all results with respect to these games also hold for games which
are not weighted (j, k) games in the first place but are grade trade robust and
hence can be reformulated as such.

This paper introduces a broad notion of power in these games and provides
a limit theorem, as well as a numerical method. The power concept is that of
a voter being r-critical: a voter is r-critical if s/he can tip the balance between
an outcome below or above an outcome level r. Hence, instead of introducing
a single value that measures the decisiveness of a voter this concept provides a
whole vector of decisiveness. With k levels of output there are k− 1 thresholds
and hence the probability ψa(r) of a voter being r-critical makes sense for k− 1
different possible values of r. This concept covers all classical power indices
in SVGs as well as the prevalent analogues in voting games with abstentions1.
This generalization might not be the only reasonable one, however, we will show
that this concept implies phenomena that are known from the SVG approach.
The paper focuses on the Penrose limit theorem (PLT) which describes the
phenomenon that under suitable conditions in weighted voting games the ratio
of the powers of any two voters converges to the ratio of the voting weights.

1For a survey Lindner (2002).
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Lindner & Machover (2002) have proven that it holds in SVGs with respect to
the Shapley Shubik index under a non-atomic and replicative condition. This
paper detects this effect in the more general approach of weighted (j, k) games.
As a by-product, it provides useful and easy to calculate approximations for
ψa(r). Further, the paper introduces a numerical method to compute ψa(r)
values which does not suffer from inapplicability. Due to huge number of possible
scenarios - it grows exponentially with the number of voters - checking every
possible scenario for possible r-criticalness of a voter is an impracticable task
with small assemblies already. This paper provides a method in the spririt of the
recursion of Mann & Shapley (1962) which does not suffer from these difficulties.

The paper is organized as follows. Section 2 introduces some notation and
sets up the probabilistic tools that will serve us in the subsequent sections.
Section 3 briefly reintroduces weighted (j, k) games and picks out a subclass for
which the PLT will be proven in Section 4. A numerical method for general
(j, k) games, which serves to verify the PLT exemplarily, is presented in Section
5.

1 Preliminaries

The main tool in this paper is from the field of probability theory and represents
a general version of the central limit theorem.

Let {Xi}∞i=1 be a sequence of independent random variables, at least one of
which has a non-degenerate distribution. Let the distribution of Xi be denoted
by Fi, its expectation by EXi = µi and assume its variance V arXi = σ2

i to be
finite. Further put

sn := V ar
∑
i≤n

Xi =
∑
i≤n

σ2
i

and
Sn :=

1
sn

∑
i≤n

Xi − µi.

Theorem 1: (Lindeberg-Feller)
In order that

lim
n→∞

max
i≤n

σi
sn

= 0 (1)

and
lim
n→∞

sup
x
|Pr ob{Sn

sn
< x} − Φ(x)| = 0 (2)

it is necessary and sufficient that the following condition (the Lindeberg
condition) be satisfied:

lim
n→∞

Ln(ε) = 0 (3)
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with

Ln(ε) : = s−1
n

∑
i≤n

E((Xi − µi)2; |Xi − µi| ≥ εsn) (4)

= s−1
n

∑
i≤n

∫
{|x−µi|≥ε

√
sn}

(x− µi)2dFi(x)

for every fixed ε > 0.

For a proof see e.g. Petrov (1995), p.123-126.
We put

Q(n) :=
∑
i≤n

w2
i .

Lemma 1: For each i, let the independent random variable Xi be given by

Xi = Cwi,

where C is a real-valued random variable with non-degenerate distribution
on a compact set [α, β]. Then {Xi}∞i=1 satisfies the Lindeberg condition (3) iff

lim
n→∞

wn√
Q(n)

= 0. (5)

Proof: For each i follows
EXi = cwi (6)

V arXi = d2w2
i , (7)

where c and d are reals independent of i, with d > 0 (since C has a non-
degenerate distribution). Hence

sn = d
√
Q(n). (8)

Now suppose the Lindeberg condition (3) is satisfied. Then by Theorem 1
we have (1), from which (5) follows at once in view of (7) and (8).

Conversely, suppose that (5) holds. We now show that

lim
n→∞

max
i≤n

wi√
Q(n)

= 0. (9)

For any ε > 0 fix n
′

so large that wi/
√
Q(i) < ε for all i > n

′
. Thus, for all

n > n
′

we have
wi√
Q(n)

≤ wi√
Q(i)

< ε for i = n
′
+ 1, ..., n.
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Thus (9) holds. Now observe that for every i, the integral in (4) follows as∫
|x−cwi|>εd

√
Q(n)

(x− cwi)2dFi(x). (10)

But from |x − cwi| = |y − c|wi for all y ∈ [α, β] and (9) it follows that, for
any given ε > 0, if n is sufficiently large, then

|y − c|wi < εd
√
Q(n)

for all y ∈ [α, β] and all i ≤ n. That implies the integral (10) vanishes for
all i ≤ n. Hence (3) holds.

Remark 1: Note that (5) does not apply to oceanic games since it implies

max
i≤n

ŵi =
wi∑
i≤n wi

→ 0 for n→∞. (11)

However, condition (5) is stricter than (11).

2 Weighted (j,k) games

Let N = {1, ..., n} denote the set of voters. According to Freixas and Zwicker2

(2002) in a weighted (j, k) game every voter is endowed with a weight vector
(w1

i , ..., w
j
i ). The set of options {w1

i , ..., w
j
i } can be interpreted as ranging from

complete enthousiasm to total opposition. Further the k different outcome levels
are determined by k−1 real number quotas Q1 ≥ Q2 ≥ ... ≥ Qk−1 such that the
outcome level is r iff the total weight sum in the ballot box lies in the interval
[Qr, Qr−1). Without loss of generality we assume that for every r ∈ {1, ..., k−1}
the ratio of the Quota Qr to the maximum of the weight sum in the ballot box∑
i≤n w

1
i are values in (0, 1) and will operate with qr := Qr/

∑
i≤n w

1
i .

In the following we will focus on a special class of weighted (j, k) games to
which will be refered to as Multi-Partition Games (MPG). Let there exist a
real-valued vector (c1, ..., cj) and {wi}i∈N such that

(w1
i , ..., w

j
i ) = (c1, ..., cj)wi. (12)

Condition (12) says that we can think of the weight vector of every voter
as a product of approval factors equal for every voter and an individual single
weight that is characteristic for this voter. This means the voter faces a set
{c1, ..., cj} to weight his or her choice with his or her individual voting weight
wi. Hence each voter makes up his or her mind ci about the proposal and throws
the overall product ciwi into the ballot box. Although the voter might choose

2The following definition paraphrases their work. For their own formulation see Freixas
and Zwicker (2002), Definition 2.2.
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the highest level of approval c1 the overall effect in the ballot box might be small
due to a low wi. In MPGs it makes sense to think of the voting weight wi as
representative for voter i.

For any positive integer n, we describe a MPG Γ(n) by the customary square-
bracket notation

Γ(n) := [qW (n);w1, ..., wn], q ∈ (0, 1)k−1. (13)

The voters are labeled by the integers 1, ..., n. The sum W (n) denotes the
sum of all weights, i.e.

W (n) =
∑
i≤n

wi.

Definition 1: Let
N (0)

 N (1)
$ N (2)

 ...

be an infinite increasing chain of finite non-empty sets. For any two voters
a, b ∈ N = ∪∞n=0N

(n) let their weights be given by the positive real numbers wa
and wb and let q be a real ∈ (0, 1)k−1. Let Γ(n) be the MPG whose assembly
is N (n) and whose quota is q. We shall then say that {Γ(n)}∞n=0 is a q-chain of
MPGs.

For each voter i, we represent the vote of i as a random variable

Xi = Cwi (14)

where the random variable C takes the values

C =

 c1
...
cj

. (15)

We do not yet have to specify the distributions of the Xi.
Let Y (n) be given by

Y (n) =
∑
i≤n

Xi. (16)

For any voter a ∈ {1, ..., n} we put

Y (n)
a =

∑
i 6=a

Xi. (17)

We say that voter a is r-critical if the voters other than a are so divided
that a can tip the balance between an outcome above level r or below level r.
Hence a is r-critical iff the following two inequalities hold

Y (n)
a + c1wa ≥ qrW

(n)

Y (n)
a + cjwa < qrW

(n).
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Hence the probability of a being r-critical is given by

φ(n)
a (r) = Prob{qrW (n) − c1wa ≤ Y (n)

a < qrW
(n) − cjwa}. (18)

Remark 2: For (2, 2) games (SVGs) equation (18) provides with c1 = 1 and
c2 = 0 and p1 = p2 = 1/2 the Banzhaf (Penrose) measure under the assumption
that the voters vote independently. With the latter assumption and p1 = t and
t uniformly distributed over [0, 1] we get the Shapley-Shubik index3.

We say that Penrose’s Limit Theorem (PLT) holds for the q-chain {Γ(n)}∞n=0

if for any a, b ∈ N and r ∈ {1, ..., k − 1}

φ
(n)
a (r)

φ
(n)
b (r)

→ wa
wb
.

3 PLT in weighted (j,k) games

In this section we will assume that the Xi in (14) are independent and each of
them takes the values c1wi, ..., cjwi with probability p1, ..., pj where at least two
of the pl are positive and

∑
l≤n pl = 1.

From (14) and (17) follows

µ(n)
a := E(Y (n)

a ) = E(C)(W (n) − wa) (19)

and

σ(n)
a :=

√
V ar(Y (n)

a ) =
√
V ar(C)(Q(n) − w2

a). (20)

Further we define

l(n)
a (r) :=

qrW
(n) − wa − µ(n)

a

σ
(n)
a

(21)

and

u(n)
a (r) :=

qrW
(n) − µ(n)

a

σ
(n)
a

. (22)

With this notation Theorem 1 provides

φ(n)
a (r) ≈ φ̃(n)

a (r) :=
1√
2π

∫ u(n)
a (r)

l
(n)
a (r)

exp[−1
2
r2]dr. (23)

where |φ(n)
a (r)− φ̃(n)

a (r)| → 0 tends to zero as n goes to infinity.
3This result can be found in Straffin (1982).
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Now, for two voters a and b it follows for the ratio

φ
(n)
a (r)

φ
(n)
b (r)

=
φ̃

(n)
a (r)

φ̃
(n)
b (r)

+ ε
(n)
a,b ,

where ε(n)
a,b is the approximation error.

Theorem 2: Let p1, ..., pj be given such that at least two of the pl are positive
and

∑
l≤n pl = 1.

If the sequence {wn}∞n=0 satisfies (5) and εna,b → 0 for any two voters a, b ∈ N
then PLT holds for the corresponding q-chain {Γ(n)}∞n=0 for any q ∈ (0, 1)k−1.

Proof : We have to show that

φ̃
(n)
a (r)

φ̃
(n)
b (r)

→ wa
wb
.

The mean value theorem says that there exist values m(n)
a ∈ [l(n)

a (r), u(n)
a (r)]

and m
(n)
b ∈ [l(n)

b (r), u(n)
b (r)] such that

φ̃
(n)
a (r)

φ̃
(n)
b (r)

=
u

(n)
a (r)− l(n)

a (r)

u
(n)
b (r)− l(n)

b (r)
exp[−1

2
(m(n)

a )2 +
1
2

(m(n)
b )2].

With (21) and (22) follows

φ̃
(n)
a (r)

φ̃
(n)
b (r)

=
wa/σ

(n)
a

wb/σ
(n)
b

exp[−1
2

(m(n)
a )2 +

1
2

(m(n)
b )2].

From (20) it is easy to see that

wa/σ
(n)
a

wb/σ
(n)
b

→ wa
wb
.

Since the lengths of the intervals [l(n)
a (r), u(n)

a (r)] and [l(n)
b (r), u(n)

b (r)] tend
to zero as well as the difference of the upper bounds u(n)

a (r)− u(n)
b (r) it follows

that

exp[−1
2

(m(n)
a )2 +

1
2

(m(n)
b )2]→ 1.

q.e.d.
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4 Computing Power Indices

The approximation (23) provides a useful rule of thumb for a voter a being
r-critical. If we want to compute the exact value, however, already a small
number of voters provides serious problems with respect to computation time.
The reason is due to the fact that if every voter is endowed with j voting weights
then there are jn−1 possible scenarios to check whether voter a is r-critical which
implies exponential growth of the computational extent. This section provides
a method to evade this impracticability. The main idea is to operate with the
coefficients of so called generating functions which represents an extension of
the recursion of Mann & Shapley4 for SVGs.

The following briefly sketches the recursion of Mann & Shapley and extends
it to games with several levels of approval afterwards. For notational conve-
nience, the latter will be formulated for the special case of j = 3 (which can be
interpreted as voting games with abstentions). For general j, the method works
essentially similar albeit notationally more messy.

Assume in a simple weighted voting game with quota Q and total maximal
weight sum W . Let cmv be the number of ways in which the v players, other than
a, can have a sum of votes equal to m, where 0 ≤ v ≤ n− 1, 0 ≤ m ≤W − wa.

Then the classical power measures for a voter a are given by

φa =
n−1∑
v=0

fac(v, n)
Q−1∑

m=Q−wa

cmv (24)

where the factor fac(v, n) is given by

fac(v, n) =
v!(n− 1− v)!

n!
(25)

for the Shapley Shubik index and

fac(v, n) = 2ˆ(n− 1) (26)

for the Banzhaf measure. Due to notational convenience cmv and fac(v, n)
are not indexed by a.

The crucial problem is of course to compute the cmv. Cantor’s suggestion
was to use the generating function

f(x, y) =
∏
i 6=a

(1 + xwiy). (27)

This is a polynomial in x and y and the coefficient of xmyv is precisely cmv.
The problem reduces then to multiplying out the polynomial and determining
the coefficients. If we do it taking one factor at a time, then we get a sequence
of coefficients C(i). This leads to the following recursion

4The key idea of the recursion Mann&Shapley was due to David Cantor who suggested it
to the former following a lecture at Princeton University on October 1960.
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c(i)mv = c(i−1)
mv + c

(i−1)
m−wi,v−1 (28)

where the last term is understood to be 0 if either subscript is negative. The
initialization C(0) is 0 except for c(0)

00 = 1.
If player a is left out, then C(n−1) is the matrix with elements equal to cmv.
For weighted voting games with j = 3 let the weight vector of voter v be

given by (w1
v, w

2
v, w

3
v). Consider the following generating function

f(x, y, z, t) =
∏
v 6=a

(1 + xw
1
vy + zw

2
v t). (29)

This is a polynomial in x, y, z and t where a term looks e.g. like

xw
1
2+w1

5+w1
6y3zw

2
3+w2

4 t2. (30)

We interprete the exponent of x as the weight sum of the ’yes’ voters, the
exponent of y as the number of ’yes’ voters, the exponent of z as the weight
sum of abstainers and the exponent of t as the number of abstainers. In the
above example term (30) this means that the players 2,5 and 6 vote ’yes’ and
the players 3 and 4 abstain.

Let the coefficient of xmyvzstl be given by cslmv.
The recursion to obtain cslmv is then given by

(cslmv)
(i) = (cslmv)

(i−1) + (cslm−w1
i ,v−1)(i−1) + (cs−w

2
i ,l−1

mv )(i−1) (31)

where the terms are understood to be 0 if either subscript is negative. The
initialization C(0) is 0 except for c(0)

00 = 1.

For (18) follows

φa(r) =
∑
v,l

fac(v, l, n)
W∑
m=0

Q(r)−w1(a)−1−m∑
s=Q(r)−wj(a)−m

cslmv. (32)

The threshold Q(r) (that has to be achieved by the overall sum for the
outcome to lie above level r) is given by

Q(r) = dqrW e (33)

i.e. Q(r) is the smallest integer above qrW.
The factor fac(v, l, n) depends on the specific measure, e.g. applying the

Bernoullian principle of insufficient reason provides

fac(v, l, n) = 3ˆ(n− 1). (34)
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Or if the probability to abstain is given by α, and to vote ’yes’ and ’no’
(1− α)/2 in each case, then this turns out as

fac(v, l, n) = αl(1− α)n−1−l/4 (35)

Numerical extent: Since v, l ∈ {0, ..., n−1} and m, s ∈ {0, ...,W} we have
to determine (n − 1)3|W |2 many different cslmv to the maximum for a player
a (the number if iterations for each cslmv is given by n − 1). Since we have n
players, the overall extent is given by

n(n− 1)3|W |2

and hence not exponentially growing in n.

References

Felsenthal, D. and M. Machover (2000), ’Ternary Voting Games’, Interna-
tional Journal of Game Theory 26: 335-351.

Fishburn, P.C. (1973), ’The Theory of Social Choice’, Princeton, Princeton
University Press.

Freixas, J. and W. Zwicker (2002), ’Weighted Voting, Abstention, and Mul-
tiple Levels of Approval’, forthcoming in: Mathematical Social Science.

Lindner, I. (2001), ’Probabilistic Characterization of Voting Games with
Abstentions’, Hamburg University working Paper, No. 121.

Lindner, I. and M. Machover (2002), ’L. S. Penrose’s Limit Theorem: Proof
of a Special Case’, Hamburg University Working Paper, No. 124.

Mann, I. and L. S. Shapley (1962), ’Values of Large Games, VI: Evaluat-
ing the Electoral College Exactly’, Rand Corporation RM 3158, Santa Monica,
California.

Straffin, P.D. (1988), ’The Shapley-Shubik and Banzhaf power indices as
probabilities’, in: Roth (ed.) 1988: The Shapley Value; Cambridge: Cambridge
University Press.

10


