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1.1 Introduction: Voting Power and Power Indices

Many organizations have systems of governance by voting that are designed to give

different amounts of influence over decision making to different members. For example the joint

stock company gives each shareholder a number of votes in proportion to his or her ownership of

ordinary stock; the shareholder body is designed to be a democratic decision-making group with

each share having equal influence but with individual shareholders having different numbers of

shares to reflect their relative capital contributions. Many international economic organizations

have been designed on a similar principle, each country being entitled to a number of votes based

on its financial contribution, the most prominent examples being the Bretton Woods institutions:

the International Monetary Fund and World Bank. Federal political bodies which use the principle

of weighted voting where the weights reflect populations rather than contributions include the

European Union Council of Ministers and the US Presidential Electoral College, where the

individual states' votes are cast as blocs of different sizes.

As general voting systems, considered in the abstract without reference to their different

contexts, these are all formally similar and can be classed as weighted voting games. They contain

considerable analytical interest because, when we consider their practical implications, by studying

all theoretically possible voting outcomes, and how individual members' votes relate to them, then

it turns out that the resulting distribution of power is often different from what the designers

intended. On the other hand, it is almost always assumed, by writers analysing the distribution of

votes, that the power of a member is the same as his or her share of the votes. For example, it is

often the case in discussions of the IMF, that a member with five percent of the votes is described
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as possessing five percent of the voting power, or that the United States with almost 18 percent of

the votes, thereby has 18 percent of the voting power. Yet the proportion of decisions that may -

at least theoretically - be taken by vote in which the member who has five percent may be pivotal

in determining the outcome may not actually be five percent at all, and the votes of the United

States may in fact be capable of being decisive in more or less than 18 percent of cases. Therefore

it is untrue to claim that their respective shares of the total voting power are 5% and 18%.

A simple example that illustrates the point clearly is that of a company with three

shareholders, two having 49 percent of the shares each and the third with 2 percent. It is not

useful to describe these figures as shares of the power each has in running the company because if

the decision rule requires a simple majority of more than 50 percent of the votes, then any two

shareholders are required to support a motion for it to pass. Any shareholder can win by

combining with one other and therefore the one with 2 percent has exactly the same power as one

with 49 percent. Therefore by considering all possible voting outcomes it becomes clear that each

shareholder has equal power despite the disparity in their votes. Many such examples can be

constructed or found in the real world, in which the distribution of power among members of a

weighted voting body - a member's power being his or her ability to join coalitions of others

which do not have the required majority and make them winning - is not at all the same as the

distribution of votes.

Another, well known, example is the original Council of the European Economic

Community. Between 1958 and 1972 it had six member countries and used a system of qualified

majority voting that allocated 4 votes each to France, West Germany and Italy, 2 votes each to
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Belgium and the Netherlands and one vote to Luxembourg. From these figures one might assume

that the smaller countries would have a disproportionately large amount of power. For example,

Luxembourg, with 5.88 percent of the votes and less than 0.2 percent of the population, had 25

percent as many votes as West Germany with only 0.57% of its population; Luxembourg had one

vote for 310,000 people while West Germany had one vote for every 13,572,500, suggesting that

Luxemburgers were 43.78 times more powerful than Germans. In fact, however, since the number

of votes required for a decision was fixed at 12, Luxembourg's one vote could never make any

difference: it was impossible for it to add its vote to those of any losing group of other countries

with precisely 11 votes and therefore its formal voting power was precisely zero. This is an

extreme case, but a real one, which illustrates the analytical importance of looking at the possible

outcomes of a weighted majority vote, as well as the nominal voting strengths, in considering

voting power. The same point arises also in the context of the corporation when we study the

power of large stockholders. Obviously if there is a majority shareholder he or she has all the

voting power and none of the other shareholders has any voting power at all. However, it is well

known that if the largest shareholder has a very substantial minority holding his or her vote will

often be decisive in a proxy ballot or fully attended company meeting, even to the extent that he

or she could be said to have working control of the corporation, if his or her voting power were

sufficiently large. For example, it is almost universally accepted by writers who have studied

corporate ownership and control that a single 20 percent shareholder faced with many small

shareholders is very powerful indeed. This power is certainly not reflected in the number of its
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shares and may in fact be very close to that of a majority shareholder. Although necessarily strictly

less than 100 percent, it may be extremely close to it.

The question has been studied by the use of power indices as measures of the ability of

members to influence voting outcomes. As a branch of co-operative game theory the field of

power indices may be thought to date from the publication of the seminal paper by Shapley and

Shubik in 1954, although if it is construed more generally than part of game theory, voting power

analysis is much older. However it has failed to achieve wide acceptance due to ambiguity due to

different indices yielding different results for the same data. This has meant that the field has

remained at the frontier for almost fifty years. See Shapley and Shubik (1954), Banzhaf (1965),

Coleman (1971), Dubey and Shapley (1979), Lucas (1983), Straffin (1994), Owen (1995),

Felsenthal and Machover (1998). Good surveys are provided by Felsenthal and Machover (1998),

Lucas (1983) and Straffin (1994).

This paper is mostly concerned with the computation of the so called classical power

indices, proposed by Shapley and Shubik (1954) and by Banzhaf (1965) – the latter was in fact

originally proposed by Penrose  in 1946 in a paper that was for long overlooked1 - both of which

have been widely applied. (I will give some consideration also to the indices proposed by Coleman

which have certain similarities to the Banzhaf indices but also some important differences.) The

difficulty of computing the indices, especially when the number of members is large, has been a

major factor limiting the use of the technique as a means of studying real institutions. Both indices
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are based on a common idea that a member's power rests on how often he or she can add his or

her votes to those of a losing coalition so that it wins, but they differ in the way that such

coalitions are counted. In consequence, where both indices have been used to analyse the same

voting body, they have been found to give different results. This has meant that in the absence of

any objective evidence on the actual distribution of power, it has not been possible either to test

the power indices approach or to establish the respective utility of the indices. This question is not

addressed in the present paper; however, see Leech (2002b) for a discussion of it and some

evidence.

                                                                                                                                  

1 See Felsenthal and Machover (1998) for the history of the measurement of voting power.
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1.2 Power Indices: Notation and Definitions

I consider a weighted majority game of voting in a legislature with n members or players

represented by a set N = {1, 2, . . . , n} whose voting weights are w1, w2,  . . . , wn . The combined

voting weight of all members of a coalition represented by a subset T, T ⊆  N, will be denoted by

the function w(T), where w(T) = 
i  ∈ T
∑ wi..

The decision rule is defined in terms of a quota, q, by which a coalition of players

represented by subset T is winning if w(T) = q and losing if w(T) < q. (It is customary to require

q > w(N)/2 to ensure a unique decision and hence that the voting game is a proper game, although

this is not actually essential to the definition of power and the use of power indices – see Coleman

(1971).) The weights and the quota are real numbers in general; although in many applications

and textbook examples they are integers, this is not essential to the theory, although it may be

relevant to certain methods of computation.

I will sometimes use the notation {q; w1, w2,  . . . , wn} to represent the voting body. Note

there is one decision rule with one set of weights. In some applications it is necessary to

generalise this: for example the system of qualified majority voting in the EU council agreed at

Nice is formally a triple-majority rule in which three conditions must be satisfied in terms of

weighted votes, population and number of member countries. Also in some legislatures different

types of decisions require different majorities – some may require a simple majority, some a

supermajority (for example the IMF and World Bank boards of governors require a 50% majority

for some decisions and a 85% majority for others) – so that power varies according to the kind of
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issue being decided. I am not going into these matters here, since they are complications that are

non-essential from the point of view of computation.

A power index is an n-vector whose elements measure the respective ability of each player

to determine the outcome of a general vote. The index for each player is defined in terms of the

relative number of times that player can influence the decision by transferring his or her voting

weight to a coalition which is losing without him but wins with him. This is referred to as a swing.

Formally a swing for player i can be defined as a pair of subsets, (Ti, Ti + {i}) such that Ti is

losing, but Ti + {i} is winning. In terms of voting weight, Ti is a swing if q - wi = w(Ti) < q.

The power index for player i is defined as the relative frequency of swings for i  with

respect to a coalition model where, in some sense, each possible coalition is treated equally. If

coalitions are regarded as being formed randomly (and equally likely in some sense) then the index

is a probability. The two indices, however, employ different probability models and are

mathematically distinct.

The Shapley-Shubik index is the probability that i swings (or is "pivotal" in the

terminology of Shapley and Shubik) if all orderings of players are equally likely. Thus, given a

particular swing for a member, the index is the number of orderings of both the members of the

coalition Ti and the players not in Ti relative to the number of orderings of the set of all players N:

every reordering is counted separately. The index is the probability of a swing for the player

within this probability model.
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For a given swing for player i, the number of orderings of the members of the subset Ti

and its complement (apart from player i ),  N-Ti-{i}, is  t!(n-t-1)! where t is the number of

members of Ti and n is the total number of players, members of N. The total number of swings for

i defined in this way for this coalition model is t!(n − t − 1)!
T i

∑ . The index, φi , is this number as a

proportion of the number of orderings of all players in N,

φi = 
t!(n − t − 1)!

n!T i

∑ . (1.)

If all orderings are equiprobable, it is the probability of a swing.

The Banzhaf index, on the other hand, treats all coalitions Ti as equiprobable, players

being arranged in no particular order. A member's power index is then the number of swings

expressed as a fraction of either the total number of coalitions (measuring the probability of a

swing), or of the total number of swings for all players (measuring the player’s relative capacity to

swing).

The number of swings for i is ηi = 1
T i

∑ . The two versions of the index are defined by

expressing this number over different denominators. The Non-Normalized Banzhaf index (or

Banzhaf Swing Probability), βi', uses the number of coalitions which do not include i , 2n-1, the

number of subsets of N–{i}, as denominator, and therefore it can be written as:

βi' = 1
 T i

∑ /2n-1. = ηi/2n-1 (2.)
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The Normalized Banzhaf Index, βi, uses the total number of swings for all players as the

denominator to measure relative voting power among players:

βi  =  ηi/ Σηi, (3.)

or alternatively, βi =  βi'/ Σβi' (Therefore in the discussion of computation of the Banzhaf index it

is only necessary to consider the details of computing the swing probability version, (2), or find

the numbers of swings. Both approaches are followed.)

Both the normalized indices sum to unity over players: φ i∑ =1  and β i∑ =1.

The Coleman indices require, in addition, the number of winning coalitions, ω = 1
S

∑ , for

all S ⊂  N where w(S) = q. This imposes an extra computing requirement but enables us to
calculate the three indices:

Power of the voting body to Act: 
n

A
2

ω
= (4.)

Power of member i to Prevent Action: PPAi =
η i

ω
(5.)

Power of member i to Initiate Action: PIA i =
η i

2 n −ω
(6.)



Computation of Power Indices

10

Neither (5) nor (6) have meaningful normalized versions, since they are both linear

transformations of βi' and therefore normalizing would reduce them both to βi. It is unnecessary

to calculate the Coleman indices when the game is one with a simple majority since then (5) and

(6) are equal to (2).
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1.3 The Uses of Power Indices

A power index provides a method of finding the a priori distribution of voting power in a

given voting body, that is, how much influence each member has, either absolutely or relatively to

the other players. It is important to understand the limitations of the approach. It does not provide

a description of the disposition of actual power. That would depend on the preferences of the

members and the range of issues over which decisions are taken, which would introduce the need

to give different coalitions differently in the measure of power. A priori voting power is an

element in actual power and therefore a useful analysis, based on idealized assumptions, that is

informative but limited, rather in the same way as in many other areas of economics. The model of

perfect competition does not provide a full account of any real industry but is nevertheless a

useful analytical tool. Another example is a price index which uses fixed weights: it is a truism

that this gives is an inaccurate measure of inflation, but since this is well understood and no other

index is necessarily better, that does not prevent its widespread use in the real world. There are

many other similar examples. A priori voting power analysis is useful because it tells us about the

power implications of the legislature itself in a pure sense.

Power indices have an important use in the design of voting systems. When a constitution

or rule is being framed, involving weighted voting, it is necessary to determine the quota and the

distribution of weights. The practice of doing this is not well developed (as is evident from the

problems surrounding the Nice Intergovernmental Council) and a priori power indices are a

potentially useful technique to help in this. The framers of the rule can state explicitly what the
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powers of the members ought to be – for example the members of the EU might agree that the

weights should be such as to give equal power to all citizens of each member state - and then the

weights and quota can be chosen so that the power indices correspond. Thus the computational

problem is inverted: the power indices are the givens and the weights are the outputs to be

determined. This is a much more formidable computational problem than finding the power

indices, and our understanding of it is not yet well developed. This is sometimes referred to in the

context of power indices as “the inverse problem”.

The case for using power indices to design decision making systems is much less open to

question than their use in measuring actual power, because the issue is normative rather than

positive. In designing a voting system with given properties, the question to be answered is what

the weights and quota should be, rather than what the power implications of a particular

institutional arrangement are. In this case it is not appropriate to take account of preferences and

the likelihood of different coalitions being formed since such informal information would not

normally be built into a formal rule or constitution. A voting system for an expanding European

Union would need to treat each member state formally as a sovereign and independent actor free

to determine its own policies and alliances. Therefore a priori voting power, based on treating

each voting coalition as equally likely, would be a natural approach. I discuss some aspects of this

computation problem below.
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2.1 Computation Methods for Finite Games

Several methods are available to compute the indices, and they are described in turn in the

following sections. The different algorithms vary a lot in their approach and in their computing

requirements. None is universally ideal and for each its advantages and limitations are considered.

Two dimensions of algorithmic complexity are of supreme importance: running time (time

complexity) and memory requirements (space complexity). Other dimensions of the complexity of

an algorithm include its ease of implementation, its input requirements, and so on. It is also

necessary to consider the suitability of the algorithm for a particular use, in particular the “inverse

problem”.

The direct application of the definitions, embodied in equations (1) to (6), that I have

called the Direct Enumeration method described in the next section. It is the simplest algorithm

but not suitable for games with a large number of players (greater than about 30). For larger

games other methods have had to be devised. These are described in the sections below as

follows.

Section Method

2.2 Direct Enumeration.

2.3 Monte Carlo simulation due to Mann and Shapley (1960).

2.4 Generating Functions, due to Mann and Shapley (1962).
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2.5 Multilinear Extensions Approximation methods, due to Owen (1972, 1975a).

2.6 Modified MLE Approximation, proposed in Leech (2002a).
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2.2 Direct Enumeration

The simplest method is to compute the indices directly from their definitions. This requires

the use of an algorithm to find each subset of players exactly once (via a search which finds each

corner of a hypercube exactly once, known as a Hamilton walk; for example that in Nijenhuis and

Wilf (1983) that I have used.).

For each (proper) subset it finds all swings and updates expressions (1) and (2) repeatedly.

That is, for each S ⊂  N, it evaluates w(S) = 
j  ∈  S

∑ wj, which requires n operations, summing over

all  n players taking account of whether each is a member of S or not.

For each i = 1, n it tests for a swing and updates as follows.

If i∈N-S and q – wi = w(S)<q then

set φi = φi + s!(n-s-1)!/n! (for the Shapley-Shubik index), and

set ηi = ηi + 1 and also η = η + 1 (for the Banzhaf index). (Alternatively βi'=βi'+21-n.)

If w(S) = q then

set    ω = ω + 1  (for the Coleman indices).

Then move to the next subset S and repeat. When all subsets have been searched the

indices (1) to (6) are found.
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The number of subsets of N is 2n. ? ? erefore,? ? valuating the indices for each player has

time complexity of order 2n since computation time doubles each time n increases by 1. Despite

this severe limitation, however, experience with it shows that it is a practical method to analyse

QMV in the European Council with up to 27 members. (It has been used in Felsenthal and

Machover (2001), Leech (forthcoming) and others.). However it is not at all feasible for

something like the States game in the US presidential Electoral College which has 51 members.

One advantage of this direct approach is that it can be applied not only to evaluating

power indices for simple games but it can also easily be adapted to find Shapley values, Banzhaf

values (and other value concepts for cooperative games which associate a characteristic function

to each coalition).

The advantages of Direct Enumeration are its simplicity, its generality in that it can be

used for any problem, that its results are exact and its modest storage needs. The disadvantage is

its exponential time complexity that severely limits its application to small-n games.
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2.3 Monte Carlo Simulation

The earliest method proposed for computing power indices for large games was Monte

Carlo simulation, described in Mann and Shapley (1960). The impetus for this was their need to

compute Shapley-Shubik indices for the US presidential electoral college states game (which then

had n = 50).

The method is simply to estimate t? ?  ? ? ? ? ? ? ?  from the basic definitions (1) and (2)

from a random sample of coalitions. Suppose a coalition, T, is selected by randomly sampling the

players. Define a random variable for each player, X, equal to 1 if it is a swing for player i, and 0

if it is not. Then,

 E(X) = βi' and E(
t!(n −1− t)!

n!
X) = φi,  , where t is the number of players in the coalition,

and the corresponding variances are

Var(X)=βi' (1-βi') and Var(
t!(n − 1− t)!

n!
X)  = φi(1-φi).

Now take a sequence of m independent drawings, X1, . . . , Xm, with corresponding coalition

sizes, t1, . . . , tm.

The power indices are estimated by

ˆ φ i  =  
1
m

t j!(n −1− t j)!
n!j=1

m

∑ X j   ,        and     ˆ β i'  =  
1
m j=1

m

∑ X j   ,
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with variances

Var( ˆ φ i) =
φ i(1− φ i)

m
  and  Var(ˆ β i ' ) =

βi ' (1− βi ')
m

,      for all i =1, . . . , n.

The variances approach zero as m increases without limit.

This description is basic and ignores important details of how the samples are to be taken,

which have a great impact on the method's effectiveness. (It is what Mann and Shapley call the

Type 0 method.) Efficiency improvements are possible allowing better accuracy with given

computing time. There is a large literature on simulation methods which I am not going to discuss

here.

The advantages of this approach are its simplicity, its modest data storage requirements.

Its disadvantage is that it is not exact. However the approximation errors can be substantially

reduced with the use of greater computing power to increase the sample sizes used. Also the

much greater use that is made of simulation methods generally now suggests it is a better method

today than it was in 1960.
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2.4 Generating Functions

The method of generating functions was first proposed by Mann and Shapley in

1962 from a suggestion by David G. Cantor. They used it to find the Shapley-Shubik indices

exactly for the problem they had previously solved approximately by Monte Carlo simulation, the

States game with n=50. Despite this it has not been widely used in applied studies subsequently.

The method of generating functions is an exact procedure avoiding the problem of

exponential time complexity that limits the direct enumeration method and therefore it can be

applied to larger games. However it is not without limitations. Its storage requirements can be

very substantial, both in terms of integer sizes and array dimensions. (Thus this method trades off

one form of complexity for another.) It also has the limitation (not shared by any other of the

algorithms) that it can only be applied to games with integer weights and quota.

Accounts of the method can be found in Brams and Affuso (1976), Lucas (1983) and

Lambert (1988). Lambert also gave a listing of a computer program and applied it to the US

Electoral College. There are several implementations of it on the on-line web sites referred to

below. The study by Brams and Affuso was the first to apply it to the Banzhaf and Coleman

indices. A recent contribution is that by Bilbao et al. (2000).
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Computing the Banzhaf and Coleman Indices using Generating Functions

Consider first the Banzhaf and Coleman indices. We must find the number of swings for

each member and the number of winning coalitions. This requires first finding the number of

coalitions, S, S ⊆  N, of each size of w(S).

The number of possible occurrences of coalitions of each size can be found by using the

generating function:

( ) ( )∏
=

+=
n

j

jwxxf
1

1  (7.)

where x is a variable that has no significance of its own in the sense of measuring something, but

whose role is to define the coefficients, which have an important meaning.

Equation (7) is a polynomial of degree w N( ) , which may be written in general as,

       ƒ x( )= a j xj= 0

w (N)∑
j

(8.)

whose coefficients aj are equal to the number of coalitions with total weight equal to j. That is, aj

is equal to the number of subsets S, such that w S( ) = j, for j = 0, 1, 2, . . ., w(N).

Obviously a0= 1 always, because there is only one subset with w S( ) = 0 , the empty set.

Henceforth, I will use the notation w to represent w(N) for brevity. Now the  question arises of

how to evaluate the coefficients in (8) from (7).
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The coefficients aj can be found numerically by building up the generating function (7) by

successive multiplications. This gives rise to a simple rule.

Thus, ƒ x( )= 1+ xwj( )
j=1

n

∏  ,

= 1+xwi[ ] 1+ xwj( )
j= 2

n

∏ ,

 = 1+ xw1 + xw2 + xw1 +w 2[ ] (1+ xw j )
j= 3

n

∏ ,     etc.

Let the successive polynomials inside the square brackets be denoted, in general,

     1 + a1
r( )x + a2

r( )x2 + ...+aw
(r)xw

at the rth  stage, where r =1, 2, . . , n. Obviously, a j
n( ) = a j

 for all j. Then ( )xf can be built up

recursively as follows.

        ƒ x( )= 1+a1
1( )x + ...+ aw

1( )xw 
  

 
  1+ xw j( )

j= 2

n

∏

= 1+a1
2( )x + ...+ aw

2( )xw 
  

 
  1+ xwj( )

j= 3

n

∏

…

= 1+ a1
n( )x+ ...+aw

n( )xw .
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Therefore, these coefficients can be found from this by the following recursion. Let

a j
0( ) = 0  for all j ≠ 0  (both positive and negative values of j) and with a0

0( ) = 1. The coefficients are

updated according to the rule:

a j
r( ) = a j

r−1( ) + a j−w r

r−1( ) (9.)

for j = wr ,…,sr  , and a j
r( ) = a j

r−1( ) otherwise, where sr = w 1, 2, 3, ..., r{ }( ). After n iterations, this

gives the required coefficients, aj, equal to the number of coalitions with weight j.

There is no need to store two arrays containing both the a j
r( ) and a j

r−1( )  values; one array, a,

can be used if the updating rule is applied in reverse order. This can be a major consideration

when w is very large. The storage requirements are less if one is computing the Banzhaf indices

only, and not the Coleman indices, because only the swings are needed, and therefore the

dimension of a is at most q. However the Coleman indices require the number of winning

coalitions, ω = aj
j= q

w∑ , that necessitates finding a1 to aw .

The coefficients aj can be used to find the number of swings for each member, i, which

depends also on the member’s weight, wi. This can be found by finding, for each j, such that q –

 wi < j < q, the number, c j, of coalitions not containing i , then summing over j.
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The coefficients c can be obtained by dividing the generating function (8) by the factor

(1 +  xw i ) . Thus, writing

( )xf = 1+ c1x + c2x + ...+ cvx
v( )1+ xwi( )=1 + a1x + ...awxw ,

where v = w − w i , gives the rule:

c j  =  aj − cj−w i
            for =j 1, 2, … , v , (10.)

where a coefficient with a negative subscript is zero.

Then the number of swings for member i, ηi , is

ηi = c jj= q−w i

q−1∑   .

This process is then repeated for each member i and the indices are calculated in the usual way.
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Example Voting Body { }6,4,3,2,1,19; ,

The generating function is:

( ) ( )( )( )( )( )( )6432 111111 xxxxxxxf ++++++=

This is built up recursively as follows.

Step #                                                     Function                                                    
0         1

         ……1+ x
2 221 xx ++
3   432 2221 xxxx ++++

4               765432 2233221 xxxxxxx +++ ++++

5 111098765432 22344443221 xxxxxxxxxxx ++++ +++++++

6           1098765432 65565443221 xxxxxxxxxx +++++++ +++

                 17161514131211 223445 xxxxxxx ++++ +++
                                                                                                                               

In this example n = 6, q = 9, w = 17.

The rule (9) is then:

a j
r( ) = a j

r−1( ) + a j−w r

r−1( )   ,                     r = 1, ...,6,  j =1,...,17

whose operation can be seen from the following table
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Table 1. The evolution of the array a=a(n)

r  = 0 1 2 3 4 5 6

rw  = 1 1 2 3 4 6

j = 0 1 1 1 1 1 1 1
1 0 1 2 2 2 2 2
2 0 0 1 2 2 2 2
3 0 0 0 2 3 3 3
4 0 0 0 1 3 4 4
5 0 0 0 0 2 4 4
6 0 0 0 0 2 4 5
7 0 0 0 0 1 4 6
8 0 0 0 0 0 3 5
9 0 0 0 0 0 2 5
10 0 0 0 0 0 2 6
11 0 0 0 0 0 1 5
12 0 0 0 0 0 0 4
13 0 0 0 0 0 0 4
14 0 0 0 0 0 0 3
15 0 0 0 0 0 0 2
16 0 0 0 0 0 0 2
17 0 0 0 0 0 0 1

The number of winning coalitions =ω 5+6+5+4+4+3+2+2+1 = 32.

The number of swings for each member, i, is iη . This is found from the number of coalitions with

weight j which do not include i, c j , obtained from (10): c j = a j −c j− w i

These values are in Table 2.
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Table 2. Number of swings for each i and j.

The table shows the c coefficients. Swings are in bold

i    = 1 2 3 4 5 6
j a j iw = 1 1 2 3 4 6

0 1 1 1 1 1 1 1
1 2 1 1 2 2 2 2
2 2 1 1 1 2 2 2
3 3 2 2 1 2 3 3
4 4 2 2 3 2 3 4
5 4 2 2 3 2 2 4
6 5 3 3 2 3 3 4
7 6 3 3 3 4 3 4
8 5 2 2 3 3 2 3
9 5 3 3 2 2 3 2
10 6 3 3 3 2 3 2
11 5 2 2 3 2 2 1
12 4 2 2 1 2 1 0
13 4 2 2 1 2 1 0
14 3 1 1 2 1 0 0
15 2 1 1 1 0 0 0
16 2 1 1 0 0 0 0
17 1 0 0 0 0 0 0

ηi ηi∑ = 52 2 2 6 10 10 22
βi' 0.0625 0.0625 0.1875 0.3125 0.3125 0.6875
βi 0.003846 0.03846 0.11538 0.19231 0.19231 0.42308

ω = 32;  PTA = 32/64 = 0.5;  PPAi  =  PIAi  =  βi'.
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Computing the Shapley-Shubik Index using Generating Functions

The index is computed using the generating function,

ƒ x( )= 1+ xwjy( )
j=1

n

∏ (11.)

which has two arguments, x and y, to allow for the fact that this index requires the size of each

coalition in terms both of number of players and number of votes.

This function (11) can be written in general as,

ƒ(x,y) = d jkx
j

k= 0

n

∑
j= 0

w

∑ yk

where djk is the number of coalitions with k members who have combined voting weight j. The

(w+1)(n+1) matrix D (= D(n)) is computed iteratively by the rule, for D(r),

d jk
( r)  =  d jk

( r−1)  +  d j− w r ,k−1
( r−1)

where, as before, a negative subscript implies that the coefficient is zero.

The index for player i is found by calculating the number of swings with k members with

votes equal to j, cjk, using the rule, derived in the same way as before,

c jk  =  d jk  −  c j− w i ,k−1 ., (12.)
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Then the index (1) is obtained from the expression,

φ i  =  
k!(n −1− k)!

n!k= 0

n−1

∑ c jk
j= q−w i

q−1

∑ (13.)

Then (12) and (13) are repeated for each player.
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Example   {4; 1, 2, 3}  n=3, q=4.

Table 3. The Build up of the Array D(n) =D

r=1 r=2 r=3

k

=

0 1 2 3 0 1 2 3 0 1 2 3

0 1 0 0 0 1 0 0 0 1 0 0 0

1 0 1 0 0 0 1 0 0 0 1 0 0

2 0 0 0 0 0 1 0 0 0 1 0 0

3 0 0 0 0 0 0 1 0 0 1 1 0

4 0 0 0 0 0 0 0 0 0 0 1 0

5 0 0 0 0 0 0 0 0 0 0 1 0

j=

6 0 0 0 0 0 0 0 0 0 0 0 1

The indices are obtained from D by first finding the C matrices using (12) which are shown in

Table 4.

From the table, and expression (13), these are:
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φ1  =  
1!1!
3!

(1) =  
1
6

φ2  =  
1!1!
3!

(0 + 1)  =  
1
6

φ3  =  1!1!
3!

(1+1+ 0) + 2!0!
3!

(0 + 0 +1)  =  4
6
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Table 4 The C matrices for each player
Swings in bold

  i=1  i=2  i=3

k

=

0 1 2 0 1 2 0 1 2

0 1 0 0 1 0 0 1 0 0

1 0 0 0 0 1 0 0 1 0

2 0 1 0 0 0 0 0 1 0

3 0 1 0 0 1 0 0 0 1

4 0 0 0 0 0 1

j=

5 0 0 1

The method of Generating Functions, whether the version for the Banzhaf (and Coleman)

or for the Shapley-Shubik indices, is efficient in terms of computing time. Its time complexity is

linear in n and therefore it is a feasible method for games where the number of players is larger

than can be handled by direct enumeration. However it is very demanding in storage which may
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limit its use for large games and perhaps it should be regarded as an appropriate method for small

and medium sized games (as Lucas (1983) suggested).

It makes substantial storage demands in two ways. First it requires a large array to store

the frequencies of the coalitions of different sizes. For the Banzhaf indices a one-dimensional

array, a, of size q (and for the Coleman indices this becomes w+1), and for the Shapley-Shubik

indices a two-dimensional array, D, of size (q+1)(n+1). This can be a significant determinant of

complexity when the weights are large integers. For example the IMF board of governors (studied

in Leech (2002c)) has n=178, w = 2,118,076 and q = 1,059,039 for ordinary decisions or

q=1,800,365 for decisions requiring a special majority of 85% of the voting weight.

Secondly, some of the integers can become very large. The number of coalitions of size j is

of the order of 2n  - that is, O(2n) -  and the number of swings is of O(2n-1). This means that when

n is large some of the integers, including the elements of the arrays, can be of this order of

magnitude. For the IMF this means the swings are integers of the order of 2177. This far exceeds

the maximum size of integer that 32- bit computers can handle with total accuracy. However

neither of these problems is insurmountable in this particular case, given modern computing

power.

The storage requirement are likely to affect the algorithm's suitability for the "inverse

problem" of finding the appropriate weights given the power indices. This procedure requires

iteratively updating the weights and recomputing the indices each time and comparing them with

their target values to a chosen accuracy. This in turn means that the weights must be in units that
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make this possible. Therefore if they are constrained to being integers, and we seek maximum

accuracy, some of them must be very large. This problem will increase the more the inequality

between the desired powers.
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2.5 Multilinear Extensions Approximation Algorithms

Owen introduced methods for large games based on the multilinear extension of the game

and approximation methods which use the central limit theorem to get approximations to

expressions (1) and (2). The key references are Owen (1972, 1975a). I will describe the approach

to the Shapley-Shubik and Banzhaf indices; its application to find the Coleman indices is

straightforward.

Expression (1) for the Shapley-Shubik index can be rewritten by noting that the term

inside the summation is a beta function:

B(t+1, n-t)  = 
t!(n − t − 1)!

n!
  =  x t(1 − x)n− t−1 dx

0

1

∫ (14.)

The integrand on the RHS of (14), xt(1-x)n-t-1, can be regarded as the probability that the (random)

subset Ti appears, when x is the probability that any member joins Ti , assumed constant and

independent for all players j, j ∈ N - {i}.

Summing this expression over all swings gives the probability of a swing for i. Let us call

this probability ƒi(x):

ƒi(x) = 
T i

∑ xt(1-x)n-t-1. (15.)

Integrating x out of (15) gives the Shapley-Shubik index, because, substituting (14) into

(1) gives:

φi = 
T i

∑ x t(1 − x)n− t−1 dx
0

1

∫  = 
0

1

∫  [
T i

∑ xt(1-x)n-t-1 ] dx
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    =  
0

1

∫ ƒi(x) dx . (16.)

Expression (15) is equal to the Banzhaf index when x=1/2.

Expression (15) is the multilinear extension of the game and it can be used to compute the

indices for small n games. But it means evaluating a function whose size doubles every time a new

player is added. Thus this method, too, like direct enumeration, suffers from exponential time

complexity. Widgren (1994) reports that the exact multilinear extensions approach did not prove

computationally feasible for a game with 19 members and Owen’s MLE approximation method

had to be used instead.

We can evaluate φi approximately using a suitable approximation for the probability ƒi(x).

In large games with many small weights, and no very large weights, this can be done with

reasonable accuracy using suitable probabilistic voting assumptions and the normal distribution.

The probability of a swing ƒi(x) can be approximated using the following probabilistic-

voting model. Assuming each player j ?  i  votes the same way as i with probability x,

independently of the others, defines a random variable, vj with the following dichotomous

distribution:

Pr(vj=wj) = x,   Pr(vj=0) = 1 -x,   Pr(vj ?wj and vj ? 0) = 0.

The random variable vj can be interpreted as the number of votes cast by player j, at random, on

the same side as those of player i. Its first two moments are:

 E(vj) = xwj ,         Var(vj) = x(1-x)wj
2, all j.
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The total number of votes cast by players j in the same way as that of player i is a random variable

vi(x) = v j
j∈N−{i}
∑ . It is useful to define a sum-of-squares function: let this be h(T) = 

i  ∈ T
∑ wi

2.

Then vi(x) has an approximate normal distribution with moments:

E(vi(x)) = xw(N-{i}) = µi(x), say, and

Var(vi(x)) = x(1-x) h(N-{i}) = σi(x)2.

Then the required probability,

ƒi(x) = Pr[q - wi = vi(x) < q], (17.)

can be obtained approximately using the normal distribution function, Φ(.) by evaluating the

expression:

ƒi(x) = Φ(
q − µ i(x)

σ i(x)
) - Φ(

q − µ i(x) − wi

σ i(x)
). (18.)

The Shapley-Shubik index in (16) is approximated by numerically integrating out x in (18)

using a quadrature routine (such as Patterson (1968) which I have used). The Banzhaf index is

obtained by setting x = 0.5 in (18), since then (15), for which (18) is an approximation, reduces to

(2).

These methods have linear complexity. The calculations for the Shapley-Shubik index and

the Non-Normalised Banzhaf index for a player depend on the number of players n only in the

data input and calculation of the statistics w(N) and h(N) (which need only be done once since

they are common to all players) because neither (18) nor its numerical integral (16) depend on n.
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The Normalised Banzhaf indices require the normalizing constant which necessitates that all n

indices are found.

These methods for both indices have been used in a number of studies, for example

Owen (1975a, 1975b), Leech (1988, 1992), Widgren (1994) and others. But their

accuracy depends on the validity of the normal approximation. In some real world weighted

voting bodies the approximation is not good and consequent computation errors may be

substantial because of a failure of the central limit theorem due to concentration of the voting

weights in the hands of a few. Examples of this have recently been reported by Leech (2002a) and

Widgren (2000).
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2.6 Modified MLE Approximation for Large Finite Games

For games where n is too large for exact methods to be feasible, and where the

distribution of weights is highly skewed, we can combine the essential features of both the Direct

Enumeration and Multilinear Extensions Approximation approaches. The general procedure is as

follows.

The players are ordered by their weight representing their respective number of votes, so

that

wi = wi+1 for all i. The players are divided into two subsets: major players with the largest weight,

M = {1, 2, . .  , m} and minor players N - M. The value of m here is chosen for computational

convenience,  along a tradeoff between accuracy and efficiency. A general rule would be to

choose m as large as possible while computing time is not too great.

The algorithm searches all subsets of M. Given a particular subset, S ⊆  M, it then

evaluates the approximate conditional swing probability for each player making Owen’s standard

assumptions about random voting by minor players only, conditional on S. The probability of the

swing is then obtained as the product of the probability of the formation of S, by random voting

by major players, and that of the conditional swing. The index is obtained by summing these joint

probabilities over all the subsets. There are two cases to consider: (1) player i is a major player,

i ∈ M; (2) i is a  minor player, i ∈ N - M.
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 (1) Major Players

It is necessary to search over all subsets of M which do not include player i; any subset of

which i is a member cannnot define a swing and the swing probability associated with it is

definitionally zero. For each such subset consider the probability of its forming and the probability

of its being a swing for i.

Suppose S is a subset of M - {i}. We let the swing probability be ƒi(x) as before. This can

be written as:

ƒi(x) = Pr(swing for i) = 
S

∑ Pr(S)Pr(swing for i|S)

Defining the conditional probability of a swing given S as the function gi(S, x), and the probability

of selecting S randomly by the function p(s, m-1, x), we can write:

ƒi(x)  = 
S

∑ p(s, m-1, x)gi(S, x).

The first factor inside the summation is:

p(s, m-1, x) = xs(1-x)m-s-1.

To find the second factor, define the random variable:

vi(x) = 
j∈N− M
∑ vj ,

where vj is as before, to represent the random number of votes cast by the minor players.

So, E(vi(x)) = xw(N-M) = µi(x),

and Var(vi(x)) = x(1-x)h(N-M) = σi(x)2.

Using these moments and the normal approximation to the distribution of vi(x), we can obtain the
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required probability as:

gi(S, x) = Pr[q - w(S) -wi = vi(x) < q - w(S)]

             = Φ(
q − w(S) − µi(x)

σ i(x)
) - Φ(

q − w(S) − w i −µ i(x)
σ i(x)

).  (19.)

Therefore, we can write

ƒi(x)  = 
S⊆ M−{i}
∑ xs(1-x)m-s-1 gi(S, x). (20.)

The required index is then:

φi = 
0

1

∫ ƒi(x) dx = 
0

1

∫ [
S⊆ M−{i}
∑ xs(1-x)m-s-1 gi(S, x)]dx

    = 
S⊆ M−{i}
∑ 0

1

∫  xs(1-x)m-s-1gi(S, x)dx (21.)

which can be found by searching over all subsets of M-{i}, integrating out x by numerical

quadrature at each subset then summing. The Banzhaf index β'i is obtained from (20) on setting

x=0.5 instead of integrating it out, then summing to give β'i = ƒi(0.5).

The summation in expression (20) above is over all subsets of M-{i}, but it is clear that

operationally we can search over all subsets of M since any set which includes i has a zero

probability of a swing for i. Writing gi(S,x) = 0 for all S where i ∈ S, and as expression (19)

where i∉ S then we can rewrite (20) and (21) as:

ƒi(x)  = 
S⊆ M
∑ xs(1-x)m-s-1 gi(S, x), (22.)
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φi  = 
S⊆ M
∑ 0

1

∫  xs(1-x)m-s-1gi(S, x)dx, (23.)

and the Banzhaf index

βi' = 
S⊆ M
∑ 0.5m-1gi(S,0.5) = ƒi(0.5). (24.)

It is therefore possible to compute the indices for both major and minor players in a single search

over the subsets of M.

 (2) Minor Players

Now the computation of the indices for the smaller players, i ∈ N-M, is described. The

subset S can now be considered to be any subset of M. Since we are now treating the votes of all

m major players as random (not just m-1 of them), the probability of the subset S is:

Pr(S) = p(s, m, x) = xs(1-x)m-s.

The behavior of the  minor players other than i is described by a random variable

yi(x) =
j∈N− M −{i}

∑ vj  which has an approximate normal distribution with moments:

µi(x) = xw(N-M-{i})

and σi(x)2 = x(1-x)h(N-M-{i}).

Hence we can evaluate the conditional swing probability gi(S, x) which now can be written as

gi(S, x) = Pr[q - w(S) - wi = yi(x) < q - w(S)],

approximately by the normal probability in expression (19) after making the required notational

substitutions.

Writing
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ƒi(x) = 
S⊆ M
∑ p(s, m, x) gi(S, x), (25.)

the Shapley-Shubik index is found again by quadrature, then summing,

φi  = 
S⊆ M
∑ 0

1

∫  p(s, m, x) gi(S, x) dx (26.)

and the Banzhaf index by setting x=0.5, then summing,

βi' = 
S⊆ M
∑ 0.5m gi(S,0.5) = ƒi(0.5). (27.)

within the same subset search as before, S ⊆  M.

These algorithms require a search over all subsets S of M, in order to find (20), therefore

the calculations have to be repeated 2m times. Expression (19) does not depend on either m or n

once the statistics w(N-M) and h(N-M) have been evaluated, requiring O(n) operations, and these

are common to all players. Therefore the indices have complexity exponential in m and linear in n.

These algorithms have proved to be very successful for large games. Leech (2002c) has

n=178 and in Leech (2001, 2002b) there are numerous cases of company voting games with

n>400. These applications have required only a moderate choice of m. The obvious rule for

choosing the value of m is that it should be large enough to ensure accuracy without being too

large to prevent all subsets of M to be enumerated in a reasonable computing time.
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3 Methods for Oceanic Games

An oceanic game is a limiting case of a large game in which the number of players is

allowed to become infinite. Here there are two types of players: a finite number of "atomic"

players whose weights are finite, and an infinite number of "non-atomic" players whose weights

are infinitesimally small. The Shapley-Shubik indices for such games were first analysed in

Shapley and Shapiro (1978) and later the Banzhaf indices were discussed in Dubey and Shapley

(1979). I describe the computation of such games here for completeness. I have reported indices

for such games in several papers on shareholder control of companies, for example Leech (2001,

2002b).

In an oceanic game there are a finite number, m, of major players with fixed voting

weights, and a very large number, n-m, (in the limit an "ocean" of minor players) with very small

weights. Then as n goes to infinity it can be shown that the Shapley-Shubik index for major player

i converges on the value:

φi = us (1− u)m−s−1du
a

b∫
S ⊆M i

∑ i =1,...., m (28.)

where M = {1, 2, . . , m} is the set of major players, Mi = M - {i}, and

a = median(0, (q-w(S))/(1-w(M)), 1),  b = median(0, (q-w(S)-wi)/(1-w(M)),1). Expression (28) is

not difficult to evaluate,  requiring only a minor extension of the modified MLE approximation

algorithm. If m is small we can perform a Hamilton search over the m-dimensional hypercube and

evaluate the integral for each S, and sum.
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If m is larger this may not be feasible and therefore it becomes necessary to partition the

finite players into two groups for computational convenience and use an approach based on

expression (21) with suitable changes to the limits of integration. For example, in the corporate

control problems analysed in Leech (2001 and 2002b) for 444 British companies, the oceanic

games defined had between 12 and 56 finite players, with a median of 27, due to data limitations.

In all but a very few of these cases it would have been impossible to choose M equal to the set of

finite players. Therefore I set M={1, 2, 3, 4, 5}, m = 5,  with the remaining finite players modelled

by the probabilistic voting assumptions.

Banzhaf indices for oceanic games were studied by Dubey and Shapley (1979) who

showed that under suitable conditions they can be obtained as the Banzhaf indices for the

modified, finite game consisting only of the major players M with weights w1, w2, . . , wm and  a

modified quota  q - (1 - w(M))/2. This result depends on the quota q (that is, in the original

game). For certain values of q the power indices are zero in the limit (the so-called "pitfall" points

where the number of minor-player swings become so numerous that the Banzhaf indices for major

players go to zero). However, where there is a simple majority rule, with q always equal to

w(N)/2, this problem does not arise. Any algorithm for Banzhaf indices of finite games can be

used. In the corporate control examples I used M equal to all the finite players and the modified

MLE algorithm.
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4 Determining Weights: the "Inverse Problem"

In designing a system of weighted voting, weights ought to be allocated to members in

such a way as to bring about the desired distribution of voting power. This issue is discussed in

Nurmi (1981). Power indices enable this to be done numerically by means of an iterative process

by which the weights are successively updated. Starting with an initial guess, the power indices

are recalculated each time the weights are modified until they achieve preassigned values. In this

section I describe the approach. The notation assumes that the power indices used are the

normalised Banzhaf indices but the method can be applied to others if desired. It assumes the

power indices are normalised but it would be desirable to be able to relax this restriction. An

iterative procedure similar to the one described here was proposed in Laruelle and Widgren

(1998).

The values required for the power indices are fixed as a design property of the voting

system. For example one criterion that has been suggested should be used for international

organisations is the equalisation of voting power among citizens of different countries. This has

been suggested as a basic principle for reweighting the votes in the EU Council of Ministers by

Felsenthal and Machover (2000, 2001), Laruelle and Widgren (1998) and Leech (forthcoming). In

Leech (2002c) I have used the criterion of equalising power in the governing body of the IMF to

members' IMF quotas (mainly based on financial contributions to the organisation).

Let it be required that member i should possess a voting power of ti, where ti∑ =1. The

problem is to find weights that have associated power indices, βi , such that βi = ti, for all i.
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Denote the required power, the weights and corresponding power indices, as functions of the

weights, by the n-vectors t, w and β(w).

Now we can compute the power indices for given weights and compare them with their

desired values. Any suitable power indices algorithm can be used for this: I have used the

modified MLE approximation method with the IMF governors and the direct enumeration method

with the EU Council. Using a suitable updating rule to change the weights provides an iterative

algorithm which should converge to the desired power distribution to an accuracy defined by  a

suitable stopping rule.

Let the weights after p iterations be denoted by the  vector w(p); the initial guess is w(0).

The corresponding power indices are the vectors of functions β(w(p)). The iterative procedure can

then be written in terms of an updating rule:

w(p+1) = w(p) + λ(t - β(w(p)) (29.)

for some appropriate scalar λ>0. More generally we might replace the scalar λ with a matrix , but

in my work I have only used the simple formulation described here and found it adequate.

If the iterative procedure (29) converges to a vector, w*, then that is taken to be the

desired weight vector, since then: w*=w* + λ(t - β(w*)) and t = β(w*).  Convergence can be

defined in terms of a measure of the distance between β(w(p)) and t and a stopping criterion. The

simple sum of squares measure (βi
(p)∑ − t i)

2  with a suitable stopping criterion has been found to



Dennis Leech

47

work well. My experience is that accuracy of convergence varies according to the game. The

algorithm is illustrated in Figure 1.

This algorithm is not unproblematical since the indices are not real numbers, but rational

numbers, and in general therefore the distance between β(w(p)) and t has a lower bound

determined theoretically as a property of the game. More importantly, the existence of voting

paradoxes in the relationships between weights and indices (described by Felsenthal and

Machover (1998)), points to the relationship between w and β being possibly not continuous. This

suggests that the weights w* computed may not be unique.

For the 15-member EU with the Nice Treaty triple-majority decision rule (the game

labelled N15 in Felsenthal and Machover (2001)), the algorithm was found to converge to an

accuracy, in terms of this stopping criterion, of the order of 10-8, but it was not possible to get full

convergence using a smaller value. For N27 it easily converged with respect to a stopping rule of

the order of 10 –10 but no smaller. The power indices were computed exactly using the direct

enumeration program ipnice (used by Felsenthal and Machover (2001) and Leech (forthcoming)).

In my work on the IMF Board of Governors, reported in Leech (2002c), the same iterative

algorithm was used to compute fair weights for the International Monetary Fund Board of

Governors with n=178. But in this case the power indices were calculated using a different

program suitable for large n (which implements the modified MLE approximation algorithm); the

accuracy achieved in terms of the sum of squares stopping rule was at least 10-15. There are

indications therefore that the iterative algorithm for solving the "inverse problem" works better for
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larger n. This might be due to the fact that the mapping from β (w) is closer to being a continuous

one in this case.
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Table 5 shows the results of applying the iterative procedure to the choice of weights in

the IMF Governors. As is to be expected, the resulting weights are very different for the two

majority requirements q. For ordinary decisions, the voting weight of the United States should be

reduced to under15 percent, and the voting weight of the other member countries increased

slightly .in order to achieve the levels of voting power given in the appendix to the IMF Annual

Report for 1999: United States 17.55, Japan 6.3, Germany 6.15, etc. However for 85% special

majority decisions, in order to achieve these values for the power index, the weight of the United

States would have to be increased to almost 70 percent and those of all other countries reduced

substantially.
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Table 5  Fair Weights in the IMF Board of Governors

Banzhaf Weight wi*
Power βi q=50% q=85%

USA 17.55 14.06 69.78
Japan 6.30 6.53 2.20
Germany 6.15 6.38 2.16
France 5.08 5.27 1.82
UK 5.08 5.27 1.82
Italy 3.34 3.48 1.23
Saudi 3.31 3.45 1.21
Canada 3.02 3.15 1.11
Russia 2.82 2.94 1.04
Netherlands 2.45 2.56 0.91
China 2.22 2.32 0.82
India 1.97 2.06 0.73
Switzerland 1.64 1.72 0.61
Australia 1.54 1.61 0.57
Belgium 1.48 1.54 0.55
Spain 1.45 1.52 0.54
Brazil 1.45 1.51 0.54
Venezuela 1.27 1.32 0.47
Mexico 1.23 1.29 0.46
Sweden 1.14 1.19 0.43
Argentina 1.01 1.06 0.38
Indonesia 0.99 1.04 0.37
Austria 0.90 0.94 0.33
... ... ... ...
… … … …
… … … …

Table 6 shows the results of applying the iterative algorithm to compute the fair weights

for QMV in the European Council under the Nice rules when n=15. Column (4) shows the power

indices for the Nice weights in columns (1) and (3). The targets are in column (5) and the

resulting weights in column (6). The only member countries whose weights change substantially
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are Germany and Spain: Germany’s weight has now increased to 15.12 and Spain’s reduced to

9.34 percent of the votes. The conclusion is that the Nice weights are surprisingly close to being

fair.

Table 6 Fair Voting Weights under the Nice Treaty with n=15

N15 q1=169 q2=62%     

(1) (2) (3) w(0) (4) β(w(0)) (5) t (6) w* (7)

Weight Country Weight% Bz Index % vPop% Fair Weight % Pop%

29 Germany 12.24 12.11 13.97 15.12 21.858
29 UK 12.24 11.99 11.87 12.06 15.786
29 France 12.24 11.99 11.84 12.05 15.711
29 Italy 12.24 11.99 11.70 11.99 15.350
27 Spain 11.39 11.11 9.68 9.34 10.496
13 Netherlands 5.49 5.50 6.12 5.98 4.199
12 Greece 5.06 5.16 5.00 4.64 2.806
12 Belgium 5.06 5.16 4.93 4.61 2.721
12 Portugal 5.06 5.16 4.87 4.58 2.659
10 Sweden 4.22 4.30 4.59 4.47 2.359
10 Austria 4.22 4.30 4.38 4.41 2.153
7 Denmark 2.95 3.09 3.55 3.22 1.416
7 Finland 2.95 3.09 3.50 3.20 1.375
7 Ireland 2.95 3.09 2.98 3.03 0.998
4 Luxembourg 1.69 1.96 1.01 1.29 0.114

237  100.00 100.00 100.00 100.00 100.00
Bz: Banzhaf; q1= the threshold in terms of weighted votes, q2 = the population condition.
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5 Conclusion

This paper has described five algorithms for computing the Banzhaf and Shapley-Shubik

power indices for finite voting games and compared their advantages and disadvantages for the

analysis of different voting situations. It is hoped that the better availability of computer

algorithms will stimulate more empirical research aimed at giving a better understanding of the

analysis of voting power.

It has also discussed the somewhat harder problem of computing the weights with the

property that the power indices are equal to certain given predetermined values. This problem is

intimately related to the use of power indices as an aid to the design of voting systems.
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Some Web Links

There are some good websites about power indices. These are a few interesting and useful sites.

An interesting on-line power indices calculator by Kazuo Morota and Yashuaki Oisho,
Department of Mathematical Engineering and Information Physics, The University of Tokyo.
http://www.misojiro.t.u-tokyo.ac.jp/~tomomi/cgi-bin/vpower/index-e.cgi (generating functions).

The Voting Power and Power Index Website, Antti Pajala, University of Turku,
http://powerslave.val.utu.fi/. Lots of information about power indices including on-line
computation (for small games, n=20, direct enumeration method).

Thomas Brauninger and Koenig’s computer programme IOP
http://www.uni-konstanz.de/FuF/Verwiss/koenig/IOP.html (direct enumeration).

European Voting Games website by Jesus Maria Bilbao and Carmen Herrero which contains
much information about the EU, voting power analysis, papers, computing and many links.
http://www.esi2.us.es/~mbilbao/eugames.htm

The Banzhaf Power Index Calculator, http://www.math.temple.edu/~cow/bpi.html
An on-line calculator from Temple University. (generating functions)

The mathematics of voting power: an introduction to Banzhaf power indices, by Bjørn K.
Alsberg. http://pcf1.chembio.ntnu.no/~bka/div/MAKT/Powerweb.htm

Banzhaf Power Index by Mark Livingston, http://www.cs.unc.edu/~livingst/Banzhaf/ Much
information about the Banzhaf index and links (uses the Monte Carlo method).

Voting Power Project at LSE
http://www.lse.ac.uk/Depts/cpnss/projects/vp.html


