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Abstract

The paper investigates how voting weights should be assigned to differently sized
constituencies of an electoral college if the objective is to give voters in all con-
stituencies equal indirect influence on decisions. In contrast to existing literature,
decisions are elements of a one-dimensional convex policy space. Individual a pri-
ori power is identified with the joint probability that a voter is the median at the
level of the constituency and that his or her constituency is pivotal in the electoral
college. Extensive Monte-Carlo simulations demonstrate that the square root rule,
which ensures approximate power equalization for dichotomous decisions, comes close
to equalizing voters’ influence also for much richer decision environments, provided
that a 50% quota is used. The paper also addresses the question of how (un)equal
voters’ representation is in the EU’s Council of Ministers and US Electoral College.

Keywords: voting power, equal representation, fair voting systems

∗x



1 Introduction

Free and fair elections are a cornerstone of democracy and indispensable to its long-run
survival. Whether or not elections are regarded as fair is largely determined by the voting
and decision-making procedures. In particular, the principle of “one person, one vote”
provides a litmus test for fairness of voting. However, there exist other important criteria
for the design of a voting system. Efficiency considerations or historical reasons can, for
example, provide a strong rationale for construction of a two-tier voting system in which
people’s policy preferences are first aggregated in multiple constituencies, e.g. districts or
states of a federation or members of a supranational institution, and then again among
representatives from the constituencies. Unless all constituencies contain an equal number
of voters, implementation of the one-person-one-vote principle then becomes non-trivial
and, possibly, only a second-best approximation of it may be feasible. In particular, as-
signing each voter one vote in his or her constituency and each constituency one vote
at the aggregate level results in greater average influence for voters coming from smaller
constituencies.

Penrose’s (1946) square root rule (also see Felsenthal and Machover 1998) gives an
answer to the problem of (approximately) equal representation in two-tier electoral systems.
It rests on a particular model of decision making. Namely, it considers dichotomous ‘yes’ or
‘no’ (0 or 1) decisions and assumes that all bottom-tier voters cast their vote independently
of each other and with equal probability for both alternatives.1 From these assumptions
it follows that constituencies’ voting power at the top-tier (as measured by the Penrose-
Banzhaf index2) should be proportional to the square root of the respective constituency
size.

Variations of Penrose’s model of decision making can be expected to lead to different
optimal weight assignment. This issue has received surprisingly little attention. Some re-
cent empirical work, such as Gelman, Katz, and Tuerlinckx (2002), questions the realism of
Penrose’s equiprobability assumption (or its generalizations, see fn. 1) and argues in favor
of something closer to direct proportionality of population and weight. Recent theoretical
work like Barberà and Jackson (2004) or Beisbart, Bovens, and Hartmann (2004) investi-
gates the optimal assignment of weights for a utilitarian rather than egalitarian objective
function.

To our knowledge, this paper is the first to investigate equal representation when de-
cisions are elements of a one-dimensional convex policy space, e.g. elements of interval
[0, 1]. To us, this seems at least as relevant and realistic as decisions concerning the set

1 More generally, one can consider a doubly-probabilistic behavioral model in which any voter i inde-
pendently of all other voters accepts an unspecified proposal with a probability pi which is in turn the
realization of a random variable Pi distributed independently across voters with mean µi = 0.5.

2The Penrose-Banzhaf index (Penrose 1946; Banzhaf 1965) is approximately proportional to voting
weight if the number of constituencies is large and constituency sizes are not too different (see Lindner
and Machover 2004). Therefore, calling for proportionality of square root of population and voting weight
(rather than voting power) entails only small imprecision e. g. for the EU’s Council of Ministers or US
Electoral College.
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{yes, no} or {0, 1}. Supported by various political and economic models, we assume that
the policy advocated by the top-tier representative of any given constituency Cj coincides
with the ideal point of the constituency’s bottom-tier median voter. The decision taken
at the top tier corresponds to the position of the pivotal representative, where pivotal-
ity is determined by the weights assigned to (representatives of) the constituencies and
a 50% quota. A two-tier voting system then ensures equal representation and obeys the
one-person-one-vote principle if and only if the joint probability of any bottom-tier voter
determining his or her constituency’s position and of this constituency being pivotal at the
top-level is equal for all voters.

We assume that ideal points of bottom-tier voters are a priori independently identically
distributed. Then any voter from constituency Cj with population ni has probability 1/nj

to be pivotal at the bottom level. So equal representation requires that the probability of
constituency Cj being pivotal is proportional to nj. Finding or at least characterizing a
suitable weight assignment which ensures proportionality is non-trivial because the size nj

influences the a priori distribution of Cj’s representative’s position. In particular, variance
of Cj’s ideal point is larger, the smaller is nj. Assigning weights proportional to nj therefore
would give citizens of large countries too much power, while uniform weights give them too
little power.

Analytical treatment of the problem is hard and we conjecture a neat and general
result similar to Penrose’s square root rule to be impossible except (perhaps) for special
limit situations. Therefore, we conduct extensive Monte-Carlo simulations. We vary the
weight assignment and search for rules that minimize the (cumulative quadratic) deviation
from equal representation in computer-generated as well as real-world two-tier electoral
systems. It turns out that, based on a decision quota of 50% at the top tier, weights that
are proportional to the square root of population are close to optimal for many population
distributions (but not all).

The paper thus demonstrates that if constituencies are sufficiently similar in size (no
constituency would become a dummy or dictator if the square root rule were applied) and
a 50% quota is used, Penrose’s square root rule is a quite robust norm for egalitarian design
of two-tier voting systems. It is known to be the right reference point in the context of
‘yes’-or-‘no’-referenda (with independence and equiprobability as a focal formalization of a
veil of ignorance guiding constitutional design). We show that it is also the right reference
point in to us more realistic settings with finely graded policy alternatives on a continuous
left–right, high tax–low tax, environment friendly–business friendly, etc. scale.

The remainder of the paper is structured as follows: Section 2 introduces our model
and points out the difficulties in providing analytical results. Section 3 then discusses our
Monte-Carlo approach and presents results for randomly generated population configura-
tions as well as EU’s Council of Ministers and US Electoral College. Section 4 concludes.
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2 Model

Consider a large population of voters partitioned into m constituencies C1, . . . , Cm, with
nj = |Cj| > 0 members each. Voters’ preferences are single-peaked with ideal point λj

i

(for i = 1, . . . , nj and j = 1, . . . , m) in the convex one-dimensional policy space X ≡ [0, 1].
Assume that all nj are odd numbers.

Let · : nj denote the permutation of voter numbers in constituency j such that

λj
1:nj

≤ . . . ≤ λj
nj :nj

holds. In other words, λj
k:nj

denotes the k-th order statistic of λj
1, . . . , λ

j
nj

, i. e. the k-th
leftmost ideal point in Cj.

A policy x ∈ X is decided on by an electoral college E consisting of one representative
from each constituency. It is assumed that the representative of Cj, denoted by j, adopts
the ideal point of his constituency’s median voter, denoted by λj ≡ λj

(nj+1)/2:nj
. Let λk:m

denote the k-th order statistic of λ1, . . . , λm.
In the electoral college E , each constituency Cj has voting weight wj ≥ 0. Any subset

S ⊆ {1, . . . , m} of representatives which achieves a combined weight
∑

j∈S wj above q ≡
1
2

∑m
j=1 wj, i. e. half of the total weight, can implement a policy x ∈ X. We assume that

the agreed policy is – e. g. in the equilibrium of some non-cooperative game which reflects
the decision procedure applied in E – equal to the ideal point of the pivotal representative,
P : m, in E . The random pivotal position P is defined by

P ≡ min
{

r ∈ {1, . . . , m} :
r∑

k=1

wk:m > q
}

.

Player P : m’s ideal point, λP :m, is the unique policy that beats any alternative x ∈ X in
a pairwise majority vote.3

Given this setting, consider the following egalitarian norm: Each voter in any con-
stituency should have an equal chance to determine the policy implemented by the electoral
college. More formally, there should exist a constant c > 0 such that

∀j ∈ {1, . . . , m} : ∀i ∈ Cj : Pr
(
λj

i = λj = λP :m
) ≡ c. (1)

We would like to answer the following question: which allocation of weights w1, . . . , wm

satisfies this norm (at least approximately) for an arbitrary given partition of the total
population into m constituencies? In other words we search for an analogue of Penrose’s
square root rule (see e.g. Felsenthal and Machover 1998), which concerns a considerably
simpler binary model of collective decision-making rather than arbitrary policies in X.4

3Things are more complicated if q > 1
2

∑m
j=1 wj is assumed. Then, the complement of a losing coalition

need no longer be winning. In this case there may not exist any policy x ∈ X which beats all alternatives
x′ 6= x despite unidimensionality of X and single-peakedness of preferences.

4Given Penrose’s assumption of independent equiprobable random ‘yes’-or-‘no’ votes by each voter in
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Probability Pr
(
λj

i = λj = λP :m
)

depends on the distribution of all voters’ ideal points.
Though in practice ideal points in different constituencies may come from different distri-
butions on X and may exhibit various dependencies, it is appealing from the normative
viewpoint of constitutional design to presume that the ideal points of all voters in all
constituencies are independently and identically distributed (i. i. d.).

If voters’ ideal points in constituency Cj are i. i. d., each voter i ∈ Cj has the same
probability to be its median.5 Hence,

∀j ∈ {1, . . . , m} : ∀i ∈ Cj : Pr
(
λj

i = λj
)

=
1

nj

.

Using that the events {λj = λP :m} and {λj
i = λj} are independent, we can write (1) as

∀j ∈ {1, . . . , m} : ∀i ∈ Cj :
Pr

(
λj = λP :m

)

nj

≡ c. (2)

So if constituency Cj is twice as large as constituency Ck, representative j must have twice
the chances to be pivotal than representative k in order to equalize individual voters’
chances to be pivotal.

Suppose for a moment that representatives’ ideal points λ1, . . . , λm are independently
and also identically distributed. Then, Pr

(
λj = λP :m

)
is simply the Shapley-Shubik index

(SSI) value, φj(w, q), of representative j in voting body E defined by weight vector w =
(w1, . . . , wm) and quota q (see Shapley and Shubik 1954). Therefore, making the i. i. d.
assumption at the level of representatives implies a linear rule (based on the SSI) as the
replacement for Penrose’s square root rule in our context of spatial rather than binary
voting. In other words, w has to be chosen such that φj(w, q) is directly proportional to
population size nj for all constituencies j = 1, . . . ,m.

However, making the in our view more plausible and egalitarian i. i. d. assumption at
the level of individual voters, representatives’ ideal points λ1, . . . , λm are independently
but – except in the trivial case n1 = . . . = nm – not identically distributed: If, for
example, all voters’ ideal points are uniformly distributed, then in any constituency Cj

the median position λj is beta distributed with mean µj = 1/2 and standard deviation
σj = 1/

√
4(nj + 2). The latter approaches zero for nj →∞.

More generally, voter ideal points may come from an (identical) arbitrary distribution
F with density f . In this case (see e.g. Arnold et al. 1992), Cj’s median position is

every constituency – which deterministically define each constituency’s ‘yes’-or-‘no’ vote in the electoral
college by simple majority –, quadrupling a constituency’s size approximately (invoking Stirling’s formula)
halves a given voter’s chance to be pivotal in it. The voter must hence be compensated by weights that dou-
ble the constituency’s probability of being pivotal at the top tier. This probability (=the Penrose-Banzhaf
index) is usually not proportional to voting weight, in particular for a small number of constituencies.
Hence, implementing the square root rule as well as possible hence requires numerical solution of the
inverse problem of finding weights which induce a desired Penrose-Banzhaf power distribution (see Leech
2002).

5We disregard the possibility that two ideal points coincide, in which case the median voter – in contrast
to the median policy – is not well-defined. This is innocuous for any continuous ideal point distribution.
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asymptotically normally distributed with mean

µj = F−1(0.5)

and standard deviation

σj =
1

2 f(F−1(0.5))
√

nj

.

So, the larger a constituency Cj is, the more concentrated is the distribution of its median
voter’s ideal point, λj, on the median of the underlying ideal point distribution (assumed
to be identical for all λj

i ). This makes the representative of a larger constituency on average
more central in the electoral college and more likely to be pivotal in it, given any fixed
weight allocation. Weights and SSI of large constituencies hence should be less than in the
case considered in the previous paragraph, i. e. the correct rule must be increasing but less
than linearly.

It is in our view an important observation that the assumption of collective preferences
of each constituency having an identical a priori distribution is inconsistent with the as-
sumption that all individual preferences are a priori identically distributed. The intuitively
appealing linear rule of giving twice the voting power to a constituency double the size
violates the one-person-one-vote principle if one makes the latter assumption. In the con-
text of constitutional design we find it considerably more convincing and will assume i. i. d.
ideal points for individual voters throughout this paper.

Probability Pr
(
λj = λP :m

)
in (2) depends both on the different distributions of repre-

sentatives’ ideal points, i. e. the different standard deviations σj determined by constituency
sizes nj, and the voting weight assignment. Unfortunately, computation of the probabil-
ity of a given constituency Cj being pivotal is already a complex numerical task even for
simple majority voting with uniform weights. In this most simple case, the representa-
tive of Cj with median ideal point is always pivotal in E , i. e. P ≡ (m + 1)/2. Define
N j ≡ {1, . . . , j−1, j +1, . . . , m} as the index set of all constituencies except Cj. Then, the
probability of constituency Cj being pivotal is

Pr
(
λj = λ(m+1)/2:m

)
= Pr

(
exactly m−1

2
of the λk, k 6= j, satisfy λk < λj

)

=
∑

S⊂Nj ,
|S|=(m−1)/2

∏
k∈S

Fk(λ
j) · ∏

k∈Nj\S
(1− Fk(λ

j))

=

∫ ∑
S⊂Nj ,

|S|=(m−1)/2

∏
k∈S

Fk(x) · ∏
k∈Nj\S

(1− Fk(x)) · fj(x) dx,

(3)

where fj and Fj denote the density and cumulative density functions of λj (j = 1, . . . , m).
It seems feasible (but is beyond the scope of this paper) to provide an asymptotic

approximation for this probability as a function of constituency sizes n1, . . . , nm for special
cases, e. g. when n2 = . . . = nm (hence F2 = . . . = Fm) and only n1 varies (resp., F1 and
f1). However, we doubt the existence of such an approximation for general configurations
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(n1, . . . , nm). And even if one could obtain one, it would allow to compute a measure of
the inequity associated with uniform weights, but be of little help in finding weights that
achieve equity.

The weighted voting analogue of (3) is even more intractable. For a given realization p
of random variable P , the pivotal member of E , one might be able to approximate

Pr(λj = λp:m) =

∫ ∑

S⊂Nj , |S|=P−1

∏

k∈S

Fk(x) ·
∏

k∈Nj\S
(1− Fk(x)) · fj(x) dx.

But events {P = p} and {λj = λp:m} are not independent for non-uniform weights and so,
typically,

Pr(λj = λP :m) 6=
m∑

p=1

Pr(P = p) · Pr(λj = λp:m).

To see this, consider the extreme case of representative j having weight wj > 0.5 even
though all constituencies are of equal size, so that ideal points λk (k = 1, . . . , m) are
i. i. d. Since j is a dictator, Pr(λj = λP :m) = 1. But Pr(P = p) = 1/m for all p and
Pr(λj = λp:m) = 1/m for given p and all j.

To sum up, a purely analytical investigation of the model is unlikely to offer much
insight. The following section therefore uses Monte-Carlo simulation in order to approx-
imate the probability of any constituency Cj being pivotal for partition {C1, . . . , Cm} and
a fixed weight vector (w1, . . . , wm) and, based on this, to find weights (w∗

1, . . . , w
∗
m) which

approximately satisfy the equal representation conditions (1) or (2).

3 Simulation

The probability πj ≡ Pr
(
λj = λP :m

)
can also be viewed as an expected value, namely of the

random variable Hj ≡ gw
j (λ1, . . . , λm) which equals 1 if λj = λP :m holds for given weight

vector w and realized median ideal points λ1, . . . , λm, and 0 otherwise. The Monte-Carlo
method then exploits that the empirical average of s independent draws of Hj

h̄s
j =

1

s

s∑

l=1

hl
j

converges to Hj’s theoretical expectation

E(Hj) = πj

by the law of large numbers. The speed of convergence in s can be assessed by the sample
variance of h1, . . . , hs. Using the central limit theorem, it is thus possible to obtain estimates
of πj with a desired precision (referring e. g. to a 95%-confidence interval) if one generates
and analyzes a sufficiently large number s of realizations of Hj.
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To obtain a realization hl
j of Hj, first, we draw6 m random numbers λ1, . . . , λm from

distributions F1, . . . , Fm. Throughout our analysis, we take Fj to be a beta distribution with
parameters

(
(nj + 1)/2, (nj + 1)/2

)
. This corresponds to the median of nj independently

[0, 1]-uniformly distributed voter ideal points, i. e. all individual voter positions are i. i. d.
uniformly.7 Second, the realized constituency positions are sorted and the pivotal position
p (the smallest r such that aggregate weight of the r leftmost constituencies exceeds half
the total weight) is determined. Constituency Cp:m is thus identified as the pivotal player
of E . It follows that hl

j = 1 for j = p : m, and 0 for all other constituencies.
Our goal is to identify a simple rule for assigning voting weights to constituency sizes

which – if it exists – approximately satisfies equal representation conditions (1) or (2) for
various numbers m of constituencies and population configurations {C1, . . . , Cm}. A natural
starting point is the investigation of power laws

wj = nj
α (4)

with α ∈ [0, 1], including (for big m approximately) Penrose’s square root rule as the
special case α = 0.5.

For any given m and population configuration {C1, . . . , Cm} under consideration, we
fix α, then approximate πj by its empirical average by a run of 10 million iterations, and
finally compute the cumulative quadratic deviation of estimated probabilities π̂j and the
egalitarian or ideal probability π∗j = nj/

∑m
k=1 nk. This is repeated for different values

of α, ranging from 0 to 1 with different step sizes, in order to find the power law or
coefficient α which comes closest to implying equal representation under our distributional
assumptions for the given configuration. Section 3.1 first looks at computer-generated
random environments with constituency numbers between 10 and 50; we investigate several
population configurations for each m to check the robustness of the optimal α. Sections 3.2
and 3.3

3.1 Randomly generated configurations

Table 1 reports the optimal values of α that were obtained for four sets of configurations
{C1, . . . , Cm}.8 For m ∈ {10, 15, 20, 25, 30, 40, 50}, constituency sizes n1, . . . , nm were in-
dependently drawn from a uniform distribution over [0.5 · 106, 99.5 · 106] . Numbers in
column (I) are the the optimal α ∈ {0, 0.1, . . . , 0.9, 1} ⊂ [0, 1], where probabilities πj were
estimated from a simulation with 10 mio. iterations and where – throughout this paper –
our optimality criterion is minimal cumulative quadratic deviation from the egalitarian
norm at the level of constituencies.9 Cumulative quadratic deviations for optimal α’s are

6We use a self-made computer program. The Java source code is available upon request.
7The mentioned asymptotic results for order statistics imply that only F ’s median position and density

at the median matter when constituency sizes are large. So below findings are not specific to the assumption
of uniform distributions at the bottom tier.

8The configuration draws are independent across different values of m. Thus, the table actually reports
optimal values obtained for 28 independent configurations.

9This weights deviations for all constituencies equally. We expect no qualitative changes for an objective
function that weights deviations of π̂j from nj/

∑
nk e. g. with nj .
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# const (I) (II) (III) (IV)

10 0.5 0.6 0.39 0.00

(6.38× 10−4) (4.27× 10−4) (7.47× 10−5) (1.31× 10−3)

15 0.5 0.5 0.49 0.48

(5.65× 10−6) (4.07× 10−6) (1.19× 10−6) (3.18× 10−6)

20 0.5 0.5 0.49 0.49

(2.39× 10−6) (4.68× 10−6) (3.43× 10−7) (6.52× 10−7)

25 0.5 0.5 0.49 0.49

(4.09× 10−7) (6.93× 10−7) (1.63× 10−7) (3.29× 10−7)

30 0.5 0.5 0.49 0.49

(6.19× 10−7) (3.36× 10−7) (1.64× 10−7) (9.42× 10−8)

40 0.5 0.5 0.49 0.49

(1.63× 10−7) (2.39× 10−7) (1.50× 10−7) (1.51× 10−7)

50 0.5 0.5 0.50 0.50

(1.58× 10−7) (2.06× 10−7) (1.74× 10−7) (1.36× 10−7)

Table 1: Optimal value of α for uniformly distributed constituency sizes (cumulative
squared deviations from ideal probabilities in parentheses)

shown in brackets. Column (II) reports values obtained for a second set of independent
realizations of constituency sizes; columns (III) and (IV) do likewise but using the finer
grid α ∈ {0, 0.01, 0.02, . . . , 0.99, 1}.10

While results for m = 10 are inconclusive, α ≈ 0.5 is the very robust ideal parameter
for larger number of constituencies. The reported cumulative quadratic deviations are so
small that even if the power laws assumed in (4) should not contain the theoretically best
rule for equal representation in our median-voter context (e. g., because constituencies’
weights are not the right reference point, but rather their Penrose-Banzhaf or Shapley-
Shubik index values), the latter seem to allow for a sufficiently good approximation for all
practical purposes.

Results in Table 1 are suggesting that (an approximation of) Penrose’s square root
rule actually holds also in the context of policy decisions in [0, 1]. But one may wonder if
optimality of α ≈ 0.5 is not an artifact of considering uniformly distributed constituency
sizes n1, . . . , nm for any given m. Uniformity supposes that small constituencies are as

10Hence column (III), for example, reports on 101 · 7 simulation runs with 10 mio. iterations each.
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likely to occur as large ones.
Constituency sizes at the national level are a matter of history or design. In the

latter case, one might expect them to be clustered around some intermediate level; this
would make a (truncated) normal distribution around some value n̄ rather than uniformity
focal for our experiments.11 In the former case, when historical boundaries determine a
population partition, a natural theoretical benchmark is a power law distribution for nj. As
a convenient approximation of distributions such as Zipf’s law (or zeta distribution), which
has big empirical support in a variety of contexts,12 we consider the Pareto distribution
with cumulative density and density functions

G(x|k, xm) = Pr(X ≤ x) = 1−
(

x

xm

)−k

g(x|k, xm) = k
xk

m

xk+1

and support for x ∈ [xm,∞] . Parameter xm provides a lower bound on nj and parameter
k determines how quickly the probability of drawing a large (rather than small or medium-
sized) constituency approaches 0.

Table 2 reports simulations with constituency sizes drawn from the Pareto densities
g(x|1.0, 0.1), g(x|1.8, 0.1), g(x|3.4, 0.1), and g(x|5.0, 0.1), where numbers refer to mil-
lion inhabitants. As long as the distribution is only moderately skewed (small k), findings
correspond to those for the uniform distribution: A power law with α = 0.5 gets close to en-
suring equal representation provided that the number of constituencies is sufficiently large.
However, for a distribution of constituency sizes that is heavily skewed, corresponding to
mostly small constituencies and only one or very few large constituencies (reminiscent of
atomic players in an otherwise oceanic game), other values of α – coming close to giving
all constituencies an equal size-independent weight – perform better.13 We conclude that
α = 0.5 does very well as long as m is not too small and constituency sizes n1, . . . , nm do
not have isolated outliers.

3.2 EU Council of Ministers

Table 3 reports the empirical frequencies of individual members of the European Union’s
Council of Ministers being pivotal under weight assignment according to wj = nj

b and

11Preliminary simulations using normally distributed constituency sizes support α ≈ 0.5 for a sufficiently
big number of constituencies.

12Examples for which (approximative) power-law behavior has been claimed include sizes of human
settlements (Gabaix 1999; Reed 2004), frequencies of words in long sequences of text, visits to web sites,
the value of oil reserves in oil fields, and the size of meteor impacts on the moon. Explanations for this
widespread regularity are based on ideas such as self-organized criticality and highly optimized tolerance
(see e. g. Newman 2000).

13At this point, the fact that we do not weight quadratic deviation from the ideal probabilities with e. g.
constituency size in our objective function may play a significant role. Choosing the right penalty function
for the approximation of perfectly equal representation is a normative question worthy of more discussion
(also in the context of the square root rule in Penrose’s original 0-1 setting).
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Number of constituencies

k 10 20 30 40 50

1.0 0.5 0.5 0.5 0.5 0.5

(8.06× 10−4) (5.23× 10−5) (8.33× 10−6) (1.11× 10−4) (9.34× 10−4)

1.8 0.5 0.5 0.5

(4.96× 10−4) (3.09× 10−5) (1.67× 10−5)

3.4 0.0 0.5 0.5 0.5 0.5

(4.76× 10−4) (2.11× 10−5) (1.03× 10−5) (9.81× 10−7) (7.86× 10−7)

5.0 0.0 0.05 0.1 0.05 0.1

(1.86× 10−3) (5.48× 10−4) (2.18× 10−5) (5.97× 10−6) (2.95× 10−5)

Table 2: Optimal values of α for Pareto distributed constituency sizes (cumulative squared
deviations from ideal probabilities in parentheses)

a decision quota of q = 50%. Values are averages of six simulation runs with 10 million
iterations each, and exact to the third digit (based on the 95% confidence interval).

Numbers are illustrated for selected values of α in Figure 2. It nicely shows how close
the probability of country j being pivotal comes to that required for (a priori) perfectly
equal representation if weights are proportional to square root of population and if a 50%
quota is used.

With the exceptions of Germany, Spain and Poland, the weights agreed in the Treaty
of Nice roughly correspond to square root of populations. Figure 2 confirms that if a
quota of 50 % were used in the Council of Ministers, estimated probabilities πj would
be rather close to their egalitarian values (with the mentioned exceptions).14 However,
a qualified majority of 72.2% of the weight (and additionally two majority requirements
regarding the total population represented by Council members supporting a motion and
the number of supporters) is needed for most Council decisions. For a qualified majority
rule, greater centrality of median opinion in large countries such as Germany or France no
longer provides greater chances of being pivotal in the Council. It actually reduces them.
As illustrated in Figure 3, not only is representation even more biased against German
voters but now also French, British, and Italian representatives are less often pivotal than
would be necessary to give individual voters an equal chance of indirectly determining the
Council’s aggregate policy position.

This illustrates that a high quota is not only challenging the efficiency of a decision-
making body such as the Council of Ministers in terms of the probability that random
proposals are passed in the classical 0-1 setting (see Felsenthal and Machover 2001, Bald-

14This ignores the cumulative population and number-of-members requirements also agreed in the Treaty.
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b

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

M .0074 .0051 .0032 .0021 .0013 .0008 .0005 .0003 .0002 .0001 .0001

L .0078 .0054 .0035 .0023 .0015 .0010 .0006 .0004 .0002 .0002 .0001

CY .0105 .0076 .0052 .0036 .0025 .0017 .0012 .0008 .0005 .0004 .0002

EST .0139 .0106 .0077 .0056 .0041 .0029 .0021 .0015 .0011 .0008 .0005

SLO .0166 .0131 .0099 .0075 .0057 .0042 .0031 .0023 .0017 .0012 .0009

LV .0182 .0146 .0112 .0087 .0066 .0050 .0038 .0029 .0022 .0016 .0012

LT .0222 .0185 .0148 .0119 .0095 .0075 .0059 .0046 .0036 .0028 .0021

IRL .0235 .0198 .0161 .0131 .0105 .0084 .0067 .0053 .0042 .0033 .0025

FIN .0272 .0235 .0197 .0165 .0137 .0113 .0092 .0075 .0060 .0049 .0039

SK .0277 .0239 .0202 .0170 .0141 .0117 .0095 .0078 .0064 .0051 .0041

DK .0277 .0240 .0202 .0170 .0142 .0117 .0096 .0078 .0064 .0052 .0041

A .0339 .0306 .0269 .0235 .0204 .0175 .0149 .0127 .0108 .0091 .0075

S .0355 .0324 .0288 .0254 .0222 .0193 .0166 .0143 .0122 .0104 .0086

H .0378 .0349 .0314 .0281 .0249 .0219 .0191 .0166 .0144 .0124 .0104

CZ .0380 .0351 .0316 .0284 .0251 .0221 .0193 .0168 .0146 .0126 .0106

B .0381 .0353 .0318 .0286 .0254 .0223 .0195 .0170 .0148 .0128 .0107

P .0381 .0353 .0319 .0285 .0254 .0223 .0195 .0170 .0148 .0127 .0107

GR .0392 .0365 .0331 .0299 .0267 .0236 .0207 .0182 .0159 .0138 .0117

NL .0474 .0460 .0436 .0409 .0380 .0350 .0320 .0292 .0266 .0239 .0209

PL .0706 .0757 .0797 .0824 .0840 .0847 .0846 .0833 .0810 .0781 .0758

E .0720 .0775 .0822 .0856 .0876 .0888 .0890 .0882 .0865 .0843 .0825

I .0831 .0933 .1038 .1126 .1204 .1270 .1326 .1372 .1404 .1430 .1447

GB .0841 .0949 .1060 .1156 .1240 .1314 .1378 .1429 .1471 .1503 .1526

F .0842 .0951 .1062 .1158 .1244 .1319 .1382 .1435 .1478 .1511 .1534

D .0951 .1114 .1311 .1495 .1678 .1860 .2040 .2221 .2405 .2599 .2802

Table 3: Monte Carlo estimates of πj for EU25.
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Figure 1: EU25 with weights wj = nj
α compared to ideal probabilities

Figure 2: EU25 with Nice weights and hypothetical quota of 50%
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Figure 3: EU25 with Nice weights and 72.2% quota

win et al. 2001). In the [0,1]-spatial voting setting considered in this paper, it also has
important implications for equality of representation and hence the legitimacy of decisions.

3.3 US Electoral College

Figure 4 reports the cumulative quadratic deviations from ideal probabilities of US states
being pivotal in the US Electoral College. Again, α = 0.5 does best amongst all power
laws for weight assignment. Moreover, as illustrated by Figure 5, the square root rule is
extremely successful in ensuring equal representation.

4 Concluding remarks

How should voting weights in an electoral college be assigned to constituencies of different
sizes in order to reflect the one-person-one-vote principle? This important question has to
the best of our knowledge so far only been addressed for the quite specific case of dichoto-
mous choices. A possible reason for why richer settings such as the – still comparatively
simple – one considered in this paper, have been neglected is that they do not seem to
allow an easy analytical answer. However, our numerical investigation produces straight-
forward arguments in favor of assigning voting weights proportional to the square root of
constituencies’ populations. For all practical purposes, i. e. ignoring the rather small differ-
ence between Penrose-Banzhaf index and voting weight for large number of constituencies,
this coincides with Penroses’s square root rule.
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Figure 4: Cumulative quadratic deviation for US Electoral College

Figure 5: US Electoral College with weights wj = nj
α compared to ideal probabilities
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This is a rather surprising result. Different assumptions about the decision environment
can a priori be expected to produce different rules for weight assignment, trying to achieve
a fixed norm such as equal indirect power of voters. Apart from the ‘veil of ignorance’
assumption of a priori identical but independent voters, our setting is quite unrelated to
the classical 0-1 model. That the square root rule is at least close to optimal in it is
comforting: there is a single norm which (approximately) ensures equal representation in
two-tier voting systems under very different assumptions.

The robustness of the square root rule can be challenged and has been challenged
within the 0-1 setting.15 That it turns up again in our very distinct decision environment
indicates that the square root rule is not an artifact of a very particular behavioral model,
but rather a robust principle for constitutional design. A caveat to this is that while
the quota does not matter for representation in the 0-1 setting, it becomes important for
decisions concerning a richer set of alternatives. The square root rule does well when the
quota is 50%, but large constituencies need greater weight under qualified majority rule.
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