
Fair and Efficient Representation of the
Citizens in a Federal Union

M.R. Feix ∗, D. Lepelley †, V. Merlin ‡and J.L. Rouet §

Very preliminary version, May 2003.

Abstract

All the federal unions, like the United States of America or the
European Union face the issue of finding the right allocation of seats
to their member states. There has been a lot of debates in the United
States of America since two centuries in order to find the right mech-
anism to round off the number of representatives per state propor-
tionally to their populations. This problem is now well documented
(see Balinski and Young [1]). Another definition of a good appor-
tionment method derives from game theory: Penrose [17] suggested
that a fair apportionment method should give the same power to ev-
ery voter. When the power is measured with the Banzhaf Coleman
index, this lead to adopt to square root law in the limit: the number
of seats allocated to a state should be proportional to the square root
of its population. We propose here another criteria: an apportion-
ment of the seats among the states is efficient if the probability of
electing candidate who receives less than 50% of the votes in a two
candidate competition over the whole union is minimized. To answer
this question, we consider mainly two theoretical probability models
derived from social choice literature. In the first model (Impartial
Culture, IC), each voter in each states select his candidate randomly
with probability one half. In the second model (Impartial Anonymous
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Culture, IAC), the percentage of votes a candidate receives in a state
is drawn from [0, 1] with a uniform probability distribution. Using
computer simulations, we suggest that the number of seats should be
apportioned with a square root law in the first case, and in propor-
tional way in the second case. These results are consistent with the
Penrose law for the IC model.
JEL Classification: D71.
Keyword: apportionment, probability, voting, paradoxes, power.

1 Introduction

2 Assumptions

2.1 The voting model

Consider a finite set N = {1, . . . , i, . . . ,M} of states (or regions, districts,
etc.) which have to take decisions altogether in a political union. We assume
that mi voters live in state i. Two parties, A and B1, compete in all the states;
the winner in state i is the party who obtains a majority of voters on his side
(abstention is not allowed). Each state is represented by ai mandates in the
union, and the winner in state i gets all the mandates. Thus, the position
that is officially adopted by the union is the one which obtains a majority of
mandates at the federal level.

The choice of the number of mandates per state can obey to different
logics. One can argue that all the members of the union are equal, and that
ai should be one for all the states, even if they have very different population
sizes. Another possibility is to allocate the mandates in proportion to the
populations. Ideally we could assume that ai = mi but most of the time
ai is supposed to be a relatively small integer. As already mentioned, this
rounding off problem is very well documented due to the American case. As
the number of representatives per state must be proportional to the pop-
ulation, it happened many times that a state tried to impose in Supreme
Court a rounding method that could favor it. This gave a strong incentive
for scholar to study the different rounding methods; see Balinski and Young
[1]. Several other options exist between the egalitarian and the proportional
case. For example the number of electors per states in the electoral college
in the US is the number of representatives plus two, the number senators. In
the European Union, the number of mandates at the disposal of a country

1In fact we do not need institutionalized political parties for this model ; A and B could
just be two proposals at stake.
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in the council of minister is roughly proportional to the square roots of its
inhabitants [3, 9]. Though this may be quite unusual, we could also imagine
and justify apportionment rules that attributes mandates in proportion to
the exponential of mi, or the square of mi. In the extreme case, we get the
dictatorship of the biggest state2.

We adopt here the following normative criteria to evaluate the different
apportionment methods : an apportionment method is said to be efficient
if it minimizes the probability that a decision is taken with a majority of
mandates at the federal level though it is supported by a minority of voters
over the whole union. Unfortunately, such strange political situations are
not only theoretical objects; they often happens, a well known case being the
election of George W. Bush against Al. Gore in 2000 (for other examples
in US, United Kingdom and France, see [?]). More precisely, we will try to
identify which parameter α minimizes the probability of the paradox if we
allocate the seats according to the law ai = mα

i . We answer to this question
under a veil of ignorance : we assume that each party are equally likely to
win, and we simulate the votes without any reference to a precise political
context under different probability models. Though it maybe possible to
specify some parameters and the distribution of the votes with applied works
in some specified context, we do not consider this possibility here.

2.2 Probability models

There are several ways to model theoretically the behavior of the citizens.
We assume that, in every country the behavior is described by the same
probability rule. The four model we use throughout the paper are borrowed
from social choice theory; the two first are standard, while the other are new.

• The Impartial Culture assumption, IC. Each voter selects a party with
equal probability. When mi is sufficiently large, the distribution of the
votes follows a normal law. In each state, the excess of ballots for A or
B is then given by

εi

√
mi

where εi is drawn randomly according to the Gauss distribution:

(2π)−1/2 exp(−ε2/2).

2One could think for example of a military alliance: the number of seats is proportional
to his military efforts, that is his military budget or the number of army divisions. Due
to increasing returns to scale, the biggest state is able to maintain a very high level of
expenses. The same reasoning could hold in a research consortium.
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The popular over the whole union is given by

sgn

(∑
i

εi

√
mi

)
, (2.1)

while the decision taken by the representatives is given by

sgn

(∑
i

ai sgn(εi)

)
(2.2)

The sgn function is defined by

sgn(x) =

{
1 si x > 0
−1 si x < 0

(2.3)

By convention, a one value(respectively minus one value) results in the
selection of candidate A (respectively B).

• The Impartial Culture Assumption, IAC. This assumption considers
that every distribution of the votes between the two candidates is
equally likely to occur. Thus, εi is now drawn from the distribution
f(ε) = 1/2 if −1 < ε < 1 and 0 otherwise. The excess of ballots in
favor of candidate A in state i is given by εimi and we have to compare

sgn(
∑

i

εimi) (2.4)

for the popular vote with the vote of the representatives

sgn(
∑

i

ai sgn(εi)) (2.5)

• The Rescaled Impartial Anonymous Culture assumption, RIAC. This
assumption is a modified version of the IAC model. In most elections,
extreme values such as only 10% of a vote in favor of a candidate or
80% support are unlikely. The range of variation for a candidate is
more likely to lie between 40% support to 60% support. Thus, εi is
now drawn from the distribution f(ε) = 1/2∆ if −∆ < ε < ∆ and 0
otherwise, with ∆ ∈]0, 1].

• The Unanimous Culture UC. It may of interest to consider the ex-
treme case where all the voters of a country decide to support the same
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Voter 1 A A A A B B B B
Voter 2 A A B B A A B B
Voter 3 A B A B A B A B

IC 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8
IAC 1/4 1/12 1/12 1/12 1/12 1/12 1/12 1/4

RIAC 0 1/6 1/6 1/6 1/6 1/6 1/6 0
UC 1/2 0 0 0 0 0 0 1/2

Table 1: The 8 voting configurations for 3 voters and the associated proba-
bilities according to IC, IAC, RIAC and UC.

candidate. f(ε) = 1 or −1 with probability 1/2. The excess of ballot
in favor of candidate A is ±m1 and we have to compare

sgn(
∑

i

mi sgn(εi)) (2.6)

for the popular vote with the federal vote

sgn(
∑

i

ai sgn(εi)) (2.7)

As an illustration, we display in Table 1 the probability of the different
voting situations for three voters. Notice that all the model we introduced
assume that there is no bias in favor of A or B; both are treated equally
3. Thus, the differences among the models do not really come from the fact
that the ε values are drawn from different distributions, but rather from the
scaling factors:

√
mi for IC, mi for IAC and ∆mi for RIAC.

3 The Study of the mα
i Rule.

Many studies have compared the different merits of the IC and IAC assump-
tions for the computation of voting paradoxes (see, for example, Berg and
Lepelley [4], Gehrlein [11, 12], Cervone, Gehrlein and Zwicker [6]), an the im-
pact of choosing one model or the other on the magnitude of the likelihood.
However, the papers on the probability of electing a minority candidate (see

3In a previous paper [8], we studied the influence of a bias on the likelihood of electing
a minority candidate when all the states have the same population. This is the BRIAC
assumption (Biased and Rescaled Impartial Anonymous culture).
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Table 2: The values of m3.

m2 ↓ m1 → 0.500 0.450 0.400 0.350 0.333
0.250 0.250 −− −− −− −−
0.300 0.200 0.250 0.300 −− −−
0.333 0.167 0.217 0.266 0.316 0.333
0.350 0.150 0.200 0.250 0.200 −−
0.400 0.100 0.150 0.200 −− −−
0.450 0.050 0.100 −− −− −−
0.500 0 −− −− −− −−

Table 3: The probability P 3
IC(m,∞).

m2 ↓ m1 → 0.500 0.450 0.400 0.350 0.333
0.250 0.166 −− −− −− −−
0.300 0.168 0.164 0.163 −− −−
0.333 0.170 0.166 0.163 0.162 0.162
0.350 0.171 0.167 0.164 0.162 −−
0.400 0.179 0.171 0.167 −− −−
0.450 0.194 0.179 −− −− −−
0.500 0.25 −− −− −− −−

Galam [10], Feix, Lepelley, Merlin and Feix [8],) only consider equal popu-
lation states. In these cases, the sizes mi play no role; these models only
compare the impact of two different drawing (Guassian or uniform).

Our objective is to study the impact of the distribution of the population
and the impact of the apportionment rules.

3.1 Exact values for three states

Without loss of generality, we assume in the 3 states that the distribution of
the population is given by the vector m = (m1,m2,m3), with

∑3
i=1 mi = 1,

m1 ≥ m2 ≥ m3. Similarly, we assume that the distribution of the represen-
tatives is given by a = (a1, a2, a3). For a majority game, we can easily prove
that any vectors a = (a1, a2, a3) can be identified with one of these three
possible majority games :

• Case 1. a1 = 1, a2 = a3 = 0 and state 1 is a dictator
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Table 4: The probability P 3
IAC(m,∞).

m2 ↓ m1 → 0.500 0.450 0.400 0.350 0.333
0.250 0.166 −− −− −− −−
0.300 0.172 0.151 0.134 −− −−
0.333 0.181 0.157 0.137 0.126 0.125
0.350 0.186 0.161 0.140 0.128 −−
0.400 0.204 0.179 0.156 −− −−
0.450 0.226 0.201 −− −− −−
0.500 0.25? −− −− −− −−

? : limit probability.

• Case 2. a1 = a2 = 1, a3 = 0. Player 3 has no power and in case of
opposite of the two sates, no decision is taken.

• Case 3. a1 = a2 = a3 = 1. All the state have the same power.

Thus, we focuss on the third case, the most interesting one. The differences
among the population sizes reveal the impact of inequality of population on
the likelihood of the paradox.

Proposition 1 Let P 3
IAC(m,∞) be the likelihood of the majority paradox for

three states of large population under IAC for the distribution m. Then:

P 3
IAC(m,∞) =

m3
1 + m3

2 + m3
3

24m1m2m3

−(m1 −m2)
3 − (m1 −m3)

3 − (m2 −m3)
3

24m1m2m3

.
Proof: see Appendix 1.

Proposition 2 Let P 3
IC(m,∞) be the likelihood of the majority paradox for

three states of large population under ICC for the distribution m. Then:

P 3
IC(m,∞) =

arccos
(√

m1

)
+ arccos

(√
m2

)
+ arccos

(√
m3

)

π
− 0.75

Proof: see Appendix 2.
In Table 2 we present several distributions of the vector m = (m1,m2,m3).

The corresponding values for P 3
IAC(m,∞) and P 3

IAC(m,∞) are displayed on
Table 3 and 4n, respectively. First, our finding are consistent with the equal
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population case (m = (1/3, 1/3, 1/3) studied previously by Feix, Lepelley,
Merlin and Rouet [8]. One can notice that in both cases, the main factor
that explain a high value for the paradox is a small value for m3. In the
IC case, when m3 is lower than 0.1, the probabilities rises from 16.2% to
17.9% and more (up to 25% when m3 → 0). In the IAC, the rise is more
spectacular. The value is already 17.1% for m3 = 0.15, and above 20% for
m3 = 0.1.

For m > 3, the number of cases becomes too important to give a complete
enumeration (see Bison, Bonnet, Lepelley [2]). So, we turn on to the search
for an optimal allocation rule.

3.2 Computer simulations

For the general case, we focuss our study on the search on the best appor-
tionment rule. More precisely, we assume that ai = mβ

i for the IC case and
ai = mα

i for the IAC case. We then run several computer simulation for
different values of the vector m in order to find the optimal values of α and
β. Before going to the simulation, notice the following facts. Denote by
m̄i the expression

√
mi in equation 2.1. With this new variable, it becomes

identical to equation 2.4. Similarly, if we assume that 2β = α, equations 2.2
and 2.5 are the same. Thus, we can state that, to some extent, the results
with the IAC assumption are “transposable” to the IC case for populations
raised to the square and a distribution of the mandates such as β = 2α. The
meaning of “transposable” will become clear with the computer simulation.
However, notice that one difference remains: on one hand the εi are drawn
from a normal law, and on the other from a uniform law.

Figure 1 and 2 display the results of a Monte Carlo simulation for IC
and IAC with five states and m = (1, 1.4, 1.8, 2.3, 3.2) (or the square of
these values for the IC case). The objective is to perform an integral on a
five dimensional space. The curve are varying by plateaus, depending on
the underlying discrete power structure of the majority game. For the IAC
case, we encounter 6 plateaus, corresponding to the majority games with
weight a = (1, 1, 1, 1, 1), a = (2, 2, 1, 1, 1), a = (3, 2, 2, 1, 1), a = (4, 2, 2, 1, 1),
a = (5, 2, 2, 2, 2) and a = (1, 0, 0, 0, 0). The optimal value, which lead to a
probability of about 16%, is obtained for values of α in between 0.9 and 1.3.
The pure federal case leads to a paradox in about 19% of the simulations,
and the dictatorial case in about 24%.

The picture for the IC case is very similar if we assume m′
i = m2

i and
β = 2α. We encounter the six plateaus, corresponding to the same six
different voting games. However, the magnitudes are different. We start with
a value of 21.5% in the federal, next obtain the a minimum a bit lower than
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20% for β in between 0.45 and 0.65 approximately, and then progressively
go up to 25.5% for the dictatorial case.

In figure 3, we test the optimality of the rule α = 1 by keeping ai = 1 for
four states, and let the free ai vary. For example, the highest value of the
paradox is obtained with a = (1, 1.4α, 1.8, 2.3, 3.2) and the dictatorial case
(α = 4). This of course does not exhaust all the possible cases.

Figure 1: : likelihood of conflicts between the popular vote and the vote
by states, estimated after 1 000 000 draws for IAC model and mi =
1, 1.4, 1.8, 2.3, 3.2.

Figure 4 and 5 present a much more complicated situation with 20 states.
Due to the numerous number of possible majority weighted games with 20
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Figure 2: : likelihood of conflicts between the popular vote and the
vote by states, estimated after 1 000 000 draws for IC model and mi =
1, 1.96, 3.24, 5.29, 10.24.

players, the curves become almost continuous. The pattern of the two curves
are similar : first a plateau around the federal case, then a decline till the
optimal value (α = 1 in the IAc case, β = 0.5 in the IC model) and then a
regular increase. Notice that we do not reach the dictatorial case in the two
simulation.

To conclude, these computer simulation and some other that we do not
display lmmake us believe that the following conjecture is true:

conjecture. For N states characterized by the populations mi voting
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Figure 3: : Testing the optimality of the ai = mi for IAC model and the 5
state case, estimated after 1 000 000 draws.

under the IC model (respectively AIC), the number of representatives ai

for state i should vary as m
1/2
i (respectively mi) in order to minimize the

likelihood of conflicts. (All the votes being taken through majority votes).
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Figure 4: : likelihood of conflicts between the popular vote and the vote by
states, estimated after 1 000 000 draws for IC model and mi= 1, 1.31, 1.53,
1.77, 2.12, 2.54, 2.97, 3.15, 3.39, 3.44, 3.75, 3.93, 4.16, 4.21, 4.34, 4.85, 5.54,
5.72, 5.99.

3.3 An application to the Nice Treaty and European
Union.

4 Probability Models and Equal Power

4.1 The Penrose law.

4.2 Equal Power under the IAC Assumption.

4.3 Behavior in the limit

5 Conclusion: A Rejoinder
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Figure 5: : likelihood of conflicts between the popular vote and the vote
by states, estimated after 1 000 000 draws for IC model and mi = 1, 1.71,
2.34, 3.13, 4.49, 5.81, 6.45, 8.82, 9.92, 11.49, 11.83, 14.06, 15.44, 17.31, 17.72,
18.84, 23.52, 30.69,32.72, 35.88.
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