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Abstract

The Holler-Packel value and (non-normalized) index are given a new character-
ization by a potential function. The Holler-Packel potential of a general TU-game
is the total value of all minimal crucial coalitions in the game; restricted to simple
games it is simply the number of minimal winning coalitions. New economic inter-
pretations follow from known equivalence results on existence of a potential function
and balanced contributions, path independence, and Shapley blue print properties.
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1 Introduction

Hart and Mas-Colell (1988, 1989) introduced the concept of a potential (function) to coop-
erative game theory and applied it to give an elegant new characterization of the Shapley
value. Based on a slightly modified definition, other authors have demonstrated that dif-
ferent (vector-valued) solution concepts for general transferable utility games (TU-games)
and the subclass of simple games (which are frequently applied to analyze power in various
economic and political decision bodies) can also be given characterizations with potential
functions which provide additional interpretations and methods of computation. So far,
potentials have been identified for the Banzhaf value (Dragan 1996, Ortmann 1998), the
entire class of semivalues (Calvo and Santos 1997), and – using a generalized definition of
a potential – weighted weak semivalues (Calvo and Santos 1997, 2000). The nucleolus, for
example, does not admit a potential.

This paper addresses the question of whether the Holler-Packel value and its restriction
to simple games (Holler 1982, Holler and Packel 1983, and Holler and Li 1995) admits a
potential. This value considers only minimal winning coalitions in simple games (or so-
called minimal crucial coalitions in general games) in line with Riker’s (1962) size principle,
and coincides with the member bargaining power measure proposed by Brams and Fishburn
(1995) and Fishburn and Brams (1996) on individual simple games.

A potential function summarizes a game by one real number. A given player i’s power or
expected payoff in the game (as identified by some index or value with a potential) is simply
the difference between this number and the corresponding number of the reduced game
in which only players j 6= i participate. That very complex games can be meaningfully
condensed and players’ role in them identified in this way is not only mathematically
fascinating; it also allows for new interpretations of the value in question. The Holler-
Packel index in its most popular normalized form does not admit a potential, but we
identify the potential function of its non-normalized version and of the value.

The next section introduces our notation and briefly reviews common value concepts
for cooperative games. Section 3 gives the definition and discusses some properties of
the Holler-Packel value and (non-)normalized indices. Section 4 discusses the notion of
a potential in more detail, and identifies the potential of the Holler-Packel value and its
non-normalized simple game version. We conclude by discussing possible economic and
political interpretations.

2 Notation, Values and Indices

A (transferable utility) cooperative game is a pair (N, v), where N = {1, · · · , n} is a
finite set of players and v : P(N) → R is a (characteristic) function which assigns to each
subset S ⊆ N (called a coalition) a real number v(S) (the worth of the coalition) with
v(∅) = 0. A game for which v only takes values in {0, 1} is called a simple game. A
simple voting game is a simple game in which all coalitions with v(S) = 1 – the winning
coalitions – can be characterized by a weight wi for each i ∈ N and a quota q > 0 such
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that v(S) = 1 ⇐⇒ ∑
i∈S wi ≥ q.

A solution ψ (defined on the space of all games, G, or a subclass of G) maps each
(N, v) to a vector ψ(N, v) ∈ Rn such that each player i ∈ N is assigned his or her value
in the game, ψi(N, v). The latter is usually interpreted as player i’s payoff expectation
from playing the game or as an indicator of his or her importance or power in the game.
A solution ψ on G is also referred to as a value. A value restricted to the class of simple
games is called an index.

Values or indices are often defined in terms of players’ marginal contribution [v(S) −
v(S \ i)] to the possible coalitions S ⊆ N .1 The class of probabilistic values (Weber 1988)
assigns to each player i his or her expected marginal contribution based on a possibly
player-specific subjective probability distribution over the set of coalitions. Values in which
expectations for all players are taken with the same probability measure p and in which
p(S) depends at most on the cardinality s = |S| are called semivalues (Dubey, Neyman,
and Weber 1981). Particularly prominent semivalues are the Shapley value ϕ (Shapley
1953) and the Banzhaf value β (Banzhaf 1965, Dubey and Shapley 1979) defined by

ϕi(N, v) =
∑
S⊆N

(s− 1)!(n− s)!

n!
[v(S)− v(S \ i)]

and

βi(N, v) =
∑
S⊆N

1

2n−1
[v(S)− v(S \ i)],

respectively. ϕ is efficient, i. e.
∑

i∈N ϕi(N, v) = v(N), but β is not.
A player i is crucial in S ⊆ N if i makes a positive marginal contribution to S. A

coalition S in which every member i ∈ S is crucial is called a minimal crucial coalition
(MCC) . In the context of simple games, MCCs are typically referred to as minimal winning
coalitions (MWCs). The set of all MCCs of (N, v) is denoted by M(N, v). Players not
belonging to any MCC are called dummy players.

3 Holler-Packel Value and Indices

The Holler-Packel value (HPV) η was first introduced on the class of simple games by
Holler (1982), later axiomatized by Holler and Packel (1983)2, and finally extended to
general TU-games by Holler and Li (1995). It is defined by

ηi(N, v) =
∑

S∈M(N,v)
i∈S

v(S).

On the class of simple games, it can also be written as

ηi(N, v) =
∑

S∈M(N,v)

[v(S)− v(S \ i)] = | {S ∈ M(v) : i ∈ S} |. (1)

1We write i instead of {i} where there is no danger of confusion.
2Also see Napel (1999).
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Typically, η’s normalized version, referred to as the (normalized) Holler-Packel index
(HPI),

η̄i(N, v) =
ηi(N, v)∑

i∈N ηi(N, v)

is considered in applications. For the purposes of this paper, however, the HPV or non-
normalized HPI is of greater interest.

It can be seen from (1) that on the class of simple voting games, to which both Banzhaf
and Holler-Packel values are most commonly applied, β and η only differ (apart from the
re-scaling by 21−n) in that the HPI restricts attention to minimal winning coalitions. This
is motivated in Holler (1982) by arguing that – e. g. in a world where joining a coalition
(endorsing a proposal) is costly – only coalitions where every member matters, i. e. is cru-
cial, “will be purposely formed (‘not by sheer luck’)” (p. 267, italics added) and should be
taken into account. This reflects the classic size principle advocated by Riker (1962).3 The
latter is derived from a game-theoretic model with assumptions (such as rationality, com-
plete and perfect information, control over membership of coalitions) discussed in detail by
Brams and Fishburn (1995) together with some empirics. Interestingly, the latter authors
(also see Fishburn and Brams 1996) derive a measure of so-called member bargaining power
whose restriction to single simple games coincides with the HPI.4

HPI and HPV have been characterized (for details see Holler and Packel 1983, Holler
and Li 1995, and Napel 1999) by axioms which require from an index or value that it treats
players anonymously (i. e. is invariant to permutations of N), assigns 0 to dummy players,
is additive when a particular sum operation, v1 ⊕ v2, is carried out with games having
disjoint sets M(vi), and assigns the full coalition’s value v(S) to (at least) one member if
this coalition S is the unique MCC (MWC) of the (simple) game.

It can easily be seen that, like the Banzhaf value, the HPV is not efficient, i. e. generally∑
i∈N ηi(N, v) 6= v(N). Several other properties of the Shapley value (and its index version,

introduced by Shapley and Shubik 1954) are not shared by the HPV either. For example,
the HPV (and HPI) can violate weak monotonicity in players’ weights for simple voting
games.5 See Felsenthal and Machover (1998) on this and other ‘paradoxes’ which the HPI
but also the Banzhaf and Shapley-Shubik indices may exhibit.

The marginal contribution of voter i in any given coalition S is always nondecreasing
in weight wi. It follows that the HPV cannot be expressed as an expected marginal
contribution for a probability distribution which depends on N (and possibly the player i)
but not the characteristic function v. In other words, the HPV is not a probabilistic value.

3Another power measure based on the size principle has been proposed by Deegan and Packel (1978).
The Deegan-Packel index weights contributions in MWC S by |S|−1 (instead of 1 for the HPI).

4The Holler-Packel index is often associated with coalition outcomes interpreted as or relating to a
public good and even introduced as public good index (see, e. g., Holler 1982, 1998).

5Consider (N, v) defined by w = (35, 20, 15, 15, 15) and q = 51: w2 > w3 but 2 = η2(N, v) < η3(N, v) =
3. – Whether the possible violation of monotonicity for some particular w and q is a fatal problem or
rather an advantage for a voting power index is a matter of debate; see e. g. Brams and Fishburn (1995)
and Holler and Napel (2004) for support of the latter view.

3



4 Potential of the Holler-Packel Value

Given a game (N, v), let the game (N \ i, v) be defined by restricting the domain of the
characteristic function, P(N), to P(N \ i). Coalitions involving player i are ‘deleted’ from
the game and all other coalitions S ⊆ N \ i simply retain their old worth v(S). Note that if
(N, v) is a simple voting game, (N \ i, v) is characterized by the same quota q and weights
w1, . . . , wi−1, wi+1, . . . , wn.6

Characterizing a value ψ by a potential function amounts to the provision of a mapping
P from the space of all games G or a subclass G ⊆ G closed under the above removal
operation, to the real numbers such that any player i’s value ψi(N, v) is for any (N, v)
equal to the difference between the potential P (N, v) of the considered game and the
potential P (N \ i, v) of the restricted game resulting from dropping player i (letting the
remaining players ‘play amongst themselves’). In other words, if (and only if) a value
ψ : G → Rn admits a potential function P : G → R, one can view (and calculate) ψi(N, v)
as i’s marginal contribution

∆i(N, v) ≡ P (N, v)− P (N \ i, v)

to the game (N, v), where the latter is evaluated by P .7 Provided it exists, ψ’s potential
in view of ψi(N, v) = ∆i(N, v) satisfies the recursive equation

P (N, v) =
1

n

[
n∑

i=1

ψi(N, v) +
n∑

i=1

P (N \ i, v)

]
(2)

for all N 6= ∅ and becomes uniquely determined after making the definition

P (∅, v) ≡ 0. (3)

Hart and Mas-Colell (1988, 1989) were the first to consider the notion of a potential –
which has a long tradition in physics (see Ortmann 1998 for a detailed discussion) – in
the context of games. They showed that the Shapley value is the unique value which is
efficient and admits a potential;8 namely,

Pϕ(N, v) =
∑
S⊆N

(s− 1)!(n− s)!

n!
v(S)

Dragan (1996) and Ortmann (1998) first showed that the Banzhaf value admits a
potential, too. It is given by

P β(N, v) =
∑
S⊆N

1

2n−1
v(S).

6Slightly uncustomary, our definition of a simple game has not required v(N) = 1. This keeps the space
of simple games closed under the considered removal operation.

7Ortmann (2000) introduced the related notion of a multiplicative potential function: a solution ψ

admits a multiplicative potential iff there exists a function P : G → R such that P (N,v)
P (N\i,v) ≡ ψi(N, v).

8Actually, Hart and Mas-Colell originally included efficiency in their definition of a potential function.
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More generally, as proven by Calvo and Santos (1997), any semivalue ψsv admits a poten-
tial. It is9

Pψsv

(N, v) =
∑
S⊆N

psv(S),

where ps denotes the formation probability of coalitions with s members.
Since the (normalized) HPI for simple games is by definition efficient, Hart and Mas-

Colell’s result implies that it does not admit a potential. However, the HPV is neither
efficient nor a semivalue. So, the question of whether it admits a potential or not has so
far to our knowledge not been answered. Before we give our affirmative answer and discuss
the potential of HPV and non-normalized HPI, let us point to several equivalence results
that underline the relevance of the question. Namely, a value admits a potential (see Hart
and Mas-Colell 1989, Ortmann 1998, Calvo and Santos 1997, and Dragan 1999) if and only
if it has

1. the balanced contribution property (or preserves differences),

2. the path independence property (or is conservative), or

3. the Shapley blue print property.10

The property of balanced contributions has been defined by Myerson (1980) and intu-
itively requires that for any two players the gains or losses that one imposes on the other
(according to some value ψ) by leaving the game is equal for both. Formally, ψ defined on
G satisfies the balanced contribution property iff

∀(N, v) ∈ G : ∀i, j ∈ N : ψi(N, v)− ψi(N \ j, v) = ψj(N, v)− ψj(N \ i, v).

ψ satisfies path independence if, intuitively speaking, one could sequentially ‘buy off’
players from the game such that they leave one by one in exchange for getting ‘paid’ their
value ψi(N

′, v) of the game involving all remaining players N ′ ⊆ N , thereby exhausting
a total amount of money that does not depend on the order in which players are paid to
leave. Formally, denote the set of all permutations ω : N → N by Ω(N) and the set of
players preceding i in permutation ω by Nω

i . Then, ψ satisfies path independence iff

∀(N, v) ∈ G : ∀ω, ω′ ∈ Ω(N) :
∑
i∈N

ψi(N
ω
i ∪ i, v) =

∑
i∈N

ψi(N
ω′
i ∪ i, v).

The (order-independent) total amount spent equals the potential of the game (N, v),
namely

P (N, v) = P (N, v)− P (∅, v)

=
(
P (N, v)− P (N \ i1, v)

)
+

(
P (N \ i1, v)− P (N \ {i1, i2}, v)

)
+

. . . +
(
P (in, v)− P (∅, v)

)

= ψi1(N, v) + ψi2(N \ i1, v) + . . . + ψin(in, v)

9Again, it is uniquely determined up to the constant which we chose to be zero in (3).
10Dragan (1999) also proves equivalence to a recursive formula property which generalizes the set of

equations provided by Sprumont’s (1990) recursive definition of the Shapley value. It leads to a recursive
definition of semivalues, but does not seem to provide additional interpretational insights generally.
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with ik = ω(k) for any given ω ∈ Ω(N).
The Shapley blue print property, defined by Dragan (1999), requires a value ψ applied

to all games (N, v) to equal the Shapley value ϕ applied to ‘related games’ (N, vψ). In
particular, for any given (N, v), the game (N, vψ) is defined by

vψ(S) ≡
∑
i∈S

ψi(S, v), (4)

i. e. the worth of a coalition S in the ‘related game’ – the so-called power game of (N, v)
(cf. Dragan 1999) – is the sum of the ψ-values of its members in the reduction of the
original game to player set S.11 Then a value ψ has a potential iff ψ(N, v) ≡ ϕ(N, vψ).
The Shapley blue print property and, in particular, the mapping v 7→ vψ allow to connect
a value ψ to the many interpretations and results concerning the Shapley value (see e. g.
Winter 2002). Value ψ may be viewed as the ‘standard solution’ (that is: Shapley’s,
which has diverse cooperative and non-cooperative foundations) to coalition formation
and distribution problems for a game related to (N, v) in a particular way determined by
ψ.

That not only the Banzhaf value or other semivalues but indeed also the HPV has the
properties listed under 1.–3. follows from

Proposition 1 P η : G → R with P η(∅, v) = 0 and otherwise

P η(N, v) =
∑

S∈M(N,v)

v(S) (5)

is the potential of the Holler-Packel value.

Proof:
Partition the set of (N, v)’s MCC into

Mi(N, v) = {S ∈ M(N, v) : i ∈ S}

and
M−i(N, v) = {S ∈ M(N, v) : i /∈ S}.

Then, (5) can be written

P η(N, v) =
∑

S∈Mi(N,v)

v(S) +
∑

S∈M−i(N,v)

v(S).

One also has
P η(N \ i, v) =

∑

S∈M(N\i,v)

v(S) =
∑

S∈M−i(N,v)

v(S)

11Clearly, (N, vψ) ≡ (N, v) iff ψ is efficient.
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because M(N \ i, v) = M−i(N, v). Hence,

∆η
i (N, v) ≡ P (N, v)− P (N \ i, v) =

∑

S∈Mi(N,v)

v(S) =
∑

S∈M(N,v)
i∈S

v(S) = ηi(N, v).

Note that, by (2), P η is unique up to the additive constant c ≡ P η(∅, v) chosen to be zero.
¤

The potential function of HPV’s restriction to simple games (N, v), the non-normalized
HPI, can also be written as

P η(N, v) = |M(N, v)|,
i. e. a simple game’s potential is simply the number of MWC in it.

Example As illustration consider the 7-person simple game (N, v) with

M(N, v) = {{1, 2, 3, 4}, {3, 4, 5, 6}, {3, 4, 5, 7}, {3, 5, 6, 7}, {4, 5, 6, 7}}

analyzed by Holler and Li (1995). The potential of the game is P η(N, v) = 5. From

M(N \ 1, v) = {{3, 4, 5, 6}, {3, 4, 5, 7}, {3, 5, 6, 7}, {4, 5, 6, 7}}

one obtains P η(N \ 1, v) = 4, i. e. player 1 contributes a potential of 1 (one MWC) to
the game and consequently has a HPV or non-normalized HPI η1(N, v) = 1. Analogously,
η2(N, v) = 1, η3(N, v) = η4(N, v) = η5(N, v) = 4, and η6(N, v) = η7(N, v) = 3.

Now consider, e. g., the coalition S = {1, 2, 3, 4}. In the restricted game (S, v), the
HPV evaluates to η1(S, v) = η2(S, v) = η3(S, v) = η4(S, v) = 1. So the worth of S in
the power game (N, vη) induced by (N, v) is vη(S) =

∑
i∈S ηi(S, v) = 4. Analogously, one

obtains vη(S
′, v) = 0 for S ′ = S \ 1. So the marginal contribution of player 1 to coalition

S in (N, vη) is [vη(S) − vη(S \ 1)] = 4. Weighted with 3!3!
7!

this contributes to player 1’s
Shapley value in (N, vη) – which equals player 1’s HPV in (N, v).

¤

Let π(N, v) denote the sum of the worths of the MCCs for all players in (N, v), i.e.,

π(N, v) =
∑
i∈N

∑

T∈M(N,v)
i∈T

v(T ).

Let us say that an arbitrary value ψ defined on G ⊆ G distributes the worths of MCCs iff

∀(N, v) ∈ G : ∀S ⊆ N,M(S, v) 6= ∅ :
∑
i∈S

ψi(S, v) = π(S, v).

This is similar to the efficiency property and requires ψ – in any restricted version of
a given game (N, v) – to assign a total value to the participating players which is equal
to the sum of the individual total worths experienced by these players in all their minimal
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crucial coalitions. The HPV distributes the worths of MCCs. But so does, for example,
the value ψ defined by

ψi(N, v) =

{
π(N, v) if i = min N
0 otherwise.

In analogy to Hart and Mas-Colell’s characterization of the Shapley value (as the unique
value which is efficient and admits a potential) and Dragan’s and Ortmann’s characteriza-
tion of the Banzhaf value (as the unique value which “distributes the marginalities” and
admits a potential – see Dragan 1996 and Ortmann 1998), we have

Proposition 2 The Holler-Packel value is the unique solution which distributes the worths
of MCCs and admits a potential.

Proof:
Let ψ be an arbitrary value with potential P and distributing the worths of MCCs, i. e.
ψi(S, v) = ∆iP (S, v) and

∑
i∈S ∆iP (S, v) = π(S, v). By rearranging,

P (S, v) =
1

s
[π(S, v) +

∑
i∈S

P (S \ i, v)].

Consider any coalition S ⊆ N with |S| = 1, i. e. S = {i} for some i ∈ N . We have
P (S, v) = v(i) = P η(S, v). Now, P ≡ P η (and thus ψ ≡ η) follows by induction: suppose
P (S, v) = P η(S, v) for all S ⊆ N with |S| = s and consider T ⊆ N with |T | = t = s + 1.
Then, using that the HPV distributes the values of MCCs,

P (T, v) =
1

t
[π(T, v) +

∑
i∈T

P (T \ i, v)]

=
1

t
[
∑
i∈T

(P η(T, v)− P η(T \ i, v)) +
∑
i∈T

P η(T \ i, v)]

=
1

t

∑
i∈T

P η(T, v) = P η(T, v)

¤

In general, the Shapley value of a game (N, v) may or may not be an element of (N, v)’s
core. In the former case, the interpretation of ϕ(N, v) as a distribution of (expected) payoffs
in (N, v) is particularly robust because no coalition could increase own payoffs by breaking
away from the grand coalition. A characterization of those games for which the Shapley
value lies in the core has been provided by Inarra and Usategui (1993) and Izawa and
Takahashi (1998). Since the value ψ of (N, v) is just the Shapley value of the power game
(N, vψ) defined by (4) if ψ admits a potential, the question of when the Shapley value
of this power game lies in the power game’s core is of interest. It makes the Shapley
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blue print property of a value more meaningful in that the interpretation of ψ as the well-
founded Shapley solution for a game related to (N, v) via ψ becomes more relevant because
the latter is coalitionally rational and does not conflict with the (also well-founded) core
solution of this game.

Proposition 3 The Shapley value of (N, v)’s power game induced by the Holler-Packel
value, (N, vη) – and thus the Holler-Packel value of (N, v) itself – lies in the core of (N, vη).

Proof:
By Corollary 4.1 in Dragan and Martinez-Legaz (2001) a solution ψ with potential P is in
the core of the power game of (N, v) (actually even of each of its subgames (T, v)) iff

∀S ⊂ T ⊆ N :
∑
i∈S

[P (S, v)− P (S \ i, v)) ≤
∑
i∈S

[P (T, v)− P (T \ i, v)]

⇐⇒
∑
i∈S

ψi(S, v) ≤
∑
i∈T

ψi(T, v).

Again let
Mi(N, v) = {S ∈ M(N, v) : i ∈ S}

and consider subgames (T, v) and (S, v) of (N, v) with S ⊂ T ⊆ N . Then

∀i ∈ N : Mi(S, v) ⊆ Mi(T, v).

This implies that for any i ∈ N

∑

S′∈Mi(S,v)

v(S
′
) ≤

∑

S′∈Mi(T,v)

v(S
′
)

and hence
ηi(S, v) ≤ ηi(T, v),

which implies ∑
i∈S

ηi(S, v) ≤
∑
i∈T

ηi(T, v).

¤

5 Concluding Remarks

Already Hart and Mas-Colell (1989, p. 590) have remarked that “[a]lthough the potential is
in its essence just a technical tool, it is . . . a powerful and suggestive one.” Equivalence of its
existence with established properties like preservation of differences and path independence
is a case in point.
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The potential of a given game can be regarded as a summary of all players’ joint op-
portunities as captured by the corresponding value or index. These opportunities typically
increase when a new player joins; the difference of potentials measures this increase and
hence the contribution of the new player. One can start with the empty coalition, then
successively draw additional players into the game and see joint opportunities increase
exactly by the player’s value in the resulting game.

In simple games the Holler-Packel potential can be regarded as the non-weighted num-
ber of decision-making opportunities the players collectively have (under Riker’s size princi-
ple). Assuming, first, that the characteristic function v of a simple game just characterizes
winning coalitions (not levels of transferable utility) and, second, that players get utility
from having opportunities, one may interpret coalitions’ worths (and players’ values) in the
power game vη as sums of transferable utility. Because total opportunities derived from
membership in minimal winning coalitions come with economies of scale, i. e. they expand
with increasing marginals when new players are added, the power game is convex. Hence,
evaluating players’ overall contributions to opportunities in the game under consideration,
i. e. determining their Holler-Packel ‘power’ or ‘value’ in it, amounts to assigning them a
particularly distinguished (expected) utility vector in the associated power game’s core:
the Shapley value.

Based on the possible interpretation of the Shapley or Banzhaf values as an expected
payoff, Ortmann (1998, p. 424) argues that potential “has got the interpretation of the
ability to obtain utility” in analogy to potential (energy) in physics which is the ability of
doing work. In the same vein, the Holler-Packel potential captures the aggregate ability
to perform and benefit from collective actions (via minimal winning coalitions or minimal
crucial coalitions). It can be interpreted as a measure of collective power or even freedom
in the game under consideration.12

Note that the sum of players’ (non-normalized) Holler-Packel values typically exceeds
the worth of the grand coalition. If one regards players as receiving utility from having
opportunities in the form of belonging to minimal crucial coalitions, the worths of non-
singleton minimal crucial coalitions are ‘distributed’ several times (to all their members) in
the power game. This concurs with the public good interpretation often given for Holler-
Packel value and, in particular, Holler-Packel index.
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