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Abstract

This paper argues that the nucleolus can compete with the Shap-

ley value as a measure of P-power. It currently has more solid non-

cooperative foundations for majority games. It also identifies a set

of attractive coalitions that are expected to form (unlike the Shapley

value, which is based on the values of all coalitions) and does better

than the Shapley value at some postulates of voting power. On the

negative side, it may give a payoff of zero to players that are not dum-

mies, though this possibility is excluded for constant-sum weighted

majority games.
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1 Introduction

Consider the classical problem of dividing a dollar by majority rule. There

are n members in the voting body and a voting rule characterized by a set

of winning coalitions. How powerful is each member of this voting body? A

measure of power is the expected share of the budget for each player. This

concept of power is what Felsenthal and Machover (1998) call P-power. They

point out that the outcome of the bargaining process will not generally be

deterministic1, and the index of P-power will be an average of the possible

outcomes, weighted by their probability.

In this context, the most widely accepted measure of power is the Shap-

ley value, introduced by Shapley in 1953 as a measure of the expected payoff

from playing a general cooperative game. The Shapley value can be seen

as a weighted average of several possible outcomes (the simplest possibility

is Shapley’s original story of players entering randomly into a room and re-

ceiving their marginal contribution to the value of the existing group). Roth

(1977a, 1977b) and Laruelle and Valenciano (2004) give further axiomatic

support to the Shapley value as a measure of power in divide-the-dollar

games.

In contrast, the nucleolus (introduced by Schmeidler in 1969, see also

Maschler 1992) answers a different type of question: what is the most stable

way of dividing the dollar between the n players? Unlike the Shapley value,

the nucleolus seems to presuppose the formation of the grand coalition and

therefore seems inappropriate as a measure of P-power. The nucleolus is the

most stable outcome given that the grand coalition forms, not the average of

1Consider the simple majority game with three players. If there was a unique deter-

ministic outcome, symmetry points to the grand coalition with every player receiving 1
3 .

However, this outcome seems too fragile. If we accept that a two-player coalition will even-

tually form, symmetry dictates that each of the three possible coalitions will be equally

likely.
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several possible outcomes which may not involve the grand coalition at all.

Accordingly the nucleolus is not even mentioned by Felsenthal and Machover

(1998), though it appears in Pajala’s (2002) literature list.

Nevertheless, this paper will discuss an alternative interpretation of the

nucleolus and argue that it can compete with the Shapley value as a measure

of P-power. The most solid reason lies in the field of noncooperative founda-

tions, but the paper will also discuss some general properties of the Shapley

value and the nucleolus.

The nucleolus will find support in the Baron-Ferejohn (1989) model. This

is not a model introduced in order to provide noncooperative foundations to

any particular solution concept, and it is fairly popular with political scien-

tists.2 The Shapley value finds little or no support in this model. The paper

will also discuss why the existing literature on noncooperative foundations of

the Shapley value is either not applicable or not fully convincing for majority

games.

The question arises of whether the nucleolus is a good power index if

we abstract from the bargaining process. A possible (and solid) reason why

the nucleolus has been ignored as a power index is that it may assign zero

to players who are not dummies; this seems counterintuitive and indeed

Felsenthal and Machover (1998) include ”vanishing only for dummies” as one

of the postulates any power index must obey. On the other hand, vanishing

only for dummies is incompatible with core selection. Moreover, this property

of the nucleolus can be justified if we interpret the nucleolus as a system of

competitive prices. Finally, the nucleolus does better than the Shapley value

with respect to the added blocker postulate.

The remainder of the paper is organized as follows. Section 2 contains

some preliminaries on majority games and the nucleolus. Section 3 provides

2A search in the Social Sciences Citation Index reveals that the paper has been cited

161 times; about half of those citations appeared in political science journals.
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an alternative interpretation of the nucleolus as a system of competitive prices

for the players. Section 4 illustrates how those competitive prices can arise

as the equilibrium of a natural modification of the Baron-Ferejohn model.

Section 5 discusses some properties of the nucleolus as a power index, and

section 6 concludes.

2 Preliminaries

2.1 Majority games

Let N = {1, ..., n} be the set of players. S ⊆ N (S 6= ∅) represents a
generic coalition of players, and v : 2n → R with v(∅) = 0 is a function

that assigns to each coalition the total payoff its members can divide among

themselves. The function v is called characteristic function. In the context of

majority (also called simple) games, v(S) ∈ {0, 1} for all S ⊆ N , v(∅) = 0,
and v(N) = 1. A coalition S is called winning iff v(S) = 1 and losing iff

v(S) = 0. It is called minimal winning iff v(S) = 1 and v(T ) = 0 for all T

such that T ⊂ S. The set of winning coalitions is denoted by W ; this set
contains the same information as the function v. The set of minimal winning

coalitions is denoted by Wm. A player i such that v(S ∪ i) = v(S) for all S
is called a dummy player. A player who belongs to all winning coalitions is

called a veto player or a blocker.

A simple game is proper iff v(S) = 1 implies v(T ) = 0 for all T ⊂ N\S.
It is constant-sum iff v(S) + v(N\S) = 1 for all S ⊆ N . It is a weighted ma-
jority game iff there exist n nonnegative numbers (weights) w1, ..., wn and a

nonnegative number q such that v(S) = 1 if and only if
P

i∈S wi := w(S) ≥ q.
We will denote a weighted majority game by [q;w1, ..., wn]. The pair [q;w]

is called a representation of the game v. A weighted majority game has

many possible representations, but not all of them are equally convenient.
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A representation w is called normalized iff
P

i∈N wi = 1; it is homogeneous

iff
P

i∈S wi = q for all S ∈ Wm. Not all weighted majority games admit a

homogeneous representation. A weighted majority game admitting a homo-

geneous representation is called a homogeneous game.3

2.2 The nucleolus

Let (N, v) be a majority game and x = (x1, ..., xn) be an imputation, that

is, a payoff vector with xi ≥ v(i) and x(N) = v(N). For any coalition S the
value e(S, x) = v(S)− x(S) is called the excess of S at x.
For any imputation x let S1, ..., S2|N|−1 be an ordering of the coalitions

for which e(Sl, x) ≥ e(Sl+1, x) for all l = 1, ..., 2|N | − 1 and let E(x) be the
vector of excesses defined by El(x) = e(Sl, x) for all l = 1, ..., 2

|N | − 1. We
say that E(x) is lexicographically less than E(y) if El(x) < El(y) for the

smallest l for which El(x) 6= El(y). The nucleolus is the set of imputations
x for which the vector E(x) is lexicographically minimal. Schmeidler (1969)

shows that the nucleolus consists of a unique imputation. It is contained

in the classical bargaining set (Davis and Maschler, 1967) and in the kernel

(Davis and Maschler, 1965).

The excess of coalition S at x is a measure of how dissatisfied coalition S

is with imputation x. We can think of the excess as a measure of how likely

S would be to depart from the grand coalition. The nucleolus minimizes

the maximum excess, and thus is one of the (possibly many) solutions of the

3Homogeneous representations are preferable because they give a more accurate de-

scription of the situation. For example, games [5; 4, 3, 2] and [2; 1, 1, 1] are identical in

terms of the characteristic function, but only the second representation is homogeneous.

This representation reflects the fact that all players are in a symmetric position.

5



following linear programming problem4

min e

s.t. x(S) + e ≥ 1 for all S ∈W
x(N) = 1

xi ≥ 0 for all i ∈ N.

An important property of the nucleolus follows from the fact that it is a

solution to this linear programming problem. To present this property, we

need some definitions.

For every majority game v and every payoff vector x, let b1(x, v) be the

set of those S ⊆ N for which max{v(S) − x(S) : S ⊆ N} is attained and
b0(x) = {{i} : xi = 0}.
Let C be a collection of nonempty subsets of N . We say that the collection

is balanced iff there exist strictly positive numbers (λS)S∈C such that, for each

i ∈ N , PS3i λS = 1. The numbers (λS)S∈C receive the name of balancing

weights.

Proposition 1 (Kohlberg, 1971) Let v be a majority game. If x is the nu-

cleolus of v, then b0(x) ∪ b1(x, v) is balanced.

This property will play an important role in the next two sections.

3 The nucleolus as a competitive system of

prices

The important property of the balancing weights (λS)S∈b1(x.v) is not that

they add up to 1 for each player, but that they add up to the same constant

4This will be the case even if there is a player i with v(i) = 1.

6



for each player who gets a positive payoff. We can change this constant

by rescaling the weights to obtain another set of weights λ0S. In particular,

suppose we rescale the weights in such a way that
P

S∈b1(x,v) λ
0
S = 1. The

weights (λ0S)S∈b1(x,v) can be interpreted as the probabilities of coalition S

forming (cf. Albers 1974 p. 5). Then each player with xi > 0 will be in the

final coalition with the same probability (which turns out to be precisely the

total payoff x assigns to a coalition of maximum excess), and a player with

xi = 0 appears in the final coalition no more often than one with xi > 0.

This interpretation of the balancing weights doesn’t seem widespread - indeed

Albers dismisses it in the related context of balanced aspirations.

Why interpret the weights (λ0S)S∈b1(x,v) as the probabilities of each coali-

tion forming? Suppose the imputation x := (x1, ..., xn) is related to a system

of prices players charge for their participation in a coalition. Which sets

of prices are stable? We can make two assumptions with respect to what

happens when a coalition forms:

1. A privileged player i (the proposer) selects a coalition S, pays each

player j ∈ S\{i} the price xj and pockets the residual, which will
generally be higher than xi. In this case player i will choose S to solve

the following problem

max
S∈W
S3i

1−
X

j∈S\{i}
xj

This problem is equivalent to maxS∈W,S3i 1−
P

j∈S xj. In other words,

given a price vector x player i always proposes a coalition of maximum

excess containing him. Because he only pays the others xj and keeps

the whole excess, he wants to maximize that excess. The set b1(x, v)

becomes prominent (though in general not all players will belong to

one of the coalitions in b1(x, v), if x is the nucleolus all players with
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xi > 0 do). If x is the nucleolus it is reasonable to assume that only

coalitions in b1(x, v) will form.

2. Alternatively, we can assume that no player is privileged and that if a

coalition S forms, the players in S will divide the payoff proportionally

to x. Again, coalitions in b1(x, v) emerge as the most profitable and it

is reasonable to assume that they will form. This is because both the

surplus above
P

j∈S xj and the share of the surplus a player receives are

maximized for coalitions of maximum excess. If x is the nucleolus, ex

post payoff division will correspond to a balanced aspiration (see Cross

(1967)).

In any of the two cases we will have identified the coalitions that may

form given the system of prices. Each of these coalitions will form with a

certain probability. If, for any probabilities we assign to those coalitions,

there is a group of players that belongs to the final coalition more often than

another group of players, the price system is not stable. There is an ”excess

demand” for some players and their price should rise at the expense of some

players who belong to the final coalition less often. The only exception is the

case in which the players who are less often in the final coalition are already

getting 0. On the other hand, if we can assign probabilities to the coalitions

so that all players who get a positive payoff are in the final coalition with

equal probability, we have a competitive price system.

Let the system of prices coincide with the nucleolus. As we have seen, in

any of the two cases above the coalitions that will form given these prices are

the ones with maximum excess. In either case, since the set of coalitions of

maximum excess is balanced, we can assign probabilities to them such that

all players with positive payoff are in the coalition with the same probability,

and players who are getting 0 are no more often than other players in the

final coalition.
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Example 1 [5; 2, 2, 2, 1, 1, 1]. The nucleolus is (2
9
, 2
9
, 2
9
, 1
9
, 1
9
, 1
9
). Given this,

a large player will be indifferent between proposing a coalition of type [221]

and [2111]. A small player will also be indifferent between them. There are

nine coalitions of the first type and three of the second type (twelve in total).

A large player is in seven coalitions, and a small player is in six. Thus, if

all coalitions were equally likely the large players would be in excess demand.

However, we can assign probabilities to coalitions such that all players are in

the final coalition with probability 5
9
(the total nucleolus payoff of a coalition

of maximum excess). If we assign 2
27
to type [221] and 1

9
to [2111] this will

be the case.

The Shapley value of this game is ( 7
30
, 7
30
, 7
30
, 3
30
, 3
30

3
30
). Given these prices,

all players will propose a coalition of type [2111]. A large player is in only

one of those, whereas a small player is in three of those. Thus, regardless

of what probabilities we assign to the coalitions each small player will be in

the final coalition with probability 1; each large player will be (on average)

with probability 1
3
. There is a sense in which the small players are more in

demand and should raise their price.

Example 2 [5; 3, 2, 2, 1]. The nucleolus is (1
3
, 1
3
, 1
3
, 0). Coalitions [32], [221]

and others in which we add player [1] to a minimal winning coalition would

be optimal. We can find weights (1
3
for each minimal winning coalition) such

that all players who get a positive payoff are in the final coalition with the

same probability (2
3
), and the player who gets a zero payoff is in the final

coalition with a smaller probability (1
3
). Even though player 4 is ”provid-

ing something for nothing” when he enters a coalition, he is not in excess

demand.

The Shapley value is ( 5
12
, 3
12
, 3
12
, 1
12
). Given these prices we can give two

interpretations. According to the first approach both types of coalitions [32]

and [221] are possible (and then we cannot find probabilities such that every

player is in the final coalition with equal probability) or, according to the
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second approach, only [221] is possible (and the same can be concluded). In

neither case is the Shapley value a competitive price system.

4 Noncooperative foundations

4.1 The Baron-Ferejohn model

Baron and Ferejohn’s (1989) influential paper introduced a legislative bar-

gaining game based on Rubinstein (1982) and Binmore (1987). In their paper

n symmetric players must divide a budget by simple majority. Each player

has an equal chance of being recognized to be the proposer; once a proposer

is recognized he proposes a division of the budget. The rest of players then

vote ”yes” or ”no”; if a majority of the players supports the proposal then it

is implemented and the game ends; otherwise we come back to the previous

situation in which nature chooses a proposer, each player being chosen with

equal probability. Baron and Ferejohn focus on stationary subgame perfect

equilibria. In a stationary equilibrium, strategies do not depend on any ele-

ments of the history of the game other than the current proposal, if any. It

is important to emphasize that Baron and Ferejohn’s model appeared in a

political science journal; nothing seems to connect their paper with the field

of noncooperative foundations.

In extending the model to general voting games we must choose whether

to keep the recognition probabilities identical for all players, or to have asym-

metric probabilities. If the game is a weighted majority game, we may want

to select each player with a probability proportional to his number of votes

(this is done by Baron and Ferejohn in one of their examples). This ex-

tension has a straightforward interpretation if players are parties, different

number of votes correspond to different number of representatives, and each

representative is selected to be the proposer with equal probability.
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In Montero (2001), I extend the Baron-Ferejohn model to any proper sim-

ple game, and show that the nucleolus can always be obtained as the unique

equilibrium expected shares in the Baron-Ferejohn game, provided that the

recognition probabilities coincide with the nucleolus. Since the recognition

probabilities are itself a measure of bargaining power (an input of the game,

which in principle need not be related to the voting rule), the nucleolus is

a sort of self-confirming power index in this noncooperative game. As for

other recognition probabilities, the nucleolus seems more likely to emerge as

an equilibrium than the Shapley value.

Example 3 Consider the game [5; 3, 2, 2, 1, 1]. The nucleolus of this game

is (3
9
, 2
9
, 2
9
, 1
9
, 1
9
). In the Baron-Ferejohn bargaining procedure with recognition

probabilities θ = (3
9
, 2
9
, 2
9
, 1
9
, 1
9
), the only stationary equilibrium expected payoff

is precisely (3
9
, 2
9
, 2
9
, 1
9
, 1
9
).

The idea of the proof of this result is as follows. Expected equilibrium

payoffs act as reservation prices: if a proposal is rejected, nature starts the

game all over again and, since strategies are stationary, each player receives

his equilibrium payoff. It is then a best response for a player to accept any

offer that gives him at least his equilibrium payoff.

Given this vector of prices, it is optimal for the proposer to propose a

coalition of maximum excess. In this example all minimal winning coali-

tions are of maximum excess: {1, 2}, {1, 3}, {1, 4, 5}, {2, 3, 4} and {2, 3, 5}.
This collection is balanced; a set of balancing weights is λ{1,2} = λ{1,3} = 1

5
,

λ{1,4,5} = 3
5
, λ{2,3,4} = λ{2,3,5} = 2

5
. Consider the following strategy for the

proposer: if he belongs to S, he proposes S with probability λS, and offers

each other player in S their price. Because
P

S3i λS = 1, the proposer’s strat-

egy is completely determined. Moreover, if all players follow these strategies,

expected payoffs indeed coincide with (1
3
, 2
9
, 2
9
, 1
9
, 1
9
).

Consider for example player 1. With probability 1
3
he is selected to be
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the proposer; he then proposes {1, 2} or {1, 3} - offering the other player
his price of 2

9
and thus obtaining 1 − 2

9
= 7

9
- or alternatively {1, 4, 5} -

offering each of the other two players 1
9
and thus also obtaining 7

9
-. With

probability 2
9
player 2 is selected to be the proposer; player 2 proposes {1, 2}

with probability λ{1,2} = 1
5
, and pays player 1 his price, 1

3
; the same applies

to player 3. Each of players 4 and 5 is selected with probability 1
9
, proposes

{1, 4, 5} with probability λ{1,4,5} = 3
5
and offers 1

3
to player 1. Player 1’s

expected payoff is then

1

3

·
1− 2

9

¸
+

·
4

9

1

5
+
2

9

3

5

¸
1

3
=
1

3
.

These strategies have the property that the probabilities of each coalition

forming are proportional to the balancing weights, vindicating the interpre-

tation of balancing weights as related to the probability of each coalition

forming. Notice also that each player is in the final coalition with the same

probability, in this case 5
9
. Thus Montero (2001) contains a justification of

the arguments in the previous section in a strategic model of coalition for-

mation in which players are free to propose any coalition with any payoff

division.

If we consider arbitrary (but symmetric in the sense that players of the

same type are treated equally) recognition probabilities, the nucleolus seems

to be more likely to arise as an equilibrium than the Shapley value. This

is because, as a price vector, the nucleolus makes the proposer indifferent

between several attractive coalitions, whereas the Shapley value usually in-

duces strict preferences over coalitions. The following example illustrates

this point.

Example 4 Consider the game [3; 2, 1, 1, 1] and a protocol that selects player

1 with probability θ1 and each other player with probability
1−θ1
3
. The nucle-

olus of this game is (2
5
, 1
5
, 1
5
, 1
5
) and the Shapley value is (1

2
, 1
6
, 1
6
, 1
6
). The
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nucleolus can be obtained for any θ1 ≤ 1
2
; the Shapley value is only obtained

for θ1 =
3
5
.

Given the price vector (2
5
, 1
5
, 1
5
, 1
5
), each of the players with 1 vote is indif-

ferent between proposing to player 1 and proposing to the other two players:

in both cases the proposer pays a total of 2
5
. We can construct an equilibrium

in which player 1 proposes to each other player with probability 1
3
, and each

other player proposes to player 1 with probability λ, where λ can be found

from player 1’s expected payoff equation 2
5
= θ1

£
1− 1

5

¤
+ (1 − θ1)λ

2
5
. The

solution to this equation, λ = 1−2θ1
1−θ1 , is between 0 and 1 for θ1 ≤ 1

2
.

In contrast, given the price vector (1
2
, 1
6
, 1
6
, 1
6
) player 1 is overpriced and re-

ceives no proposals, and the expected payoff equation becomes 1
2
= θ1

£
1− 1

6

¤
,

which has only one solution.

Even if the Shapley value makes players indifferent between the relevant

coalitions, it may be impossible to obtain it as an equilibrium as the following

example of a game with a nonempty core illustrates (for a discussion of the

relationship between the Baron-Ferejohn model and the core see Banks and

Duggan, 2000).

Example 5 Consider the game [3; 2, 1, 1]. The Shapley value of this game

is (2
3
, 1
6
, 1
6
). There is no protocol θ for which expected equilibrium payoffs

coincide with the Shapley value. In contrast, the nucleolus is obtained for

any protocol such that θ1 > 0.

Let y1 be the expected equilibrium payoff for player 1 and y2 the expected

equilibrium payoff for 2 and 3. Then expected payoff for player 1 is given

by y1 = θ1 [1− y2] + (1 − θ1)y1. For θ1 > 0, the solution of this equation

together with y1 = 1 − 2y2 is y1 = 1. For θ1 = 0 we have y1 = 0. Thus

no protocol implements the Shapley value. The same applies to all power

indices based on marginal contributions or that give positive values to any
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player who is at least in one minimal winning coalition, like the Johnston

(1978) and Deegan-Packel (1978) indices.

The Baron-Ferejohn model has been criticized because of the dispropor-

tionate advantage it gives to the proposer (see e.g. Harrington (1990)). How-

ever, it can be easily modified to eliminate this advantage, as Montero (2003)

shows.

Even if the core is empty ,the nucleolus may give a payoff of 0 to players

that are not dummies. For example, in the game [5; 3, 2, 2, 1] the nucleolus is

(1
3
, 1
3
, 1
3
, 0). This payoff can be obtained as an expected equilibrium outcome

in the Baron-Ferejohn model, but only if player 4 is never selected to be pro-

poser. However, no power index is generally supported by natural protocols

like the egalitarian or the proportional protocol.5

4.2 Discussion of other bargaining models

An alternative noncooperative foundation for the nucleolus in majority games

can be found in Young (1978). He shows that the nucleolus can be obtained

as an equilibrium payoff in an asymmetric lobbying game where two lobbyists

with different resources compete in order to buy the players’ votes. Unfor-

tunately, the game becomes very difficult to solve if the two lobbyists have

equal resources.

The Shapley value has some noncooperative foundations of its own. The

most natural model, that of Gul (1989), is not applicable to simple games

because it requires that any two players benefit (in terms of the Shapley

value) from forming a bloc. Winter’s (1994) demand commitment model

only applies to convex games and thus it is not applicable to simple games

(interestingly, Morelli’s (1999) demand commitment results for simple games

5This includes the modified nucleolus of Sudhölter (1996), which is a representation of

all weighted majority games.
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are closer to supporting the nucleolus than they are to supporting the Shapley

value). Other noncooperative foundations of the Shapley value are formally

applicable to simple games, but they give a special role to the grand coalition,

which seems contradictory with the idea of a majority game: Hart and Mas-

Colell (1996) and Pérez-Castrillo and Wettstein (2001) require all players

to agree with a proposal. Vidal-Puga (2004) allows only one coalition (not

necessarily the grand coalition), and players must choose between joining it

or become singletons; they are not allowed to wait, even though they may

actually prefer to do so. Instead in the Baron-Ferejohn model players always

prefer to be proposers rather than wait.

It seems paradoxical that, while the Shapley value is usually interpreted

as an expected payoff of playing the game which unlike the nucleolus does not

presuppose the grand coalition, the opposite happens in the corresponding

implementations: Hart and Mas-Colell require the grand coalition to form

in order to obtain the Shapley value while the nucleolus can be obtained in

the Baron-Ferejohn model as a ”value” without giving the grand coalition

a prominent role (indeed the grand coalition is never formed if the game is

constant sum unless one of the players is a dictator).

5 Some properties of the Shapley value and

nucleolus

The nucleolus satisfies the following property: suppose, as in our previous

discussion, that only coalitions of maximum excess given a price vector x

form, and payoff division inside a coalition is proportional to this price vector.

Let Si be the set of coalitions of maximum excess to which i belongs. If

Si ⊆ Sj and Sj " Si, one can say that i depends on j, but j does not

depend on i. In this case it seems reasonable that i reduces his payoff in
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favor of j, unless xi = 0. This property is called the partnership condition

by Bennett (1983), and a very similar condition is postulated by Napel and

Widgrén (2001) as a desirable property of a power index. The fact that the

nucleolus has this property is clear from Kohlberg’s result, as the following

claim shows.

Claim 1 Let (N, v) be a simple game, x the nucleolus of v, and Si = {S ∈
b1(x, v) : i ∈ S}. Then for any two players i and j, Si ⊆ Sj and Sj " Si

implies xi = 0.

Proof. Suppose Si ⊆ Sj and Sj " Si, but xi > 0. Because x is the

nucleolus, the set b0(x) ∪ b1(x, v) must be balanced. Let (λS)S∈b0(x)∪b1(x,v)
be a set of balancing weights. Because xi > 0,

P
S∈b1(x,v),S3i λS = 1. ButP

S∈b1(x,v),S3i λS <
P

S∈b1(x,v),S3j λS = 1, a contradiction.

The Shapley value does not seem to have an analogous property: if we

consider the majority game with a veto player [3; 2, 1, 1], players 2 and 3

clearly depend on 1 but still have a positive Shapley value.

A property enjoyed by the Shapley value but not by the nucleolus is the

symmetric gain/loss property (see Laruelle and Valenciano (2001)). This

property states that, if we compare a simple game v with the game v∗S that

results after deleting a minimal winning coalition S 6= N from v, then the

change in the Shapley value is the same for all players in S and for all players

in N\S. The following example illustrates this property:

Example 6 Consider the game (5; 3, 2, 2, 1, 1). This game has the following

minimal winning coalitions: {1, 2}, {1, 3}, {2, 3, 4}, {2, 3, 5}, {1, 4, 5}. Play-
ers 1, 2 and 3 belong to three of those, whereas players 4 and 5 belong only

to two of those.

Now consider the modified game that has the same characteristic func-

tion except that v(1, 4, 5) = 0. The Shapley value of the original game
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is (24
60
, 14
60
, 14
60
, 4
60
, 4
60
); after deleting coalition {1, 4, 5} from the set of winning

coalitions the Shapley value changes to (22
60
, 17
60
, 17
60
, 2
60
, 2
60
). Thus, each of play-

ers 1, 4 and 5 have lost 2
60
. However, one may argue that coalition {1, 4, 5}

was crucial for players 4 and 5 but not for player 1. After the deletion of

{1, 4, 5}, player 1 can form a coalition with either 2 or 3, whereas players 4

and 5 are now dependent on players 2 and 3. Indeed the nucleolus changes

from (3
9
, 2
9
, 2
9
, 1
9
, 1
9
) to the (somewhat extreme but consistent with the part-

nership condition) (1
3
, 1
3
, 1
3
, 0, 0). Players 4 and 5 are seriously affected, but

not so player 1.

Because the nucleolus is symmetric and always belongs to the core, it

divides the total payoff equally between the veto players whenever they exist.

It is not surprising that the nucleolus does better than the Shapley value at

the postulates related to veto players or blockers.

Felsenthal and Machover (1998) introduce the added blocker postulate

(ABP) for measures of P-power. Let v be a simple game, and w another

simple game that is obtained by adding an extra player with veto power to

v. An index ξ satisfies ABP if whenever a and b are two nondummy players

in V we have

ξa[w]

ξb[w]
=

ξa[v]

ξb[v]
.

A flagrant violation of the postulate occurs when ξa[w] > ξb[w] and

ξa[v] < ξb[v], or the reverse.

Because the nucleolus is in the core, it must give 0 to all players who

are not veto players in game w. Thus, the nucleolus violates ABP but not

flagrantly. As for the Shapley value, Felsenthal and Machover show that it

flagrantly violates ABP.

Another postulate of Felsenthal and Machover is the blocker share postu-

late. This postulate says that, if i is a veto player and S a winning coalition,

a P-power index must assign to i at least 1
|S| . The nucleolus clearly satisfies
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this postulate, since it divides the payoff equally between all veto players and

leaves nothing to outsiders. Felsenthal and Machover show that the Shap-

ley value satisfies this postulate, whereas the Banzhaf, Deegan-Packel and

Johnston indices may violate it.

Felsenthal and Machover also point out that a player may lose from be-

coming a blocker according to the Shapley value. They consider the games

[6; 5, 3, 1, 1, 1] and [8; 5, 3, 1, 1, 1]. The second game is obtained from the first

by raising the quota; as a result of this player 1 becomes a veto player. The

Shapley value assigns respectively (3
5
, 1
10
, 1
10
, 1
10
, 1
10
) and (11

20
, 3
10
, 1
20
, 1
20
, 1
20
) to

these games; the corresponding values for the nucleolus are (3
7
, 1
7
, 1
7
, 1
7
, 1
7
) and

(1, 0, 0, 0, 0). Clearly, if a player is the only one to become a blocker he

cannot lose because the nucleolus gives him 1; he may lose if other players

become blockers as well but this doesn’t seem too paradoxical. For example

consider the game [7; 6, 3, 2, 1, 1], whose nucleolus is again (3
7
, 1
7
, 1
7
, 1
7
, 1
7
); if

the quota is raised to 12 there are three veto players and the new nucleolus is

(1
3
, 1
3
, 1
3
, 0, 0). Player 1 loses but this is not surprising because he has become

symmetric to players 2 and 3, while originally he was more powerful.

Because the nucleolus may give a payoff of 0 to players that are not

dummies, it violates one of Felsenthal and Machover (1998) postulates for a

power index. This undesirable property of the nucleolus does not occur in

constant-sum weighted majority games. Peleg (1968) shows that the nucle-

olus is always a representation of this type of games, and thus must assign

a positive weight to any player who is not a dummy. If the game is homo-

geneous but not constant-sum the nucleolus may still be a representation

(Peleg and Rosenmüller (1992) provide conditions under which this is the

case).

Straffin (1988) points out that the Banzhaf index and the Shapley value

may rank players differently in the game [2; 1111]⊗ [3; 2111], where the nota-
tion ⊗ means that a majority must be obtained in both voting bodies. This
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example also shows that the Banzhaf index and the nucleolus may also rank

players differently; it also shows that the nucleolus may appear counterintu-

itive as a measure of power: it assigns 0 to all players in the first game, and

(2
5
, 1
5
, 1
5
, 1
5
) to the players in the second game. In contrast, the Banzhaf index

assigns more to players of the first type than to players of the third type.

The nucleolus must assign 0 value to the players of the first type because

otherwise the set of coalitions of maximum excess would not be balanced.

Thus, whether we take the Shapley value or the nucleolus as a measure of

P-power, a player can be more powerful than another under office-seeking

behavior, but less powerful under policy-seeking behavior. Felsenthal and

Machover refer to this possibility as ”somewhat paradoxical”.

6 Concluding remarks

This paper makes a case for the nucleolus as a power index in divide-the-

dollar games, especially if the nucleolus is a representation of the game. The

nucleolus can be interpreted as a competitive price system and has relatively

solid noncooperative foundations. At a more fundamental level, the nucle-

olus identifies a set of attractive coalitions, whereas the Shapley value is

determined by all coalitions.

It is common wisdom in the power indices literature that ”the very idea

behind voting power is that the weight of a voter is not a good measure of

power” (Pajala 2002). If we adopt the nucleolus as a power index, weights

will be power for some games (including all constant-sum weighted majority

games), provided that we choose the right weights to represent the game.

Interestingly, homogeneity is neither necessary nor sufficient for weights to

be a measure of power.

The Deegan-Packel index assume that only minimal winning coalitions

will form, each of them with equal probability, and players will divide the
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payoff equally. Clearly, the nucleolus does not assume that coalitions di-

vide the payoff equally. It does not assume either that all minimal winning

coalitions form (some minimal winning coalitions may not be of maximum

excess; this is the case for a coalition of type [222] in example 1). It does

not assume equiprobability of coalitions, but it does imply equiprobability

of players (at least, of the players that get a positive payoff), which is an

appealing property.
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