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1 Introduction

Power in democracies is transfered and institutionalized through voting
procedures. The voters have direct power in the decision-making process,
whereas others have indirect power through influence relations with the
voters. This paper contributes to the theoretical analysis of democratic pro-
cesses by distinguishing and quantifying the role of all actors through their
social relations. This paper advances on the traditional power analysis in
two ways. Firstly, opposed to a priori analysis of voting bodies with inde-
pendent voters, we explicitly allow for correlated voting behavior through
an endogenous process of opinion formation. Secondly, an important fea-
ture of the model is the quantitative analysis of power of non-voters as par-
ticipants in this process. For instance, despite the fact that big industries are
not credited with direct voting power, strong activity of lobbyist provides
them with indirect political power. Another example is insurgency, which is
commonly understood as an unlawful movement, excluded from direct rep-
resentative power. However, insurgency movements may be united with
political parties in common goals – like in Ireland the IRA can be associated
with the political Sinn Féin.

We focus on measures of what has been called ”I-power”, which is sup-
posed to measure the influence of a voter over the outcome of a vote (in
contrast to the idea of power as division of spoils). The classical measure
of I-power proposed by Penrose(1946, 1952)1 is based on a random- voting
model in which each member votes for or against with equal probability in-
dependently of all other members. This is not a behavioral assumption but
is a method of a priori analysis. The latter models the voting system as an ab-
stract shell, without taking into consideration voters preferences, the range
of issues over which a decision is taken or the degree of affinity between
the voters. This abstraction seems to be necessary to evaluate the decision
rule itself (for a more elaborated discussion on a priori voting power see e.g.
Felsenthal and Machover 1998).

A common criticism of the widely used Penrose measure is that it fails
to take account actual behaviour of voters in the particular voting bodies

1also known as the absolute Banzhaf index
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under analysis. In their 1979, Dubey and Shapley generalize the Penrose
measure ψ to the case where all voters vote independently. Let xa denote
the probability of the event that a votes ’yes’. Under the assumption that
all xi are arbitrary and independent for all i ∈ N of the assembly N their
equations (47) and (48) coincide with

ψa =
∂A
∂xa

, (1)

where A denotes the probability of the event that the outcome of a vote is
positive (which Coleman (1971) called the ability of the collectivity to act).
Thus ψa is the marginal contribution of the propensity of a to vote for a bill
to the probability of the bills passing. The problem is now to generalise this
idea to the situation when the assumption of independence is dropped. In
this paper we seek to construct an empirically relevant power measure by
relaxing the idea of independence and show how to replace it by the use of
information about real or assumed voting patterns.

We seek a measure of the voting power taking into account exercise of
influence on voting behaviour of others. To make this idea more precise
we shall use social network theory to quantify it. Furthermore, we shall
use empirical observations of voting patterns to estimate the architecture of
a network. Social network analysis views social relationships in terms of
nodes and ties. Nodes are the individual actors within the networks (which
are generally individuals or organizations), and ties are the relationships
between the actors. There can be many kinds of ties between the nodes
as actors might be tied by one or more specific types of relations, such as
values, visions, idea, financial exchange, friends, kinship, dislike, conflict,
trade, etc. Research in a number of academic fields has shown that social
networks operate on many levels, from families up to the level of nations,
and play a critical role in determining the way problems are solved, orga-
nizations are run, and the degree to which individuals succeed in achieving
their goals. The famous work The Strength of Weak Ties of Granovetter (1973)
is considered as one of the most influential papers ever written in economic
sociology. The notion strength of a tie is used as an assessment of the inten-
sity of a bond between two actors. Some bonds are obviously stronger than
others. Loosely speaking, we might refer to strong ties as those between
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family members, good friends, colleagues we spend a lot of time with, busi-
ness partners we happen to work with for a long time, political partners tied
together by similar preferences or historical circumstances. In contrast weak
ties link people who are just acquintances, say, someone we happen to work
with ten years ago in Australia.2 In our paper we show how to estimate
the network architecture taking as a starting point the observed frequency
distribution over the various theoretically possible possible voting profiles.

Wright (1990) studies the influence of lobbyists on policy decisions in the
US House of Representatives. Information about which groups worked to-
gether on two controversial issues and which representatives they lobbied
was obtained through personal interviews and a mail survey of professional
lobbyists. He argues that the influence on representatives’ policy decisions
is best explained by and depending on the number of lobbying contacts
from interest groups on each side of an issue. In particular, this study
points out that campaign contributiors proved somewhat useful for explain-
ing groups’ lobbying patterns; but it appears to be lobbying, not money,
that shapes and reinforces representatives’ policy decisions. Wright’s pa-
per takes a different approach than the mainstream in the literature which
focuses on the role of money. In his work, monetary investments may be
represented by certain positions in the social network. We see our work on
a posteriori power as complimentary to the work of Wright as it provides a
measurement of power as influence of agents who are not necessarily part
of the voting body, as in the case of lobbyists.

2 The model

Our model of absence of independent voting can be seen as a black box in
which the independent voting probabilities enter as an input. The network
determines the influence dynamics inside the black box such that the output
is an interdependent voting pattern. Assume a finite set N = {1, ..., n} of

2Moreover, graph theory (or the mathematical study of abstract represen-
tations of networks), can be extended to include negative ties such as ani-
mosity among persons. In the present account, however, we shall abstract
from negative ties.
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agents interacting and let p = (p1, ..., pn) denote the vector of independent
input approval probabilities, i.e. pa is the probability that a voter votes ’yes’
in absence of any social dynamics. Let x(p) = (x1(p), ..., xn(p)) denote the
resulting probabilities as output voting pattern. In direct extension of 1) we
measure power in presence of interdependence as

ψa = ∂A/∂x1 ∗ ∂x1/∂pa + ... + ∂A/∂xn ∗ ∂xn/∂pa. (2)

Hence power of a is the ability to influence a voter k who in turn exerts
power. Note that this definition doesn’t require a to be part of the voting
body. Here, the term ∂xk/∂pa measures the sensitivity with which k reacts
to changes in a’s opinion. In order to compute a power measure we need to
specify the terms in (2). As a possible application, we demonstrate specify-
ing the influence terms ∂xj/∂pa using network theory.

REMARK 2.1. In his 1957 paper, Robert A. Dahl defined power of one individual

over another as the extent to which the first can get the other to do something he

would not otherwise do, minus the extent that the second can similarly impose his

will on the first. While his model is different to ours it is still possible to integrate

this idea in form of a rescalation of (2) to

ψa =
n

∑
i=1

(∂A/∂xk ∗ ∂xk/∂pa − ∂A/∂xa ∗ ∂xa/∂pk) . (3)

2.1 Agents and Interaction

Assume the agents interact according to a social network as given by a di-
rected graph. The interaction pattern determining the influence dynam-
ics are captured through an interaction matrix. This is a n × n matrix W =[
wij

]j
i , the elements of which are understood as influence parameters; wij is

the weight that agent i places on the opinion of agent j. Note that the ma-
trix may be directed such that wij > 0 while wji = 0. We shall normalize
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the weights such that the weights voter i assigns to others sum up to one.
Formally this means that the rows of W sum up to one.3

2.2 Influence Dynamics

Let p ∈ [0, 1]n denote the initial approval probability vector. Starting with

initial approval probability pk, voter k updates this probability after one

time step according to

wk1p1 + ... + wknpn.

In general, after t time steps, the approval vector is given by

p(t) = Wtp.

DEFINITION 2.1. A matrix W is convergent if W̄ = limt→∞ Wtp exists for all

vectors p.

The Appendix provides a characterization of convergence following Golub
and Jackson (2007). For what follows we shall assume that W is convergent.
We put

x(p) = W̄p (4)

and hence

∂xk/∂pa = w̄ka. (5)

Note that the terms defined by (5) cover exercise of influence in direct but
also indirect ways through the network. E.g. it is possible that wka = 0 such
that a and k are not directly linked but w̄ka > 0. The latter is taken to mean

3In general parlance W is a stochastic matrix.

5



that there is a path between a and k such that a can influence k by a cascade
of influencing intermediaries.

Example 1: Consider 4 agents connected by the following network:

W =

⎛
⎜⎜⎜⎜⎜⎜⎝

1/3 1/3 1/3 0

1/3 1/3 1/3 0

1/4 1/4 1/4 1/4

0 0 1/2 1/2

⎞
⎟⎟⎟⎟⎟⎟⎠

4 3

2

1

Here,

W̄ = lim
t→∞

Wt =

⎛
⎜⎜⎜⎜⎜⎜⎝

1/4 1/4 1/3 1/6

1/4 1/4 1/3 1/6

1/4 1/4 1/3 1/6

1/4 1/4 1/3 1/6

⎞
⎟⎟⎟⎟⎟⎟⎠

Here, agent 4 doesn’t attach any weight to the opinion of agent 1 as indi-
cated by w41 = 0. However, even though he attaches some weight to agent
3 who is in turn connected to 1 and 2. As a result agent 4 is in fact influenced
by agent 1 as indicated by w̄41 = 1/4 > 0.

It now remains to specify the terms ∂A/∂xk in equation (2). In absence of

any information apart from the network put pk = 1/2 for all k = 1, ..., n.4

Since W̄ is a stochastic matrix it is easy to see from (4) that xk = 1/2 for all

4Here, we follow the Bernoullian Principle of Insufficient Reason which
claims that each of the alternatives should have equal probability if there is
no known reason for assigning unequal ones.
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k = 1, ..., n. However, at the latter point the term ∂A/∂xk coincides with the

(a priori) absolute Banzhaf measure βk such that (2) follows as

ψa = β1 ∗ w̄1a + ... + βn ∗ w̄na (6)

Equation (6) is a direct extension of (1) in absence of independence. Power
of a is the sum taken over the ability to exert power through other agents
k; the ability to influence a voter k,as measured by w̄ka, who in turn exerts
power as measured by βk.

Example 1: Here, since all rows of W̄ are given by (1/4, 1/4, 1/3, 1/6)

power of any voter a follows as

ψa = 1/4 β1 + 1/4 β2 + 1/3 β3 + 1/6 β4 (7)

Example 2 (Machover (2007)): Consider the canonical simple majority de-
cision rule with an assembly of 5 voters: I5 = {1, 2, 3, 4, 5}. Let P be the
probability distribution that assigns probability 0 to the 20 divisions of I5 in
which the positive camp contains exactly two or exactly three voters; and
equal probability of 1/12 to each of the remaining 12 divisions. The ques-
tion is now how to translate this voting patter P into our framework. Can
we take P to say something about the architecture of interaction, here, the
network? In fact, in network terms P gives rise to the following structure

5

1

4 3

2

This implies that four agents, say 1,2,3 and 4, are strongly correlated and

also vote coordinated as a bloc while agent 5 is isolated - which explains

probability 0 of divisions in which the positive camp contains exactly two

or exactly three voters. Hence the bloc of 1 to 4 vote independently from
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agent 5 such that P describes the probability of in fact two independent

voters which happen to vote similarly by mere chance. In absence of any

further information we put

W =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1/4 1/4 1/4 1/4 0

1/4 1/4 1/4 1/4 0

1/4 1/4 1/4 1/4 0

1/4 1/4 1/4 1/4 0

0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Note that W = limt→∞ Wt. Further note that the canonical simple major-

ity decision rule implies the a priori abolute Banzhaf measures βa = 3/8 for

all a ∈ I5. Hence (6) simplifies to

ψa = 3/8 [w1a + ... + w5a] (8)

= 3/8 (9)

for any a. At first sight, it might come as a surprise that power is the same
for all voter although the network is asymmetrical. Note, however, this is
due to the symmetric weight distribution within the bloc {1, 2, 3, 4} which
has a counterbalancing effect. Every voter within this bloc loses power by
being influenced but equally gains power by exerting influence.

Example 3: Consider again the canonical simple majority decision rule
with five players but now with

W =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0

1/10 7/10 1/10 1/10 0

1/10 1/10 7/10 1/10 0

1/10 1/10 1/10 7/10 0

0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Here,

W̄ = lim
t→∞

Wt =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0

1 0 0 0 0

1 0 0 0 0

1 0 0 0 0

0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

which yields

ψ1 = (3/8) ∗ 4 = 3/2 (10)

ψ2 = ψ3 = ψ4 = 0 (11)

ψ5 = 3/8 (12)

Here, voter 1 absorbs all the power within the bloc {1, 2, 3, 4} . Note that
ψ1 > 1 due to the high sensitivity with which all voters within this bloc
react to 1’s influence.

3 Appendix - Characterization of Convergence

3.1 Walks, paths and cycles

The following are standard graph-theoretical definitions applied to the di-
rected graph of connections induced by the interaction matrix W.

A path in W is a sequence of nodes B = i1, i2, . . . , iK, not necessarily dis-
tinct, such that Wi�i�+1

> 0 for all � ∈ {1, 2, . . . , K} . Then B is called a path
from i1 to iK. B is a simple path if each of its nodes occurs only once. A cycle
is a path i1, i2, . . . , iK such that i1 = iK. The length of the cycle is defined to
be K − 1. A cycle is simple if the only node appearing twice in the sequence
is the starting (ending) node. The matrix W is strongly connected if there is

9



a path relative to W from any node to any other node. Similarly, we say
that a group of agents T ⊂ N is strongly connected if the restriction of W to
T is strongly connected. Then this is equivalent with the fact that there is a
cycle in W containing only the nodes in T. A group of nodes T′ ⊂ T is closed
relative to W if i ∈ T′ and Wij > 0 implies j ∈ T′. A closed group of nodes
T′ is minimal relative to W if no nonempty strict subset is closed. Observe
that any minimal closed group is strongly connected.

DEFINITION 3.1. A matrix W is convergent if lim
t→∞

Wtx exists for all vectors

x.

DEFINITION 3.2. The matrix W is aperiodic if the greatest common divisor of

the lengths of its simple cycles is 1.

It is well-known that if W is strongly connected (also referred to as be-
ing irreducible) and aperiodic, then it is convergent (e.g., see Meyer (2000)).
Golub and Jackson (2007) offer an example to see what can go wrong when
aperiodicity fails.

Example:

W =

⎛
⎝ 0 1

1 0

⎞
⎠ .

Here,

Wt =

⎧⎨
⎩

W if t is odd,

I if t is even.

In fact, Golub and Jackson (2007) show that for strongly connected W
aperiodicity is also a necessary condition.

THEOREM 3.1. (Golub and Jackson (2007)) If a stochastic matrix W is stongly

connected, then it is convergent if and only if it is aperiodic.

However, since most social interactions will not involve strong connec-
tions the authors provide the following important generalization.
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DEFINITION 3.3. The matrix W is strongly aperiodic if it is aperiodic when

restricted to any closed group of nodes.

THEOREM 3.2. A stochastic matrix W is convergent if and only if it is strongly

aperiodic.
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