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ABSTRACT

LS Penrose was the first to propose a measure of voting power (which later
came to be known as ‘the [absolute] Banzhaf index’). His limit theorem –
which is implicit in Penrose (1952) and for which he gave no rigorous proof –
says that, in simple weighted voting games, if the number of voters increases
indefinitely while the quota is pegged at half the total weight, then – under
certain conditions – the ratio between the voting powers (as measured by
him) of any two voters converges to the ratio between their weights. We
conjecture that the theorem holds, under rather general conditions, for large
classes of variously defined weighted voting games, other values of the quota,
and other measures of voting power. We provide proofs for some special
cases.

Keywords: limit theorems, majority games, ternary weighted games, weigh-
ted voting games

JEL classifications: C71, D71



LS Penrose’s limit theorem:
Proof of some special cases

1 Introduction

In his (1946) paper, Lionel Penrose gave the first definition of a priori voting
power. According to this definition, as slightly amended in his (1952), the
voting power of voter a equals the probability ψa of a ‘being able to influence
a decision either way’. Here it is assumed a priori that all voters other than
a vote independently of one another, each voting ‘yes’ and ‘no’ with equal
probability; so that all divisions of those voters into ‘yes’ and ‘no’ camps are
equiprobable. Then ψa is the probability of the event that those voters are so
divided that a’s vote will tip the balance: if a votes ‘yes’ the act in question
will be adopted, and if s/he votes ‘no’ the act will be blocked.1

Penrose always assumes that decisions are subject to the simple majority
rule, whereby each voter must vote either ‘yes’ or ‘no’ (so that no absten-
tions are admitted) and a proposed bill is adopted iff it receives over half
of all votes. However, he allows the formation of blocs, so that a bloc-voter
can have any positive integral number of votes. Thus the decision rules he
considers are a special case of what is known in the voting-power literature
as a ‘weighted voting game’ (WVG).

Let us recall briefly the definition of a WVG. A WVG W consists of a
finite set N of voters together with an assignment of a non-negative real
weight wx to each voter x ∈ N , and a real q ∈ (0, 1). A bill is passed under
W iff the coalition (set of voters) A voting for it satisfies the condition∑

x∈A

wx ≥ q
∑
x∈N

wx. (1)

We refer to N as the assembly of W and to q as the latter’s relative quota.
The whole right-hand side of (1), namely q multiplied by the total weight of
N , is the absolute quota, or simply the quota.

Penrose confines his attention to the special case in which q equals or
slightly exceeds 1

2
.2 For such WVGs, he derives in (1952) the following ap-

1We have stated the a priori assumption more fully than Penrose, who merely says that
the other voters are assumed to act ‘at random’. The definition he had given in (1946)
took ψa/2 rather than ψa itself as a’s voting power; the difference is of course inessential.

Penrose’s measure ψ is often referred to in the literature as ‘the [absolute] Banzhaf
index’ and denoted by ‘β′’. In using ‘ψ’ we are following Owen (1995).

2In fact, he seems to be thinking of (1) with > instead of ≥, and q = 1/2. We shall
return to this minor point below; see Remark 2.4(ii).
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2 Penrose’s limit theorem

proximation for the voting power ψa of voter a:

ψa ≈ wa

√
2

π
∑

x∈N wx
2
. (2)

In deriving (2) he assumes that the number of voters is large, and wa is
small compared to the sum S of all weights.3 Note that as wa/S becomes
vanishingly small, so do both sides of (2). Thus ≈ must be taken to mean
that the relative error of the approximation tends to 0; in other words, the
ratio between the two sides tends to 1.

Implicit in this approximation formula is a limit theorem about the be-
haviour of the ratio between the voting powers of any two voters, a and b: if
the number of voters increases indefinitely, while existing voters always keep
their old weights and the relative quota is pegged at 1

2
, then (under suitable

conditions),
ψa

ψb
→ wa

wb
. (3)

Penrose does not present a rigorous proof of (2) or (3), but merely outlines
an argument, which is presumably based on some version of the central limit
theorem of probability theory.

Unfortunately, (2) and (3) do not always hold under the conditions assumed
by Penrose. For example, let 0 < w′ < w, and for any positive integer n put

W(n) := [(w′ + nw)/2; w′, w, w, . . . , w︸ ︷︷ ︸
n times

]. (4)

Thus, voters 2, . . . , n + 1 have the same weight, which is greater than that
of voter 1; and a bill is adopted iff it receives at least (and hence in fact
more than) half the total weight.4 Clearly, for any fixed n the voting powers
ψi[W(n)], for i = 2, . . . , n + 1, are positive and equal to one another. But

ψ1[W(n)] =

{
0 if n is odd,

ψ2[W(n)] if n is even.
(5)

Hence (3) does not hold in this case for a = 1 and b > 1.

3In stating (2) and the assumptions under which it is derived we are paraphrasing
Penrose. For his own formulation see his (1952 p. 71f).

4For the square bracket notation see, for example, Felsenthal and Machover (1998
Def. 2.3.14).
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Nevertheless, experience suggests that such counter-examples are atypical,
contrived exceptions. Both real-life and randomly generated WVGs with
many voters provide much empirical evidence that (3) holds in most cases, as
a general rule: if the distribution of weights is not too skewed (in other words,
the ratio of the largest weight to the smallest is not very high), then the
relative powers of the voters tend to approximate closely to their respective
relative weights. Moreover, this is the case not only for multi-voter WVGs
with q = 1

2
, but also for those with any q ∈ (0, 1).

By the relative power of voter a in a WVG W we mean here a’s Banzhaf
(briefly, Bz) index β, obtained by normalizing (or relativizing) the Penrose
measure:

βa[W] :=
ψa[W]∑

x∈N ψx[W]
. (6)

Similarly, a’s relative weight wa in W is obtained by dividing a’s weight by
the total weight of all voters:

wa[W] :=
wa∑

x∈N wx
. (7)

The typical tendency of the values of β to approximate to the respective
relative weights in multi-voter WVGs is illustrated in Tables 1 and 2. The
WVGs shown in these tables are taken from Felsenthal and Machover (2001).
Both are decision rules designed for the so-called qualified majority voting
(QMV) in the EU’s Council of Ministers following its prospective enlarge-
ment to 27 member states. N27 (Table 1) is prescribed in the Treaty of
Nice (2001);5 Rule B (Table 2) is a ‘benchmark’ rule proposed in Felsenthal
and Machover (2001).

In each of these tables, column (1) gives the weights of the voters. The
absolute and relative quota are stated at the bottom of the table. Column (2)
gives the respective relative weights w as percentages. Column (3) gives the
relative voting powers as measured by the Bz index β, also in percentage
terms. Column (4) gives the ratio of the Bz index to the respective relative
weight. Note that all the figures in this column are quite close to 1. In
Table 1 they are well within the range 1± 0.1. In Table 2 – where the quota
is nearer half the total weight – the approximation is even better: the ratios
are all well within the range 1 ± 0.01.

The same tendency is also apparent in Table 3, which is based on a WVG
model of the Electoral College that elects the President of the US. The figures
for β are quite close to those for w.

5N27 is not stated in the treaty in this simple form, as a WVG; but it can be reduced
to the form shown in Table 1. For details, see Felsenthal and Machover (2001 Section 3).
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Moreover, a similar phenomenon is observable not only for the Bz index,
but for also for some other indices of voting power, notably the Shapley–
Shubik (briefly, S-S) index φ.6 This typical behaviour of φ is also illustrated
in Tables 1 and 2. In these tables, column (5) gives the values of the S-S
index φ in percentage terms and column (6) gives the ratio of these values
to the respective relative weights. Note that all these ratios are well within
the range 1 ± 0.05. The same tendency is evident also in Table 3: compare
the figures for φ with those for w.

This suggests a general problem: under what conditions does the ratio of the
voting powers of any two voters, as measured by a given index, converge to
the ratio of their weights?

In order to make this problem more precise, let us introduce the following
framework.

1.1. Definition Let

N (0) � N (1) � N (2) � · · · (8)

be an infinite increasing chain of finite non-empty sets, and let

N =
∞⋃

n=0

N (n). (9)

Let w be a function that assigns to each a ∈ N a positive real number wa

as weight ; and let q be a real ∈ (0, 1).

For each n ∈ N let W(n) be the WVG whose assembly is N (n) – each
voter a ∈ N (n) being endowed with the pre-assigned weight wa – and whose
relative quota is q.

We shall then say that {W(n)}∞n=0 is a q-chain of WVGs.

Further, let ξ be an index of voting power. We shall say that Penrose’s Limit
Theorem (PLT) holds for the q-chain {W(n)}∞n=0 with respect to the index ξ
if for any a, b ∈ N

lim
n→∞

ξa[W(n)]

ξb[W(n)]
=

wa

wb
. (10)

6Thus, in multi-voter WVGs in which the distribution of weights is not extremely
skewed, the respective values of β and φ tend, as a general rule, to be quite close to
each other. This phenomenon has helped to foster the widespread fallacy that these two
indices always behave alike, and so must have more or less the same meaning. This fallacy
is criticized in Felsenthal and Machover (1998).
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1.2. Remarks (i) In what follows, whenever we shall refer to a q-chain
{W(n)}∞n=0, we shall assume that the N (n), N and w are as specified in
Def. 1.1: N (n) is the assembly of W(n), N is given by (9), and w is the
weight function.

(ii) Note that ξa[W(n)]/ξb[W(n)] in (10) is undefined if a �∈ N (n) or b �∈ N (n),
but this does not matter because a, b ∈ N (n) for all sufficiently large n.

(iii) Def. 1.1 may be extended to weighted ternary voting games, in which
voters have the option of abstaining – cf. Felsenthal and Machover (1997,
1998). The only change that needs to be made to the definition is that each
W(n), instead of being a (binary) WVG, is the ternary decision rule whereby
a bill is passed iff the total weight of those voting for it is at least q times the
total weight of those voting against it. Of course, ξ must then be an index
defined for such games.

In preparation for what follows, we introduce two items of notation.
First, note that if a ∈ N (n) the relative weight of a in W(n) – unlike a’s

absolute weight wa – depends on n. We denote this relative weight by w(n)
a ;

thus
w(n)

a :=
wa∑

x∈N (n) wx
. (11)

Second, for each a ∈ N we put

N (n)
a := {x ∈ N (n) : wx = wa}. (12)

The members of N
(n)
a have the same weight as a, and we shall therefore refer

to them as replicas of a.

2 PLT for replicative q-chains and the S-S

index

In this section we shall prove that PLT holds with respect to the S-S index
for a special class of chains. The main special property of these chains is
that each a ∈ N is eventually (that is, for sufficiently large n) accompanied
by sufficiently many replicas in Nn. Let us make this more precise.

2.1. Definition We shall say that the q-chain {W(n)}∞n=0 is replicative if it
satisfies the following two conditions. First,

lim
n→∞

max{w(n)
a : a ∈ N (n)} = 0. (13)
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Second, for each a ∈ N there is a positive constant Ca such that for all
sufficiently large n ∑

x∈N
(n)
a

w(n)
x > Ca. (14)

2.2. Remark Condition (13) is essentially the one assumed by Penrose:
the relative weight of each individual voter becomes negligibly small. This
condition is automatically satisfied if the values of w are bounded from above
and bounded away from 0.

The second condition (14) ensures that, nevertheless, the total relative
weight of the voter’s replicas does not become negligibly small.

Our main result in this section is

2.3. Theorem If {W(n)}∞n=0 is a replicative q-chain then PLT holds for it
with respect to the S-S index φ.

Proof We shall show that for each a ∈ N

lim
n→∞

φa[W(n)]

w(n)
a

= 1, (15)

from which our theorem clearly follows.
To this end, we invoke a result of Neyman (1982 Theorem 9.8), according

to which (13) implies that

lim
n→∞

∑
x∈N (n)

|φx[W(n)] − w(n)
x | = 0. (16)

Now let a ∈ N . Then we have, a fortiori,

lim
n→∞

∑
x∈N

(n)
a

|φx[W(n)] − w(n)
x | = 0, (17)

which can be written as

lim
n→∞

∑
x∈N

(n)
a

w(n)
x

∣∣∣φx[W(n)]

w(n)
x

− 1
∣∣∣ = 0. (18)

However, all the x ∈ N
(n)
a are replicas of a, so they all have the same value

of φ and the same weight as a. Hence (18) can be written as follows:

lim
n→∞

∣∣∣φa[W(n)]

w(n)
a

− 1
∣∣∣ ∑

x∈N
(n)
a

w(n)
x = 0. (19)

It now follows from (14) that (15) holds – as claimed.
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2.4. Remark In the definition of WVG, the blunt inequality ≥ in (1) can
be replaced by a sharp inequality >. The two definitions are equivalent: they
determine the same class of structures. However, the relative quota q of a
WVG in the blunt sense may not work for the sharp sense, but may need
to be slightly adjusted (and vice versa). Consequently, the corresponding
definitions of q-chain and replicative q-chain in the sharp sense do not yield
the same classes as our present Definitions 1.1 and 2.1. Nevertheless, The-
orem 2.3 applies to replicative q-chains in the sharp sense as well, because
Neyman’s result, on which our proof depends, also covers this case – see
Neyman (1981 Lemma 3.2).

3 PLT for some 1
2
-chains and the Banzhaf

index

Given a q-chain {W(n)}∞n=0 of WVGs (see Def. 1.1), we associate with it the
family {Yx : x ∈ N} of independent random variables indexed by N , such
that for every a ∈ N ,

Prob{Ya = wa} = Prob{Ya = 0} =
1

2
. (20)

We consider the chain

Y :=
{
{Yx : x ∈ N (n)} : n ∈ N

}
(21)

of (finite) sets of these random variables.
For any a ∈ N let us put

S(n)
¬a :=


 ∑

x∈N (n)

Yx


− Ya, µ(n)

¬a := ES(n)
¬a , σ(n)

¬a := (VarS(n)
¬a )

1
2 . (22)

And let S
(n)

¬a be the ‘standardized’ form of S
(n)
¬a , i.e.

S
(n)

¬a :=
S(n)
¬a − µ

(n)
¬a

σ
(n)
¬a

. (23)

Using the definition of the Ya it is easy to obtain the following explicit ex-
pressions for µ

(n)
¬a and σ

(n)
¬a .

µ(n)
¬a =

(∑
x∈N (n) wx

)
− wa

2
, (24)

σ(n)
¬a =

[(∑
x∈N (n) wx

2
)
− wa

2
] 1

2

2
. (25)
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3.1. Definition We shall say that the chain Y satisfies the special local
central limit (SLCL) condition if, for every a ∈ N ,

lim
n→∞

Prob

{
S

(n)

¬a ∈
[
− wa

2σ
(n)
¬a

,
wa

2σ
(n)
¬a

)}
σ

(n)
¬a

wa
=

1√
2π

; (26)

and for all a, b ∈ N ,

lim
n→∞

σ
(n)
¬a

σ
(n)
¬b

= 1. (27)

3.2. Remark The S
(n)

¬a are evidently discrete random variables with mean 0.

We shall be interested in cases where their standard deviations, σ
(n)
¬a , tend to

∞ with n. Then equation (26) says that the average density of S
(n)

¬a in a half-
open interval around 0, whose length becomes vanishingly small, approaches
the value of the standard normal density function n at 0, namely 1/

√
2π.

This means that Y obeys a special case (namely, at 0) of the local central
limit theorem of probability theory.

The main result in this section is

3.3. Proposition Let {W(n)}∞n=0 be a 1
2
-chain of WVGs. If its associated

chain Y satisfies the SLCL condition, then PLT holds for {W(n)}∞n=0 with
respect to the Bz index.

Proof Let a ∈ N and take n large enough so that a ∈ N (n). Then, by
definition, the Penrose power of a in W(n) is given by

ψa[W(n)] = Prob


S(n)

¬a ∈


1

2


 ∑

x∈N (n)

wx


− wa,

1

2

∑
x∈N (n)

wx




 . (28)

Using (23) and (24), this can be re-written as

ψa[W(n)] = Prob

{
S

(n)

¬a ∈
[
− wa

2σ
(n)
¬a

,
wa

2σ
(n)
¬a

)}
. (29)

Invoking (26) we obtain

lim
n→∞

ψa[W(n)]
σ

(n)
¬a

wa
=

1√
2π

. (30)

Hence by (27)

lim
n→∞

ψa[W(n)]

ψb[W(n)]
=

wa

wb

. (31)
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Finally, using (6) we get

lim
n→∞

βa[W(n)]

βb[W(n)]
=

wa

wb
, (32)

as claimed.

Combining (30) and (25) we get:

3.4. Corollary If (26) holds, then

ψa[W(n)] ≈ wa

√
2

π
{(∑

x∈N (n) wx
2
)
− w2

a

} . (33)

This is our slightly improved version of Penrose’s approximation formula (2).
Of course, if – as Penrose assumes – each individual weight wa becomes
relatively negligible, then the difference between the two approximations is
likewise negligible.

3.5. Remark Owen (1995 pp. 272, 297) gives approximation formulas for ψ
as well as for φ in multi-voter WVGs. His approximations are based on an in-
terval version of the central limit theorem (as opposed to the local form used
by us), and are stated without proof and without specifying the precise con-
ditions under which they hold.7 Nevertheless, the numerical approximations
he obtains for the Penrose powers ψ of the bloc-voters in the US Presidential
Electoral College – shown in the last column of Table XII.4.1 of Owen (1995
p. 297) – are closer than ours, which are based on (33) above and shown in
the last column of our Table 3. (The exact values of ψ, correct to six decimal
figures, are shown in the penultimate column of Table 3.)

As an example of an application of Prop. 3.3, we prove the following:

3.6. Theorem Let {W(n)}∞n=0 be a 1
2
-chain such that its weight function

w assumes only finitely many values, all of them positive integers; and such
that the greatest common divisor of those values wa that occur infinitely often

7Rigorous validation of these approximations is not straightforward. In cases where the
approximation is expected to hold, both the relative voting power of each voter and the
term approximating it tend to 0 as the number of voters increases. In order to validate the
approximation, it must be proved not only that the error term – the difference between
the true value and the approximating term – also tends to 0, but that it does so faster
than the approximating term.
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is 1. Then the associated chain Y satisfies the SLCL condition. Hence PLT
holds for {W(n)}∞n=0 with respect to the Bz index. Also, (33) holds.

Proof To prove that (26) holds for any a ∈ N , observe that, since all

possible values of S
(n)
¬a are integers, all possible values of S

(n)

¬a belong to a

lattice whose span is 1/σ
(n)
¬a . In the half-open interval[

− wa

2σ
(n)
¬a

,
wa

2σ
(n)
¬a

)
(34)

there are exactly wa points of this lattice: say x
(n)
i , i = 1, 2, . . . , wa.

We now invoke a well-known version of the local central limit theorem –
see Petrov (1975 p. 189, Theorem 2).8 From this theorem it follows that if n
is sufficiently large then for each i = 1, 2, . . . , wa the product

Prob{S(n)

¬a = x
(n)
i }σ(n)

¬a (35)

is arbitrarily close to n(x
(n)
i ). Also, from (25) it is clear that limn→∞ σ

(n)
¬a = ∞;

thus for sufficiently large n each of the x
(n)
i is arbitrarily close to 0, hence

the product (35) is arbitrarily close to n(0) = (2π)−
1
2 . But the left-hand side

of (26) is simply the arithmetic mean of the wa products (35); so it also gets

arbitrarily close to (2π)−
1
2 , as required.

As for (27): we have just seen that as n increases, σ
(n)
¬a grows without

bound. Clearly, the term wa
2 in (25) becomes relatively negligible. There-

fore (27) holds.

3.7. Remark Note that the chain defined in our counter-example (4) fails
to satisfy the condition of Thm. 3.6, even if the weights w and w′ in (4) are
integers. In this case, only the greater weight, w, occurs infinitely often, and
so it is trivially also the gcd of the weights that occur infinitely often; but
w > 1.

4 Discussion

PLT may best be regarded not as a single theorem but – like the central
limit theorem of probability theory, with which it has some affinity – as an

8This theorem deals with a sequence of independent integer-valued random variables
each having finite variance, such that the set of distinct distributions of these variables
is finite. The key condition is that the greatest common divisor of the maximal spans of
those distributions that occur infinitely often in the sequence is 1. For details see Petrov
(1975, ibid.).
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open-ended research programme covering many related results. Our present
results are merely a modest contribution to this programme.

On the basis of empirical-computational evidence, we conjecture that
similar results hold for other classes of q-chains (including those of suitably
defined weighted games that admit abstentions) with respect to the S-S, Bz
as well as other indices of voting power.

In fact, it seems to us likely that PLT holds almost always, in a sense
that can be made precise, along the following lines.

Let N+ be the set of positive integers and consider the Cartesian product
space

W = (0, 1) × N+�. (36)

Each member of W is then an infinite sequence of the form (q; w0, w1, . . .)
where q ∈ (0, 1) and the wn are positive integers. Such a sequence gives rise
to a q-chain {W(n)}∞n=0, where N (n) = {0, 1, . . . , n} for each n ∈ N.

Further, we can regard W as a product probability space by taking (0, 1)
with the Lebesgue probability measure, and each copy of N+ with a reason-
able probability distribution: say a geometric distribution (Prob {k} = 2−k),
or a Poisson distribution (Prob {k} = e−1/(k − 1)!).

Or, instead of confining ourselves to integer weights, we can allow arbi-
trary positive real weights. To this end we can replace N+ by the set R+

of positive reals, with some reasonable probability measure on each copy –
using, say, a Gaussian density f on the positive half-line:

f(x) =

√
2e−x2

π
. (37)

It now makes precise sense to talk about the probability that PLT holds,
with respect to a given index, for the chain corresponding to a randomly
chosen member of W.

We conjecture that PLT holds with probability 1 with respect to both
the S-S and the Bz index.
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Table 1: QMV under N27

(1) (2) (3) (4) (5) (6)
Country w w (%) β (%) (3) : (2) φ (%) (5) : (2)
Germany 118 8.5199 7.7145 0.905 8.6799 1.019
UK 117 8.4477 7.7145 0.913 8.6670 1.026
France 117 8.4477 7.7145 0.913 8.6670 1.026
Italy 117 8.4477 7.7145 0.913 8.6670 1.026
Spain 108 7.7978 7.3732 0.946 7.9888 1.024
Poland 108 7.7978 7.3732 0.946 7.9888 1.024
Romania 56 4.0433 4.2771 1.058 3.9925 0.987
Netherlands 52 3.7545 3.9900 1.063 3.6866 0.982
Greece 48 3.4657 3.7092 1.070 3.3977 0.980
Czech Rep 48 3.4657 3.7092 1.070 3.3977 0.980
Belgium 48 3.4657 3.7092 1.070 3.3977 0.980
Hungary 48 3.4657 3.7092 1.070 3.3977 0.980
Portugal 48 3.4657 3.7092 1.070 3.3977 0.980
Sweden 40 2.8881 3.1126 1.078 2.8137 0.974
Bulgaria 40 2.8881 3.1126 1.078 2.8137 0.974
Austria 40 2.8881 3.1126 1.078 2.8137 0.974
Slovakia 28 2.0217 2.1984 1.087 1.9594 0.969
Denmark 28 2.0217 2.1984 1.087 1.9594 0.969
Finland 28 2.0217 2.1984 1.087 1.9594 0.969
Ireland 28 2.0217 2.1984 1.087 1.9594 0.969
Lithuania 28 2.0217 2.1984 1.087 1.9594 0.969
Latvia 16 1.1552 1.2603 1.091 1.1209 0.970
Slovenia 16 1.1552 1.2603 1.091 1.1209 0.970
Estonia 16 1.1552 1.2603 1.091 1.1209 0.970
Cyprus 16 1.1552 1.2603 1.091 1.1209 0.970
Luxembourg 16 1.1552 1.2603 1.091 1.1209 0.970
Malta 12 0.8664 0.9514 1.098 0.8310 0.959
Total 1 385 100.0001 100.0002 99.9997

Quota: 1 034 = 74.66% of 1 385.

Note For explanations see Introduction.
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Table 2: Rule B (benchmark QMV rule for enlarged CM)

(1) (2) (3) (4) (5) (6)
Country w w (%) β (%) (3) : (2) φ (%) (5) : (2)
Germany 954 9.5381 9.6184 1.008 9.9894 1.047
UK 810 8.0984 8.1441 1.006 8.3359 1.029
France 809 8.0884 8.1338 1.006 8.3246 1.029
Italy 799 7.9884 8.0312 1.005 8.2122 1.028
Spain 661 6.6087 6.6219 1.002 6.6886 1.012
Poland 655 6.5487 6.5606 1.002 6.6232 1.011
Romania 499 4.9890 4.9813 0.998 4.9627 0.994
Netherlands 418 4.1792 4.1665 0.997 4.1221 0.982
Greece 342 3.4193 3.4050 0.996 3.3470 0.979
Czech Rep 338 3.3793 3.3649 0.996 3.3066 0.978
Belgium 337 3.3693 3.3549 0.996 3.2965 0.978
Hungary 335 3.3493 3.3349 0.996 3.2761 0.978
Portugal 333 3.3293 3.3149 0.996 3.2559 0.978
Sweden 313 3.1294 3.1151 0.995 3.0553 0.976
Bulgaria 302 3.0194 3.0051 0.995 2.9453 0.975
Austria 299 2.9894 2.9751 0.994 2.9153 0.975
Slovakia 245 2.4495 2.4365 0.995 2.3755 0.970
Denmark 243 2.4295 2.4166 0.995 2.3556 0.970
Finland 239 2.3895 2.3766 0.995 2.3157 0.969
Ireland 204 2.0396 2.0277 0.994 1.9706 0.966
Lithuania 203 2.0296 2.0176 0.994 1.9604 0.966
Latvia 164 1.6397 1.6299 0.994 1.5783 0.963
Slovenia 148 1.4797 1.4706 0.994 1.4223 0.961
Estonia 127 1.2697 1.2615 0.994 1.2175 0.959
Cyprus 91 0.9098 0.9042 0.994 0.8693 0.955
Luxembourg 69 0.6899 0.6854 0.993 0.6580 0.954
Malta 65 0.6499 0.6457 0.994 0.6200 0.954
Total 10 002 100.0000 100.0000 99.9999

Quota: 6 000 = 59.99% of 10 002.

Note For explanations see Introduction.
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Table 3: US Presidential Electoral College (1970 Census)

No. w w (%) φ (%) β (%) ψ ψ approx
1 45 8.3643 8.8309 8.8816 0.379366 0.403527
1 41 7.6208 7.9727 7.9513 0.339629 0.359921
1 27 5.0186 5.0963 5.0457 0.215522 0.224441
2 26 4.8327 4.8977 4.8499 0.207159 0.215510
1 25 4.6468 4.6999 4.6553 0.198844 0.206653
1 21 3.9033 3.9169 3.8865 0.166007 0.171900
2 17 3.1599 3.1466 3.1308 0.133730 0.138057
1 14 2.6022 2.5767 2.5708 0.109809 0.113150
2 13 2.4164 2.3882 2.3852 0.101879 0.104923
3 12 2.2305 2.2004 2.2000 0.093970 0.096728
1 11 2.0446 2.0133 2.0152 0.086078 0.088564
4 10 1.8587 1.8270 1.8308 0.078202 0.080426
4 9 1.6729 1.6413 1.6468 0.070341 0.072314
2 8 1.4870 1.4563 1.4631 0.062493 0.064224
4 7 1.3011 1.2719 1.2796 0.054656 0.056153
4 6 1.1152 1.0883 1.0964 0.046830 0.048100
1 5 0.9294 0.9053 0.9133 0.039012 0.040061
9 4 0.7435 0.7230 0.7305 0.031201 0.032034
7 3 0.5576 0.5413 0.5477 0.023396 0.024017

Total 51 538 99.9998 100.0009 100.0005

Quota: 270 = 50.19% of 538.

Note For the purpose of this table, the Electoral College is regarded as a WVG, in which
each ‘voter’ is a bloc of Electors for a State, or for the District of Columbia. The number
of Electors in each bloc is taken as the weight w of this bloc-voter. The first column,
headed ‘No.’ shows the number of blocs with a given weight w. This way of modelling
the Electoral College involves some over-simplification, because there may be more than
two candidates, and since 1969 the Electors of Maine did not have to vote as a single
bloc. (Since 1993, the same applies to Nebraska.) We use this model here for the sake of
computational illustration, and for comparison with Table XII.4.1 of Owen (1995 p. 297),
which is based on the same model. For further explanations, see Remark 3.5.


