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1 Introduction

A common criticism of the widely used Penrose (1946) or Banzhaf (1965) measure of voting

power is that it fails to take account of the preferences or actual behaviour of voters. Power is

assumed to arise purely from the voting rules and its measurement is confined to an examination

of the possibilities that might exist for voting members to effect decisions by switching their votes

given the likely voting behaviour by others. The criticism arises from the assumption that all

voting outcomes that can theoretically occur are considered to be equally likely. The probability

distribution of voting outcomes is not derived from evidence on actual behaviour, or assumptions

about voters’ preferences, but entirely a priori. The measure is therefore best described as a

measure of constitutional voting power, power that follows from the formal rules of the voting

body. Typically the rules are set at the constitutional stage of a voting body, prior to voting.

The assumption that all voting outcomes are equally probable is consistent with the binomial

model of voting in which each vote has an equal probability of being for or against a motion,

and all votes are independent. Felsenthal and Machover (2004) defend the binomial model on

two counts. Firstly, it is a rational assumption in the absence of prior knowledge about the

future issues on the ballot and how divided over these issues voters will be. It therefore suits the

purpose of measuring the distribution of a priori or constitutional voting power that follows from

the rules of the voting body in a purely formal sense. Second, the binomial model is attractive

on normative grounds because it presumes the maximum freedom of choice for the voter. It

therefore is the benchmark model to use in constitutional design.

In this paper we seek to construct an empirically relevant power measure by relaxing this

very strong assumption and replacing it by the use of information about real or assumed voting

patterns. Our starting point is to assume that voter preferences can be described in terms of
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a probability distribution over the various theoretically possible voting profiles. That is, we

know the probability of occurrence of every one of the large number of possible roll-calls. This

probability distribution can be estimated by observing actually occurring voting patterns over

a suitable period of time.1 We call the measure of empirically informed voting power that we

derive a behavioural power index.

We apply the behavioural power index to the Supreme Court of the United States. A large

amount of voting data reveal a large discrepancy between the Penrose-Banzhaf a priori measure

of power and the behavioural power estimated using the relative frequencies of voting outcomes.

The observed relative frequencies refute the assumption of equally probable voting outcomes

and therefore also the binomial model of equally probable and independent votes. We identify

positive correlation between votes as their primary cause.

In the next section we introduce a behavioural index of voting power. Section 3 describes

the data and presents computations of behavioural power for the justices in the U.S. Supreme

Court. Section 4 presents estimates of Coleman’s measure of the overall dependence and the

correlation coefficients between justices’ votes. Section 5 summarizes the paper.

2 A behavioural power index

We begin with a conventional description of the Penrose power index (also known as the abso-

lute Banzhaf index; see for example Felsenthal and Machover (1998)) to develop the analytical

framework and introduce the notation.

The voting body consists of n members, labelled i = 1, 2, . . . , n, N = {1, 2, . . . , n}. Each

member has voting weight wi and must cast all her votes as a bloc either for or against a motion.

Notationally, letting vi represent the number of Yes votes cast by member i, we write vi = wi

1This obviously assumes sincere voting. We maintain this assumption throughout this paper.
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if she votes Yes and vi = 0 if she votes No. The decision rule is defined by a majority quota

or threshold number of votes, q (.5
∑n

i=1
wi) < q ≤

∑n
i=1

wi) such that, if the total number of

votes cast by Yes voters is greater than or equal to q, the decision is Yes, and otherwise it is No.

We refer to any particular voting outcome, or the result of a ballot on some motion, as a

division, represented by a set D ⊆ N The total votes cast by Yes voters is w(D) =
∑

i∈D wi.

It is common in the literature to refer to a division D as ‘winning’ if w(D) ≥ q and ‘losing’

otherwise. We will here avoid this terminology and instead refer to a Yes decision and a No

decision respectively.

Now consider the power of member i. This is measured by swings. In general the power of

a member is her likelihood of being able to effect a change in the decision by changing her vote,

that is to be a swing voter.

A swing for i is defined in two ways:

i). An S-swing is a division S in which i votes No which would produce a No decision but

would become a Yes decision if i changed her vote to Yes. That is, S ⊆ N\{i}, such that

q − wi ≤ w(S) < q;

ii). A T-swing is a division T in which i votes Yes which would produce a Yes decision unless

i changed her vote to No. That is, T ⊆ N , i ∈ T , such that q − wi ≤ w(T ) − wi < q.

These two definitions are obviously dual because for every S-swing there is a T-swing where

T = S ∪ {i}. It is useful to maintain the distinction however since it is used in the definition of

the behavioural power measure. More generally we will maintain the notation of S for a division

in which i votes No and T for one where i votes Yes. To simplify the notation we do not index

S and T or their probabilities with i but keep in mind that these are specific to each voter.

Let the number of swings, whether S-swings or T-swings, be ηi. Then the Penrose power
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index for voter i is defined (in the conventional notation) as

β′
i =

ηi

2n−1
. (1)

This is the classical ‘a priori’ measure of voting power which assigns equal weight to each

division. In probabilistic terms, the measure (1) assumes that the conditional probability of

every set S given that i votes No (equivalently T given that i votes Yes) is equal to 21−n. That

is,

P [q − wi ≤ w(S) < q|vi = 0] = 21−n, and P [q − wi ≤ w(T ) − wi < q|vi = wi] = 21−n.

The problem now is to generalise this idea to the situation where not all swings are equally

likely, but where the probability distribution is known, from empirical observation of voting

behaviour, or can be assumed to be known, on some other basis. We seek a measure of the

voting power of voter i in relation to decisions taken under the rules, recognising the behaviour

of the other n − 1 voters both in relation to each other and also in relation to the behaviour of

i herself. However the actual behaviour of voter i, as reflected in the voting probabilities, is not

part of the measure of power.

In this we follow Braham and Holler (2005) and Morriss (2002) who argue that, because

power is fundamentally defined as a dispositional concept, its possession or its magnitude does

not depend on its exercise. Power exists whether or not its possessor is observed to use it. This

means that the voting behaviour (or preferences) of voter i, as reflected in the probabilities of

her voting Yes or No cannot have any relevance to a power measure.

Morriss (2002) makes an important distinction between ‘power as ability’ and ‘power as
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ableness’. A voter’s ability is defined as her power to effect decisions whatever the actions of the

other voters. On the other hand, the term ableness refers to her power to effect decisions in the

specific situation in which the voter finds herself given specific actions by others. The former

leads to a power measure which makes no assumptions about actual or likely voting behaviour,

treating all divisions that could possibly occur as equiprobable: the Penrose index. The latter

means taking account of the actual or expected voting behaviour of the other n−1 voters besides

i.

Morriss (2002) makes an important distinction between ‘power as ability’ and ‘power as

ableness’. A voter’s ability is defined as her power to effect decisions whatever the actions of

the other voters. On the other hand, the term ableness refers to the situation in which the voter

finds herself given specific actions by others. The former leads to a power measure which makes

no assumptions about the actual or likely voting behaviour of the voters other than i, treating

all divisions that could possibly occur as equiprobable: the Penrose index. The latter means

taking account of the actual or expected voting behaviour of the other n − 1 voters besides i.

The behavioural power index defined here is the probability of a swing for voter i. In order to

achieve the greatest empirical generality we do not assume neutrality of voting. This means that

the two definitions of a swing, S-swings and T-swings can no longer be treated as equivalent.

It is assumed that we know the probability distribution of voting outcomes, represented by

numbers, πD (0 ≤ πD ≤ 1), for all divisions D ⊆ N .

The marginal probabilities for voter i are then (using the S and T distinction for divisions):

P [i votes Y es] = P [vi = wi] =
∑

T :i∈T

πT = πi;

P [i votes No] = P [vi = 0] =
∑

S:i/∈S

πS = 1 − πi,
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The division probabilities πD represent the basic information about voting behaviour which

is relevant to the index. But i’s marginal voting probabilities πi and 1 − πi are not relevant.

They are used merely to find the conditional probabilities of divisions given i’s vote. Since the

distribution of divisions is not independent of the vote of i, we define two conditional distributions

over divisions.

i). The conditional distribution of S-divisions: P [S|vi = 0] = φS = πS/(1 − πi) for all

S ⊆ N\{i}. Therefore if S is an S-swing, φS is the conditional probability of that particular

S-swing ;

ii). The conditional distribution of T -divisions: P [T |vi = wi] = ψT = πT /πi for all T ⊆ N ,

i ∈ T . Therefore if T is a T-swing, ψT is the conditional probability of that particular

T-swing.

The behavioural power index is defined as the probability of a swing for voter i:

αi = P [i votes No]P [S − swing|i votes No] + P [i votes Y es]P [T − swing|i votes Y es].

We set i’s voting probabilities to .5 and use the conditional probabilities defined above in

this expression. The formula for the behavioural power index is:

αi = 0.5
∑

S−Swings

φS + 0.5
∑

T−Swings

ψT . (2)

This measure reflects the power of i as a capacity to influence the outcome of a vote whether or

not that capacity is exercised. The fact that voter i has the a priori capacity to vote Yes or No

is allowed for by using equal probabilities for both events.

Table 1 gives an example of the above calculation for a weighted voting game with n = 3,
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q = 3, w1 = 3, w2 = 2 and w3 = 1. The discrepancy between behavioural and the a priori or

the constitutional power is evident. The assumed division probabilities are πD are such that all

voters have less behavioural than constitutional power. This need not be the case in general.

Table 2 gives an example of a weighted voting game with n = 5, q = 5, w1 = w2 = w3 = 2

and w4 = w5 = 1. Suppose that voters 2 and 3 never vote against one another, so that the

probability of all such divisions is zero, whereas all other divisions are equally likely. By voting

in unison, voters 2 and 3 effectively comprise a voting bloc with the total voting weight of 4.

This increases their behavioural voting power at the expense of the other three voters, who vote

independently.

A special case is where i and the other voters are independent. Then, for any S and T

such that T = S ∪ {i}, and φS = ψT . This may be a rather restrictive assumption in practice,

however, and it seems unnecessary to impose it under our assumption that we have a complete

probability distribution of divisions.

Another special case is the Penrose index. Here we assume φS = ψT = 21−n. Then

αi = 0.5
∑

S−Swings

21−n + 0.5
∑

T−Swings

21−n = 0.5

(

ηi

2n−1
+

ηi

2n−1

)

= β′
i. (3)

3 Voting power in the U.S. Supreme Court

The U.S. Supreme Court is the highest judicial authority of the United States. The court

comprises the Chief Justice and eight Associate Justices. The justices are nominated by the

President and appointed with the advice and consent of the Senate to serve for life.

The court votes under simple majority rule provided at least six justices are present for

the court to be in session. Justices vote in the order of their seniority, starting from the Chief
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Justice. Although the Chief Justice has a number of exclusive prerogatives and responsibilities,

all justices have equal a priori voting power.

It is customary to refer to the court by the name of the presiding Chief Justice, who usually is

the longest-serving member of the court. We define a bench as a court in which the same group

of persons sit as justices, and study three benches from the Chief Justice Warren (1953-1969),

Burger (1969-1986) and Rehnquist’s (1989-2005) eras.

3.1 The data

The Supreme Court Justice-Centered Judicial Databases sponsored by the University of Ken-

tucky and maintained by Benesh and Spaeth is a comprehensive source of data on the decisions

and opinions of individual justices during the three eras.

Several decisions had to be made when preparing the data. Our focus is on the relative

frequencies of divisions. For a meaningful analysis we therefore confine to cases in which the

same bench of justices voted. Out of 228 observed benches we chose the three which had the

highest number of cases, one for each era. The high number of different benches arises from the

combinations of six to nine justices possibly attending a session, and from the fact that associate

justices retired and were replaced in the same era. Our selection includes 416, 1110, and 683

cases from respectively the Warren, Burger and Rehnquist eras, with the nine justices voting

on each case. Since we would like the cases to be as independent from each other as possible,

we exclude those with multiple legal issues or multiple legal provisions. Finally, we define a Yes

vote as one in favour of the petitioning party.2

2In terms of the variables in the Benesh and Speath databases, we restrict ANALU = 0, delete the duplicate
LED numbers and compute a vote variable which takes the value 1 if MAJ MIN = WIN DUM , and 0 otherwise.
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3.2 Relative frequencies of divisions

Figure 1 shows the relative frequencies of divisions. With nine justices there will be 512 possible

divisions. The abscissa scale shows the divisions ordered from a unanimous vote against the

petitioning party to a unanimous vote in favour of the petitioning party. Note that:

i). only a small minority of possible divisions has actually occurred, the percentage in each

bench being Warren (9.4), Burger (31.6) and Rehnquist (21.5);

ii). relative frequencies of those which are observed are very unequal;

iii). unanimity is by far the most frequent of all outcomes. The Burger bench is an exception

with the 2:7 divisions against the petitioning party occurring slightly more frequently than

the 0:9 divisions;

iv). a unanimous vote in favour of the petitioning party is more frequent than a unanimous

vote against the petitioning party. This suggests a selection bias in the data in favour of

petitions with a reasonable chance of success. This point is noteworthy because the Chief

Justice ultimately decides which cases will the heard.

These observations refute the binomial model of equally probable and independent votes as an

empirical description. Although comprehensive voting records such as that for the U.S. Supreme

Court are scarce, data on several other voting bodies reveals that divisions typically occur with

very different frequencies. This is true of the Supreme Court of Canada (Heard and Swartz 1998),

the European Union Council of Ministers (Hayes-Renshaw, van Aken and Wallace 2006) and the

institutions of the United Nations (Newcombe, Ross and Newcombe 1970). In the next section

we show that positive correlations between votes are the primary cause of the observed pattern.
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3.3 The behavioral power index

In a voting game with equal weights all voters have equal a priori powers. Under simple-majority

rule with an odd number of votes the Banzhaf absolute measure equals the binomial probability

of (n − 1)/2 successes in n − 1 trials with .5 as the probability of success. For n = 9 this

probability equals .273.

Table 3 reports the behavioural power index αi for each justice. It is evident that the justices’

behavioural powers are not equal. We quantify this inequality by comparing the Gini coefficient

of αi. The largest inequality is observed in the Warren bench, followed by Rehnquist and Burger.

The biggest losers in terms of behavioural vs. a priori voting power were justices Black, Douglas

and Clark of the Warren bench. None of the justices had more behavioural power than a priori

power.

4 Coleman’s measure of dependence

The fact that unanimity is by far the most frequent of all divisions points at positive correlation

between the justices’ votes. The correlation coefficient is a pairwise measure of linear dependence.

But is there a measure of the overall dependence between votes? One such measure has been

proposed in Coleman (1973).

Under the binomial model the variance of the fraction of Yes votes is σ2 = π(1 − π)/n,

where π is the probability of a Yes vote, here common to all voters. The sample variance s2 will

systematically differ from σ2 if the assumptions of the binomial model are not met. This will be

the case if votes are not independent, or if the true probability is not π, or both. For example,

if each pair of votes correlates with the correlation coefficients c, then s2 ≈ σ2[1 + (n − 1)c],

provided (1 − n)−1 ≤ c ≤ 1. Assuming the true probability is indeed π, the ratio σ2/s2 is a
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rough measure of the overall dependence in a voting body of size n.

Coleman used this fact to compute the equivalent number of independent voters m. Setting

s2 = π(1−π)/m yields m = π(1−π)/s2. For independent voters s2 ≈ π(1−π)/n so that m ≈ n.

Compared to n = 9, low values of m for the Warren (1.48), Burger (2.21) and Rehnquist (1.79)

benches point at high positive correlations between votes.

Coleman’s is a measure of the overall dependence. Table 4 reports estimates of the individual

marginal probabilities and correlation coefficients. They show that Yes votes are not far from

being equally probable but are highly positively correlated. For the three courts the average

probabilities of a Yes vote are .63, .47 and .54. The spreads of the estimated probabilities

range from (.44, .73) for the Warren bench to (.53, .55) for the Rehnquist bench. The average

correlation coefficients between two Yes votes for the three benches are .67, .39 and .5.

Fisher’s Exact Test3 cannot reject the null hypothesis of conditional independence at the five

percent level of significance for only 7 of 108 pairs of justices indicated by an asterisk. There is

significant positive correlation in justices’ decisions.

One consequence of high positive correlations is that voters often see their preferred outcome

prevail. Several authors have proposed to measure voting power using this probability (Straffin’s

(1978) Satisfaction index, Morriss’s (2002) EPW index). We believe that the probability of being

on the winning side is not a valid measure of power because it does not distinguish between

power and luck.4 For example, it assigns power to a voter who cannot swing in any theoretically

conceivable division of votes, a dummy. Our approach is to define power in terms of the capacity

to effect a decision, based on the concept of a swing.

3See, Everitt (1992).
4This point has been extensively discussed by Dowding (1996).
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5 Summary

The standard approach to measuring the voting power of a particular member of the voting

body is to compute the probability of her casting a decisive vote. This analysis must encompass

both the formal rules of the voting body and also the behaviour of all the voters. The member

is more powerful the more frequently her vote is decisive. But this will depend in practice on

circumstances created by others casting their votes so that she has opportunities to be decisive.

Thus an empirical voting power measure must be based on the frequencies with which the various

voting outcomes occur. As is well known, the Penrose-Banzhaf measure ignores behaviour and

takes into account only power deriving from the rules construed in a purely formal, a priori

sense.

We propose an empirically relevant power measure by relaxing this very strong assump-

tion and replacing it by the use of information about real or assumed voting patterns. The

behavioural power index is based on the joint probability distribution on the set of voting out-

comes, which can be assumed or estimated using ballot data.

The voting behaviour of justices in the U.S. Supreme Court clearly contradicts the assump-

tions of equally probable and independent votes. Over a range of cases, different voting outcomes

occur with very unequal relative frequencies. The observed patterns of relative frequencies point

to positive correlation as their main cause, and indeed we find significant positive correlation in

justices’ decisions.
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Table 1: The behavioural power index for the game {4; 3, 2, 1}

v1 v2 v3 πD φS,1 φS,2 φS,3 ψT,1 ψT,2 ψT,3

3 2 1 0.309 0 0 0 0.618 0.515 0.386
3 2 0 0.016 0 0 0.078 0.031 0.026 0
3 0 1 0.131 0 0.328 0 0.262 0 0.164
3 0 0 0.044 0 0.111 0.222 0.089 0 0
0 2 1 0.249 0.499 0 0 0 0.416 0.312
0 2 0 0.026 0.052 0 0.13 0 0.043 0
0 0 1 0.111 0.221 0.276 0 0 0 0.138
0 0 0 0.114 0.228 0.285 0.57 0 0 0

Behavioural powers equal .71, .15 and .15. A priori absolute
Banzhaf powers equal .75, .25 and .25. S-swings and T-swings

are indicated with an underline. The joint probability distribution
πD satisfies the following probabilities and correlation coefficients:
π1 = .5, π2 = .6, π3 = .8 and c1,2 = .1, c1,3 = .2, c2,3 = .4.



Table 2: The behavioural power index for the game {5; 2, 2, 2, 1, 1}

v1 v2 v3 v4 v5 πD φS,1 φS,2 φS,4 ψT,1 ψT,2 ψT,4

2 2 2 1 1 0.0625 0 0 0 0.125 0.125 0.125
2 2 2 1 0 0.0625 0 0 0 0.125 0.125 0.125
2 2 2 0 1 0.0625 0 0 0.125 0.125 0.125 0
2 2 2 0 0 0.0625 0 0 0.125 0.125 0.125 0
2 2 0 1 1 0 0 0 0 0 0 0
2 2 0 1 0 0 0 0 0 0 0 0
2 2 0 0 1 0 0 0 0 0 0 0
2 2 0 0 0 0 0 0 0 0 0 0
2 0 2 1 1 0 0 0 0 0 0 0
2 0 2 1 0 0 0 0 0 0 0 0
2 0 2 0 1 0 0 0 0 0 0 0
2 0 2 0 0 0 0 0 0 0 0 0
2 0 0 1 1 0.0625 0 0.125 0 0.125 0 0.125
2 0 0 1 0 0.0625 0 0.125 0 0.125 0 0.125
2 0 0 0 1 0.0625 0 0.125 0.125 0.125 0 0
2 0 0 0 0 0.0625 0 0.125 0.125 0.125 0 0
0 2 2 1 1 0.0625 0.125 0 0 0 0.125 0.125
0 2 2 1 0 0.0625 0.125 0 0 0 0.125 0.125
0 2 2 0 1 0.0625 0.125 0 0.125 0 0.125 0
0 2 2 0 0 0.0625 0.125 0 0.125 0 0.125 0
0 2 0 1 1 0 0 0 0 0 0 0
0 2 0 1 0 0 0 0 0 0 0 0
0 2 0 0 1 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0 0 0 0 0
0 0 2 1 1 0 0 0 0 0 0 0
0 0 2 1 0 0 0 0 0 0 0 0
0 0 2 0 1 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0.0625 0.125 0.125 0 0 0 0.125
0 0 0 1 0 0.0625 0.125 0.125 0 0 0 0.125
0 0 0 0 1 0.0625 0.125 0.125 0.125 0 0 0
0 0 0 0 0 0.0625 0.125 0.125 0.125 0 0 0

Behavioural powers equal, respectively, .125, .5, .5, .125 and .125. A pri-
ori absolute Banzhaf powers equal .4375, .4375, .4375, .1875 and .1875.
Powers of voters 2-3 and 4-5 are equal by the equality of their weights
and behaviour. S-swings and T-swings are indicated with an underline.
The fact that voters 2 and 3 never vote against one another increases
their voting power at the expense of the other three voters.



Figure 1: Relative frequencies of divisions
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Table 3: The behavioural power index

WARREN BURGER REHNQUIST
Black 0.009 Blackmun 0.106 Breyer 0.118
Brennan 0.046 Brennan 0.073 Ginsburg 0.072
Clark 0.017 Burger 0.089 Kennedy 0.074
Douglas 0.013 Marshall 0.106 Oconnor 0.112
Goldberg 0.047 Oconnor 0.096 Rehnquist 0.116
Harlan 0.063 Powell 0.059 Scalia 0.135
Stewart 0.019 Rehnquist 0.098 Souter 0.142
Warren 0.042 Stevens 0.060 Stevens 0.071
White 0.032 White 0.061 Thomas 0.070
Gini 0.306 Gini 0.126 Gini 0.150



Table 4: Marginal probabilities and correlation coefficients

WARREN BURGER REHNQUIST
(i, j) πi πj ci,j (i, j) πi πj ci,j (i, j) πi πj ci,j

Black-Brennan 0.64 0.73 0.80 Blackmun-Brennan 0.44 0.51 0.36 Breyer-Ginsburg 0.55 0.53 0.72
Black-Clark 0.64 0.58 0.56 Blackmun-Burger 0.44 0.49 0.47 Breyer-Kennedy 0.55 0.55 0.48
Black-Douglas 0.64 0.65 0.74 Blackmun-Marshall 0.44 0.49 0.35 Breyer-O’Connor 0.55 0.55 0.54
Black-Goldberg 0.64 0.70 0.77 Blackmun-O’Connor 0.44 0.47 0.49 Breyer-Rehnquist 0.55 0.54 0.38
Black-Harlan 0.64 0.44 0.37 Blackmun-Powell 0.44 0.46 0.54 Breyer-Scalia 0.55 0.55 0.27
Black-Stewart 0.64 0.57 0.55 Blackmun-Rehnquist 0.44 0.50 0.37 Breyer-Souter 0.55 0.53 0.71
Black-Warren 0.64 0.72 0.79 Blackmun-Stevens 0.44 0.38 0.52 Breyer-Stevens 0.55 0.53 0.58
Black-White 0.64 0.64 0.69 Blackmun-White 0.44 0.54 0.46 Breyer-Thomas 0.55 0.55 0.24
Brennan-Clark 0.73 0.58 0.67 Brennan-Burger 0.51 0.49 0.00* Ginsburg-Kennedy 0.53 0.55 0.52
Brennan-Douglas 0.73 0.65 0.82 Brennan-Marshall 0.51 0.49 0.81 Ginsburg-O’Connor 0.53 0.55 0.50
Brennan-Goldberg 0.73 0.70 0.90 Brennan-O’Connor 0.51 0.47 0.05* Ginsburg-Rehnquist 0.53 0.54 0.41
Brennan-Harlan 0.73 0.44 0.51 Brennan-Powell 0.51 0.46 0.13 Ginsburg-Scalia 0.53 0.55 0.30
Brennan-Stewart 0.73 0.57 0.67 Brennan-Rehnquist 0.51 0.50 -0.10 Ginsburg-Souter 0.53 0.53 0.79
Brennan-Warren 0.73 0.72 0.95 Brennan-Stevens 0.51 0.38 0.36 Ginsburg-Stevens 0.53 0.53 0.62
Brennan-White 0.73 0.64 0.78 Brennan-White 0.51 0.54 0.12 Ginsburg-Thomas 0.53 0.55 0.27
Clark-Douglas 0.58 0.65 0.56 Burger-Marshall 0.49 0.49 -0.03* Kennedy-O’Connor 0.55 0.55 0.72
Clark-Goldberg 0.58 0.70 0.59 Burger-O’Connor 0.49 0.47 0.76 Kennedy-Rehnquist 0.55 0.54 0.75
Clark-Harlan 0.58 0.44 0.62 Burger-Powell 0.49 0.46 0.73 Kennedy-Scalia 0.55 0.55 0.65
Clark-Stewart 0.58 0.57 0.62 Burger-Rehnquist 0.49 0.50 0.75 Kennedy-Souter 0.55 0.53 0.57
Clark-Warren 0.58 0.72 0.66 Burger-Stevens 0.49 0.38 0.40 Kennedy-Stevens 0.55 0.53 0.3
Clark-White 0.58 0.64 0.69 Burger-White 0.49 0.54 0.59 Kennedy-Thomas 0.55 0.55 0.63
Douglas-Goldberg 0.65 0.70 0.77 Marshall-O’Connor 0.49 0.47 0.02* O’Connor-Rehnquist 0.55 0.54 0.71
Douglas-Harlan 0.65 0.44 0.34 Marshall-Powell 0.49 0.46 0.10 O’Connor-Scalia 0.55 0.55 0.63
Douglas-Stewart 0.65 0.57 0.52 Marshall-Rehnquist 0.49 0.50 -0.13 O’Connor-Souter 0.55 0.53 0.58
Douglas-Warren 0.65 0.72 0.83 Marshall-Stevens 0.49 0.38 0.33 O’Connor-Stevens 0.55 0.53 0.25
Douglas-White 0.65 0.64 0.63 Marshall-White 0.49 0.54 0.05* O’Connor-Thomas 0.55 0.55 0.64
Goldberg-Harlan 0.70 0.44 0.49 O’Connor-Powell 0.47 0.46 0.72 Rehnquist-Scalia 0.54 0.55 0.76
Goldberg-Stewart 0.70 0.57 0.66 O’Connor-Rehnquist 0.47 0.50 0.75 Rehnquist-Souter 0.54 0.53 0.45
Goldberg-Warren 0.70 0.72 0.89 O’Connor-Stevens 0.47 0.38 0.46 Rehnquist-Stevens 0.54 0.53 0.12
Goldberg-White 0.70 0.64 0.69 O’Connor-White 0.47 0.54 0.53 Rehnquist-Thomas 0.54 0.55 0.75
Harlan-Stewart 0.44 0.57 0.65 Powell-Rehnquist 0.46 0.50 0.67 Scalia-Souter 0.55 0.53 0.37
Harlan-Warren 0.44 0.72 0.48 Powell-Stevens 0.46 0.38 0.47 Scalia-Stevens 0.55 0.53 0.05
Harlan-White 0.44 0.64 0.63 Powell-White 0.46 0.54 0.58 Scalia-Thomas 0.55 0.55 0.87
Stewart-Warren 0.57 0.72 0.63 Rehnquist-Stevens 0.50 0.38 0.35 Souter-Stevens 0.53 0.53 0.58
Stewart-White 0.57 0.64 0.70 Rehnquist-White 0.50 0.54 0.50 Souter-Thomas 0.53 0.55 0.35
Warren-White 0.72 0.64 0.74 Stevens-White 0.38 0.54 0.34 Stevens-Thomas 0.53 0.55 0.03


