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Abstract

The voting power of a voter is often measured in terms of the probability
that that voter’s vote is critical. This measure is extended to a hierarchy
of power measures of different ranks. The higher-rank measures quantify
the extent to which a voter can join groups that make a difference as to
whether a bill passes or not. It is argued that the hierarchy of measures
allows for a more appropriate assessment of voting power, particularly of
a posteriori voting power in case the votes are stochastically dependent.
Also, the new measures discriminate between voting games that can not
be distinguished in terms of the probability of criticality only. The new
measures are defined, applied to simple examples, and basic properties are
established for them.

1 Introduction

Voting rules assign voters the power to affect the outcome of collective decisions.
This is the starting point for a research program at the borderline between polit-
ical science, social choice theory and political philosophy. The research program
aims at measuring the voting power of each voter, i.e. the extent to which her
vote can affect the outcome of a collective decision (Felsenthal & Machover 1998
or FM, for short, pp. 2, 35–6). Very often, measures of voting power are cal-
culated for real-world voting systems in order to check whether these systems
comply with basic requirements on democracy (see Felsenthal & Machover 2000
for such a study, e.g.).

A very popular measure of voting power is the probability that a voter is
critical (pivotal). For calculating this measure, one assumes that the voters have
two options only, say yes and no. A voter is critical, if and only if the outcome
would have been different, had she voted differently (cf. FM, Ch. 3).

For obtaining the probability that a voter is critical, one needs a probability
model over the voting profiles. Very often, the Bernoulli model is assumed.
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According to the Bernoulli model, the different votes are cast independently, and,
for each voter, the probability of a yes-vote is .5. The probability of being critical
under the Bernoulli model is the popular Banzhaf measure of voting power (see
FM, Ch. 3 for an introduction). The Banzhaf measure of voting power is often
called a measure of a priori voting power (FM, p. 20, e.g.). The reason for this
name is as follows: If no empiric information on the voting behavior of the voters
is available, one has to reason a priori in order to determine the probability model
that enters the measure. A very reasonable strategy is to apply the Principle of
Insufficient Reason. This strategy yields the Bernoulli model and the Banzhaf
measure (Comment 3.1.3 in FM, pp. 37–8).

But the probability of being critical can also be calculated under different,
more realistic probability models; under probability models, e.g., that were fitted
to empirical data from past votes (see Good & Mayer 1975, Chamberlain &
Rothschild 1981 and Gelman et al. 2004 for models different from the Bernoulli
model). The resulting measure is often taken to be a measure of a posteriori
voting power (cf. FM, p. 20 for a posteriori voting power) and has been suggested
by Morriss (1987), p. 169, for instance. Beisbart & Bovens (2008) use this measure
in order to analyze the U.S. Electoral College. A slight variation of this measure
is proposed by Kaniovski & Leech (2007).1

However, very recently, doubts have arisen as to whether the probability of
being critical provides a completely satisfying measure of voting power. This is
particularly vivid in the case of a posteriori voting power. Consider the following
example due to G. Wilmers (Wilmers’ example, for short; Machover 2007, p. 3).

Example 1.1 Suppose that five voters vote following simple majority voting.
There are 32 voting profiles possible. Assume that the profiles with exactly two
or exactly three yes-votes have probability zero, each, and that the other profiles
have a probability of 1/12, each. Consider an arbitrary voter. The probability of
her being critical is zero, because all profiles under which a voter is critical have
zero probability. Thus, everybody has zero voting power.

But this assignment of a posteriori power seems strange, to say the least. What
is particularly offensive is the claim that nobody has voting power. As Machover
(2007), p. 3 puts it, “it would be absurd to claim that every voter here is powerless,
in the sense of having no influence over the outcome [...]”. He concludes that, as
a measure of voting power, the probability of being critical “behaves in a strange
way [...] At least, [...] [it] doesn’t tell the whole story about that influence [a
voter’s influence].”

Wilmers’ example also points to a second, slightly different problem. Proba-
bility models can be specified such that the probability of being critical is zero for
each voter even under alternative voting rules for the same electorate. Accord-
ingly, the related measure of a posteriori voting power assigns every voter zero

1Of course, it is possible that empirical data favor the Bernoulli model for some specific
setting. Thus, measures of a posteriori voting power may use the Bernoulli model as well.
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power for each of the alternative rules. Thus, we can not distinguish between the
alternative voting rules in terms of power. This is dissatisfying. Is it really true
that the alternative voting rules are completely on par as far as the powers to
affect the outcome are concerned? The probability of being critical has not the
discriminatory power that we wish it to have.

Even the Banzhaf measure suffers from a similar problem. Although the
Bernoulli model assigns each voting profile a non-zero probability, the following
is possible under the Bernoulli model. Two voting rules are different – there is at
least one voting profile under which one rule yields acceptance, whereas the other
rule yields rejection – but for each voter, the probability of being critical, i.e. the
Banzhaf measure is identical under both rules. An example and qualifications
will be given below in Subsec. 4.3. The question is again whether the alternative
voting rules are really completely on par, as far as voting power is concerned.

This paper proposes to go beyond the probability of criticality in order to
measure voting power. I look for measures of voting power that fulfill the following
requirements:

R1 When calculated under the assumption of the Bernoulli model, the measures
partly coincide with the Banzhaf measure of voting power.

R2 The measures are conceptually tied to the notion of criticality.

R3 The measures concern individual voters.

R4 The contraintuitive results for Wilmers’ example are avoided under the
measures.

These requirements are not beyond criticism. In particular, R2 might be given
up. For instance, in order to measure power, one might start from the Shapley-
Shubik index (Shapley & Shubik 1954) and see whether it can be generalized
for all kinds of probability models. However, very different ideas underly the
Banzhaf measure and the Shapley-Shubik index. This has been captured by the
distinction between I- and P-power (FM, p. 36). P-power is based upon the idea
that the winners of an election jointly earn a fixed prize. This idea does not seem
very realistic for many applications (cf. Coleman 1971, p. 272, after FM, p. 18). I
will thus stick to I-power. I take it that it is worthwhile to generalize the popular
Banzhaf measure and the related probability of criticality.

According to my proposal, each voter will not only be characterized by the
probability of criticality, but by a hierarchy of measures of different ranks. The
measures quantify the extent to which a voter can make a difference as a member
of a group. As is clear from R1, my measures will not presuppose a particular
probability model. I am thus interested in a priori as well as in a posteriori voting
power.
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My work bears the following relation to the existing research literature. The
Banzhaf measure has first been introduced by Penrose (1946). It was indepen-
dently used by different researchers, e.g. by Banzhaf (1968). The history of the
Banzhaf measure is traced by Felsenthal & Machover (1998), pp. 6–10. Recently,
Bovens & Beisbart (2007) have suggested a measure that fulfills R1–R4. The
proposal put forward in this paper is completely unrelated. In particular, unlike
Bovens & Beisbart (2007), my measures do not rely on causal information. I
take it that this is an advantage, since causal information is often very difficult
to obtain. Moreover, abstracting from causal relations helps me to focus on the
power that a voter has because of the voting rule only.

The plan of the paper is as follows. Sec. 2 starts from the notion of voting
power and introduces the main idea of this paper. It turns out that my idea
requires one to think of the criticality of groups of votes first; group criticality is
defined in Sec. 3. In Sec. 4, I provide the definition of my measure. A few math-
ematical results are proven, and applications are discussed. Finally, discussion
points are given in Sec. 5.

2 Voting power

In order to introduce the main idea of this paper, I will first consider the standard
notion of voting power, or I-power, more specifically.

Let me start with the notion of power. According to Morriss (1987), pp. 32–
35 power-over and power-to have to be distinguished. Voting power is a variety
of power-to, but it is not the power to vote, but rather the power to affect the
outcome of a collective decision by voting. Thus, the reason why it is called voting
power is that the focus is on the power that a political agent has due to her vote
(cf. Morriss 1987, p. 155).

But what, then, does it mean to affect the outcome of a collective decision
(the outcome of a vote, for short)? In the simple framework that is often adopted
in voting theory, the outcome is either the passage or the failure of the proposal
that is voted on (of the bill, for short; FM, p. 35). You affect the outcome of a
collective decision, if you make a difference as to whether the bill passes or not.
And you affect the outcome of a collective decision as a voter, if your vote makes
a difference as to whether a bill passes or not. That is, whether the bill passes or
not, depends on whether you vote yes or no.

The recent literature on voting power focuses on the measurement of voting
power. What is measured is the extent to which the vote of a political agent can
make a difference as to whether a bill passes or not.

What needs to be clarified now is the “can”. Morriss (1987), p. 80–83 has an-
other helpful distinction. He differentiates between ability and ableness. Whereas
ability is roughly about what a person could do, if the circumstances were appro-
priate, assignments of ableness additionally take into account the opportunity to
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exercise one’s ability. For instance, John might have the ability to swim hundred
meters in less than one minute. But if there is no suitable pool, he lacks the
ableness to do so. Whether John has the ableness and thus the opportunity to
swim depends on the circumstances and not just on John.

According to Morriss (1987), p. 83, ableness rather than ability is what polit-
ical philosophers are usually interested in – it is the opportunities of the people
that are investigated. Let us therefore focus on ableness.2 Essential part of what
is to be measured, then, is the extent to which a voter has opportunity to affect
the outcome of a collective decision by voting. Indeed, it is the only part of what
is measured, because there is nothing interesting about skills here. Thus, what
is to be quantified for a voter a is the extent

E to which a’s vote has the opportunity to make a difference as to whether a
bill passes or not.

But what is the opportunity in question? A very natural answer – indeed
the answer taken by most theorists – is this: We take the other votes as given
and ask whether they leave the opportunity that the outcome of the collective
decision depends on a’s vote. If and only if the configuration of the other votes
is such that, whether a bill passes or not, depends on a’s vote, then a has the
opportunity to make a difference. Indeed, a will make a difference then.3

Altogether, what is to be measured is the extent to which the other votes form
a configuration in which, whether the bill passes, depends on a’s vote. The only
way to measure this extent seems to be to calculate the respective probability.
Thus, we arrive at the following measure of voting power for a voter: It is the
probability that the configuration of the other votes is such that, whether the bill
passes or not, depends on her vote. In more technical terms: It is the probability
for a coalition wrt which her vote is critical (see FM, Def. 2.1.1 on p. 11 and
Def. 2.3.4 on p. 24).

This line of thought substantiates the statement that the probability of being
critical is “arguably the only reasonable way” of explicating the notion of I-power
in mathematical terms (FM, p. 36). However, as Wilmers’ example shows, just
calculating the probability of being critical can lead to counterintuitive results
according to which nobody has power. The challenge is thus to modify this line of

2Morriss (1987), Ch. 22, particularly pp. 157–160, also claims that Banzhaf voting power
provides a measure of ability, but this will not be important in what follows.

3This is different from the example with John’s swim. John may have the skill and the
opportunity to swim hundred meters in less than one minute, but still not do so. For instance,
he may decide not to swim the hundred meters at all. On the contrary, I cannot decide not
to make a difference with my vote. If the configuration of the other votes is suitable, then I
will always make a difference independently what I do (this is true independently on whether
abstention is possible or not). “To make a difference regarding X” does not describe an action,
but rather compares the consequences that different options for acting have on X. The power
to swim hundred meters in less than a minute and voting power do not completely parallel in
this respect.
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thought slightly in order to have additional measurements of voting power. These
measures should enable us to say something interesting in Wilmers’ example.

I follow a lead of Machover (2007), p. 4, who suggests that “the very concept
of power that is used in the a priori mode is in some sense too individualistic”.
In more detail, I propose to proceed in two steps. As a first step, I suggest to
shift the focus from single voters to groups of voters for a while. Consider an
arbitrary subset of the voters. It may be asked: What is the voting power of this
group? To what extent does the group have the opportunity to make a difference
as to whether the bill passes or not?

As a second step, I suggest to get back to one voter and to ask: To what
extent does she have opportunity to form groups that will make a difference as
to whether a bill passes? For instance, to what extent will she together with
one other voter jointly make a difference as to whether the bill passes? More
generally, what will be quantified for a voter a is the extent

Eκ to which the following is true: There are (κ − 1) other voters such that
there is opportunity for the votes of a and of these other voters to jointly
make a difference as to whether the bill passes.

Obviously, the extent E1 coincides with extent E. Note, also, that the extent Eκ

provides information specifically about a fixed voter (a) and not just for groups.
As before E, the extents Ek will be quantified in terms of probabilities. The

idea is thus to calculate a hierarchy of probabilities for each voter and for each
possible group size κ. Each probability in the hierarchy will tell us about the
opportunity to enter a group that makes a difference. These probabilities, I
suggest, provide a very natural extension of the probability of being critical.
They tell us something about how important a voter is for whether a bill passes
or not. And they will also provide us with some non-zero measures for Wilmers’
example.

The move that I suggest is very natural. Suppose that I want to buy a
particular house. Unfortunately, I lack the opportunity to do so, because I don’t
have enough money. A natural way out is to look for someone else such that
we two have the opportunity (the money, as it were) to buy the house jointly.
Suppose, for instance, that I have many friends F such that F and I can jointly
buy the house. Then I have some saying on what will happen with the house.

To be sure, the extent E and the extents Eκ are about different things for
κ > 2. E2 etc. are not just about a’s vote making a difference. Correspondingly,
whereas, under E, the other votes are taken as given, under E2 etc., the other
votes are not all given. For Eκ, a is given freedom, so to speak, to pick (κ−1) other
votes and to command these votes together with her own vote. The question is
whether the configuration of votes leaves the opportunity to pick a fixed number
of other votes in such a way as to make a difference.

This raises the following question: Can a measurement of E2 etc. be properly
called a measurement of voting power? On my view, at this point, it is very
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natural to acknowledge that the extent E is no more than one extent in a more
general hierarchy of extents Eκ, viz E1. Moreover, all of these extents concern the
very same question how a voter can affect the outcome with her vote. I therefore
suggest to broaden the notion of voting power such as to include the extents Eκ.
The hope is that this broader notion helps us to characterize voting games in a
more satisfying way than the probability of a voter being critical does.

Let me now spell out my idea in mathematical terms. In the next section I
will introduce the general framework and consider groups.

3 Voting powers of groups

In order to model voting rules, I will use simple voting games (SVGs, for short;
FM, Def. 2.1.1 on p. 11). A simple voting game W is a collection of subsets of a
finite set N with ∅ /∈ W and N ∈ W ; furthermore monotonicity is required (ib.).
N is called assembly. The elements of N represent votes or voters.4 Subsets of N
are called coalitions. There is a one-two-one correspondence between coalitions
and voting profiles or bipartitions (Def. 2.1.5, p. 14 in FM). Elements S ∈ W are
called winning coalitions – the bill passes, iff there is an winning coalition S ∈ W
such that the votes in S are yes and the other votes in N \ S are no. Coalitions
S /∈ W are called losing coalitions.

A voter a is W-critical wrt a coalition S, iff S∪{a} ∈ W , but S \{a} /∈ W . In
this case, if the voter had cast another vote than she actually did, the outcome of
the collective decision would have been different. If a is critical and additionally
part of S, a is W-critical inside; otherwise she is W-critical outside S (FM, Defs.
2.3.4 and 2.3.6, p. 25–6). In the following, we will mostly drop the “W” in
“W-critical”.

Let us now consider move from voters a ∈ N to groups of voters G ⊆ N .
Criticality for a group G can be defined as follows (cf. Beisbart 2008):

Definition 3.1 Let W be a simple voting game with assembly N . Let be G ⊆ N .
Consider a specific coalition S. G is critical wrt S, iff S∪G ∈ W, but S\G /∈ W.
If G is critical wrt S, G is called critical inside (outside) S, iff S ∈ W (S /∈ W).

The basic idea is as follows: Let us assume that S comprises exactly those
votes that were yes in a specific vote. G is critical wrt S, iff there is some way
in which the group could have voted differently such that the outcome of the
vote would have been different. To be sure, if the group has more than one vote,
then there are many ways the group could have voted differently from the way
it did. But for group criticality, it is only required that there is at least one way

4Whether the elements in the assembly represent voters or votes does not make a difference,
if every voter commands exactly one vote. In this paper, I will stick to this assumption. The
assumption is relaxed in Edelman (2004) and Beisbart (2008).
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Figure 1: An illustration of group criticality. The voting game is M5, i.e. a bill
is accepted, iff three or more voters vote yes. Each voter is represented with a
box. Voters with filled boxes vote yes, whereas voters with empty boxes vote no.
Each panel focuses on a particular coalition S that comprises all the voters with
a filled box. The group G = {2, 3} is critical wrt both coalitions shown.

the group might have voted differently such that the outcome would have been
different.5

Group criticality can be illustrated using Ex. 1.1 (simple majority voting with
five voters). The related simple voting game is calledM5 (Def. 2.3.10 on pp. 25–6
in FM). Label the votes from 1 to 5. Consider the voting profile where 1 votes
yes, and the others vote no (i.e. S = {1}; see Fig. 1). The group G ≡ {2, 3} is
critical wrt S, because, if both 2 and 3 had voted yes rather no, the outcome of
the vote would have been different. Since S is losing, the group is critical without
S. G is also critical outside S = {1, 2} (second panel). The same group is critical
inside S = {1, 2, 3}, and critical inside S = {1, 2, 3, 4}, for instance.

Group criticality can be characterized in terms of blocs. For this, start from
a SVG W with assembly N and a group G ⊆ N . Let &G be the bloc by G (see
FM, Def. 2.3.33 on p. 33). Call W|&G the SVG that is obtained from W , if G
forms a block (ib.). Very roughly, in W|&G, G is forced to cast a block vote, and
the decision rule is minimally adapted.

Proposition 3.1 Let W be a SVG with assembly N and S, G ⊆ N . G is critical
wrt S, if and only if &G is critical wrt S in W|&G.

The proposition follows immediately from the definitions of group criticality and
blocs. Let us now note three consequences of Def. 3.1.

5Criticality of groups can only be paraphrased in this way, if monotonicity holds true. If
it doesn’t, then I suggest to stick to the colloquial description of criticality just given and to
change the definition of group criticality as follows: A group G is critical wrt S, iff there are
subsets G′, G′′ ⊂ G such (S \G) ∪G′ ∈ W and (S \G) ∪G′′ /∈ W.
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Proposition 3.2 Let W be a simple voting game with assembly N . Let G, S ⊆
N .

1. If G is critical wrt S and G′ is an arbitrary subset of G: G′ ⊆ G, then G
is also critical wrt (S \G) ∪G′.

2. If G is critical wrt S and G ⊆ G′, then G′ is critical wrt S. In particular,
if a group G′ contains a vote that is critical wrt S, then G′ is critical wrt
S.

3. If G is not critical wrt S and G′ ⊆ G, then G′ is not critical wrt S either.

The proofs are again very easy and will not be given here.
Assume now that an arbitrary probability model over the coalitions of a SVG

is given.

Definition 3.2 Let W be a simple voting game. The measure of voting power
for group G ⊆ N is the probability for a coalition S wrt which G is critical (or
the probability that G is critical, for short).

If the probability model on the profiles is represented as a joint probability
function p(λ1, ..., λn), where the λis denote the votes of the single voters, then
the power of G = {1, 2, ..., g} only depends on the marginal probability functions
for the non-group votes, ∑

λ1

...
∑
λg

p(λ1, ..., λn) . (1)

Here the sums extend over “yes” and “no”, each. Thus, the measure is really
about the opportunity that the other votes leave to the group.

In order to illustrate the notion of power, let me calculate the power of group
G = {2, 3} in Ex. 1.1. As a probability model, I assume the model specified in
this example. Clearly, only coalitions with a non-zero probability contribute to
the measure of voting power. The coalitions with non-zero probability outside
which G is critical are {1}, {4} and {5}. The coalitions with non-zero probability
inside which G is critical are {1, 2, 3, 4}, {1, 2, 3, 5} and {2, 3, 4, 5}. The power
measure of the group is thus .5. This shows that, even if no single voter is ever
critical and even if the corresponding power measure is zero, a group of voters
can still have non-zero power.

Under the Bernoulli model, the following result is useful (cf. Beisbart 2008,
Cor. 3.2):

Proposition 3.3 Let W be a simple voting game and G ⊆ N a subset of the
assembly N . Assume that G has two members. Under the Bernoulli model, the
power measure of the group equals the sum of the power measures of its members.
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The proof follows from our Def. 3.2, our Prop. 3.1 and Theorem 3.2.18 in FM,
p. 47.

Morriss (1987), pp. 109–114 has a useful section (14.2) on the power of groups.
The proposed measurement of group power is partly in agreement with what
Morriss says. For instance, as Morriss emphasizes, a group can have power to do
something, even if not all of the group members are required for this (p. 112).
This is also true of the proposed measure (cf. part 2 of Prop. 3.2). However, there
is also some disagreement. For instance, according to Morriss, an assessment of
group power to do something has to take into account whether the group is able
to coordinate suitably in order to get this done (p. 110). Something like this
does not enter my measure. I do not think that this is a problem; in calculating
measures of individual power, many aspects of individual power, e.g. whether
a voter is physically able to cast a no-vote, are abstracted away; similar things
are abstracted away in the case of groups. Also, I’m not interested here in a
measurement of group power in general; rather, what interests me is to what
extent a SVG leaves opportunity for a group making a difference as to whether
a bill passes. is this paragraph needed?

4 Higher-rank voting powers for individuals

I have now a power measure for groups at hand. On this base, I can become
more individualistic again.

For an illustration what I have in mind, consider Ex. 1.1 and S = {1} again.
Voter 2 is not critical wrt this coalition. Nevertheless, she can ask: Is there one
other voter b such that b and I can switch the vote jointly as a group? Put
differently, am I member of a group of size 2 that is critical wrt S? And the
answer is yes, as we have already seen: The group {2, 3}, for instance, does the
job. But suppose now that the answer would be no again. Voter 2 can then go on
and ask: Are there two other voters such that they and me together can jointly
switch the vote? Put differently, am I member of a group of size 3 that is critical
wrt S? And so on.

Let us start with an extension of the notion of criticality.

4.1 Criticality of higher ranks

Definition 4.1 Let W be a simple voting game and a ∈ N a voter. Let n = |N |.
a is critical of rank κ ∈ {1, .., n} wrt S ⊆ N , iff there is a group G with the
following properties:

1. a ∈ G;

2. G is critical wrt S; and
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3. |G| = κ.

That is, a is critical of rank κ wrt S, iff there is a group κ members, one of them
a, such that the group is critical wrt S.

Let me illustrate this definition in terms of Ex. 1.1. Consider the losing
coalition S ≡ {1}. I will consider the voters 1 and 2 and investigate whether
each of them is critical of rank κ wrt S for κ = 1, 2, 3.

Focus first on voter 2. 2 is not critical of rank 1 wrt S, since the only group
that includes 2 and has one member is {2}, and S ∪ {2} = {1, 2} is not yet a
winning coalition. However, 2 is critical of rank 2 wrt S. In order to see this,
consider the group G = {2, 3}, which includes 2 and has two members. As we
have seen before, this group is critical wrt S. Thus 2 is critical of rank 2 wrt S.
By the way, this does not imply that any group with two members and 2 as a
member is critical wrt S. For instance, {1, 2} is not critical wrt S. Regarding
rank 3, clearly, 2 is also critical of rank 3 wrt S. This can be shown using the
group {1, 2, 3}, for instance.

Let me now move on to voter 1. Clearly, 1 is not critical of rank 1 wrt S. 1
is not even critical of rank 2 wrt S = {1}: For any group G with two members
that include 1, we have |S ∪ G| = |{1} ∪ G| = 2 < 3, and thus S ∪ G is not yet
winning, as would be necessary for criticality of the group. However, 1 is critical
of rank 3 wrt S = {1}. This can be shown using the group {1, 2, 3}, e.g.

What is interesting in this example is that different voters can be distinguished
by asking whether they are critical of a certain rank or not. 2 is critical of rank
2 wrt S, but 1 is not.

Let me now note a few characteristics of higher-rank criticality. The first thing
to be observed is this: In Def. 4.1, condition could be replaced by the requirement
that |G| ≤ κ. This follows from monotonicity.

The following lemma states another useful thing.

Lemma 4.1 Let W be a simple voting game and let S ⊆ N . Suppose that group
G ⊆ N with |G| = κ is critical wrt S. Then every voter a ∈ G is critical of rank
κ wrt S. Every voter a ∈ N is critical of rank (κ + 1) wrt S.

Proof. If a ∈ G, G itself can be taken as the group the existence of which is
required in Def. 4.1. If a ∈ N , G∪{a} (which has cardinality κ+1) is as required
in Def. 4.1. Q.e.d.

Obviously, the well-known notion of criticality coincides with criticality of
rank 1. Note, also, that each voter is critical of rank n = |N |. Finally, as the
second part of Prop. 3.2 implies, if a is critical of rank κ wrt S, then she is also
critical of rank (κ + 1) wrt S.

4.2 A differential notion of higher-rank criticality

Under the definition of criticality just given, a voter will usually be critical of
several ranks wrt one and the same coalition S. This is not always useful. I will
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therefore introduce a different bookkeeping of the ranks. I start by defining a
differential notion of criticality, call it d-criticality.

Definition 4.2 Let W be a simple voting game and a ∈ N be a voter. Let
n = |N | and S ⊆ N . a is d-critical of rank 1 wrt S, if a is critical of rank 1 wrt
S. a is d-critical of rank κ ∈ {2, .., n} wrt S, iff a is critical of rank κ wrt S, but
a is not critical of rank (κ− 1) wrt S.

Thus, a voter a ∈ N is d-critical of rank κ wrt S, iff the smallest possible group
G that includes a and that is critical wrt S, has cardinality κ.

Obviously, criticality of rank 1 and d-criticality of rank 1 coincide. It also
follows immediately that, if a is d-critical of rank κ wrt S, then a is not d-critical
of rank κ′ wrt S for any κ′ 6= κ. On the other hand, for each a, there is exactly
one κ ∈ {1, .., |N |} such that a is d-critical of rank κ wrt S.

Let me analyze M5 once more (cf. Fig. 2). Consider voter 1. She is d-critical
of rank 3 wrt {1} and ∅, {2, 3, 4, 5} and N ; she is d-critical of rank 2 wrt {2},
{3}, {4}, {5}, {1, 3, 4, 5}, {1, 2, 4, 5}, {1, 2, 3, 5} and {1, 2, 3, 4}; and she d-critical
of rank 1 (critical) wrt all other coalitions.

For determining whether a voter is d-critical of a certain rank, the following
result is useful.

Proposition 4.1 Let W be a simple voting game with assembly N , a ∈ N a
voter and assume S ⊆ N . Let G ⊆ N be a group with a ∈ N and |G| = κ and
assume that the group is critical wrt S.

1. If S is a losing coalition and | (G \ {a})∩S| = ν, then a is not d-critical of
rank κ′ wrt S for any κ′ > κ− ν.

2. If S is a winning coalition and | (G \ {a}) ∩ (N \ S) | = ν, then a is not
d-critical of rank κ′ wrt S for any κ′ > κ− ν.

Proof. 1. Let S /∈ W and | (G \ {a}) ∩ S| = ν. Note that ν < κ. Consider now
G′ = G\ (S \ {a}). We know that a ∈ G′ and that |G′| = |G|− |G∩ (S \ {a}) | =
|G| − | (G \ {a}) ∩ S| = κ− ν. Moreover, S ∪G′ = S ∪G is a winning coalition,
whereas S \G′ ⊆ S is a losing coalition. Thus G′ is critical wrt S. It follows that
a cannot be d-critical of rank κ′ wrt S for any κ′ > |G′| = κ− ν.
2. Let S ∈ W and | (G \ {a}) ∩ (N \ S) | = ν. Note that ν < κ. Consider now
G′ = G \ ((N \ S) \ {a}). We know that a ∈ G′ and that |G′| = |G| − |G ∩
((N \ S) \ {a}) | = |G| − | (G \ {a}) ∩ (N \ S) | = κ − ν. Moreover, S ∪ G′ ⊇ S
is a winning coalition, whereas S \ G′ = S \ G is a losing coalition. Thus G′

is critical wrt S. It follows that a cannot be d-critical of rank κ′ wrt S for any
κ′ > |G′| = κ− ν. Q.e.d.

What the proposition tells us is this: If we wonder whether a voter a is d-
critical of some rank and look for related groups G 3 a, then G should not have
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1 2 3 4 5

G

Figure 2: An illustration of d-criticality. G = {1, 2, 3} contains 2 and is critical
wrt S = {1}, so it is relevant for 2 being critical of rank 3 wrt S. However,
G′ = {2, 3} would also suffice for a joint action that changes the outcome of the
vote. Thus, 2 is not d-critical of rank 3 wrt S. The reason why G is inefficient
is that S is losing and that G has overlap with S. Voter 1 votes yes, and the
question is whether the outcome of the vote can be changed to yes. For this, 1
need not be part of the group – “she does the right thing, anyway”.

overlap with S (with N \ S) apart from a itself, if S is winning (losing). The
overlap means that the group is inefficient in being critical – a smaller group
would do as well. This is illustrated in Fig. 2.

4.2.1 d-criticality and minimal winning/maximal losing coalitions

d-criticality might remind one of minimal winning coalitions and maximal losing
coalitions. A coalition S is a minimal winning coalition iff it is a winning one
(S ∈ W) and any proper subset S ′ ⊂ S is a losing coalition (S ′ /∈ W ; FM,
Def. 2.3.2 on p. 23). A coalition S is a maximal losing coalition iff it is a losing
one (S /∈ W) and and any proper superset S ′ ⊃ S is a winning coalition (S ′ ∈ W).

Some will suspect that there is a relationship between d-criticality and min-
imal winning coalitions (or maximal losing coalitions). A first guess starts from
the following observation: For a voter to be d-critical of some rank wrt S, a group
G is needed such that S∪G is winning and S \G is losing. The guess then is that
S ∪ G (1) will be minimal or (2) has to be minimal, if there is d-criticality (or
that S \G (1) will be maximal or (2) has to be maximal, if there is d-criticality).
But the guess is wrong in all of its versions.

I will first consider the (1) versions and consider minimal winning and maximal
losing coalitions in turn. Suppose that a is d-critical of rank α wrt S. There is
thus a group G ⊆ N with |G| = κ and a ∈ G such that G is critical wrt S,
and a smaller group would not do. Accordingly, G ∪ S is a winning coalition.
It does not follow that G ∪ S is a minimal winning coalition. This is clear from
the following example. Consider a weighted voting game with the weights 1, 1, 3
and a quota of 3 – [3; 1, 1, 3] (see FM, Def. 2.3.15 on pp. 29–30 for the notation).
Here and henceforth, I will number the voters consecutively – i.e., in [3; 1, 1, 3],
voters 1 and 2 have weight 1, whereas voter 3 has vote 3. Let S = {1, 2}. a = 2
is d-critical of rank 2 wrt S. The related group is G = {2, 3}. There is no smaller
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group that does the same thing. But S ∪G = {1, 2, 3} is not a minimal winning
coalition – {3} is also winning. The reason why S ∪G is not minimal, of course,
is that the S-part of S ∪G, i.e. S \G, is not optimal.

I will now consider maximal losing coalitions. Suppose that a is d-critical of
rank κ wrt S. There is thus a group G ⊆ N with |G| = κ and a ∈ G such that G
is critical wrt S, and a smaller group would not do. Accordingly, G\S is a losing
coalition. It does not follow that G\S is a maximal losing coalition. This is clear
from the following example. Consider again the simple voting game [3; 1, 1, 3].
a = 2 is d-critical of rank 2 wrt S = {1}. The related group is G = {2, 3}. There
is no smaller group that does the same thing. But S \ G = ∅ is not a maximal
losing coalition – {1} is losing as well, e.g.

Let me now consider the (2) guesses. Suppose, first, that there is a group
G 3 a such that G∪S is a minimum winning coalition and that G \S is a losing
coalition (not necessarily a maximal one). It follows that G is critical of rank
κ = |G| wrt S, but it does not follow that a is d-critical of the same rank wrt
S. For a simple illustration, consider the weighted voting game [5; 1, 2, 2, 4], set
S = {1} and G = {1, 2, 3}. S ∪ G is a minimal winning coalition, S \ G = ∅ is
losing; but 1 is not d-critical of rank 3 wrt S, since G = {1, 4} 3 1 is also critical
wrt S.

Suppose, second, that there is a group G 3 a such that G ∪ S is a winning
coalition (not necessarily a minimal one) and that G \ S is a maximal losing
coalition. It follows that G is critical of rank κ = |G| wrt S, but it does not
follow that a is d-critical of the same rank wrt S. For a simple illustration,
consider the weighted voting game [5; 1, 2, 2, 4] again, set S = {4} and G = {1, 2}.
S∪G = {1, 2, 4} is a winning coalition, S \G = {4} is losing, and it is a maximal
losing coalition; but 1 is not d-critical of rank 2 wrt S, since G = {1} is also
critical wrt S.

Suppose, finally, that there is a group G 3 a such that G ∪ S is a minimal
winning coalition and that G \ S is a maximal losing coalition. It follows im-
mediately that |G| = 1 and that 1 is critical wrt S (of rank 1). Thus, no new
characterization of d-criticality of higher ranks is provided.

The reason why there is no tight relation between minimal winning coalitions
(or maximal losing coalitions) and d-criticality is, of course, that two notions of
minimality are in play. One minimality refers to properties of S ∪G (of S \G);
the minimality that is relevant for d-criticality refers to the size of the group G.

Since d-criticality is not immediately related to minimal winning coalitions,
the question arises: What is relevant for measuring power – is it d-criticality or
some strengthened notion that involves minimal winning coalitions, e.g.?

On my view, whether the winning coalition S∪G in Def. 4.2 is a minimal one
or not, does not matter for power. As one of the examples above shows, S ∪ G
might be winning, but not a minimal winning coalition, not because of G, but
because of the composition of S \G, and this composition is quite irrelevant for
the question what a voter can do jointly with others. What counts for power,
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intuitively, is that a jointly with some other people can make a difference, not
how exactly this is done.

However, I will tentatively strengthen the notion of d-criticality in a different
way in App. A. I do not think, though, that this strengthening is useful.

4.3 Higher-rank voting powers

Let me now turn to the notion of power. In order to avoid double-counting, it is
convenient to define power as a differential notion, i.e. in terms of d-criticality
instead of criticality.

Definition 4.3 LetW be a simple voting game and the cardinality of its assembly
N , |N | = n. The measure of voting power of rank κ ∈ {1, .., n} for voter a, call
it β′,κ

a , is the probability for a voting profile wrt which a is d-critical of rank κ
(the probability that a is d-critical of rank κ, for short).

Thus, in Wilmers’ example, the following higher-rank powers can be derived:
For each voter a, we have β′,1

a = 0, β′,2
a = 2/3, β′,3

a = 1/3 and β′,κ
a = 0 for κ > 3.

This follows from the determination of d-criticality on p. 12 and the probability
model in the example.

How, then, can we deal with the objection that was based on Wilmers’ ex-
ample? The objection was that, if the voting power of a voter is measured as
the probability of criticality, nobody has voting power in the example. Using our
extended notions of power, we can reply as follows: In some sense, we are afraid,
the voters do not have power in this example – they do not have power of rank 1.
But they do have power of higher ranks. Particularly, they have power of ranks
2 and 3. It is never the case that a voter can affect the outcome by switching
her vote. But there is always the opportunity to form groups that can switch
the vote. As we will presently see, each voter will always have a non-zero voting
power of some rank. Thus an assignment of voting power under which no voter
has any power is not possible any more using the power hierarchy.

In Wilmers’ example, the voting game and the probability model are com-
pletely symmetric. Thus, every voter has the same hierarchy of higher-rank
powers. Let us therefore consider a variation of Ex. 1.1, such that the symmetry
is lost.

Example 4.1 Assume that the probabilities are as given in Ex. 1.1 except that
the probability for {1} is 1/12 + ε and the probability of {2} is 1/12− ε for some
1/12 ≥ ε > 0. What is the effect on the powers of the different ranks? 2 gains
power of rank 2, but loses voting power of rank 3 – she has now β′,2

2 = 2
3

+ ε and

β′,3
2 = 1

3
− ε. On the contrary, 1 loses power of rank 2 and gains power of rank 3

– she has now β′,2
2 = 2

3
− ε and β′,3

2 = 1
3

+ ε. All other measures are unaffected.

The question is now what this means. Is there something that we can say about
overall voting power in this new example?
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One idea would be to add up the powers of the different ranks for each voter.
But this idea does not work. First, one can prove that, generally,

|N |∑
κ=1

β′,κ
a = 1 . (2)

Second, one cannot just add up the powers of the different ranks – they have
different meanings. Rather, if one wants to condense the information that is
present in the hierarchy of powers, in order to obtain simple comparisons, one
has to proceed as follows.

Define first cumulative measures of higher-rank power:

Definition 4.4 Let W be a simple voting game, where the assembly N has car-
dinality n. For each voter a ∈ N and for each κ ∈ {1, .., n} define the cumulative
power measure of rank κ, ακ

a as

ακ
a =

κ∑
ι=1

β′,ι
a . (3)

ακ
a is the probability that voter a is critical of rank κ wrt a coalition (instead of

being d-critical of that rank). Clearly, these measures approach 1, as κ approaches
n = |N |.

We can now define the following preorder: Voter a has overall at least as
much voting power as voter b (a 3 b, for short), if α′,κ

a ≥ α′,κ
b for all κ = 1, .., n.

Additionally, let us say that a has overall the same voting power as b, iff α′,κ
a = α′,κ

b

for all κ = 1, .., n. Finally, we can say that a has overall more voting power than
b, if a 3 b and α′,κ

a > α′,κ
b for some κ. Thus, very roughly, you have overall

more voting power than I do, if, as the rank increases, your cumulative measures
approach 1 earlier than mine do. The idea is that I am less powerful, because,
typically, I need to find more people in order to form a group that is critical.

With these notions in mind, let us return to Ex. 4.1. Voter 2 has overall more
voting power than any other voter has. Voter 1 has overall less voting power than
anyone else in the example. The reason is, of course, that the coalition S1 = {1}
has an increased probability, whereas S2 = {2} has a diminished probability.
S1 is particularly unfortunate for 1, because she is further away from making a
difference than anyone else is. Likewise, S2 is particularly unfortunate for 2.

I would not go as far as to say that these comparisons for Ex. 4.1 match
our intuitions – most people are not likely to have many intuitions regarding the
example. But I would like to claim that the measures proposed in this paper
and the comparisons built upon them provide interesting information that stand
further reflection.

We can now pose the following question. Is it ever possible that a has more
voting power of rank κ than voter b, but that b has more voting power of rank
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(κ+1) than a? If this is impossible, then comparability will hold for the preorder
3: For any a, b ∈ N , a 3 b or b 3 a will be true. However, as the following
example shows, the above is not impossible.

Example 4.2 Consider the weighted voting game [5; 3, 2, 1, 1, 1]. Consider the
set S1 = {1, 3, 4}. Voter 3 is critical (d-critical of rank 1) wrt S1, but 2 is not –
she is only d-critical of rank 2 wrt S1. Consider now S2 = ∅. 2 is d-critical of
rank 2 wrt S2, but 3 is not – she is only d-critical of rank 3 wrt S2. Assume now
that p(S1) = ε and that p(S2) = 1 − ε for an ε ∈ (0, 1). Then we have: α′,1

3 = ε
and α′,1

2 = 0, whereas α′,2
3 = ε and α′,2

2 = 1. So for 0 < ε < 1, we have α′,1
3 > α′,1

2 ,
but α′,2

3 < α′,2
2 . Following our definition of “having overall more voting power”,

we can neither say that 2 has overall more power than 3, nor is it the other way
round. Also, neither 2 3 3 nor 3 3 2 is true. Furthermore, 1 and 2 have not
the same power. Their powers are incommensurable, to take up a notion from
practical philosophy (cf. Raz 1999, p. 46 for a definition of incommensurable
values).

Note, however, that the probability distribution is very peculiar in this example.
The hope, then, is that, under many realistic probability models, comparability
can be established.

There are alternative ways to condense the information in the hierarchy of
measures proposed in this paper. I leave a related discussion to future work.

Dummies. A dummy is a voter that is not critical wrt any coalition (Def. 2.3.4
on p. 24 in FM). Obviously, the notion of a dummy relies on the notion of
criticality of rank 1. One may ask whether the notion of a dummy can be extended
to higher-rank dummies. Can there be a higher-rank dummy who is not critical
of a fixed higher-rank wrt any coalition? The answer is no. The reason is that,
for any simple voting game, there is a coalition S such that at least one voter is
critical wrt S. It follows from Prop. 3.2, Part 2, that every voter is either critical
wrt some coalition S or that she is critical of rank 2 wrt to some coalition.

Higher-rank powers under Mn and the Bernoulli model. As a reference,
it is useful to have the higher-rank powers for a very simple example.

Example 4.3 Let Mn be simple majority voting with n voters and adopt the
Bernoulli model as probability model. Let m the smallest integer that is larger
than n/2 (m is the threshold). For each voter a, we have

β′,κ
a =

{
21−n

(
n−1
m−1

)
for κ = 1 ,

21−n
((

n−1
m−κ

)
+

(
n−1

m−2+κ

))
for κ > 1.

(4)

Here it is assumed that
(

n
k

)
= 0 for k > n or k < 0. Of course, because of the

symmetry, each voter has the same hierarchy of measures.
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Proof. I can concentrate on κ ∈ {2, ..,m} – for κ = 1 the result is well-known
(FM, p. 55), and it is clear that β′,κ

a is zero for κ > m. Consider now an arbitrary
voter a. For the higher-rank power measures, it does not matter, what the vote
of a herself is (first part of Prop. 3.2). I can therefore focus on the other (n− 1)
voters and on coalitions S ⊆ N \{a}. In order to calculate β′,κ

a , one has to know:
How many coalitions S ⊆ N \ {a} have the following property: (1) There is a
group of κ voters, including a, G such that S ∪G ∈ W and S \G /∈ W , but (2)
there is no group of (κ − 1) voters, including a, G′ such that S ∪ G′ ∈ W and
S \ G′ ∈ W . Because of property 1, S needs to have at least (m − κ) elements
– otherwise, there will be no group with κ voters such that S ∪ G ∈ W . Also,
it can at most have (m − 1 + κ − 1) elements – otherwise, there is no group
with κ members including a such that S \ G /∈ W (since we look at coalitions
S ⊆ N \ {a} only, a’s vote can’t help in destroying an acceptance, and we have
to add κ − 1 instead of κ to m − 1). Thus (m − κ) ≤ |S| ≤ (m − 1 + κ). Be-
cause of property 2, S has to have the highest possible or the lowest possible
cardinality. On the other hand, any S ⊆ N \ {a} with these cardinalities will
do. There are

((
n−1
m−κ

)
+

(
n−1

m−2+κ

))
of them with a probability of 21−n, each. Q.e.d.

Let me now consider another example. In this example, there is no symmetry
between the different voters.

Example 4.4 Consider the simple voting game M5. Label the voters in the
assembly from 1 to 5. Assume that the voters are ordered according to how liberal
they are. 1 is least liberal, and 5 is most liberal. The bills propose measures
that are mostly quite liberal. As a consequence, if 1 votes yes, all others vote
yes as well. More generally, if a votes yes, all voters b > a will vote yes as
well (this can be modeled with a one-dimensional policy space). Thus, only the
coalitions S0 = ∅, S1 = {5}, S2 = {5, 4}, S3 = {5, 4, 3}, S4 = {5, 4, 3, 2} and
S5 = {5, 4, 3, 2, 1} have non-zero probability. Call the probability for Si, pi. We
assume that the pis are symmetric, i.e. p5−i = pi for i = 0, .., 5.

In the upper panel of Table 1, the coalitions Si are listed, and the ranks of
the (differential) power measures to which they contribute are specified for the
different voters (which correspond to different columns). In the second panel, the
differential power measures are given.

If we consider the relation “having overall more power”, it turns out that 3
has overall more power than anybody else. Voters 2 and 4 have overall more
power than 1 and 5. This result is very intuitive – after all, 3 occupies the middle
position, whereas 1 and 5 are most extreme. Note also, that first-rank power
would not allow us to differentiate between 2 and 4 on the one hand, and 1 and
5 on the other hand.

In order to illustrate the usefulness of the proposed measures, I will discuss one
more example. The example is constructed in the following way: Two different
voting games are compared. The voting games can not be distinguished in terms
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coalition a = 1 a = 2 a = 3 a = 4 a = 5
∅ κ = 3 κ = 3 κ = 3 κ = 3 κ = 3
{5} κ = 2 κ = 2 κ = 2 κ = 2 κ = 3
{4, 5} κ = 1 κ = 1 κ = 1 κ = 2 κ = 2
{3, 4, 5} κ = 2 κ = 2 κ = 1 κ = 1 κ = 1
{2, 3, 4, 5} κ = 3 κ = 2 κ = 2 κ = 2 κ = 2
{1, 2, 3, 4, 5} κ = 3 κ = 3 κ = 3 κ = 3 κ = 3

rank κ β′,κ
1 β′,κ

2 β′,κ
3 β′,κ

4 β′,κ
5

κ = 1 p2 p2 p2 + p3 p3 p3

κ = 2 p1 + p3 p1 + p3 + p4 p1 + p4 p1 + p2 + p4 p2 + p4

κ = 3 p0 + p4 + p5 p0 + p5 p0 + p5 p0 + p5 p0 + p1 + p5

Table 1: Ex. 4.4. In the upper panel, the columns refer to the different voters a.
Each entry in the table note the rank κ of which a coalition is d-critical. In the
lower panel, the (differential) power measures are summarized.

of first-rank power – the voters have the same first-rank powers in both voting
games. However, the voting games are different in terms of higher-rank powers.
As a probability model, the Bernoulli model is adopted.

Example 4.5 We will compare two simple voting games with four voters, each.
The first voting game is M4 – i.e. a vote is accepted, iff there are at least three yes
votes. The other voting gameW2 is spanned by the following two minimal winning
coalitions: S1 = {1, 2} and S2 = {3, 4} – i.e. W2 = {X ⊆ N |X ⊇ S1 or X ⊇ S2}.
Note that the voting games are not dual to each other (it is well known that voting
games that are dual to each other have the same Banzhaf measures for the votes,
Theorem 3.2.7 on p. 42 in FM; for duality see Def. 2.3.2 on p. 23, ib.).

It is clear that both voting games are symmetric: Within each of them, the
voters can not be distinguished in terms of power measures. Let us first focus
on rank 1 and start with W1. The Banzhaf measure of each voter is 3

8
– this

follows from Eq. (4). Under W2, voter 1 is critical inside the following coalitions:
{1, 2}, {1, 2, 3}, {1, 2, 4}. Since the Banzhaf measure equals the probability that a
voter is critical inside, given she votes yes, we obtain 3

8
for the Banzhaf measure.

Thus, W1 and W2 cannot be distinguished in terms of their Banzhaf measures or
power measures of rank 1.

That the voting games can be distinguished in terms of higher-rank power
measures can be seen as follows. Under W1, each voter is d-critical of rank 3 wrt
S = ∅. Consequently, the differential power measure is non-zero for rank 3 – it
equals β′,3

a = 1
8

for each voter a. It follows that β′,2
a = 1

2
for each voter because of

the sum rule in Eq. (2). On the other hand, under W2, no voter is ever d-critical
of rank 3 wrt a coalition. For instance, a = 1 is critical of rank 2 wrt S = ∅,
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because {1, 2} is winning. Thus, because of the sum rule in Eq. (2), each voter
must have a power measure of second rank of β′,2

a = 5
8
. This shows that the voting

games can be distinguished in terms of higher-rank power measures.

The example raises the following research question: Suppose that two simple
voting games have exactly the same set of power measures for each voter under
the Bernoulli model. Are the voting games identical up to isomorphisms and
duality transformations (for isomorphisms, cf. Def. 2.1.7 on p. 15 in FM)? And
if the answer is yes, is there an algorithm with which the voting game can be
reconstructed from the power measures? I hope to come back to this question in
my future research.6

Of course, one can also ask whether different voting games can be distin-
guished in terms of power measures by assuming a probability model different
from the Bernoulli model. The answer is clearly no, if all coalitions that are
winning under one game, but losing under the other one, have zero probability,
each. So there are at least minimal requirements on the probability model. I will
not pursue this issue further.

5 Discussion

In collective decision making, not only single voters can make a difference as to
whether a bill passes or not. Groups can also make a difference as to whether
a bill passes. This fact should make a difference for the way we think of voting
power of individuals – or so has been argued in this paper.

In more detail, I have proposed an extension of a well-known measure of
voting power. The well-known measure is the probability of being critical. If it
is calculated on the basis of the Bernoulli model, the popular Banzhaf measure
of (a priori) voting power is obtained. But the probability of being critical can
also be calculated for alternative probability models. If they are constrained by
empirical data, measures of a posteriori voting power arise.

In the recent literature, it has been argued that the probability of criticality
does not provide a suitable measure of a posteriori voting power. As Wilmers’
example shows, this measure will assign zero voting power to every voter, if voting
profiles under which at least one voter is critical have zero probability. It seems
odd that nobody has any power whatsoever, though.

6It is well-known that weighted voting games are almost fully characterized in terms of the
Banzhaf measures only (Dubey & Shapley 1979, p. 127). That is, if two weighted voting games
have exactly the same sets of Banzhaf measures, then they are either dual or identical (up to
isomorphisms). In fact, in our example, W2 is not a weighted voting game. It is not even a
proper voting game (Def. 2.1.1 on p. 11 in FM). Note, also, that the degeneracies between dual
voting games are not broken by my measures. It can be proven that the hierarchies of power
measures coincide for a voting game W and its dual W?, if the Bernoulli model is adopted.
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What is also dissatisfying about the probability of being critical is this: This
measure does not have as much discriminatory power as one would like it to
have. For instance, calculating the Banzhaf measures for a simple voting game
does not allow for a full characterization of a voting game. There are pairs of
different simple voting games, such that the Banzhaf measures for the voters are
identical (Ex. 4.5; for qualifications see Subsec. 4.3). Put differently, if one moves
from a voting game to the Banzhaf measures, information is lost. Extensions of
the Banzhaf measures are called for that may compensate this loss of information.

For these reasons, I have proposed to go beyond the probability of being
critical for measuring voting power. The probability of criticality quantifies the
extent to which a voter has the opportunity to make a difference as to whether a
bill passes or not. Likewise, one can calculate the extent to which a voter has the
opportunity to find other voters in order to form a group that makes a difference
as to whether a bill passes or not. Put differently, for each voter, we look at the
opportunities for group actions that involve her.

For going beyond the probability that a voter is critical, I have first defined
criticality for a group. Roughly, given a specific coalition, a group is critical, iff
the following is true: There is some way in which the group could have voted
differently such that the outcome of the vote would have been different. The most
important step in extending the probability of criticality was to define higher-
rank criticality for single voters. Roughly, a voter is critical of rank κ, iff there is
a group of votes including a and with cardinality κ such that the group is critical.
The proposed new measures are then the probabilities that a voter is critical of
a fixed rank. In order to avoid double-counting, I have introduced a differential
counting. As a result, for each voter there is a hierarchy of measures with ranks
ranging from 1 to the cardinality of the assembly. The powers of the different
ranks add up to 1 for each voter. Roughly, you have overall more voting power
than I have, if your measures start growing for smaller ranks than mine do. For
rank 1 and the Bernoulli model, the new measure coincides with the Banzhaf
measure. For higher ranks, additional information is provided.

On p. 3 three requirements on the suggested extension have been introduced.
The requirements are fulfilled in the following sense:

R1 If the measures are calculated under the assumption of the Bernoulli model,
the rank 1 measures coincide with the Banzhaf measure of voting power.

R2 Obviously, our measures are conceptually tied to the notion of criticality.

R3 My measures concern individual voters – they quantify to what extent a
voter can make a difference as part of groups.

R4 The contraintuitive results for Wilmers’ example are avoided under our
measures: True, the first-rank measure is zero for every voter, but each
voter has non-zero power of second and third rank.



22

The versatility of our measures has been shown using several examples. In partic-
ular, it has been highlighted that their discriminatory power is larger than that
of the probability of criticality.

In order to conclude, let me deal with a few objections.
The first objection targets the definition of group criticality and everything

else that is built upon it. ConsiderM5 and the coalition S = {1, 2}. Suppose also
that 2 and 3 always cast opposite votes – 2 votes yes, iff 3 votes no. Consequently,
the probability for coalition {1, 2, 3} is zero. The objection is that, in this case,
intuitively, the group G = {2, 3} is not critical wrt S, because, in order to change
the outcome of the vote, the group members would have to cast the same votes,
which they never do. However, according to our definition Def. 3.1, the group G
is critical wrt S.

The objection does not work, though. The intuition according to which the
group is not critical rests upon a variation of the exercise fallacy (Morriss 1987,
pp. 15–18) and is thus misguided. The exercise fallacy confuses the having of
power and the exercising of power. But one can have power and never exercise
it. Likewise, one can often face two options that lead to different outcomes, and
always take the first option, say. In this case, one does still make a difference,
although, given the votes of the other voters, the outcome itself is predictable. In
the example, given coalition S, the group G does have the opportunity to change
the vote. It could have voted differently. That it never does vote unanimously
yes, which would be required to change the outcome of the vote, is just a different
matter.7

The second objection is about the hierarchy of power measures. Within this
hierarchy, it makes a qualitative difference whether I can find two other voters in
order to form a group that is critical, or whether three or more voters are needed
for this. But, as a matter of fact, this may often not make any difference at
all. For instance, it may be the case that, whenever I and some other voter have
decided to join forces, other voters will enter the group without further ado. The
objection, then, is that the hierarchy of measures is too inflexible as to capture
such effects.

My reply is as follows. It is right that certain groups are easier to form than
others. Moreover, the easiness of forming a group is not a simple function of
group size. But the proposed measure is not about how easy it is to form groups
as a matter of fact. The difficulties of forming groups are abstracted away for
my measures. Rather, the question is: Is there the opportunity to form groups
at all?

In a similar way, the Banzhaf measure abstracts from certain real-world com-
plications. Suppose, for instance, that a voting rule requires unanimity. It may

7The fact that the objection rests only upon a variation of the exercise fallacy (rather than
the exercise fallacy itself) traces back to the fact that voting power is not a skill and cannot be
literally exercised (cf. footnote 3 on p. 5).
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be the case that I’m under severe pressure to vote yes, if all others vote yes.
Accordingly, one may object that I’m not really critical, if all others vote yes,
because the pressure is so high that I will vote yes. But this is not how the
Banzhaf measure is set up. The Banzhaf measure does not take into account
the costs of voting one way rather than another. It is undeniable that there is
an opportunity to let the bill fail, and this is quantified by the Banzhaf measure
(what has been said regarding the Banzhaf measure in this paragraph is also
true of the probability of criticality as a measure of a posteriori voting power).
Likewise, the difficulties of forming real-world groups are abstracted away in my
measure (a measure that does not abstract that much is proposed in Bovens &
Beisbart 2007).

Morriss (1987) is helpful here again. He distinguishes between two perspec-
tives (p. 86–88). One perspective focuses on an isolated outcome only. The ques-
tion is: Is it possible for some agent to effect this outcome? The other perspective
is broader; the question is: Which combinations of outcomes are compossible (p.
87)? That a person can effect some outcome, but only with difficulties or with
high costs, means this: The person cannot at the same time effect the outcome
and effect many other costly things. For the Banzhaf measure and its extension
the first perspective is constitutive.

A final objection is that the proposed measures do not necessarily lead to
comparability regarding power. In this work, an example has been provided
(Ex. 4.2) where we can neither say that a has more power than b nor that it is the
other way round nor that they have the same power. This seems disappointing.

In reply, I want to stress the following: It cannot be expected in the first
place that every concept from ordinary language can be explicated as to yield the
mathematical structure one would like to have. What is important, I think, is
that the explication can account for important things that we do with the concept
in question. And it is a matter of fact that we compare the powers of different
people in ordinary talk and in political science the like. But this does not imply
that it can always be determined whether one person has more power than the
other one rather than the other way round.

This is how I see my work on the notion of voting power: We start from a
concept well-known from ordinary talk and try to explicate it in a Carnapian way.
According to Carnap, the explicans – the concept that does the explication – has
to be similar to the explicandum, exact, simple and fruitful (Carnap 1950, p. 5).
One crucial task in the explication is to see whether the concept leads to a handy
mathematical structure – a preorder, a metric etc. An explication that does so is
particularly fruitful. However, the most satisfying structure might not be close
enough to the explicandum. Thus, a less satisfying structure is required. It is an
open question how satisfying the best explication can be from a mathematical
point of view. In any case, I hope that the structure set up in this papers proves
fruitful for further research in voting theory.
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A An alternative notion of higher-rank power?

So far, I have developed the idea that, roughly, a voter has power to the extent
that she has opportunity to make a difference jointly with others. A slight varia-
tion of this idea is as follows: A voter has power, if she has opportunity to make
a difference jointly with others and if she is essential for the fact that she and the
others make a difference.

This idea can be rendered more precise in the following two steps.

Definition A.1 Let W be a simple voting game with assembly N 3 a. Let group
G ⊆ N be critical wrt a coalition S. a ∈ N is essential for G being critical (wrt
S), iff G \ {a} is not critical wrt S.

Obviously, a vote a can only have this property, if a ∈ G.
Consider M5 as an example again. Let S = {1}. The group G = {2, 3} is

critical wrt S. Voter 2 is essential for G being critical wrt S, and the same is
true of voter 3. The reason is that any proper subgroup G′ of G, G′ ⊃ G, is not
critical any more, since |G| ≤ 1, and thus |G ∪ S| ≤ 2.

As G, G̃ = {2, 3, 4} is critical wrt S = {1}. But voter 2 is not essential any
more for G being critical, since G̃ \ {2} is critical wrt S as well.

Suppose now that a ∈ N is essential for some group G ⊆ N being critical
wrt S ⊆ N . There are two cases possible: Either a ∈ S or a /∈ S. The next
proposition provides alternative characterizations of these cases.

Proposition A.1 Let W be a simple voting game with assembly N . Assume
G, S ⊆ N .

1. Suppose a ∈ S. G is critical wrt S and a is essential for G being critical,
iff

(a) a ∈ G;

(b) S \G /∈ W; and

(c) (S \G) ∪ {a} ∈ W.

If condition (c) is fulfilled, then S ∈ W.

2. Suppose a /∈ S. G is critical wrt S and a is essential for G being critical,
iff

(a) a ∈ G;

(b) S ∪G ∈ W; and

(c) (S ∪G) \ {a} /∈ W.

If condition (c) is fulfilled, then S /∈ W.
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Proof. 1. a. Suppose that a ∈ S, that G is critical wrt S and that a is essential
for G being critical. (a) and (b), i.e. a ∈ G and S \ G /∈ W follow trivially.
Furthermore, we have S ∪ G ∈ W. Consider now G \ {a}. Since a ∈ S, S ∪
(G \ {a}) = S ∪G ∈ W . Thus, S \ (G \ {a}) = (S \G)∪ {a} must be a winning
coalition – otherwise G \ {a} would also be critical wrt S, and a would not be
essential. Thus, the condition (c) obtains. Since a ∈ S, (S \G) ∪ {a} ⊆ S, and,
because of condition (c), S must also be winning.
b. Suppose that the conditions (a)–(c) are fulfilled. We need to show that G is
critical wrt S, whereas G \ {a} is not so. G is critical wrt S, since S \G /∈ W by
(b) and S ∪G is a superset of (S \G) ∪ {a}, which in turn is winning according
to (c). Thus, S ∪G is winning as well. On the other hand, G \ {a} is not critical
wrt S, since S ∪ (G \ {a}) = (S \G) ∪ {a} ∈ W is winning by hypothesis.

The proof for 2. parallels the proof for 1. Q.e.d.

Following Prop. A.1, the groups that are critical wrt some fixed coalition S
and for which a fixed a is essential, can be constructed in a systematic way.
Depending on whether S is winning or not, part 1 or part 2 apply. In the first
case, one has to check whether a ∈ S. If a /∈ S, then no group with the required
property can be found. Let us therefore assume that a ∈ S. The next step is to
look for subsets S ′ ⊆ S such that S ′ ∈ W , but S ′∪{a} /∈ W . In a final step these
sets S ′ have to be represented as S \ G for suitable Gs with a ∈ G – and these
are just the groups we are looking for. If S is losing, part 2 has to be applied in
a similar way.

Let us illustrate this procedure using M5, a = 2 and S = {1}. S is losing,
thus the second part of the proposition applies. Since a /∈ S, we expect some
groups that have the required property. We first look for supersets S ′ of S, such
that S ′ ∈ W , but S ′ \ {a} /∈ W . Clearly, a has to be in S ′. The appropriate sets
S ′ are: {1, 2, 3}, {1, 2, 4} and {1, 2, 5}. Thus, the related groups are {1, 2, b} and
{2, b} for b = 3, 4, 5.

We can now turn to power. It is convenient to add essentiality to the require-
ments of d-criticality. The strengthened notion of criticality that results will be
called D-criticality.

Definition A.2 Let W be a simple voting game with assembly N . A voter a ∈ N
is D-critical of rank κ wrt a coalition S ⊆ N , iff there is a group G ⊆ N with the
following properties:

1. |G| = κ;

2. a ∈ G;

3. G is critical wrt S;

4. there is no smaller group G′ with properties 2 and 3;
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5. a is essential for G being critical wrt S.

Of course, D-criticality of rank 1 is criticality of rank 1.
As an illustration, let us examine M5 again. a = 2 is D-critical of rank 2 wrt

S = {1} because of the groups {2, b} for b = 3, 4, 5. For the group is critical wrt
S, and any smaller group G with 2 ∈ G, would not be critical. Moreover, G\{2}
is not critical, either.

Unfortunately, D-criticality has a disadvantageous property. Whether a voter
a is D-critical wrt a coalition depends on a’s own vote. This can be illustrated
as follows. Consider M5 again. Compare the voting profiles S1 = {1} and
S2 = {1, 2}. Consider voter a = 2. She is D-critical of rank 2 wrt S1 and not
D-critical of any rank wrt S2. The reason is this: She could only be D-critical of
rank 2 wrt S2, because, otherwise, the minimality requirement (part 4 in Def. A.2)
would not be fulfilled. A group that is compatible with requirements 1–4 is {2, 3},
e.g. But 2 is not essential for this group being critical; since 2 votes yes anyway,
G = {3} would be sufficient.

Thus, it is not only the others’ votes that determine whether a voter is D-
critical of a certain rank. Consequently, the probability of D-criticality is not a
measure of the opportunities that the votes of the others leave to a fixed voter.
Power measures that are defined on the base of D-criticality are thus no measures
of voting power. For this reason I will stop investigating D-criticality and related
notions. A similar problem does not arise for d-criticality. Part of the reason
is Prop. 3.2, Part 1. There is also an additional reason not to consider the
probability of D-criticality as a power measure. The requirement of essentiality
has no relation to what a voter can do by casting a vote – and this is what voting
power is all about.
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