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Abstract

In voting theory, many efforts have been undertaken to compute
the probability that different voting rules lead to different outcomes
under different assumptions on the likelihood of the voting situations.
We here intend to propose a similar analysis for linear solutions of co-
operative TU games, that is the semivalues and the least square values.
First, under an assumption which somehow mimics the IC hypothesis
used in voting theory, we compute the likelihood that one semivalue
(or least square values) gives more worth to voter i than voter j, while
another semivalue (or least square value) leads to the opposite ranking.
Secondly, we explore the discrepancies between the Shapley-Shubick
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1 Introduction

The literature on cooperative games with transferable utility focuses on how
the worth of the grand coalition should be split among the players. It rarely
addresses the issue of ranking the players on the basis of the worth that they
are able to attain in each coalition. Nevertheless, there exist contexts where
this is a relevant problem. For example, consider that v(S) is the number of
goals or points scored by a team S of players in a sport like rugby, basket,
hockey, etc. The ranking of a player i in the team should be evaluated from
the different v(S), S 3 i. Similarly, the productivity of an employee can
be evaluated from the production of the different coalitions of workers he
belongs to. If the objective of the manager is to fire the less productive
employee, or to promote the most productive one, he only needs a ranking of
the workers. For another example, one could think of an European research
network of universities financed by the European Union. The commission
in Brussels may wish to know which partners have more cooperation with
others universities, in order to favor it for the next programmes. Again, an
exact imputation of the worth is not necessary; the problem is to identify the
good (or bad) player(s). Then, an important question is to know whether
different criteria could lead to very different rankings.

Saari and Sieberg [21] and Laruelle and Merlin [15] studied this issue for
two classes of linear solutions to TU games, the least square values and the
semivalues. The most famous member of these families is, of course, the
Shapley value. Their main results state that any two different least square
values (or semivalues) could lead to completely different rankings. In fact,
the results they obtain are very similar to those obtained in voting theory:
when n candidates are in contention, Saari [20] prove that (n − 1) linearly
independent scoring rules could lead to (n − 1) different rankings of the
players (with possibly n− 1 different winners and losers).

The same issues arise with voting games, though in a more subtle way,
when one wants to evaluate the power of the players involved in a decision
scheme. In fact, both Saari and Sieberg and Laruelle and Merlin showed
that the ranking of the players induced by the Shapley Shubick index and
the Banzhaf index are always similar for the class of weighted voting games.
However, Straffin [24] displayed a case wherein the two indices significatively
diverge. In 1971, the Victoria conference proposed a new voting scheme
to approve amendments to the Canadian Constitution. A proposal would
have to be approved by Ontario, Quebec, two of the four maritime provinces
(New Brunswick, Nova Scotia, Prince Edward Island and Newfoundland),
and either British Columbia and one prairie province (Alberta, Saskatchewan
and Manitoba) or all the three prairie provinces. We will refer to this game
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Table 1: Power indices for the 1971 Victoria scheme

Province 1980 Population Shapley-Shubick Banzhaf
Ontario 35.53 31.55 21.78
Quebec 26.52 31.55 21.78
British Columbia 11.32 12.50 16.34
Alberta 9.22 4.17 5.45
Manitoba 4.23 4.17 5.45
Saskatchewan 3.99 4.17 5.45
Nova Scotia 3.49 2.98 5.94
New Brunswick 2.87 2.98 5.94
Newfoundland 2.34 2.98 5.94
Prince Edward Island 0.51 2.98 5.94

as the ‘Canadian gama’ in the sequel. This procedures can be described as
the composition of three different weighted games. In the first game, Ontario
and Quebec have one vote, the other provinces zero, and a threshold of two
votes must be reached for a decision to be accepted. In the second game, all
the players except the maritime provinces, which have one ballot each, have
no vote ; A threshold of two must be reached for a decision to be considered.
The last part of the constitutional amendment scheme can be described as
a weighted game wherein British Columbia gets two mandates, the three
prairie provinces obtains one mandate each, and the other province have no
voice. Thus, the decision is eligible if a total of three mandates supports it.
Of course, a decision is accepted in the composite game if it is supported by
a wining coalition in all the three games. Table 1 (reproduced from Straffin
[24]) displays the measures of the power of the different provinces according
to the Shapley-Shubick and Banzhaf indices. The most striking result is that,
according to the Banzhaf index, the maritime provinces seems to enjoy more
influence in the decision process than the three prairie states, in contradiction
with the evaluation obtained with the Shapley Shubick power index! Thus,
as soon as the decision schemes is described by the composition of two or
more different games, it seems that there is a room for the most two famous
power indices to strongly disagree in their conclusion.

In social choice theory, many efforts have been undertaken to describe
the discrepancies among the voting rules and to compute the probability
that different voting rules lead to different outcomes. For example, Gehrlein
and Fishburn [13] computed the probability that two different scoring rules
select the same winner in a three-candidate election for a large electorate.
They used the Impartial Culture (IC) probabilistic hypothesis to model the
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behavior of the voters: Each voter is equally likely to pick any of the 6
possible strict preference orderings. Using the same assumptions, Merlin,
Tataru and Valognes [16] have extended these results, and have evaluated the
likelihood that all the voting rules (the scoring rules, the Condorcet voting
rules, and the scoring runoff procedures) select the same winner in a three
candidate election1. In the first part of this paper, we intend to propose a
similar analysis for the linear solutions of cooperative TU games, that is the
semivalues and the least square values. Under an assumption which somehow
mimics the IC hypothesis used in voting theory, we compute the likelihood
that one semivalue (or least square value) gives more worth to voter i than
voter j, while another semivalue (or least square value) leads to the opposite
ranking.

Though the idea of computing the probability of a paradox is quite new in
game theory, we have to report two recent contributions for the case of simple
games. Van Deemen and Rusinowska [27] studied thirteen distributions of
the seats in the Second Chamber of the Dutch parliament by the mean of five
power indices, including the Shapley-Shubik index, the normalized Banzhaf
index and the Penrose Banzhaf index. Subsequently, they search for the
occurrence of the paradox of redistribution, the paradox of new members,
and the paradox of large size for each power index. Chua Ueng and Huang
[5] studied the class of plurality weighted games: A coalition is winning if
the sum of the weights of its players is larger than the weights gathered
by any other coalition. The space of the games is then identified with the
space of the weights: If the sum of the weights equals one, for a n-player
game, it is the n-dimensional unit simplex. Thus, the probability that an
index does not satisfy a given property is given by the measure of a volume
in the simplex. One has to notice that these contributions only consider
weighted games. The second part of the paper extends the model of Chua,
Ueng and Huang to evaluate the discrepancies between the Shapley-Shubick
and Banzhaf indices for composite weighted games. We wrote a computer
programme that generates randomly the weights of the composite weighted
game, computes the order of the players according to both indices, and check
whether these two rankings disagree. Thus, we are able not only to gener-
ate easily many examples of conflicts between Shapley-Shubick and Banzhaf
(quite an improvement from the only example yet provided by the game
theory literature!) but also to give estimate the likelihood of discrepancies
according to the probability model we use to generate the weights.

The rest of the paper is organized as follows. In section 2, we first recall
the game theoretical background, and introduce the definitions of semivalues

1For more on this literature, see the survey articles by Gehrlein [11, 12].
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and least square values. We present in detail the results by Saari and Seiberg
[21] and Laruelle and Merlin [15]. The first probability model is introduced
in section 3. We choose to use a very simple model, which shares some
characteristics with the IC hypothesis: Each voter brings (almost) the same
worth to all the coalitions he belongs to. Thus, there is no systematic bias
in favor of one player. The main results and the computations are displayed
in section 4. In particular, we have been able to compute the probability
that the Shapley value and the least square prenucleolus rank differently two
players. In section 5, we present in details the composite weighted games.
We then present two models that can be used to generate randomly these
games. One of them turns out to be the model suggested by Chua, Ueng
and Huang; The other is directly inspired by the Maximal Culture model
suggested by Gehrlein and Lepelley [14] for the computation of the voting
paradoxes in social choice theory. Our figures shows that the likelihood of
discrepancies increases rapidly with the number of players involved in the
game. In the final discussion (section 6), we first present the limitations
of our analysis. We then suggest that several other models could be used
to compute the probabilities of discrepancies among semivalues and power
indices. Open issues and technical problems that could be solved in further
studies are also mentioned.

2 Game Theoretical Background

2.1 Games and their properties

A cooperative transferable utility (TU) game is a pair (N, v), where N =
{1, . . . , n} denotes the set of players and v is a function which assigns a real
number to each non-empty subset (or coalition) of N , with v(∅) = 0. The
number of players in coalition S is denoted by s. When N is clear from the
context we refer to game (N, v) as game v. We denote by Gn the class of
all possible n-player games. Games may have certain nice and reasonable
properties in some contexts. A game is non-negative if v(S) ≥ 0, ∀S ⊆ N .
The monotony condition requires that v(S) ≤ v(T ) whenever S ⊆ T . A
game is superadditive if v(T ) + v(S) ≤ v(T ∪ S) for all coalitions S and T
such that S ∩ T = ∅. It is convex whenever for all i and all S and T such
that S ⊆ T ⊆ N \ {i}, v(S ∪ i)− v(S) ≤ v(T ∪ i)− v(T ).

A (0-1)-game is a game in which the function v only takes the values 0 and
1. It is a simple game if it is not identically 0, and monotonic. Thus, a simple
game is often described by its set of winning coalitions W : S ∈ W ⇔ v(S) =
1. We denote by SGn the set of all the n-player simple games. A weighted
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game G(γ, w) is defined by a vector of weights, w = (w1, . . . , wi, . . . , wn) and
a threshold γ <

∑
i∈N wi, such that v(S) = 1 whenever

∑
i∈S wi > γ, and

v(S) = 0 otherwise. We denote by WGn the set of all n-player weighted
games. Let G(γ1, w1), G(γ2, w2), . . . G(γk, wk) be a collection of k weighted
games. Then, the composite weighted game:

G = G(γ1, w1) ∧G(γ2, w2) ∧ . . . ∧G(γk, wk)

is the simple game defined by:

v(S) = 1 ⇔
∑
i∈S

wt
i > γt ∀t = 1, . . . k.

We denote by k − WGn the family of composite weighted games with k
components. Felsenthal and Machover [8, p 27–28] propose to define the
family of composite game more broadly. However, the definition we give
here is sufficient for the purpose of this paper. Also notice that a specific
k-weighted composite game can sometimes be rewritten as a k′-weighted
composite game, with k′ ≤ k. Taylor and Zwicker [26, p 35] define the
dimension of a voting game to be the minimal number k such as it can
be represented as the meet of k voting rule. For example, Felsenthal and
Machover [9] have been able to prove that one of the decision scheme of the
European Union, presented in the official text as the conjunction of three
weighted voting games, could be represented more simple by the composition
of only two weighted voting games.

2.2 Linear solutions for TU games

A solution to a TU game is a function ψ : Gn → Rn. The vector ψ(v) =
(ψ1(v), . . . , ψn(v)) assigns to each voter a measure of his importance or worth
in the game. A solution is efficient if

∑
i∈N ψi(v) = v(N) for all games; it is

then called a value. When designing a solution for a game, one may require
that it satisfies the linearity axiom.

Definition 1 A solution to a game, ψ, is linear iff ∀v, w ∈ Gn, and ∀a >
0, b > 0, ψ(av + bw) = aψ(v) + bψ(w).

Two main classes of solutions satisfy this axiom: The semivalues and the
least square values.

Definition 2 A solution Φ to a cooperative TU game v is a semivalue if and
only if Φ is given by, ∀i = 1, . . . n,:

Φi(v) =
∑

S⊆N, S3i

ps [v(S)− v(S \ {i})] , (1)
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where
n∑

s=1

(
n−1
s−1

)
ps = 1 and ps ≥ 0.

Definition 3 A solution Ψ to a cooperative TU game v is a least square
value if and only if Ψ is given by, ∀i = 1, . . . , n, :

Ψi(v) =
v(N)

n
+

1

αn

[
n

∑

S 6=N, i∈S

m(s)v(S)−
n∑

j=1

∑

S 6=N, j∈S

m(s)v(S)

]
(2)

where α =
n−1∑
s=1

m(s)
(

n−2
s−1

)
and m = (m(1), . . . , m(n− 1)) ∈ Rn−1

+ .

Dubey et alii [7] proposed a characterization of the semivalues based upon
linearity; Ruiz et alii [19] also used the linearity axiom to characterize the
least square values. These two families mainly differ on the following proper-
ties: The semivalues are not generally efficient, while the least square value
may assign negative values to some players. Only one solution belongs to
both families, the Shapley value [23], denoted by φ afterwards, and charac-

terized by ps = (s−1)!(n−s)!
n!

or m(s) = ((n− 1)
(

n−2
s−1

)
)−1.

Nevertheless, there is a close relationship between the two classes. More
precisely, Ruiz et alii [19] showed that the orthogonal projection of a semi-
value on the efficient plane is a least square value2. If Φ(v) is a semivalue,
the orthogonal projection of it on the efficient plane which is given by

Φ̄(v) = Φ(v) +
1

n

(
v(N)−

∑
i∈N

Φi(v)

)

is a least square value. Furthermore, if p = (p1, . . . , pn) is the vector associ-
ated to the semivalue Φ, then the weight function such that Φ̄ = Ψ is given
(up to a positive proportionality factor) by

m(s) = ps + ps+1 for all 1 ≤ s ≤ n− 1 (3)

Without loss of generality, this induces the normalization α = 1 for the least
square values. Thus, we can associate to each semivalue a least square value.
This is in particular true for the following famous semivalues:

1. The Banzhaf semivalue (Banzhaf [1], Coleman [6]) is characterized by

ps =
1

2n−1
.

2The converse is not true: we cannot associate a semivalue to each least square value.
Also notice that different semivalues can have the same projection in the class of LSVs.
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It will be denoted by β. The associated least square value is the least
square prenucleolus (Ruiz et alii [18]), which is characterized by

m(s) =
1

2n−2
.

Notice that this normalization is different from the one used to defined
the normalized Banzhaf index3, where the Banzhaf values are divided
by their sum (this guaranties non negativity).

2. The dictatorial semivalue only takes into consideration the worth of
the singletons. Its additive and efficient projection is the center of
imputation.

m(s) = ps =

{
1 if s = 1
0 otherwise

3. On the contrary, the marginal semivalue only considers coalitions of
size n− 1.

ps =

{
1 if s = n
0 otherwise

The separable cost remaining benefit solution (see for example Young
[29]) is the orthogonal projection of the marginal index.

m(s) =

{
1 if s = n− 1
0 otherwise

2.3 Discrepancies among solutions for TU games

The linear solutions assign to each player a measure of their “power”, “im-
portance” or “worth” in the cooperative TU game. Nevertheless, it is quite
known that two solutions may estimate quite differently the worth of a player.
The 1971 proposal for the Canadian constitutional amendment scheme is a
good example of what can go wrong: The numerical estimations of the power
as well as the induced ordering of the players can be significatively different
according to the game theoretical solution concept we use.

We will here only use an ordinal approach, that is, only consider the way
the different linear solutions rank the players according to the value they
give to them. In fact, any solution induces a ranking of the players, named
a power ranking. These power rankings belongs to R(N), the set of all the
preorderings on N = {1, . . . , n} (the transitive and complete binary relations
on N). A first result is that, although a semivalue and its normalization on

3Recall that a solution is called a power index when it is applied to simple games.
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the efficient plane may award different values to the same player, the power
rankings are preserved; from equations (1),(2) and (3), we derive:

Φi(v)− Φj(v) =
n−1∑
s=1

m(s)


 ∑

|S|=s, i∈S, j /∈S

v(S)−
∑

|S|=s, j∈S, i/∈S

v(S)




= Ψi(v)−Ψj(v). (4)

Thus, we will only consider the class of least square values, the results for
semivalues being similar (moreover, some least square values are not the
additive normalization of any semivalue). Generally, the semivalues are nor-
malized by dividing the Φi’s by their sum4. Notice that, by doing so, we
also keep the power ranking. So, theorems in terms of power rankings for
least square values are also valid for the classical normalized version of the
semivalues.

Possible discrepancies in power rankings in the class of least square values
have been extensively described by Saari and Seiberg [21] and Laruelle and
Merlin [15]. Their main theorem is the following one:

Theorem 1 Take (n−1) linearly independent vectors m1, . . . , mt, . . . , mn−1,
defining (n−1) different least square values. Choose randomly (n−1) power
rankings Rt, t = 1, . . . , n− 1 from the set of the possible preorderings R(N).
Then there exist games v (possibly non negative, monotonic, superadditive or
convex) such that the power ranking obtained for the game v with the least
square value mt is exactly Rt.

A consequence of this theorem is that any two different least square values
may lead, for some games, to opposite rankings of the players. This result is
also true if we consider simultaneously the ranking induced by the Shapley
value and the Banzhaf semivalue. Nevertheless, as in voting theory, results
like Theorem 1 does not tell us whether examples of strong discrepancies
among least square values are just rare events, or, on the contrary, betrays
a generalized chaotic behavior. To answer this question, and complete the
qualitative results displayed in Theorem 1 with quantitative estimations,
we will here compute the likelihood of discrepancies among two or more
semivalues in some particular contexts.

4The resulting values are efficient and positive, but the linearity axiom is no longer
satisfied.
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3 The model of almost symmetrical players

The techniques and the arguments we will use are derived from the ones of
voting theory. Like the scoring rules, the least square values can be viewed as
linear mapping from one space onto an image space. With mild assumptions,
Saari showed that most of the voting rules are linear mappings from the
set of rational points x in the m! unit simplex (in a m candidate contest,
each coordinate xt gives the fraction of the voters equipped with the type t
preference among the m! possible linear orderings) into Rm, as each candidate
obtains a final score. Similarly, in cooperative game theory, linear solutions
associate to a point in Rn−2 an point in Rn.

For any least square value Ψ, the hyperplane Ψi(v) = Ψj(v) divides Gn

in two half spaces: on one side, the LSV estimates that i has more worth
than j, and on the other side, that j has more worth than i. For one LSV,
there are ((n− 1)n)/2 such hyperplanes, which divide Gn in n! regions, cor-
responding to the n! possible strict power rankings (rankings with ties are
located on the hyperplanes and at the intersection of several hyperplanes).
Thus, two different LSVs differ in the way they partition Gn. To evaluate
the discrepancies between two semivalues Ψ and Φ on the ranking of i and j,
one has to examine the regions defined by Ψi(v) > Ψj(v) and Φi(v) < Φj(v):
This a cone in Gn. So, the question resumes to evaluate the volume between
the two hypeplanes given a measure on the space of games.

It is true that several different assumptions can be made on the likelihood
of a specific game in Gn, or one may be only interested in some subclasses of
games, like the weighted games. The model we propose here is inspired by
the impartial culture assumption in voting theory: In this model, each voter
has a uniform probability to pick any of the possible preference type, and the
distribution of the voting situations follow a multivariate normal distribution
as the number of voters tends to infinity (for more on this model and its
application in voting theory, see the recent surveys by Gehrlein [11, 12]). In
particular, there is no bias in favor of a particular candidate under IC. Also
notice that in a m-candidate elections, the mass of the points are gatehred
around the profile x = (1/m!, . . . , . . .), where each preference type is equally
represented, as the number of players increases. The counterpart in game
theory will be games where the players have almost the same worth: All the
coalitions of the same size lead to the same worth for its members, up to an
error term. Thus the measure on Gn will here be gathered around a point in
Gn, which corresponds to a symmetric game (possibly non negative, additive,
superadditive or even convex).

More precisely, the model of almost symmetrical players assumes that all
the coalitions of the same size s have almost the same value, as. Nevertheless,
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the worth of the coalitions of the same size may be slightly different, due to
an error term ε(S). Thus:

v(S) = as + ε(S)

The idea is that all the players have the same capacities; the coalition size
is the main factor which influences the worth. Nevertheless, some noise may
affect the worth of a coalition; this is the ε(S) term. We shall assume that
E(ε(S)) = 0, and that the ε(S) are independent and identically distributed.
The simplest case would be to assume that all the ε(S) follow the same
normal distribution N (0, σ), but other distributions such that Prob(v(S) =
as + t) = prob(v(S) = as − t) ∀s = 1, . . . n− 1 may be used.

The random variable is the (2n − 2)-dimensional vector V = (v(s)); v(∅)
and v(N) are omitted as they have no impact on equation (4), which governs
the ranking between player i and player j for a given least square values -
they can be adjusted as desired. As each v(S) follows the same normal law,
the distribution of the cooperative games is radially symmetric around the
point

A = ((a1, . . . , a1)︸ ︷︷ ︸
n times

, (a2, . . . a2)︸ ︷︷ ︸
n(n−1)/2 times

, . . . (as, . . . , as)︸ ︷︷ ︸
n!/(s!(n−s)!) times

, . . . , (an−1, . . . , an−1)︸ ︷︷ ︸
n times

).

Thus, the normal distribution case is just a particular example of a more
general class of distribution where the mass the symmetrically distributed
around a single point. In this case the probability of any event is equal to the
angle between the two (or more) hyperplanes that describe it. The model is
similar to the one described by van Newenhizen [28] in voting theory: Under
the IC assumption and more generally for any probability distribution which
is radially symmetric around a center point, the probability computations
are reduced to the measure of a cone. Her geometric technique has been
developed since then by Saari and Tataru [22], Tataru and Merlin [25] and
Merlin, Tataru and Valognes [16].

4 Probability of discrepancies among semi-

values and least square values

4.1 The three-player case

In the three-player case, the vectors are of the form:

V = (v(1), v(2), v(3), v(12), v(13), v(23)) ∈ R6.
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The distribution of the V ’s is radially symmetric around a point A = (a1, a1, a1, a2, a2, a2).
The least square values are uniquely described by the vector m = (m(1),m(2)).
With the normalization α = 1, we can describe the family of least square
values by mp = (1−p, p), p ∈ [0, 1]. Also notice that, for 3 players, the Shap-
ley and Banzhaf orderings coincide. p = (1/6, 1/3, 1/6) for Shapley-Shubick,
which to m = (1/2, 1/2). p = (1/8, 1/8, 1/8) for Banzhaf, which leads to
m = (1/4, 1/4) or m = (1/2, 1/2) if we normalize the sum of the weights to
one.

4.1.1 Different rankings of two players

We first evaluate the probability that two least square values disagree on the
ranking of two players.

Theorem 2 Consider two LSVs Ψp and Ψq, respectively defined by mp and
mq. Then, the probability that Ψp(v) and Ψq(v) rank differently the players i
and j for almost symmetrical games, P (p, q) is given by:

P (p, q) =
1

π
arccos

(
1− p− q + pq√

(1− 2p + 2p2)(1− 2q + 2q2)

)
(5)

Proof of Theorem 2. Wlog, consider the players 1 and 2. The equation
Ψp

1(v) = Ψp
2(v) is given by:

(1− p)v(1) + (p− 1)v(2) + 0v(3) + 0v(12) + pv(13)− pv(23) = 0

Its normal vector pointing towards the games where the value for player 1 is
greater than the value for player 2 is N1 = (1−p, p−1, 0, 0, p,−p). Similarly,
we define for Ψq the hyperplane separating the games where player 1 has
more worth than player 2, and its normal vector pointing towards games
where player 2’s value is greater is denoted by N2.

(1− q)v(1) + (q − 1)v(2) + 0v(3) + 0v(12) + pv(13)− pv(23) = 0

N2 = (q − 1, 1− q, 0, 0,−q, q)

The two hyperplanes does not point exactly in the same direction if p 6= q.
So, we have to compute the volume between these two hyperplanes. As the
probability distribution is radially symmetric around A, P (p, q) is twice the
angle between the two hyperplanes, α, divided by 2π. We can get this angle
by computing the dot product between the normal vectors N1 and −N2.

||N1|| =
√

2− 4p + 4p2
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||N2|| =
√

2− 4q + 4q2

−N1.N2 = 2− 2p− 2q + 4pq

cos(α) =
−N1.N2

||N1||.||N2||
and, after simplifications,

P (p, q) =
2α

2π
=

1

π
arccos

(
1− p− q + 2pq√

(1− 2p + 2p2)(1− 2q + 2q2)

)
.

QED.

From equation (5), we can derive several interesting facts. First, P (p, q) =
P (1 − p, 1 − q); thus the marginal and the dictatorial cases are symmetric,
P (0, q) = P (1, 1− q). Moreover, the probability P (0, q) is increasing in q. It
is easy to check that P (0, 1) = 1

2
; there is no link between the ranking of two

players by the marginal and the dictatorial semi values (for a generalization
of this statement, see section 4.3.1.). Another interesting measure is obtained
with p = 1

2
. Then, we estimate the probability that any LSV gives a ranking

different from the Shapley Banzhaf ordering. With p = 1
2
, we get:

P (
1

2
, q) =

1

π
arccos

(
1√

2− 4q + 4q2

)
.

On Figure 1, we can see that the values are symmetric around 1/2, with
P (1

2
, 0) = P (1

2
, 1) = 1/4.

4.1.2 Opposite Power Rankings

It is quite easy to deduce from the previous figures that the dictatorial and the
marginal semivalues are completely independent under these assumptions;
They will select the same strict ordering with probability 1/6, and select
opposite rankings with probability 1/6 too.

Thus, we explore in detail the probability of agreement and disagreement
with the Shapley Banzhaf value.

Theorem 3 Consider a LSV Ψp defined by mp. Then, the probability that
for almost symmetrical games, the rankings for the Banzhaf Shapley value
and Ψp are the same for n = 3, is given, for p ≥ 1

2
by:

A(
1

2
, p) = 1 +

3

π2

∫ p

1
2

dvol(C1) dp
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with

dvol(C1)

dp
=




arccos

(
−1

2
√

2−4 p+4 p2

)
(2 p− 1)

(1− 2 p + 2 p2)
√

7− 16 p + 16 p2
−

arccos

(
−1√

2−4 p+4 p2

)

(1− 2 p + 2 p2)




Moreover, A(1
2
, p) = A(1

2
, 1− p) and we get A(1

2
, 0) = A(1

2
, 1) = 0.443032.

Theorem 4 Consider a LSV Ψp defined by mp. Then, the probability that
for almost symmetrical games the ranking given by Ψp is the exact opposite
of the Shapley Banzhaf ranking , is given, for p ≥ 1

2
by:

D(
1

2
, p) =

3

π2

∫ p

1
2

dvol(C2) dp

with

dvol(C2)

dp
=



− arccos

(
1

2
√

2−4 p+4 p2

)
(2 p− 1)

(1− 2 p + 2 p2)
√

7− 16 p + 16 p2
+

arccos

(
1√

2−4 p+4 p2

)

(1− 2 p + 2 p2)




Moreover, D(1
2
, p) = D(1

2
, 1− p) and we get D(1

2
, 0) = D(1

2
, 1) = 0.038110.

Proof of Theorem 3. Wlog, consider the ordering 1 Â 2 Â 3. The
inequality Ψp

1(v) > Ψp
2(v) is given by:

(1− p)v(1) + (p− 1)v(2) + 0v(3) + 0v(12) + pv(13)− pv(23) > 0 (6)

Its normal vector pointing towards the games where the value for player 1 is
greater than the value for player 2 is N1 = (1− p, p− 1, 0, 0, p,−p). For the
case q = 1

2
, we obtain

1

2
v(1) +

1

2
v(2) + 0v(3) + 0v(12) +

1

2
v(13)− 1

2
v(23) > 0 (7)

B1 = (
1

2
,−1

2
, 0, 0,−1

2
,
1

2
)

Similarly, we define for Ψp the hyperplane separating the games where
player 2 has more worth than player 3, and its normal vector N3 pointing
towards games where player 2’s value is greater.

0v(1) + (1− p)v(2) + (p− 1)v(3) + pv(12)− pv(13)0v(23) > 0 (8)
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N3 = (0, 1− p, p− 1, p,−p, 0)

For q = 1
2
, we get:

0v(1) +
1

2
v(2)− 1

2
v(3) +

1

2
v(12)− 1

2
v(13) + 0v(23) > 0 (9)

B3 = (0,
1

2
,−1

2
,
1

2
,−1

2
, 0)

The probability A(1
2
, p) is the volume of the cone defined by equations (6)

to (9). As the probability distribution is radially symmetric around A, this
problem reduces to compute the area of a 3-dimensional spherical simplex on
the surface of unit sphere in R4. To perform this area, we use the Schla̋fli’s
formula which gives the differential volumes of spherical r-simplices (see Saari
and Tataru [22], Tataru and Merlin[25]).

dvolr(C1) =
1

(r − 1)

∑

6≤j<k≤9

volr−2(Sj ∩ Sk)dαjk; vol0 = 1/6 (10)

where αjk is the dihedral angle formed by the facets Sj, Sk of C1. To apply
this to our problem, remark that C1 is defined by the inequalities (6), (7), (8)
and (9). The dihedral angles between the different facets are easily computed
to obtain:

α68 = arccos
(

−N1N3

||N2||.||N3||

)
= α79 = π/3

α67 = arccos
(

−N1B1

||N1||.||B1||

)
= α89 = arccos

(
−1√

2−4p+4p2

)

α69 = arccos
(

−N1N3

||N1||.||B3||

)
= α78 = arccos

(
1

2
√

2−4p+4p2

)

which implies that:

dα68 = dα79 = 0
dα67 = dα89 = − 1

1−2 p+2 p2 dp

dα69 = dα78 = 2 p−1

(1−2 p+2 p2)
√

7−16 p+16 p2
dp

The vectors v1 = (1, 1, 1, 0, 0, 0) and v2 = (0, 0, 0, 1, 1, 1) form an orthogonal
basis for a subspace orthogonal to C1. We shall use this information to
calculate the vertices of the intersection of the cone with the four-dimensional
subspace orthogonal to v1 and v2. For example, finding the vertex p678 =
S6 ∩ S7 ∩ S8 reduces to solving the system:




(1− p)v(1) + (p− 1)v(2) + 0v(3) + 0v(12) + pv(13)− pv(23) = 0
1
2
v(1) + 1

2
v(2) + 0v(3) + 0v(12) + 1

2
v(13)− 1

2
v(23) = 0

0v(1) + (1− p)v(2) + (p− 1)v(3) + pv(12)− pv(13)0v(23) = 0
0v(1) + 1

2
v(2)− 1

2
v(3) + 1

2
v(12)− 1

2
v(13) + 0v(23) > 0
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By solving similar linear systems, we obtain the vertices of the cone C1 to be

equal to:
p678 = (p, p,−2p, 2p− 2,−p + 1,−p + 1)
p679 = (−1,−1, 2, 2,−1,−1)
p689 = (2p,−p,−p, p− 1, p− 1, 2− 2p)
p789 = (−2, 1, 1, 1, 1,−2)

Also we compute:

vol(S6 ∩ S7) = vol(S8 ∩ S9)

= ̂(p678, p679) = arccos

(
−1√

2− 4 p + 4 p2

)

vol(S7 ∩ S8) = vol(S6 ∩ S9)

= ̂(p789, p678) = arccos

(
−1

2
√

2− 4 p + 4 p2

)

Using (10), with r = 3:

dvol(C1) = vol(S6 ∩ S7)dα67 + vol(S7 ∩ S8)dα78.

Hence,

dvol(C1)

dp
=




arccos

(
−1

2
√

2−4 p+4 p2

)
(2 p− 1)

(1− 2 p + 2 p2)
√

7− 16 p + 16 p2
−

arccos

(
−1√

2−4 p+4 p2

)

(1− 2 p + 2 p2)




As the surface of the unit sphere in R4 is ω4 = 2π2, the probability that the

LSV m(p) and the Shapley-Banzhaf value gives the ranking 1 Â 2 Â 3 is:

A′(
1

2
, p) = 1/6 +

1

2π2

∫ p

1
2

dvol(C1) dp

The values of A′(1
2
, p) are displayed on Figure 2 for p ≥ 1

2
. We obtain

A(1
2
, p) = 6A′(1

2
, p), and A(1

2
, p) = 6(1/6− 0.0928283) = 0.443032. QED

Proof of Theorem 4. The proof of Theorem 4 is very similar to the proof
of Theorem 3. We just have to reverse the signs of inequalities (6) and (8),
and perform exactly the same computations. We evaluate the volume of a
new cone, C2, again using the Schla̋fli’s formula.

The dihedral angles between the different facets are easily computed to
obtain:
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α68 = α79 = π/3

α67 = α89 = arccos

(
1√

2−4p+4p2

)

α69 = α78 = arccos

(
−1

2
√

2−4p+4p2

)

which implies that:

dα68 = dα79 = 0
dα67 = dα89 = 1

1−2 p+2 p2 dp

dα69 = dα78 = −2 p+1

(1−2 p+2 p2)
√

7−16 p+16 p2
dp

We obtain the vertices of the cone C2 to be equal to:

p678 = (p, p,−2p, 2p− 2,−p + 1,−p + 1)
p679 = (1, 1,−2,−2, 1, 1)
p689 = (2p,−p,−p, p− 1, p− 1, 2− 2p)
p789 = (2,−1,−1,−1,−1, 2)

Also we compute

vol(S6 ∩ S7) = vol(S8 ∩ S9)

= ̂(p678, p679) = arccos

(
1√

2− 4 p + 4 p2

)

vol(S7 ∩ S8) = vol(S6 ∩ S9)

= ̂(p789, p678) = arccos

(
1/2

1√
2− 4 p + 4 p2

)

Using (10):

dvol(C2) = vol(S6 ∩ S7)dα67 + vol(S7 ∩ S8)dα78.

Hence,

dvol(C2)

dp
=



− arccos

(
1

2
√

2−4 p+4 p2

)
(−1 + 2 p)

(1− 2 p + 2 p2)
√

7− 16 p + 16 p2
+

arccos

(
1√

2−4 p+4 p2

)

1− 2 p + 2 p2




The probability that the LSV ranking is 3 Â 2 Â 1 while the Shapley-Banzhaf

value ranking is 1 Â 2 Â 3 is:

D′(
1

2
, p) =

1

2π2

∫ p

1
2

dvol(C2) dp

as vol0 = 0. We obtain D(1
2
, p) = 6A′(1

2
, p), and D(1

2
, p) = 6(0.00635167) =

0.038110. The values of D(1
2
, p) are displayed on Figure 3 for p ≥ 1

2
.QED
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4.2 Some results for n players

4.2.1 Elementary Least Square Values

With the normalization α = 1, all the vectors m(s) which define the class of
the least square values lie in a simplex uniquely characterized by its vertices.

Definition 4 Let ek be a vector in Rn−1
+ such that:

ek(s) =

{ (
n−2
s−1

)−1
if s = k

0 otherwise
(11)

A least square value is called elementary if it is defined by one of the n − 1
vector ek. It is denoted by Ψek

(v).

Note that the center of imputations is the elementary least square value
Ψe1

, while the equal allocation of nonseparable value corresponds to Ψen−1
.

It is easy to see that the family {Ψek
(v)}k=1,...,n−1 of elementary least square

values form a base of the class of least square values (see Laruelle and Merlin
for a proof [15]).

In section 4.1, we have seen that the results for the Ψe1
(v) and Ψe2

(v)
are completely independent for n = 3. This had to be expected, as each
elementary LSV only takes into account the coalitions of a given size. The
same argument runs for n ≥ 3: The probability that two elementary least
square values give exactly the same ranking is (1/n!), and they select the
same top player with probability 1/n. We can also notice that all the least
square values give the same ranking if and only if all the elementary least
square values select the same ranking. As a byproduct, the probability that
all the least square values (and all the semivalues) choose exactly the same
strict ranking of the players is (1/n!)n−2.

4.2.2 Banzhaf versus Shapley

For n players, the most interesting probability to compute is the likelihood
that the two most famous semivalues, the Shapley value and the Banzhaf
semivalue, lead to different rankings for a pair of players.

Theorem 5 Let Prob(φ 6= β, n) be the probability that the Shapley value
and the Banzhaf semivalue rank differently the players i and j in the power
ranking for almost symmetric games of n players. Thus,

Prob(φ 6= β, n) =
1

π
arccos

(
(n− 1)√

2(n− 2)Z(n− 2)

)

with Z(n− 2) =
∑n−2

t=1

(
n−2

t

)−1
.
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Proof of Theorem 5 . Without loss of generality, the reasoning is done for
the LSVs, and we consider players 1 and 2. The Banzhaf weights are given
by m(s) = 1

2n−2 for all s = 1, . . . , n − 1. The equation of the hyperplane
β1 − β2 = 0 is such that the coefficients are 0 for all the coordinates where
1 and 2 appear simultaneously or do not appear, + 1

2n−2 if 1 appears but not
player 2, and − 1

2n−2 otherwise. There are 2n−2 coalitions without player 1
and 2, so, there are 2n−1 coalitions with 1 or 2, but not both. Thus, if we
denote by B the normal vector pointing towards the games where player 1
has more power:

||B||2 = 2n−1

(
1

2n−2

)2

(12)

= 23−n (13)

The Shapley weights are given by m(s) = ((n − 1)
(

n−2
s−1

)
)−1. Again, the

coordinates of the hyperplane φ1 − φ2 = 0 obey to the same rule as the ones
of the Banzhaf hyperplane. So, there are 2n−2 coalitions without 1 and 2,
and

(
n−2

t

)
, t = 0, . . . , n − 2 coalitions of size t with player 1 and without

player 2. Thus, if we denote by Sh the normal vector pointing towards the
games where the Shapley value of 1 is greater than the Shapley value of 2,
we get:

||Sh||2 = 2
n−2∑
t=0

(
n− 2

t

)
(m(t + 1))2 (14)

= 2
n−2∑
t=0

(
n− 2

t

) (
1

n− 1

(
n− 2

t

)−1
)2

(15)

=
2

(n− 1)2

n−2∑
t=0

(
n− 2

t

)−1

(16)

Let us denote
∑n−2

t=0

(
n−2

t

)−1
by Z(n− 2). It is the sum of the inverse of the

entries in the Pascal triangle. One may check that it is decreasing from n = 6
and tends to 2 as n grows.

Thus, the angle α between the Shapley and the Banzhaf hyperplanes is
given by:

α = arccos

(
B.Sh

||B|| ||Sh||
)

To compute the dot product Sh.B, first notice that the tth coordinates in
both vectors have always the same sign. There are still 2n−2 coalitions with
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player 1 and without player 2, and
(

n−2
t

)
of them are of size t + 1. Thus,

B.Sh = 2
n−2∑
t=0

(
n− 2

t

)
m(t + 1)

1

2n−2
(17)

=
2

2n−2

n−2∑
t=0

(
n− 2

t

)
1

n− 1

(
n− 2

t

)−1

(18)

=
2

2n−2

n−2∑
t=0

1

n− 1
(19)

= 23−n (20)

In turns, we end with:

cos(α) =
(n− 1)√

2(n−2)Z(n− 2)

and

Prob(φ 6= β, n) =
2 arccos(α)

2π
=

1

π
arccos

(
(n− 1)√

2(n−2)Z(n− 2)

)
.

QED

As Z(n − 2) converges to 2 when n goes to infinity, we can state that
the probability tends to 1

2
has the number of players grows, which basically

means that the two values become completely independent. Nevertheless,
for small values of n, the figures are significatively lower than 1

2
, as shown in

Table 1.

5 The discrepancies between Banzhaf and Shap-

ley orderings for composite weighted games

5.1 Composite games, linear games and discrepancies

One of the conclusion to draw from the previous section is that we can to
produce rather easily TU-games for which two LSVs radically differ. How-
ever, this result depends on the fact that we can pick the v(S) rather freely
around the points A = ((a1, . . . , a1), (a2, . . . a2), . . . , (an−1, . . . , an−1)). It is
impossible to use this trick for the class of voting games as v(S) = 0 or
1; moreover, the monotony condition has to be met. In fact, the following
theorem is easy to prove for the class of weighted games:
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Table 2: The values of P (φ 6= β, n)

n Z(n− 2) P (φij 6= βij)

4 5
2

0.10242

5 8
3

0.16666

6 8
3

0.22251

7 13
5

0.27149

8 151
60

0.31403

9 256
105

0.34913

10 83
35

0.38097

11 146
63

0.40624

12 1433
630

0.42681

∞ 2+ 0.5−

Theorem 6 (Laruelle and Merlin [15], Saari and Sieberg [21]) Con-
sider a weighted game G(γ, w) ∈ SGn. If wi > wj, then Ψi(v) ≥ Ψj(v) for
all the least square values.

In fact, the player with a higher weight is always more “desirable”: if
wi > wj, v(S ∪ i) ≥ v(S ∪ j) ∀S 63 i, j. Thus, i will never strictly be rank
below j in the power ordering, though we cannot rule out the possibility that
we obtain a complete indifference ranking 1 ∼ 2 ∼ .... ∼ n with one least
square value, and the linear ordering 1 Â 2 Â . . . Â n with another one.
In fact, the idea that one player is always more desirable than another in
order to build a winning coalition as been first used by Isbell (see Taylor and
Zwicker for the details [26]).

Definition 5 Assume that G = (N,W) is a simple game. Then the indi-
vidual desirability relation for the game G is the binary relation ≤D on N
defined by

i ≤D j iff ∀S ⊆ N \ {i, j}, if S ∪ {i} ∈ W , then S ∪ {j} ∈ W

The games for which the desirability relation is a weak ordering on the set
of players N are called linear games (for a precise definition, see Taylor and
Zwicker [26]). It is quite obvious that as long as the individual desirability
relation ≤D for the game G is a weak ordering, the least square values cannot
reverse it. Thus, if we want to explore the situation where Banzhaf index and
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Shapley-Shubick index may rank differently some players, we must consider
a class of non-linear games. Notice that the Canadian game is not linear
and its desirability relation is incomplete. To check it consider the coalition
S = {Ontario,Quebec, NewBrunswick, BritishColumbia,Alberta} and the
coalition S ′ = {Ontario, Quebec,NewBrunswick, NovaScotia, BritishColumbia}.
We get:

S ∪ {PrinceEdwardIsland} ∈ W and S ∪ {Saskatchewan} 6∈ W
S ′ ∪ {PrinceEdwardIsland} 6∈ W and S ′ ∪ {Saskatchewan} ∈ W

We can neither say that Saskatchewan is more desirable than Prince Edward
Island, nor the contrary.

Thus, our objective in this section is to understand to which extend
the family of composite weighted game lead to discrepancies between the
Shapley-Shubick and the Banzhaf orderings. We focuss our attention to the
family of composite weighted games with two components, 2 − WGn. To
compute the likelihood, we developed a computer programme which:

1. First generate two n-player weighted games randomly according to the
same process. The weights are normalized such as

∑n
i=1 wi = 1.

G1 γ1 = 0.5 w1
1 w1

2 . . . w1
n

G2 γ2 ∈]0, 1[ w2
1 w2

2 . . . w2
n

2. Next check whether the composite game G = G1 ∧G2 is linear or not.
If the game is linear, we already know that the Banzhaf and Shapley
Shubick orderings will be similar

3. If not, the programme compute the Banzhaf-Coleman and Shapley-
Shubick indices to see whether there is a discrepancy between the two
rankings.

Each step calls for some comments:
Step 1. First, one may argue that the only example of a strong discrepancy
between the two indices concerns the conjunction of three weighted games
and we don’t know a priori whether such a strange behavior can be observed
in the class 2 −WGn. However, in the Canadian case, Quebec and Ontario
play no rôle in the paradox, as they belong to all the winning coalition. We
can display the same paradox with the 8-player game

G1 : γ2 = 3, w2 = 0 0 0 0 2 1 1 1
G2 : γ1 = 2, w1 = 1 1 1 1 0 0 0 0
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Table 3: The Canadian game: number of coalitions wherein a player is pivotal
according to the cardinality of S.

s = Prairie BC Maritime
1,2,3 0 0 0

4 9 18 6
5 12 30 10
6 3 15 5
7 0 3 1
8 0 0 0

βi 24/128 66/128 22/128
φi 78/840 264/840 88/840

The first four players are the maritime provinces, the last three are the prairie
provinces and player 5 is British Columbia. Table 3 shows the number of time
a player is pivotal (that is V (S) − v(S \ {i}) = 1) according to the number
of player in a winning coalition S.

It becomes clear that the source of the different rankings lies in the very
different distribution of the pivotal positions according to the number of
player in the winning coalitions. One can now easily create a whole range
of different measures of the power where the ranking for the maritime and
prairie provinces disagree. It is even possible to obtain the ranking BC Â
Maritime ∼ Prairie by choosing adequately the coefficient ps of our new
power index. The semivalue p1 = p8 = 0.03275, p2 = p7 = 0.01025, p3 =
p7 = 0.00925 and p4 = p5 = 0.00575, which exhibits a nice symmetry, is one
of the numerous examples that would lead to this conclusion.

Secondly, notice that we set the value of γ1 to 0.5 in order to ensure that
a coalition and its complement cannot be simultaneously winning. On the
other hand, the second threshold can be chosen freely: We will run different
simulations from γ2 = 0.1 to γ2 = 0.9 with an increment of 0.05 in order to
examine the influence of this parameter on the likelihood of the paradox.
Step 2. In generating G1 ∧G2, we may end up with a composite game that
can be rewritten as a traditional weighted game. Unfortunately, there is no
easy test (and in particular no fast algorithm) to check whether we really
work with a member of 2−Wn or not. Thus, checking whether a composite
game is linear or not is a first test to know whether the game could lead to
different results according to the index. Moreover, Taylor and Zwicker have
provided us with a way to check for linearity which is easily implementable
for an algorithmic point of view.
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Theorem 7 (Taylor and Zwicker, [26], p 88-90) Suppose G is a simple
game in SGn. A game G is said to be swap robust if a one-for-one exchange
between two winning coalitions can never render both losing.Then the follow-
ing assertion are equivalent:

• G is a swap-robust game.

• G is a linear game.

Step 3. In the last step, we have to describe precisely what we consider to
be a discrepancy between the Shapley Shubick and the Banzhaf indices. We
consider that a result is paradoxical each time φi > φj while βj > βi for
at least one pair of player. To check for discrepancies, we first represent
ordering R1 with a n×n matrix B1: b1

pq = 0 if player p cannot is not ranked
at position q in the weak ordering R1, and bpq = 1 if there a way to break the
ties in the weak ordering that assigns it rank q. Similarly, the weak ordering
R2 is described by a n × n matrix B2. Next, we check whether each row
in the sum matrix B1 + B2 contains only 2’s. If yes, the two orderings are
identical. If the matrices are not identical but each row contains at least
one 2, then it possible to find a common ordering between the to ranking
by breaking ties in the appropriate way. We consider here that there is a
mild or weak discrepancy between the two orderings. At last, if we can
prove that there is no value 2 in B1 + B2 for at least one player, we are sure
that the two orderings disagree on the ranking of this player. To give an
example, consider R1 = 1 Â 2 ∼ 3 Â 4 Â 5, R2 = 1 ∼ 2 Â 3 Â 4 ∼ 5
and R3 = 2 Â 1 ∼ 3 Â 4 ∼ 5. R1 and R2 are not strongly different, as it
is possible to break the ties to find a compromise, here, the linear ordering
1 Â 2 Â 3 Â 4 Â 5. A similar compromise, 2 Â 1 Â 3 Â 4 ∼ 5 exists between
R1 and R3. However, R1 and R3 strongly disagree, as they cannot find a
common ranking for players 1 and 2.

B1 =




1 0 0 0 0
0 1 1 0 0
0 1 1 0 0
0 0 0 1 0
0 0 0 0 1




, B2 =




1 1 0 0 0
1 1 0 0 0
0 0 1 0 0
0 0 0 1 1
0 0 0 1 1




,

B3 =




0 1 1 0 0
1 0 0 0 0
0 1 1 0 0
0 0 0 1 1
0 0 0 1 1




, B1 + B2 =




2 1 0 0 0
1 2 1 0 0
0 1 2 0 0
0 0 0 2 1
0 0 0 1 2




,
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B2 + B3 =




1 2 1 0 0
2 1 0 0 0
0 1 2 0 0
0 0 0 2 2
0 0 0 2 2




, B3 + B1 =




1 1 1 0 0
1 1 1 0 0
0 2 2 0 0
0 0 0 2 1
0 0 0 1 2




On the top of being simple, this method has also another advantage: we can
specify the number of player ν for which a common ranking does not exist
and get a rough measure of the extend of the discrepancy5. The range of this
’disagreement index’ is between 0 (perfect agreement or weak disagreement)
to n. One can check that in the Canadian example, the value of the index is
3.

The next step is now to describe the results. We will distinguish between
the two different model we used in order to generate randomly the composite
games.

5.2 The likelihood of disagreement under the IAC as-
sumption

In social choice theory, the Impartial Culture Assumption is quite often used
to compute theoretically the likelihood of voting paradox. It asserts that all
the distribution of the votes among the different preference types are equally
likely. The natural counterpart of this assumption for weighted game is that
all the distribution of the weight (w1, w2, . . . , wn) in the unit simplex are
equally likely. This is exactly the assumption Chua, Ueng and Huang used
to obtain their results [5]. It is not that easy to generate a distribution of
the weights which is uniform in the unit simplex. However, the following
algorithm can be used. First, n numbers Aj are drawn randomly between 0
and d, with d large . Then the numbers are ordered from the smallest to the
greatest:

A1 < A2 < A3 . . . An−1 < An

Then, we compute w1 = A1, w2 = A2 − A1, w3 = A3 − A2, etc. and we
normalize the sum of the weights to one. The final distribution of the the
weights (w1, w2, . . . , wn).

Table 4 displays the results we obtain as a function of n and γ2 with
500,000 draws in each case. Although we could not run computer simulation
for more than 11 players, several interesting facts can already be noted. First,

5A more precise measure would be to compute the Kemeny distance between two
orderings, that is number of pairs for which the two orderings disagree.
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the probability of the paradoxes is always a ‘bell shape’ curve on the γ2 axis,
with a maximum for γ2 = 0.5 or γ2 = 0.55. It seems that the peak value
tends to shift to γ2 = 0.55 as n increases, but general conclusion cannot be
drawn yet. This phenomenon can be explained by the fact that a low value of
γ2 implies that the second game only slightly modifies the first one, as almost
all the condition will met the threshold. For high values of γ2, the composite
game progressively shift towards an unanimity game whose characteristics
are governed by the second game. At both extremes, one game seems to play
the major role, the second one only introducing nuances.

However, the most striking result is the rapid increase of the value of the
likelihood for any γ2 as n increases. Almost 60% percent of the games in 2−
WG11 already exhibit a strong discrepancy between the Banzhaf and Shapley-
Shubick index ! Although the structure of simple games puts more constraints
on the game than the model of almost symmetrical players, we have been able
to provide a floodgate of paradoxical results with our computer programme.
This result clearly show that the Canadian game is not that peculiar: Such
contradictory results have to be expected in many composite games. We feel
that it would be of interest to study precisely real examples of composite
weighted games, such as bicameral political systems or complex shareholder
design, to seek of other possible occurrences. However, notice that a key
point that could explain our striking figures is that the weights of a player
are drawn independently in both game. To illustrate this fact, consider the
following 10 player game that have been singled out by the algorithm (the
sum of the weights has been normalized to 100).

G1 : γ1 = 50, w1 = ( 1.8 2.4 2.1 0.5 0.5 5.3 4.3 11.8 27.1 44.1)
G2 : γ2 = 50, w2 = ( 23.4 10.5 10.5 0.5 4.2 1.7 10.7 4.9 16.7 16.9)

Shapley-Shubick ordering for the game G = G1 ∧G2 is

10 Â 1 Â 9 Â 7 Â 8 Â 3 Â 2 Â 6 Â 5 Â 4

while the Banzhaf ordering is

10 Â 1 Â 9 Â 7 Â 3 Â 2 Â 8 Â 6 Â 5 Â 4.

We obtain a value of ν = 3 as we cannot find a common ranking for players 2,
3, and 8. The problem is that player 8 can be ranked either fifth or seventh.
However, this example clearly shows that the weight of a player from a game
to the other are completely unrelated. Most of the examples we can provide
distillate the same flavor.
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Table 4: The likelihood of strong discrepancies between Shapley Shubick and
Banzhaf Coleman, IAC model, 500,000 draws.

γ2 n= 7 n= 8 n= 9 n= 10 n= 11
0.10 ε 0.3 0.8 1.8 2.8
0.15 0.2 1.2 2.4 4.8 6.9
0.20 0.5 2.7 5.1 9.1 12.1
0.25 0.9 4.7 8.6 14.2 18,1
0.30 1.5 7.3 12.7 20.1 24.7
0.35 2.3 10.2 17.6 26.7 33.1
0.40 3.1 13.6 23.2 33.8 40.3
0.45 4.0 17.0 29.1 41.5 48.9
0.50 4.5 18.3 32.6 47.0 56.0
0.55 4.3 16.8 31.5 47.2 57.2
0.60 3.8 15.6 30.1 46.2 57.0
0.65 3.4 14.0 28.1 44.3 55.3
0.70 1.7 10.3 22.2 37.7 46.6
0.75 0.6 6.2 15.2 27.8 39.1
0.80 0.2 2.6 8.0 16.4 25.7
0.85 ε 0.6 2.7 6.6 11.8
0.9 ε 0.1 0.4 1.2 2.7

ε: a few occurences found, with a probability lower than 0.1%.
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5.3 The likelihood of disagreement under the MC as-
sumption

The maximal culture is another possible way to generate a distribution on
the simplex of weights. Again, it has first used in social theory to compute
theoretically the likelihood of voting paradoxes (see Gehrlein [11, 12]). The
algorithm that generates the weights is slightly different from the one used
in IAC. First, Ai numbers, i = 1, . . . n are drawn randomly between 0 and d
large. Next, we set

wi =
Ai∑n
i=1 Ai

The characteristic of the MC model is that the probability of distributions
close to (1/n, 1/n, . . . , 1/n) is higher than with the IAC assumption. To
understand it, notice that it is quite difficult to obtain a distribution witch
gives 90% of the weights to a player with MC. However, this result is equally
likely as any other with IAC.

Table 5 displays the results we obtain as a function of n and γ2 with
500,000 draws of non linear games in each case. Compared to the IAC case,
we can observe similar patterns like the bell shape and the increase of the
likelihood with n. However, the magnitude of the phenomenon is slightly less
important. This is clearly due to the fact that the dispersion of the weights is
less pronounced with the MC model. A game where a player obtains 44,1%
of the vote share, as in the previous example, may be quite unlikely with
MC. Also notice that the peak is always reached for γ2 = 0.6; we have bo
explanation for this phenomenon.

6 Discussion

To our knowledge, the first authors who tried to build a bridge between
the literature on linear solutions to cooperative games and scoring rules are
Calvo, Garcia and Gutierrez [2]. They associate to each profile of strict
preferences a specific game, the game of the alternatives, where v(S) is the
number of candidate who rank the candidate in S a the top of their pref-
erence. Then, they prove that there is a one to one mapping between the
scoring rules and the least square values, such that the ranking of the al-
ternatives for a given profile with a scoring rule is exactly the ranking of
the players in the corresponding game of the alternative with the associated
LSV. However, though it would be possible to derive from a probability dis-
tribution on the preference profiles (e.g. IC, IAC, MC) a probability measure
on the games of the alternatives, this class is not every appealing (the games
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Table 5: The likelihood of strong discrepancies between Shapley Shubick and
Banzhaf Coleman, MC model, 500,000 draws.

q N= 7 N= 8 N= 9 N= 10 N= 11 N= 12
0.10 ε ε ε ε ε ε
0.15 ε ε ε 0.3 0.2 0.3
0.20 0.2 0.2 0.1 0.9 0.9 1.1
0.25 0.5 0.6 1.0 1.9 2.9 3.6
0.35 1.4 1.1 2.2 3.7 5.1 5.5
0.40 2.5 2.4 4.8 8.1 10.3 12.0
0.50 7.2 10.1 17.6 25.4 31.2 38.8
0.55 9.1 9.5 21.2 31.6 38.1 41.3
0.60 9.9 12.0 19.1 33.9 39.8 48.2
0.65 4.6 10.7 13.9 26.5 34.4 41.5
0.70 0.6 6.1 9.3 16.4 22.2 26.6
0.75 ε 1.6 3.8 7.1 10.0 12.2
0.80 ε 0.2 1.0 2.0 3.1 4.0
0.85 ε ε 0.1 0.3 0.4 0.7

cannot be monotonic!) to deserve a thoroughly study. Clearly, our study, as
the recent papers by Saari and Sieberg [21] and Laruelle and Merlin [15] is
inspired by these ideas, but we try to develop the analysis for more interest-
ing classes of games. In these context, we explored whether it is possible to
adapt probability models used for the analysis of voting rules to the analy-
sis of discrepancies among TU game solutions. From our point of view, the
answer is positive, though the models we use suffer from several limitations.

Concerning the model of almost symmetrical games, we first notice that
it is very specific: All the players are similar, and there is no relationship
to expect among the rankings given by the different elementary least square
values. For a given player, the values v(S)− v(S \ i) are totally independent.
The model of almost symmetrical voters can be viewed as an extreme case,
where there is only noise. Thus, this assumption probably gives the higher
bound for the likelihood of discrepancies. A positive aspect comes from
the relationships between the Shapley and Banzhaf rankings: For a small
number of players, they tend to rank them in the same way. Although we
have not been able to perform the computations, it seems unlikely that the
two semivalues lead to opposite rankings. Thus, the probability that the
Shapley winner is ranked last by the Banzhaf semivalue could be relatively
low for small values of n. Secondly, the complexity of the computations
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makes it difficult to obtain general statements. The same drawback occurs
in social choice theory: We can hardly compute a probability for a problem
if we need more than five inequalities to describe it. For complex problems,
the only possibility is to rely on computer simulations.

Nevertheless, further researches could explore an alternative assumption
on the likelihood of the different games, which would mimics IAC. If we set
v(∅) = 0, v(N) = 1 and v(S) ∈ [0, 1],∀S ∈ N , the space of all games is
identify with the hypercube Cn = [0, 1]2

n−2. It is then reasonable that all
the games in the hypercube are equally likely and that the measure is zero
outside the hypercube. This assumption is the natural counterpart of the
impartial anonymous culture of voting theory (see Gerhlein [11, 12]): All
the voting situations are equally likely to occur. We could next refine the
analyzes to more interesting games in Cn, by restricting ourselves only to
monotonic, superadditive games, or convex games. Again some techniques
from Social Choice theory could be used in order to perform the computa-
tions, but they would not allow us to treat general cases: The computations
could be undertaken only for a small number of players and a limited num-
ber of inequalities. However, the recent papers by Chua and Huang [4] and
Cervone, Gehrlein and Zwicker [3] propose new tools that could be useful.
The results could also draw a more subtle picture compared to the figures
obtained with the almost symmetrical player model.

In our opinion, one of the main contribution of this paper for the class
of simple games has been to demonstrate that it is relatively easy to create
composite games where the conclusions drawn from the Banzhaf and Shapley-
Shubick indices disagree. And we explored only a specific class of composite
games. Still, much work remains to be done. To some extent, we relied
on brute force by using computer simulation; another route would be to
characterize precisely the situation where the two indices disagree. This
would clearly enhance our comprehension of the phenomenon, and probably
help us to understand which power index is a better measure of this proteus
concept that we call ‘power’.

Let us also mention that the kind of study we presented here could be
extended in two directions, to study the relationships with other non linear
solution to TU games, such as the core and the nucleolus, or, for simple
games, with other power indices, and to compute the probability that a
given solution does not satisfy other desirable axioms, in the line of Chua,
Ueng and Huenf [4] and van Deemen and Rusinowska [27]. Thus, we believe
that the kind of research we started here could be developed and would add
to the growing literature on the probability of paradoxes for solutions of
cooperative games.

30



References

[1] Banzhaf, J., Weighted voting doesn’t work: A Mathematical Analysis,
Rutgers Law Review 19, 317-343, 1965

[2] Calvo, E., I. Garcia, and E. Gutierrez, Scoring Rules: A Coopera-
tive Game Theoretic Approach, Social Choice and Welfare 16, 491-512,
1999.

[3] Cervone D., Gehrlein W. and Zwicker W., Which Scoring Rule Maxi-
mizes Condorcet Efficiency ?, mimeo, 2002.

[4] Chua, V. and Huang H., Analytical Representation of Probabilities un-
der the IAC Condition, Social Choice and Welfare 17, No. 1 p 143-155,
2000.

[5] Chua, V., Ueng, C. and Huang H., A Method for Evaluating the Be-
havior of Power Indices in Weighted Plurality Games, Social Choice and
Welfare, 19, p 665-680, 2002.

[6] Coleman, J.S., Control of Collectivities and the Power of a Collectivity
to Act, in Social Choice, Lieberman, B. ed., Gordon and Breach, New
York, 1971

[7] Dubey, P., A. Neyman, and J. Weber, Value Theory without Efficiency,
Mathematics of Operations Research 6, 122-128, 1981.

[8] Felsenthal D. and Machover M., The Measurement of Voting Power,
Theory and Practice, Problems and Paradoxes. Edward Elgar, Chel-
tenham, 1998.

[9] Felsenthal D.S., Machover M. : The Treaty of Nice and Qualified Ma-
jority Voting, Social Choice and Welfare 18, 431–464, 2001.

[10] Gehrlein, W.V, and Fishburn, P.C., Probabilities of Election Outcomes
for Large Electorates, Journal of Economic Theory, 19, 38-49, 1978.

[11] Gehrlein, W.V., Condorcet´s Paradox and the Condorcet Efficiency of
Voting Rules, Mathematica Japonica, 45, 173-199, 1997.

[12] Gehrlein, W.V., Condorcet’s Paradox and the Likelihood of its Occur-
rence: Different Perspectives on Balanced Preferences, Theory and De-
cision 52, 171-199, 2002.

31



[13] Gehrlein, W. and Fishburn P.C., Scoring rule sensitivity to weight se-
lection, Public Choice, 40, p 249-261, 1983.

[14] Gehrlein, W. and Lepelly D., Condorcet Efficiencis under the Maximal
Culture Conditin, Social Choice and Welfare, 16, p 471-490, 1999.

[15] Laruelle A. and Merlin V., Different Least Square Values, Different
Rankings, Social Choice and Welfare 19, p 533-550, 2002.

[16] Merlin, V.R., Tataru, M., Valognes, F., On the Probability that all the
Voting Rules Select the Same Winner, Journal of Mathematical Eco-
nomics 33, p 183-207, 2000.

[17] Owen, G., Game Theory, Academic Press, second edition, New York,
1982.

[18] Ruiz, L. M., F. Valenciano, and J. M. Zarzuelo, The Least Square prenu-
cleolus and the Least Square Nucleolus. Two Values for TU Games Based
on the Excess Vector, International Journal of Game Theory 25, 113-
134, 1996.

[19] Ruiz, L. M., F. Valenciano, and J. M. Zarzuelo, The Family of Least
Square Values for Transferable Utility Games, Games and Economic
Behavior 24, 109-130, 1998.

[20] Saari, D. G., Millions of Election Rankings from a Single Profile, Social
Choice and Welfare 9, 277-306, 1992.

[21] Saari D.G. and Sieberg K., Some Surprising Properties of Power Indices,
Games and Economic Behavior 36, p 241-263, 2000.

[22] Saari, D.G., and Tataru, M., The Likelihood of Dubious Election Out-
comes, Economic Theory, 13 345-363, 1999.

[23] Shapley, L. S., A Value for n-Person Games, Annals of Mathematical
Studies 28, 307-317, 1953.

[24] Straffin, P.D., Power and Stability in Politics, in Hanbook of Game The-
ory, vol, Aumann, R.J., and Hart, S., eds., Elsevier, Amsterdam, 1994.

[25] Tataru, M., Merlin,V.: On the Relationship of the Condorcet Winner
and Positional Voting Rules, Mathematical Social Sciences 37, 81-90
(1997)

32



[26] Taylor A. and Zwicker W., Simple Games, Princeton University Press,
Princeton, 1999.

[27] Van Deemen A. and Rusinowka A., Paradoxes of Voting Power in Dutch
Politics, Public Choice 115, p 109-137, 2003.

[28] Van Newenhizen, J. : The Borda Method Is Most Likely to Respect the
Condorcet Principle, Economic Theory 2, p 69-83, (992

[29] Young, H.P., Cost Allocation, in Fair Allocation, Young, H.P. ed, AMS
Short Course Lecture Notes, Vol. 33. Providence: American Mathemat-
ical Society, 1985.

33



0

0.05

0.1

0.15

0.2

0.25

0.2 0.4 0.6 0.8 1

q

Figure 1: Conflicts with Banzhaf-Shapley on a pair
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Figure 2: Agreement with the Banzhaf-Shapley ranking
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Figure 3: The probability of opposite rankings
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