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Abstract 
 
 

 
We consider here a voting situation such as that exemplified by the Electoral College 
(EC) in United States presidential elections. While our model should be suitable for other 
indirect elections (e.g., the EU Council of Ministers), most of our arguments will be 
directly based on the EC and on the results of recent elections. We show that the classical 
indices of voting power (Shapley-Shubik and Banzhaf-Coleman) give counter-intuitive 
results because they do not take differences among states, and correlations within these, 
into account. We show how these differences and correlations can be modeled. 
 

 
Introduction 
 

The Electoral College remains a controversial feature of U.S. political decision-

making. After most U.S. presidential elections, there are calls for passage of a 

constitutional amendment to either abolish it or to “reform” it substantially.  There are 

numerous complaints about the Electoral College, of which the most important is the 

potential for the winner of the Electoral College majority to be a popular vote loser. 

Consider three assertions that often surface in the debates about the political impact of the 

Electoral College. 

 First, the Electoral College is alleged to benefit the smaller states. Here the 

argument is simply that the failure of the Electoral College to satisfy the “one person, one 
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vote” standard by overweighting the seat shares of the smaller states disproportionately 

advantages those states in terms of their influence on presidential outcomes.  An 

implication of this claim is that, ceteris paribus, candidates should spend more time and 

money campaigning in the smaller states than their populations would otherwise justify.  

Second, the winner-take-all feature of statewide voting used in the Electoral 

College by 48 of the 50 states (and the District of Columbia) is alleged to benefit the 

larger states. Here, we have the argument, based on game theoretic ideas about pivotal 

power, that the Electoral College should disproportionately focus candidate attention on 

the largest states, since it is claimed that, ceteris paribus, the citizens in those states have 

a likelihood of being pivotal in the election in terms of turning a losing coalition of states 

into a winning one that is more than proportional to their state’s share of Electoral 

College votes (Brams and Davis, 1974).  

 Third, it has recently been suggested that the Electoral College operates to benefit 

the states experiencing close contests for the presidency, by focusing candidate attention 

only on the relative handful of potentially competitive states, leaving much of the country 

barely aware that a presidential election is going on. 

It might appear obvious that all these assertions cannot be true.  In particular, it is 

far from intuitive how the Electoral College might structure incentives so as to 

simultaneously make it more likely that candidates would campaign in both the largest 

states and the smallest states  at levels higher than the population of those states would 

seem to merit. Yet, as we will see, we can construct models in which this 

underrepresentation of the states of middling population can occur. However, unless 

closeness and size are perfectly correlated, or unless the effects of state size and level of 

competition on campaign investments act in a completely additive fashion, then we need 

to follow up on a point made in Brams and Davis [1974: 132] about the desirability of 

relaxing the restrictive assumption they make that each state’s already decided voters are 

divided equally between the two parties on use of poll data about closeness. 

 

An important distinction to make here is that between a priori voting power, 

which is based entirely on the laws and description of the voting process, and the actual 

power which depends on likely coalitions. Since we are specifically considering political 
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processes, it is clear that certain coalitions (e.g., coalitions among voters with similar 

ideology, or among voters living in a given area) are more likely than others. We discuss 

both types of power, but will give modifications mainly for the second (practical) case.  

There are several power indices in the literature. The best known are the Shapley-

Shubik [1954] and Banzhaf [1965]/[Coleman [1971] indices. Application of these indices 

shows that the larger states (California, New York, etc.) have substantially greater power 

than one would normally expect. Owen [1975, see also Owen 1995, p. 302] found that – 

on the basis of 1970 census figures – a voter in California had, a priori, 2.86 times as 

much power as a voter in North Dakota. This was so even though North Dakota had then 

2.87 times as many electoral votes per capita as California. The question is whether this 

rather unintuitive result is reasonable; if not, we would like to suggest modifications. 

We will limit ourselves to discussion and modifications of the Shapley-Shubik 

index. Other power indices give similar results; it is not necessary to discuss them here. 

 

Multilinear Extensions  

Our approach to the power index will be based on the multilinear extension 

[Owen 1972]. Let (v, N) be an n-person TU game in characteristic function form.  

Then the multilinear extension 
 
(1)                       F(q1, q2, …, qn)  =  ∑S⊂N {Πj∈S qj Πj∈N-S (1-qj)} v(S) 
 
represents the expected worth, E[v(ς)], of a random coalition ς, given that each player, i, 

has probability qi of belonging to the coalition, and that all these probabilities are 

independent. The partial derivative Fi = ∂F/∂qi represents the expected marginal 

contribution, defined as v(ς∪{i})-v(ς-{i}), of player i to this random coalition. 

 

     Now the Shapley value can be obtained by the formula, from [Owen 1972], 

 

(2)                                              шi[v]  =  ⌠1 Fi(t, t, …, t) dt 
                                                                 ⌡0 
 
in which the Russian letter ш stands for the Shapley value. This formula can be 

interpreted by the following parable: the n players in a game have agreed to meet in a 

given place, at a given time. Because of random fluctuations in watches, unforeseen 
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delays, etc., they in fact arrive in some random order. Each one’s arrival time is a random 

variable, Xi; these n random variables are independent and have identical distribution. So 

long as this is a continuous distribution, there is no loss of generality in assuming that it is 

a uniform distribution over the unit interval.  

     We assume, as described in [Shapley 1953], that, on arrival, player i is paid his 

marginal contribution to the coalition consisting of those players who have already 

arrived. Then the value шi[v] is precisely player i’s expected payment. 

      Suppose, however, that the n players’ arrival times are not identically distributed. 

(One is habitually tardy; another is an early riser, etc.) We let gi be the cumulative 

distribution for i’s arrival time, i.e., gi(t) = Prob{Xi ≤ t}, and assume these variables are 

independent and absolutely continuous (so each can be represented by a density function 

gi’). Then 

 

(3)                                        ψi =  ⌠B Fi(g1(t), …, gn(t)) gi’(t) dt 
                                                     ⌡A 
 

is the expected payment to i under these assumptions.  

[Note: In formula (3), A and B should be chosen so that all gi(A) = 0, and all gi(B) = 1. 

Since this may not be practical (e.g., some distribution may have infinite support), we 

merely require that they be close to 0 and 1 respectively.] 

     To see how this works, we give two easy examples, with three players each, and 

normal distributions for their arrival times. 

 

Example 1. Consider a three-person situation, where any two of the voters form a 

winning coalition. In this case, the multilinear extension is given by 

 

F(q1, q2, q3)  =  q1q2 + q1q3 + q2q3 – 2q1q2q3 . 

 

The partial derivatives here are 

 

F1 = q2 + q3 – 2q2q3 
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and similarly for the other two.  

 

     Let the three voters’ times of arrival be normally distributed, with means and standard 

deviations 

 

µ1 = .4, σ1 = .1 

µ2 = .5, σ2 = .2 

µ3 = .7, σ3 = .1 

 

     We will let  

 

gi(t)  =  Prob {Xi ≤ t} =  Φ( (t-µi)/σi) 

 

where Φ is the standard normal distribution function. Thus   

 

g1(t)  =   Φ(10t-4) 

g2(t)  =   Φ(5t-2.5) 

g3(t)  =   Φ(10t-7) 

 

Note that, for all three, we have gi(0) very close to 0, and gi(1) very close to 1. Thus it 

should suffice to let A = 0 and B = 1 in our integration formula above. (If a more precise 

result were necessary we could let A = -1 and B = 2.) 

 

     From the above, we obtain the densities (derivatives) 

 

g1’(t)  =  10 ϕ(10t-4) 

g2’(t)  =   5 ϕ(5t-2.5) 

g3’(t)  =  10 ϕ(10t-7) 

 

where ϕ is the normal density function, ϕ(x) = (2π)-½ exp{-x2/2}. 
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     The integration formula leads to the result ψ = (.323, .490, .187). Thus, player 2, 

whose expected time of arrival is in the middle, has the advantage, though he will 

frequently (more than half the time) shift out of the middle position. Player 1, whose 

expected position is more moderate than that of player 3, does in fact considerably better 

than 3.  

 

      Note that this effectively assumes motion “from left to right”, with a coalition 

forming as the left-most members (those closest to 0) join first, then those in the middle, 

and finally those on the right (closest to 1). We can imagine as well motion from right to 

left (the reverse order), but in fact this gives the same results as before. This is to be 

expected where the voting game is decisive: for every coalition S, either S or N-S (but not 

both) is a winning coalition. For such games, an order and the reverse order give the same 

result.  

 

Example 2. Consider a similar three-person situation, with the same winning coalitions 

and the same multilinear extension. The difference will be in the three voters’ times of 

arrival, now characterized by 

 

µ1 = .5, σ1 = .1 

µ2 = .5, σ2 = .2 

µ3 = .5, σ3 = .05 

 

We continue as in Example 1. The integration formula now leads to the result ψ = (.369, 

.166, .465). In this case, we find that player 3 is favored, mainly because his smaller 

variance means he will generally be closer to the center of the distribution, and thus more 

frequently in the middle, between the other 2. But note that, if the voting game required 

unanimity, the situation would be quite different: in this case, we would find ψ = (.316, 

.417, .267). 
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     Thus, where the expected times of arrival are different (as in example 1), those players 

with expected positions near the median will be advantaged. Where the expected arrival 

times of the players are all equal (as in example 2), and a simple majority of the votes is 

necessary to win, the player with smaller variance is generally advantaged. (On the other 

hand, with a supermajority necessary, the situation may well be different.) What is not 

obvious from the example is that, when there are many players, the advantage will 

(asymptotically) be inversely proportional to the square root of the variance.  

 

The Electoral College 

      Let us see how this applies to the Electoral College. There are n players (states), with 

differing numbers of electoral votes, depending on the state’s population. Let v be the n-

person game among the states. Let mj be the number of voters in state j, and let rj be the 

number of votes needed to determine the state’s electors, which is in this case (mj+1)/2. 

We shall let wj represent the simple game, with mj players, in which the minimal winning 

coalitions are precisely those with exactly rj members. Let Gj(y1, …, ym) be the 

multilinear extension of game wj, and define 

 

(4)                                                  gj(t)  =  Gj(t, …, t). 

It is easy to see that gj(t) is, in this case, the probability that a binomial random variable 

with parameters mj and t be at least equal to rj. What this means is that, if each of the mj 

voters arrives according to a uniform distribution in the unit interval, gj(t) is the 

probability that a majority (or more of these has arrived not later than time t: in other 

words, it is the probability that state j will have its “time of arrival” not later than t. See 

[Owen 1975] for this.  

     Assuming mj large, we can approximate this binomial probability by the normal 

distribution with mean t mj and variance t(1-t)mj. Approximately, then, 

(5)                                                   gj(t) =  Φ t mj  –  rj   
                 √t(1-t)mj 

 
     Next, we calculate the function F(g1, …, gn). Let state j have wj electoral votes. Then, 

since gj(t) is the probability that state j arrives on or before time t, then the number of 



 8 

electoral votes that state j will have contributed by time t can be thought of as a random 

variable with mean wjgj(t), and variance wj
2gj(t)(1-gj(t)). It will follow that the number of 

electoral votes Y in the random coalition ζ has mean  

 

MY (t)  =  ∑j wjgj(t) 

 

and variance 

 

σY
2(t)  =  ∑j wj

2gj(t)(1-gj(t)). 

 

Given the number of states, it is possible to approximate Y by a normal random variable 

having the same mean and variance. Thus F can be expressed in terms of the normal 

distribution function Φ, and the calculation is then a straightforward problem in 

integration (easily carried out with current computer packages, using Simpson’s rule). 

The reader is invited to read [Owen 1975] for details of this integration. 

     It can also be seen that, since the ratios rj / mj are all nearly equal to ½, then the change 

of variable 

 

(6)                                                  τ  =  (t–½) / √[t(1-t)] 

gives us the much simpler expression 

 

(7)                                                      gj =  Φ (τ √mj) 

 

where Φ is the normal distribution function. Thus, the effect of difference in population 

translates into a difference in variance: the time of arrival of state j is now a normal 

random variable with mean 0 and variance 1/mj. 

     (It should be noted that, under this change of variable, the values 0 and 1 for the 

original variable, t, transform into –∞ and +∞, respectively, for τ. The integral (3) 

becomes an improper integral, but, in practice, it should suffice to let τ run from –K to 

+K, where K is large enough so that K√mi is of the order of 3 for the smallest of the 

constituencies.) 
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     Now, the Shapley value assumes that (a) all voters have their “time of arrival” 

identically distributed and (b) these are independent, so that, in fact, formula (1) above 

holds. We will call this the hypothesis of universal population homogeneity and 

independence (HUPHI). This means that all the state positions have identical means, 

with variance inversely proportional to the population. The effect of this is that the larger 

states are more likely to be near the center, and, as in Example 2 above, are more likely to 

be pivotal if a simple majority of the constituency weights is necessary to win. If, on 

the other hand, a super-majority (say, two thirds) is necessary, then these larger states are 

less likely to be pivotal (though of course they might still be stronger, simply because 

their voting weights are greater). 

 

First Modification: Introduction of Undecided Voters 

     Suppose, now, that the HUPHI does not hold. Different states have different 

distributions for their populations. We shall use a relatively simple model for this; there 

are of course several other possibilities.      

      We assume that, in each state, part of the population is definitely on the left, part is 

definitely on the right, and the remaining voters (the undecideds) are the ones in play. In 

our “time of arrival” parable, the left wing arrives immediately at time 0, the right wing 

arrives at time 1, and the undecideds arrive according to a uniform distribution in the unit 

interval. as before, we wish to find gj, the probability distribution of Xj, state j’s time of 

arrival. 

          Let mj be the voting population of constituency j, and let aj and bj be the population 

of the left- and right-wing blocs respectively.  Then the undecideds are cj = mj – aj – bj. 

Assume, as before, that rj = (mj+1)/2 votes are needed to carry the constituency; then the 

left-wing party requires sj = rj – aj votes from among the undecideds.  

     (It may, of course, happen that aj ≥ rj. In such case the left-wing party will certainly 

carry the state, Xj will be equal to 0, gj will be constantly equal to 1, and the voters in this 

state will, in our analysis, have zero power. Similarly, if bj ≥ rj, then the right-wing party 

will certainly win the state, Xj will be equal to 1, gj will be constantly equal to 0, and once 

again the voters here have no power.) 
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     We will therefore consider only states for which rj is greater than both aj and bj. 

Continuing as above, we would then find that the state “arrives” when exactly sj of the cj 

undecideds have arrived:  

(7)                                                    gj(t) =  Φ  tcj  –  sj   
                 √t(1-t)cj 

 
 

If we let γj = sj /cj, we obtain 

 

(8)                                                    gj(t) =  Φ (t-γj)√cj 
                √t(1-t)  

 

     The density is then given by 

(9)                               gj’ (t) =  (t + γ – 2γt)√cj   ϕ (t-γj)√cj 
   2(t–t2) 3/2            √t(1-t)  

 

     To obtain the modified power, we would then modify the calculations in [Owen 1975, 

see also 1995, pages 298-299], using these values for the functions gj. In principle, there 

is no great difficulty – given the existence of mathematical packages for computers – in 

carrying out the necessary integration. Some care must of course be taken to avoid values 

of t which are too close to 0 or 1, but such values would be of importance only if sj is 

extremely close to either 0 or cj, and these states will, in our model, have negligible 

power. We wish, however, to look at some qualitative properties of this modified index, 

making a simplification similar to the one above (equation 7). 

     Unfortunately, since the γj are not all equal, the simplifying transformation (6) is not 

available. We note, however, that gj(γj) = ½, so that the median entry time for 

constituency j is γj.  

     The calculations at this point become somewhat complicated. Nevertheless, it is not 

too difficult to prove that, if two constituencies, i and j, have γi < γj , and undecided 

populations ci < cj respectively, then 

 

Prob{Xi > Xj}  ≤  Φ ( [γi – γj]√(2ci)). 
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If we further assume that ci is of the order of 20,000 (a rather small number given the size 

of today’s electorates), we find that  

 

Prob{Xi > Xj}  ≤  Φ (200[γi – γj]). 

 

Now, we know that Φ is a strictly increasing function, with Φ(-2) = 0.023. Thus, if γj – γi 

> 0.01, we find that Prob{Xi > Xj} < 0.023. We conclude that, unless the quantities γi are 

very close for several states, the probability of an out-of-order arrival is extremely low, 

and thus almost all of the voting power will reside in a small number (possibly two or 

three) of median states.1  

Discussion of the Above Indices 

          As we have seen, the classical Shapley value (or for that matter the Banzhaf-

Coleman index) gives excessive a priori value to the larger constituencies, essentially 

because the HUPHI (hypothesis of universal population homogeneity and independence) 

causes all constituencies to have the same expected time of arrival, with smaller variances 

for the larger ones. When the voting game requires a simple majority (i.e., one half plus 

one) of the weighted votes, a smaller variance increases the probability that a state lie in 

pivotal position. (See example 2 above.) It is of course also true that, for the Shapley 

value – though not the B-C index – a requirement for a super-majority will weaken the 

state with smaller variance. 

     On the other hand, the inclusion of undecideds, etc., which we mentioned above, will 

give differing expected times of arrival for the states. However, it allots almost all the 

power to a very few constituencies – those with expected time of arrival nearest the 

median. It is as if, in this last (2004) presidential election, we need only consider four 

states: Ohio with 20 votes, Nevada, 5, New Mexico, 5, and Iowa, 7. To see this, note that 

Ohio was in fact the pivotal state. According to our analysis above, only states with a 

two-party division of the vote within 1% of Ohio would be considered possible pivots: 

these are precisely the four states mentioned. Among the remaining states, Bush had 249 

votes, while Kerry had 252. To win, Bush needed 269 votes, and Kerry, 270. (This 
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difference is due to the fact that, in case of an Electoral College tie, the election would be 

resolved in the House of Representatives, where the Republicans had a sizable majority 

of the states.) Thus whoever carried Ohio would win the election. We should perhaps 

include Florida and Wisconsin, where the division differed from that of Ohio by about 

1.4 %. Then Ohio would not have all the power, but (as discussed above) the probability 

that Florida would end up to the left of Ohio, or Wisconsin to the right, are of the order of 

less than 2%. We would conclude that Ohio had perhaps 98% of the total power; the 

remaining 2% would be divided among Florida, Wisconsin, and the three other states 

mentioned above. The other 44 states, and the District of Columbia, would have truly 

negligible power.   

 

Now, it is our belief that the greatest problem with the indices thus far considered 

is that they fail to take into account correlation among the voters of a given state. To see 

why correlation is important, consider the following straw man: 

Suppose that, at birth (or on naturalization) each citizen of the United States were 

assigned a two-letter symbol. There are 51 of these, and they are assigned according to a 

certain probability distribution. For example, the symbol CA has probability 0.12, the 

symbol WY has probability 0.017, etc. Otherwise the assignment is totally random: an 

individual’s symbol has no relation to his family or place of birth, and even twin siblings 

can have symbols as totally different as MA and UT.  

These symbols seem to be quite meaningless, except that they are kept in the 

electoral rolls. Then, for a presidential election, votes are totaled according to symbol, 

Each symbol is then given a number of “supervotes”, proportional to the original 

probability distribution, and these will be assigned (on a winner-take-all basis) to the 

candidate with most votes from among those with a given symbol.  

Now, it is hard to imagine that anyone would espouse this proposal. So how is it 

different from the Electoral College? The answer is that in the Electoral College, people 

are grouped together by their state of residence rather than by some meaningless pair of 

letters (akin perhaps to the last two digits in the social security number). Because of this, 

there is meaningful correlation (of opinion) among voters who are grouped together in 

                                                                                                                  
1 The authors will be happy to provide details of this analysis. 
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the Electoral College system, but not in our straw man proposal. However, the classical 

voting indices essentially assume that voters’ decisions are totally independent and thus 

no different from the situation in the straw man proposal. 

 

An Alternative Approach 

 

          Granted that the two methods described above give counterintuitive results, we feel 

that a different approach, assuming substantial correlation among nearby voters, and 

especially among voters within a given state, should be considered. With such a 

correlation, the variance of the state arrival times would be considerably larger than given 

by our model – certainly much larger than 1/mi or even 1/ci. As Gelman/Katz/Bafumi 

[2004] point out, empirical evidence suggests that the variance is closer to mi
-0.2.  

         

     To model the correlation, we represent this by a partial differential equation, where we 

represent the voters by points, x, on a line, and time by t. The coordinate x corresponds to 

physical location: if |x–y| is small, then voters x and y are “neighbors” who can talk to 

each other. Assume that there are two parties, which we generically call the right-of-

center and the left-of-center. We let u(x, t) represent voter x’s state of mind (his feeling 

towards the two parties) at time t. Specifically, we assume that x has a “usual” state. Then 

u(x, t) > 0 means that, at time t, x is more likely than usual to vote for the right-of-center 

party; similarly, u(x, t) < 0 means he is more likely than usual to vote for the left-of-

center. 

     Now, we assume that voter x is influenced by the voters near him, and has a tendency 

to move in the same way that they do. We will represent this by the equation 

 

(10)                                               ∂u/∂t  =  k ∂2u/∂x2  +  f(x, t) 

u(x, 0)  =  g(x) 

-∞ < x < ∞, 0 < t < ∞ 

 

where k is a constant of proportionality, corresponding to the speed with which political 

news and opinions spread among neighbors, and where the forcing term, f, represents 
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external events, and may even be split into two parts, one corresponding to random 

events, and the other to efforts by one or the other of the two parties.  

 

     To estimate the correlation, assume there is no variation until time 0. Assume then a 

unit shock, concentrated at some point x = xo, at time t = 0. This corresponds to an initial 

condition 

 

u(x, 0)  =  δ(x–xo) 

 

where δ is the Dirac delta function. Assume also that there is no forcing term, i.e. f = 0.  

     The knowledgeable reader will recognize the above as the heat equation that appears 

in most courses in partial differential equations. It has the solution 

 

(11)                                       u(x, t)  =  (4πkt)-½ exp{-(x-xo)2 /4kt} 

 

     Of course this shock could happen at any point xo within the state. There may be 

several such shocks, at possibly different times, but we assume these are uncorrelated. 

Thus the correlation between different voters can be given by the autocorrelation of this 

function. Some analysis tells us that the relative correlation is 

 

(12)                                     ρ(x, y; t)  =  exp{-(x–y)2/8kt}. 

 

     Now, for small values of t, this will be a very sharp curve, with a strong maximum at x 

= y, and falling to 0 very quickly. For large t, on the other hand, his will be a very flat 

curve.  

 

     Suppose, now, that the population of a constituency occupies a line segment of length 

c, which we can assume, without loss of generality, to be the interval [0, c]. Assume also 

that each individual’s political stance has a variance 1. Then the variance of the sum of 

their positions is given by   
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(13)                                           ⌠c ⌠c exp{-(x–y)2/8kt}dx dy 
                                                 ⌡0 ⌡0 
 
which, after some calculations, reduces to 

 

(14)                    Var  =   c (8πkt)½erf{c(8kt)-½} – 8kt [1 – exp{-c2/8kt}] 

 

and the variance of the mean is this same quantity divided by c2.  

     [Note: if each individual’s political stance has a variance of σ2 rather than 1, then the 

above result should be multiplied by σ2.] 

 

       We find here that for small c (small compared to kt), then Var, as given above, is 

almost equal to c2. Thus the variance of the mean is only slightly smaller than σ2, the 

variance of position for an individual voter. On the other hand, for large c, Var can be 

significantly smaller than c2, and is asymptotically proportional to c. To see this behavior, 

we calculate the quantities Var and Var/c2 for several values of c, and for kt = 12500: 

 

c    Var    Var / c2 

 

100    9983    .9983 

200                          39735                .9934 

300    88674     .9853 

500   240080   .9603 

1000   861524   .8615 

2000   254663   .6367 

4000   6089800    .3806 

6000   9634700   .2676 

10000   16724500   .1672 

50000    87622500   .03505 

100000  176245000   .01762 
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As may be seen, Var/c2 decreases very slowly until about c = 500. Afterwards, it 

decreases much more rapidly, until for c ≥ 10,000, it can be approximated reasonably 

well by 1760/c. In effect, this means that the variance behaves as though the c 

undecided voters arrived, not independently, but, rather, in independent bunches of 

1760. This will hold so long as the actual number of undecideds is at least of the 

order of 10,000. 

      Of course, the numerator 1760, the size of the independent bunches, depends on both 

k and t. Specifically, for large c, it will be proportional to the square root of kt. It is 

difficult to decide how large this should be chosen, but in the next section we will try to 

justify a value chosen. (See footnote 1, below.) 

  
Statistical Analysis 
 
     We will make the assumption that Republican candidate i’s share of the two-party 

vote in state j can be approximated by 

(15)                                      qij =  µi +  zj + eij 

 

where µi represents the candidate’s personal popularity, zj is state j’s Republican 

tendency (low for MA and DC, high for UT and WY), and eij is an additional (random) 

term, representing perhaps good or bad luck for the candidate in that state. Typically, µi 

would be of the order of 0.1 for a very popular candidate (say, Nixon in 1972), -0.1 for an 

unpopular candidate (Goldwater in 1964) and in between for other candidates. In fact, we 

will not worry about the µi, since they do not affect the states’ rankings, and we are only 

interested in the probability that a given state be a pivot.  

     We estimate zj by looking at the Republican share of the vote in the last five elections 

(1988-2002). Since positions evolve over time, we have discounted past elections by a 

factor of 0.8 for each cycle. Thus, for each state, we calculate the quantity 

 

(16)           zj    =      s2004,j + 0.8 s2000,j + 0.64 s1996,j + 0.512 s1992,j + 0.4096 s1988,j 

3.3616 
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where sk,j is the Republican share of the two-party vote in state j, in the year k presidential 

election. This allows us to give a position to each state. (The numbers should be divided 

by 1000.) We obtain an ordering for the states, from most Democratic to most 

Republican. The electoral votes, wj, are those of the 2000 reapportionment: 

 

State zj γj wj Cumulative EV 

DC 102 0 3 3 

MA 368 0 12 15 

RI 370 0 4 19 

NY 395 0 31 50 

VT 418 0.09 3 53 

HI 420 0.10 4 57 

MD 438 0.19 10 67 

IL 440 0.20 21 88 

CT 441 0.205 7 95 

CA 445 0.225 55 150 

ME 452 0.26 4 154 

WA 454 0.27 11 165 

DE 456 0.28 3 168 

MN 458 0.29 10 178 

NJ 458 0.29 15 193 

OR 469 0.345 7 200 

MI 472 0.36 17 217 

PA 474 0.37 21 238 

IA 477 0.385 7 245 
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WI 482 0.41 10 255 

NM 488 0.44 5 260 

WV 496 0.48 5 265 

AR 497 0.485 6 271 

MO 501 0.505 11 282 

NH 504 0.52 4 286 

OH 506 0.53 20 306 

FL 517 0.585 27 333 

NV 518 0.59 5 338 

CO 520 0.60 9 347 

LA 523 0.615 9 356 

TN 530 0.65 11 367 

AZ 536 0.68 10 377 

VA 541 0.705 13 390 

GA 549 0.745 15 405 

NC 549 0.745 15 420 

KY 551 0.755 8 428 

MT 568 0.84 3 431 

AL 570 0.85 9 440 

SC 573 0.865 8 448 

IN 574 0.87 11 459 

SD 575 0.875 3 462 

TX 577 0.885 34 496 

MS 587 0.935 6 502 
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KS 596 0.98 6 508 

OK 600 1 7 515 

ND 605 1 3 518 

AK 632 1 3 521 

NE 637 1 5 526 

WY 644 1 3 529 

ID 658 1 4 533 

UT 686 1 5 538 
 
      
     We next assume that 20% of the voters in each state are undecideds, and that they 

have, in the past, divided evenly between the two candidates. Thus, for state j, where the 

Republican’s share of the vote is yj, we assume that dj = 0.9 – yj are the Democratic 

stalwarts, and ej  =  zj – 0.1 are the Republican stalwarts. Then, if zj < 0.4, the state is not 

in play, as the Democrats have a majority even without any of the undecideds. Similarly, 

if zj > 0.6, then the Republicans have a certain majority. In our “time of arrival” parable, 

the former of these arrive at time 0, while the latter arrive at time 1. Thus, there are 7 safe 

states for the Republicans, and 3 safe states, as well as the DC, for the Democrats. 

     There are 40 states with 0.4 < zj < 0.6. These states are theoretically in play, though 

such states as Kansas, at .596, and Vermont, at .418, seem safe for their parties except in 

case of a landslide of historical proportions. We then note that, for a state to “arrive”, at 

least a fraction γj of its undecided voters must join, where 

 

(17)                                                 γj  =  5zj – 2. 

 

     As discussed above, this γj is also the median value of Xj, state j’s arrival time. As may 

be seen, Arkansas is the median state in this ordering, with zAR = .497. Then Γ = γAR = 

0.485 is a good approximation to the median time at which a winning coalition forms. 
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     It is still necessary to get a distribution for these times of arrival. As mentioned above, 

the effect of correlation is to decrease the variance of arrivals. Thus, with cj undecideds, 

and independence, the variance is σ2/cj, where σ2 is the variance of each individual’s 

time. However, we saw that (under certain assumptions), the group variance was as if the 

undecideds arrived in bunches of 1760 at a time, these bunches coming independently. 

Moreover, this bunch size of 1760 depends on certain parameters which are admittedly 

uncertain. Let us assume, then, that the size of the bunches is, rather, 2500. 

     Now, if we assume that 35% of the state population vote, and that 20% of these are 

undecided, we find that the undecideds are 7% of pj, the state population. However, these 

arrive in bunches of 2500. Thus the number of undecided bunches would be 

 

(18)                             cj  =  .07 pj /2500  =  .000028 pj 

 

We call cj , the virtual number of undecided bunches.2  

 

     Of these virtual bunches, a fraction γj must arrive for state j to arrive. Thus we need 

(19)                                                sj  =  γjcj 

 

of these bunches. Then, in equation (4), gj(t) is equal to the probability that a binomial 

variable, with parameters cj and t, be at least equal to sj. Approximating the binomial by a 

normal variable, we have the cumulative distribution function gj and its density, gj’ as 

given by equations (8) and (9) above, which we repeat here as (20) and (21): 

 

(20)                                                    gj(t) =  Φ (t-γj)√cj 
                     √t(1-t)   

 

 
(21)                              gj’ (t) =  (t + γ – 2γt)√cj   ϕ (t-γj)√cj 

     2(t–t2)3/2             √t(1-t)   
                                       
2 To see that this is a reasonable number, note that, for a standard-sized electoral district of 500,000 
inhabitants, this gives us a total of 14 virtual bunches. As mentioned above, Gelman, Katz and Bafumi 
(2004) suggest that the variance should behave as the –0.2 power of population, i.e., as if the population 
should be replaced by its fifth root. But the fifth root of 500,000 is 13.8. This is not to say that our 
analysis is exact, only that it is not unreasonable.  
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     Unfortunately, Xj is not normally distributed. The distribution gj is given in terms of 

the normal distribution, but its “variance” unfortunately depends on t. Nevertheless, we 

note that, since t(1-t) ≤ 0.25, then, for all t > γj, we must have      

 

(22)                                              gj(t) >  Φ [2(t-γj)√cj] 

 

while the opposite  inequality will hold if t < γ. Now, we know that Φ(1.96) = .975, while 

Φ(-1.96) = 0.025. It will follow that 

 

(23)             gj(γj + 0.98/√cj)  >  .975,              gj(γj – 0.98/√cj)  <  .025, 

 

and we conclude that γj ± 1/√cj gives us better than a 95% interval for Xj.  

     We now simplify matters by assuming that we can disregard anything outside the 95% 

interval, γj ± 1/√cj. We calculate this for all but the 10 states, and the DC, mentioned 

above as always safe for one or the other of the two parties. The several states’ 

populations, pj, are the July 2005 Census Bureau estimates, obtained from the web site 

www.factmonster.com. 

 
 
 

State γj pj(thousands) cj γj ± 1/√cj Cumulative 
EV 

DC 0 551 15.43 0 3 

MA 0 6399 179.17 0 15 

RI 0 1076 30.13 0 19 

NY 0 19255 539.14 0 50 

VT 0.09 623 17.44 [0, .33] 53 

HI 0.10 1275 35.70 [0, .27] 57 
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MD 0.19 5600 156.80 [.11, .27] 67 

IL 0.20 12763 357.364 [.15, .25] 88 

CT 0.205 3510 98.28 [.10, .31] 95 

CA 0.225 36132 1011.70 [.19, .26] 150 

ME 0.26 1322 37.02 [.10, .42] 154 

WA 0.27 6288 176.06 [.19, .35] 165 

DE 0.28 844 23.63 [.07, .49] 168 

MN 0.29 5133 143.72 [.21, .37] 178 

NJ 0.29 8718 244.10 [.23, .35] 193 

OR 0.345 3641 101.95 [.25, .44] 200 

MI 0.36 10121 283.39 [.30, .42] 217 

PA 0.37 12430 348.04 [.31, .43] 238 

IA 0.385 2966 83.05 [.28, .49] 245 

WI 0.41 5536 155.01 [.33, .49] 255 

NM 0.44 1928 53.98 [.30, .58] 260 

WV 0.48 1817 50.88 [.34, .62] 265 

AR 0.485 2779 77.81 [.37, .60] 271 

MO 0.505 5800 162.40 [.43, .58] 282 

NH 0.52 1310 36.68 [.35, .69] 286 

OH 0.53 11464 320.99 [.47, .59] 306 

FL 0.585 17790 498.12 [.54, .63] 333 

NV 0.59 2415 67.62 [.47, .71] 338 

CO 0.60 4665 130.62 [.51, .69] 347 

LA 0.615 4524 126.67 [.53, .70] 356 
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TN 0.65 5963 166.96 [.57, .73] 367 

AZ 0.68 5939 166.29 [.60, .76] 377 

VA 0.705 7567 211.88 [.64, .77] 390 

GA 0.745 9073 254.04 [.68, .81] 405 

NC 0.745 8683 243.12 [.68, .81] 420 

KY 0.755 4173 116.84 [.66, .85] 428 

MT 0.84 936 26.21 [.64, 1] 431 

AL 0.85 4558 127.62 [.76, .94] 440 

SC 0.865 4255 119.14 [.77, .96] 448 

IN 0.87 6272 175.62 [.79, .95] 459 

SD 0.875 776 21.73 [.66, 1] 462 

TX 0.885 22860 640.08 [.85, .92] 496 

MS 0.935 2921 81.79 [.82, 1] 502 

KS 0.98 2745 76.86 [.87, 1] 508 

OK 1 3548 99.34 1 515 

ND 1 637 17.84 1 518 

AK 1 664 18.59 1 521 

NE 1 1759 49.25 1 526 

WY 1 509 14.25 1 529 

ID 1 1429 40.01 1 533 

UT 1 2470 69.16 1 538 
 
     As may be seen, if we consider only the times within each state’s 95% interval, a 

majority (270 electoral votes) can arrive no sooner than time 0.38 (Arkansas’s early 

time), and will certainly have arrived by time 0.59 (Missouri’s late time). Thus, only 



 24 

those states whose interval overlaps [.38, .59] can be pivots under our scheme. We can 

put the states in five categories: 

 

a) Safe for the Democrats : DC, RI, MA, NY, with 50 votes; 

b) Almost safe for the Democrats : VT, HI, MD, IL, CT, CA, WA, MN, NJ, with 

136 votes; 

c) In play : ME, DE, OR, MI, PA, IA, WI, NM, WV, AR, MO, NH, OH, FL, NV, 

CO, LA, TN, with 181 votes; 

d) Almost safe for the Republicans : AZ, VA, GA, NC, KY, MT, AL, SC, IN, SD, 

TX, MS, KS, with 141 votes; 

e) Safe for the Republicans: OK, ND, AK, NE, WY, ID, UT, with 30 votes. 

 

     Only the 18 states “in play” have a non-negligible probability of being pivot. Since 

186 votes are going to arrive early, the pivot will be that state (among these 18) to 

complete 84 votes. Thus, for example, Maine, with its 4 votes, must arrive at a time when 

other “in play” states with at least 80, and not more than 83, electoral votes, have arrived. 

This number of votes is of course an integer, but we will approximate via a continuous 

distribution, Then, if Yj(t) is the number of votes (not counting those of state j) to have 

arrived by time t, we find that the jth partial derivative (where j refers to Maine) of the 

multilinear extension F, evaluated at (g1(t), …, gn(t)), is given by 

 

(24)                             Fj(g(t))  =  Prob[79.5 ≤ Yj(t) ≤ 83.5]. 

 

      Thus the probability that ME is in fact the pivot will be given by 

 

(25)                               ψj  =  ∫ Prob[79.5 ≤ Yj(t) ≤ 83.5] gj’(t) dt, 

 

where the integral is taken over a sufficiently large interval, for example, ME´s 95% 

interval, [.10, .42]. 

     For other states, the probability is given by a similar integral; the probability in the 

integrand must however be replaced by  
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(26)                                    Fj(g(t))  =  Prob[83.5 – wj ≤ Yj(t) ≤ 83.5], 

 

where wj is state j’s electoral weight (number of votes). The integral in (25) should be 

modified accordingly. 

 

     It remains to determine the probability that 83.5 – wj ≤ Yj(t) ≤ 83.5. In fact, at time t, 

state k has arrived with probability gk(t). Thus it will have contributed wk votes with 

probability gk, and 0 votes with probability 1–gk. Thus the number of votes it has 

contributed is a random variable with mean wkgk, and variance wk
2gk(1–gk). Now Yj is the 

sum of these variables, for all states k other than j. The states are assumed to arrive 

independently, and thus Yj has mean 

 

(27)                                                 Mj =  ∑k≠ j wkgk, 

 

and variance  

 

(28)                                           Vj =  ∑k ≠ j wk
2gk(1–gk). 

 

Note that, since all the gk depend on t, so do Mj and Vj. 

     We will now assume that the number of states in play is sufficiently large that we can 

approximate Yj by a normal random variable with the given mean and variance. If that is 

so, then we have the approximation 

 

(29)                              Fj  ≈   Φ 83.5 – Mj    –   Φ 83.5 – wj – Mj 
                                                       √Vj                        √Vj            
     

        Finally, we must determine the individual voters’ power. We note that a resident, k, 

of state j will be the pivot if (1) j is the pivot among the states, and (2) k is the median 

voter in state j. Since (apart from states in the two “safe” categories) only undecided 

voters will be in median position, we divide the state’s pivot probability, ψj , by the 
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number of undecided voters, which we had calculated as .07 pj. This gives us the voting 

power of individuals in state j..  

    The table gives the approximate values. (We used Maple 10 to carry out the several 

integrations.) Entries in the last column should be multiplied by 10-9. 

 
   

State γj pj(thousands) E. V. Piv. prob. ψj Power       
ψj / .07 pj 

DC 0 551 3 0 0 

MA 0 6399 12 0 0 

RI 0 1076 4 0 0 

NY 0 19255 31 0 0 

VT 0.09 623 3 0 0 

HI 0.10 1275 4 0 0 

MD 0.19 5600 10 0 0 

IL 0.20 12763 21 0 0 

CT 0.205 3510 7 0 0 

CA 0.225 36132 55 0 0 

ME 0.26 1322 4 .0021 22.7 

WA 0.27 6288 11 0 0 

DE 0.28 844 3 .0059 99.9 

MN 0.29 5133 10 0 0 

NJ 0.29 8718 15 0 0 

OR 0.345 3641 7 .0067 26.3 

MI 0.36 10121 17 .0026 3.7 

PA 0.37 12430 21 .0024 2.7 
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IA 0.385 2966 7 .0360 173.3 

WI 0.41 5536 10 .0636 164.1 

NM 0.44 1928 5 .0838 623.6 

WV 0.48 1817 5 .1017 799.6 

AR 0.485 2779 6 .1472 756.7 

MO 0.505 5800 11 .1984 488.7 

NH 0.52 1310 4 .0606 660.9 

OH 0.53 11464 20 .1872 233.3 

FL 0.585 17790 27 .0583 46.9 

NV 0.59 2415 5 .0243 143.7 

CO 0.60 4665 9 .0102 31.3 

LA 0.615 4524 9 .0051 16.1 

TN 0.65 5963 11 .0021 5.0 

AZ 0.68 5939 10 0 0 

VA 0.705 7567 13 0 0 

GA 0.745 9073 15 0 0 

NC 0.745 8683 15 0 0 

KY 0.755 4173 8 0 0 

MT 0.84 936 3 0 0 

AL 0.85 4558 9 0 0 

SC 0.865 4255 8 0 0 

IN 0.87 6272 11 0 0 

SD 0.875 776 3 0 0 

TX 0.885 22860 34 0 0 
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MS 0.935 2921 6 0 0 

KS 0.98 2745 6 0 0 

OK 1 3548 7 0 0 

ND 1 637 3 0 0 

AK 1 664 3 0 0 

NE 1 1759 5 0 0 

WY 1 509 3 0 0 

ID 1 1429 4 0 0 

UT 1 2470 5 0 0 
  

 

     As may be seen, the power is concentrated among the states near the middle of the 

order. West Virginia voters are the most powerful, with Arkansas, New Mexico and New 

Hampshire close behind. Missouri and Ohio seem to be the most important states. There 

seem to be certain anomalies, e.g. Oregon seems to be more powerful than Michigan, 

though the latter is more populous and more centrally located. The explanation seems to 

be that it is easier to “move” the population of Oregon towards the center (there are fewer 

Oregonians than Michiganders) and so Oregon becomes an easier prize than Michigan. 

     Admittedly these results depend quite heavily on the size of the “virtual bunches.” In a 

subsequent article we will try to get a better statistical handle on these. 
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