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1 Introduction

Exogeneity is a critical assumption in much empirical work. In all models, exogeneity refers to

assumptions on the statistical dependence between an observable term and an unobservable term.

There are many such assumptions, however, including zero correlation, median independence, and

full statistical independence. The choice of a formal definition of exogeneity is not innocuous.

Different definitions have different substantive interpretations and different implications for iden-

tification. In this paper, we study three different classes of exogeneity assumptions we call partial

independence. In the first half we study their substantive interpretation. In the second half we

study their implications for identification in nonseparable models.

Our first class, called T -independence, specifies that quantile independence holds at all quantiles

τ ∈ T where T is a possibly strict subset of (0, 1). This class builds on a large literature beginning

with Manski (1975) and Koenker and Bassett (1978) which has studied identification and estimation

under quantile independence. This approach has faced a longstanding question, however. Manski

(1988) describes it as follows:

“Quantile independence restrictions sometimes make researchers uncomfortable. The

assertion that a given quantile of u does not vary with x may lead one to ask: Why this

quantile but not others? In the absence of a persuasive answer, one may feel compelled

to adopt an extreme position: Either no quantiles of u are independent of x or all are.

On reflection, though, one may feel that the former position understates the available

information and the latter overstates it.” (page 733)

Put differently, this concern is about how one can substantively interpret and judge the credibility

of a given set of quantile independence conditions. To this end, our first main contribution pro-

vides a treatment assignment characterization of quantile independence conditions. Specifically,

we consider the relationship between an unobserved variable U and an observed discrete treatment

variable X. Supposing X is binary for simplicity, the dependence structure is fully characterized

by the propensity score

p(u) = P(X = 1 | U = u).

Constant propensity scores correspond to full statistical independence while nonconstant propen-

sity scores represent deviations from full independence. In this sense, any exogeneity assumption

weaker than full independence allows for certain kinds of selection on unobservables. Our first

main theorem characterizes the set of propensity scores consistent with a set of quantile indepen-

dence conditions. That is, we fully describe the kind of selection on unobservables that quantile

independence allows for. We then describe several properties of this set. Most notably, noncon-

stant propensity scores which are consistent with a single quantile independence condition must

be non-monotonic. Furthermore, if multiple quantile independence conditions hold, then noncon-

stant propensity scores must also oscillate up and down. These results apply anytime one makes a

quantile independence assumption, including in binary choice and quantile regression models.
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A first implication of these results is that prior knowledge on the shape of the propensity score

may help one determine which quantile independence conditions hold. We use several stylized

Roy models to illustrate the relationship between selection on unobservables and quantile inde-

pendence conditions. A second implication, however, is that empirical researchers may find the

non-monotonic and oscillatory properties of the set of propensity scores consistent with quantile

independence undesirable. This suggests that one should consider alternative approaches to weak-

ening full independence. This leads us to our second and third definitions of partial independence.

Our second definition, called c-independence, specifies that the propensity score is at most c away

from the unconditional probability of being treated, in the sup-norm distance. That is, we constrain

the distance between the conditional distribution of X | U and the unconditional distribution of

X. Our third definition, called d-independence, is similar, but bounds the distance between the

conditional cdf of U | X and the unconditional cdf of U by a constant d. Unlike T -independence,

both of these approaches allow for monotonic propensity scores, and do not require nonconstant

propensity scores to oscillate. c-independence is simple to interpret since it is an assumption

directly on the propensity score. We explain how T - and c-independence are qualitatively very

different kinds of deviations from independence. Both imply d-independence, however, making

d-independence the qualitatively weakest assumption of the three.

After studying these three partial independence concepts on their own, in the second half of the

paper we analyze their identifying power in nonparametric, nonseparable models. In our second

main contribution, we first derive sharp sets of cdfs FU |X that are consistent with each of the

partial independence concepts. These results do not depend on the specific choice of econometric

model. We then show how to use these results in three popular nonseparable models: the exogenous

regressor model of Matzkin (2003), the instrumental variable model of Chernozhukov and Hansen

(2005), and the binary choice model with nonparametric latent utility of Matzkin (1992). Each of

these papers imposes full statistical independence to obtain point identification of the entire model

structure.1 By relaxing full independence to partial independence, we typically obtain partial

identification.

In our third main contribution, we obtain simple, analytical characterizations of identified sets

under partial independence for various parameters of interest, in all three models. For brevity we

focus our analysis primarily on Matzkin’s (2003) model. In this model we study identification of

the quantile structural function, the average structural function, average treatment effects, the dis-

tribution of treatment effects, and spread parameters. For the nonseparable instrumental variables

model we study identification of the quantile structural function. For the binary response model

we study identification of the average structural function.

Our identification results can be used in two ways. First, if an empirical researcher’s prior

knowledge about the shape of the propensity score can be formalized via one of our three partial

1Full independence, sometimes conditional on covariates, is a common assumption in the nonseparable model
literature. For example, see Brown (1983), Roehrig (1988), Matzkin (2008, 2012, 2015), Altonji and Matzkin (2005),
Athey and Imbens (2006), Florens, Heckman, Meghir, and Vytlacil (2008), and Imbens and Newey (2009), among
many others.
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independence concepts, then our identified sets describe the set of parameters consistent with the

data and that researcher’s maintained assumptions on the shape of the propensity score. Second,

an empirical researcher might find full statistical independence credible a priori, but nonetheless

want to check the sensitivity of their conclusions to this assumption. In this case our results can

be used to perform a sensitivity analysis for the full independence assumption.

The rest of this paper is organized as follows. Below we review the related literature. The

first half of the paper, sections 2 and 3, discusses our three concepts of partial independence.

Section 2 gives the formal definitions while section 3 gives our main results on how to interpret

these concepts. The second half of the paper, sections 4–7, use these concepts to do identification

analysis. In section 4 we discuss the implications of partial independence assumptions on the

conditional cdf of the unobservable term given the observable term. We then apply these results to

each of the three nonseparable models mentioned above in sections 5, 6, and 7. Section 8 concludes.

Related literature

In the rest of this section, we review the related literature. We begin with the literature in statistics

which examines deviations from full independence. We give additional details on this literature on

page 47 in appendix A. Rosenbaum and Rubin (1983) do a sensitivity analysis in a fully parametric

logit model for binary outcomes, binary treatments, and with deviations from independence driven

by a binary omitted variable. Like most papers in this literature, their model is point identified

for any known choice of the sensitivity parameters. Lin, Psaty, and Kronmal (1998) replace their

binary U assumption with a normally distributed U , and also allow for duration outcomes, among

other parametric modifications. Imbens (2003) extends Rosenbaum and Rubin (1983) to continuous

outcomes by assuming homoskedastic normally distributed outcomes with a linear conditional mean

function. Ichino, Mealli, and Nannicini (2008) avoid specifying a parametric model by fixing the

distribution of U | X,Y a priori, which requires picking four parameters under the assumption that

Y and X are binary as well. We consider binary and continuous outcomes Y . Their approach

requires setting multiple different sensitivity parameters, while our recommendations only use one

parameter. Their model is point identified for any choice of the sensitivity parameters.

Robins, Rotnitzky, and Scharfstein (2000) extend Rosenbaum and Rubin (1983) by relaxing

the parametric assumptions on the outcomes. They introduce a slight subtlety which we have

not yet mentioned. The Rosenbaum and Rubin (1983) analysis ultimately relies on a conditional

independence assumption holding, given the unobserved covariate. Deviations from independence

are modeled via the distribution of treatment assignment given this unobserved covariate. Robins

et al. (2000), however, do not model deviations from independence as arising from an unobserved

covariate. They directly model the relationship between treatment assignment and potential out-

comes. This is quite similar to our approach, since under rank invariance our U variable is simply

a transformation of the potential outcomes. Consequently, both our analysis and that of Robins

et al. (2000) do not ultimately rely on a full independence assumption. Robins et al. (2000), how-

ever, use a parametric propensity score which delivers point identification for each fixed sensitivity
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parameter. They also do not consider instrumental variables models. The Robins et al. (2000)

approach has been developed and used in several other papers, including Rotnitzky, Robins, and

Scharfstein (1998), Rotnitzky, Scharfstein, Su, and Robins (2001), and Scharfstein, Manski, and

Anthony (2004).

Kline and Santos (2013) analyze deviations from the missing-at-random assumption using a

sup-norm distance metric equivalent to our d-independence. Also in the context of missing data

analysis, Manski (2016) proposes c-independence. In section 4.2.1, however, he notes that the

identified set under c-independence “typically has no simple explicit form.” While he considered

missing data problems, in the models we study we are able to get simple explicit expressions for

identified sets under c-independence, as well as under T - and d-independence.

Several papers study the sensitivity of assumptions used for inference rather than assumptions

used for identification. Rosenbaum (1995, 2002) proposes a sensitivity analysis within the context

of randomization inference for testing the sharp null hypotheses of no unit level treatment effects

for the units in our dataset. Small and Rosenbaum (2008) extend this analysis to an instrumental

variables setting. This approach begins with a quite different framework and has different goals

than ours. See chapter 5 of Imbens and Rubin (2015) for a general discussion of randomization

inference. Chamberlain and Leamer (1976) and Leamer (1978, 1982, 1985) considered how changes

in one’s prior affects the corresponding posterior in Bayesian analyses. See section 2.2.2 of Leamer

(1983) for additional discussion.

A large literature initiated by Manski has studied identification problems under various as-

sumptions which typically do not point identify the parameters. Here we focus on the papers which

study exogeneity assumptions. Manski and Pepper (2000) begin with a baseline assumption of

mean independence and relax this to a monotonicity constraint in the conditioning variable. They

derive the identified set for the average potential outcome under this assumption. They repeat this

analysis in the instrumental variables case as well. Manski and Pepper (2009) build on this non-

parametric analysis by considering parametric models of treatment response, among other issues.

Nevo and Rosen (2012) study parametric additively separable instrumental variables models. They

relax the assumption that the instrument is uncorrelated with the unobservable by allowing for

correlation in the same direction as that between treatment and the unobservable, and of less mag-

nitude than the latter correlation. They derive the analytical identified set in the linear IV model.

Our motivation is similar to that of these papers: to study departures from exogeneity assumptions.

However, we begin from a baseline of full independence rather than mean independence or zero

correlation. Our identification results build on specific nonseparable models, rather than general

potential outcome models or linear parametric models. Finally, we do not consider monotonicity

restrictions or constraints on relative magnitudes and signs. Incorporating such constraints into

our analysis is a useful direction for future work.

Conley, Hansen, and Rossi (2012) consider the linear IV model. They study deviations from the

exclusion restriction, while maintaining a classical zero correlation assumption as their exogeneity

condition. In our IV analysis, we impose exclusion throughout and focus on deviations from the
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full independence exogeneity condition. Hotz, Mullin, and Sanders (1997) assume there are two

populations: one where mean independence holds and another where it doesn’t, and our observed

data are a mixture of the two. For a fixed bound on the mixing probability, they derive the identified

set for ATT. By varying the bounds on the mixing probability, they provide one way of examining

sensitivity to mean independence. Altonji, Elder, and Taber (2005, 2008) estimate bivariate probit

selection models, but holding the correlation between the two unobservables fixed. They present

a range of estimates for different values of this correlation, noting that independence holds if and

only if the correlation is zero.

One of the earliest papers to study identification of a nonseparable model under weak exogeneity

assumptions was Manski (1975), who analyzed the binary response model under median indepen-

dence, rather than full independence. See Manski (1988) for more discussion. A large literature on

semiparametric identification and estimation has subsequently developed (see Powell 1994). This

literature often focuses on identification under a single quantile independence condition, while we

consider identification under a set of quantile independence conditions, as well as under c- and

d-independence. We also consider other models, not just the binary response model. Our base-

line analysis of the binary response model follows Matzkin (1992), who studies identification of

nonparametric binary threshold crossing models under full independence.

More recently, Chesher (2003) studied identification of nonseparable models under quantile

independence rather than full independence. This work is an important exception to the usual

practice of assuming full independence when analyzing identification of nonseparable models. He

has extended this approach in several directions in Chesher (2005, 2007b,a, 2010). In Chesher

(2005), he motivated this approach as follows:

“Nonparametric identification of entire nonseparable structural functions seems to re-

quire the unpalatable restriction that latent variates and covariates are independently

distributed as in the analysis of Roehrig (1988), Imbens and Newey [2009], and Matzkin

(2003). One might be prepared to believe in a degree of local independence even in sit-

uations in which global independence seems untenable.” (page 1541)

Our results are motivated by the same sentiment. We build on Chesher’s work in several ways.

First, under T -independence his work shows that the structural function is point identified at some

points in its domain. We note that this implies partial identification of the structural function at

all points in its domain where it is not point identified. Hence we derive identified sets for the entire

structural function. This is an important step for obtaining identified sets for functionals like ATE.

We also derive identified sets under c- and d-independence, which both allow for the possibility

that no quantile independence conditions hold at all.

Torgovitsky (2015b) provides a general framework for computing identified sets. His work

can also be used to compute identified sets under partial independence in some of the models we

consider. For example, his approach allows for computation of the identified set for ATE in the

nonparametric binary response model under median independence, as well as under T -independence

for finite T . Chesher and Rosen (2015) also provide a general approach to characterizing identified
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sets, and also consider models subject to quantile independence constraints. Rather than providing

a general framework, our identification analysis is tailored to several specific models. This allows

us to provide simple analytical characterizations of the identified sets. One benefit of an analytical

characterization is that it transparently shows how the identified set depends on features of the

data. It may also lead to simpler estimation and inference methods. We furthermore consider

identification under c- and d-independence, which is not considered in these two papers.

2 Partial independence

In this section we first define the three concepts of partial independence we study in this paper.

We then discuss alternative approaches to defining partial independence.

Defining partial independence

In this paper we focus on models which have an observable covariate of interest X and a scalar

unobservable U . In all three models we consider, U enters a nonparametric function nonseparably.

As usual, this implies that the scale of U is not separately identified from this nonparametric func-

tion. Hence we require a normalization. In all of our analysis, we use the following normalization

assumption. See page 28 for further discussion.

Assumption A1 (Normalization). U is uniformly distributed on [0, 1].

Exogeneity assumptions place restrictions on the joint distribution of (X,U). As discussed in

the introduction, we define and analyze concepts of partial independence which lay between full

independence and arbitrary dependence. There are many such ways to define such an intermediate

assumption. We focus on three specific approaches.

The first approach is based on the well known result that statistical independence between U

and X is equivalent to

FU |X(τ | x) = FU (τ) (1)

for all (τ, x) ∈ supp(U,X), where supp denotes the support of the random variables. Say U is τ -cdf

independent of X if (1) holds for all x ∈ supp(X) at τ . If these cdfs are strictly increasing, then

this is equivalent to the quantile independence conditions

QU |X(τ | x) = QU (τ)

for all τ ∈ (0, 1) and x ∈ supp(X). Existing research focuses on two extreme assumptions: a single

quantile independence condition holds, such as QU |X(0.5 | x) = QU (0.5) for all x ∈ supp(X), or all

quantile independence conditions hold (statistical independence). Hence a natural middle ground

is to suppose that some, but not all, of the possible quantile independence conditions hold. As

we’ll see later, it is more natural to work with the cdf independence condition (1). This motivates

the following definition.
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Definition 1. Let T be a subset of (0, 1). Say U is T -independent of X if for all τ ∈ T , the cdf

independence condition (1) holds for all x ∈ supp(X).

A large literature starting with Manski (1975) and Koenker and Bassett (1978) has considered

the implications of a single quantile independence assumption on identification and estimation

in various models. More recently, for example, Chesher (2003) refers to such a single quantile

independence condition as ‘local independence’. Here we simply generalize this existing approach

by also considering multiple quantile independence conditions, rather than just one. We only

consider subsets T of (0, 1) since supp(U) = [0, 1] under the normalization A1.

Our second and third concepts use the common notion of distance-from-independence, whereby

we measure failures of (1) to hold in terms of a metric on cdfs or propensity scores. In particular,

we focus on the sup-norm distance. While our other two concepts allow for X to be discrete or

continuous, for the second concept we focus only on discrete X’s. For simplicity we consider the

binary X case in our exposition, although many of our results can be extended to the discrete X

case. Recall the definition of the propensity score

p(u) = P(X = 1 | U = u).

Definition 2. Let c be a scalar between 0 and 1. Say U is c-independent of X if

sup
u∈[0,1]

|p(u)− P(X = 1)| ≤ c.

Using p(u) rather than 1 − p(u) in this definition is innocuous; see page 81 in the appendix.

Rosenbaum and Rubin (1983), Robins et al. (2000), and Imbens (2003) used parametric propen-

sity scores to model departures from independence similar to our nonparametric concept of c-

independence. Only c’s between zero and c = max{P(X = 1),P(X = 0)} are considered since that

is the logical range of the absolute value of a difference between the propensity score and P(X = 1).

With c = 0, c-independence is equivalent to full independence, while c = c imposes no constraints

on the relationship between U and X whatsoever. Values of c strictly between zero and c lead to

intermediate cases.

Our third and final concept is similar to c-independence, but reversing the order of X and U in

the conditioning.

Definition 3. For each x ∈ supp(X), let d(x) be a scalar between 0 and 1. Say U is d-independent

of X if

sup
u∈[0,1]

|FU |X(u | x)− FU (u)| ≤ d(x)

for all x ∈ supp(X).

This approach to measuring distance from independence was used by Manski (1983) for esti-

mation. A slightly different definition is based on comparing FU |X(· | 1) with FU |X(· | 0); see page

81 in the appendix. Kline and Santos (2013) used this latter approach for partial identification
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analysis in missing data models. Similarly to c-independence, with d(x) = 0, d-independence is

equivalent to full independence, while d(x) = 1 imposes no constraints on the relationship between

U and X whatsoever. Values of d(x) strictly between zero and one lead to intermediate cases.

Alternative definitions

There are several potentially useful alternative approaches to defining partial independence. The

first generalizes mean independence. It is known that if U is bounded, then

E(Uk | X) = E(Uk) (2)

for all k = 1, 2, . . . is equivalent to X ⊥⊥ U . (This is not true if U is unbounded; see de Paula 2008.)

Hence an alternative approach is to assume that equation (2) holds for some, but not all k ∈ N. This

assumption is not generally nested with any of the three concepts of partial independence discussed

above. In particular, identified sets based on (2) and those based on T -, c-, or d-independence are

not necessarily the same.

One reason to prefer the cdf based approaches, however, is that the mean based version is

not invariant to monotone transforms, whereas the cdf based versions work well with monotone

transforms. Specifically, for a smooth, nonlinear, strictly increasing transform f ,

E[U | X] = E[U ] < E[f(U) | X] = E[f(U)]

while

FU |X [u | x] = FU [u] ⇔ Ff(U)|X [f(u) | x] = Ff(U)[f(u)].

This invariance importantly ensures that A1 truly is a normalization. Moreover, such invariance

is a well studied principle in other contexts, such as testing and decision making. For example,

see chapter 6 of Berger (1985). A second reason to prefer the cdf and propensity score based

approaches is practical: As will be clear from our analysis below, they are far more tractable than

the approach based on means. This is because it is not straightforward to characterize the set of

conditional distributions of U given X that satisfy equation (2) for some k ∈ N. Whereas, as we

study in section 4, it is possible to characterize the set of conditional distributions of U given X

that satisfy the T -, c-, and d-independence conditions.

A second alternative approach is based on mixing conditions. There are many possible ways

of using mixing conditions to characterize statistical independence of X and U (for example, see

Doukhan 1994). Each of these ways can also lead to various concepts of partial independence. As

with the moments based approach, however, these mixing conditions are not as tractable as our

cdf and propensity score based approaches.

A third approach would replace the sup-norm distance (i.e., a Kolmogorov-Smirnov type metric)

in the definitions of c- and d-independence with an L2-norm distance (i.e., a Cramér-von-Mises type

metric). That is, measure distances between functions using average square differences in values
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rather than the largest difference in values. This approach is also not as tractable as that based on

the sup-norm metric.

3 Interpreting partial independence

In this section we discuss four topics regarding the interpretation of partial independence. We begin

by discussing two ways to choose T , c, and d. First, as with any other modeling assumption, analysis

under partial independence can be used to do sensitivity analysis (section 3.1). Second, in our first

main contribution we characterize the set of propensity scores consistent with T -independence.

Hence the choice of T can be interpreted as a choice of a certain set of propensity scores (section

3.2). We then discuss the set of propensity scores consistent with d-independence, and compare

and contrast our three definitions of partial independence (section 3.3). Finally, we illustrate the

relationship between selection on unobservables and partial independence using several stylized Roy

models (section 3.4). There we discuss the kinds of structural assumptions one would have to make

to obtain certain partial independence restrictions.

3.1 Sensitivity analysis

Many researchers may find the full independence assumption X ⊥⊥ U to be credible a priori. Full

independence, however, is not innocuous—it often has identifying power. Our results can thus be

used to do a sensitivity analysis: just how strongly do one’s conclusions depend on assuming full

statistical independence? If weakening full independence to partial independence yields a substan-

tively small identified set, then we know that the full identifying power of statistical independence

is not necessary to obtain the same substantive conclusion. Hence our confidence in our conclu-

sions will likely be stronger. But if weakening full statistical independence leads to a substantively

large identified set, then we know that full statistical independence is critical in coming to a tight

conclusion. Hence the conclusion of the study will hinge on how strongly one believes in the full

statistical independence assumption a priori.

To perform such a sensitivity analysis for c- and d-independence is simple. Our identification

results provide an identified set for each value of c ∈ [0, 1] and d(x) ∈ [0, 1] and one can examine

how these identified sets vary as c or d(x) varies from zero to one. Performing a sensitivity analysis

using T -independence is trickier, since this requires picking the set T . There are many possible

ways to do this, and any choice of T that is a strict subset of (0, 1) will, strictly speaking, relax the

full statistical independence assumption. Formally, we say that the T -independence assumption is

weaker than the T ′-independence assumption if T ⊆ T ′. The set of all possible choices one could

consider, the power set of T , is not totally ordered under set inclusion. There are many totally

ordered subsets, however.

In the absence of any persuasive argument in favor of a particular one of these subsets, re-

searchers can still make an ad hoc choice to perform sensitivity analysis. For example, one could

pick a sequence of points {τj}∞j=1 that is dense in (0, 1). Next, one could obtain the identified set
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under the TJ -independence assumption, where TJ = {τ1, . . . , τJ}, a grid of J points. By increas-

ing J our assumptions become ‘closer’ to full statistical independence, while by decreasing J our

assumptions become ‘farther’ from full statistical independence. Hence the goal of the sensitivity

analysis is to see how the size of the identified set varies with J . A reasonable choice of the se-

quence {τj}∞j=1 would be an equidistributed sequence, as defined in chapter 9 of Judd (1998), who

notes that such sequences “[formalize] the idea of a uniformly distributed sequence”. A well known

example are Halton draws.

A second choice of a sequence of totally ordered subsets of the power set of (0, 1) is Tτ = (0, τ ]

for τ ∈ (0, 1). For this choice, T -independence means that U is t-cdf independent of X for all t ≤ τ ,

but not necessarily for any larger values. As τ gets closer to 1, our assumptions become ‘closer’

to full statistical independence, while as τ gets closer to 0 our assumptions become ‘farther’ from

full statistical independence. This particular choice of T has a simple substantive interpretation.

For example, suppose X is binary. Then there are two unknown distributions: U | X = 0 and

U | X = 1. These distributions have support in [0, 1] under the U ∼ Unif[0, 1] normalization.

But beyond that, they are unrestricted. Tτ -independence says that these two distributions look

identical in the left tail. Formally, Tτ -independence implies that X ⊥⊥ U | {U ≤ τ}. This is a

special case of the following result, which shows that T -independence yields full independence for

a subpopulation defined by T .

Proposition 1. Suppose P(U ∈ T ) > 0. Then T -independence implies X ⊥⊥ U | {U ∈ T }.

The proof of this result, along with all others in the paper, is in the appendix. Consider

again the choice Tτ = (0, τ ]. Suppose, for example, that X is an indicator of participation in a

job training program and U is ability. Then Tτ -independence implies that all low ability people

randomly choose whether to participate, while high ability people may select in to the program on

the basis of their value of U . The cutoff between ‘low’ and ‘high’ ability is determined by τ . In

practice, researchers can begin with the usual point estimates under full statistical independence.

They can then compute our identified sets for a sequence of τ ’s and see, for example, how the length

of the set changes as τ decreases from one to zero. A similar analysis can also be done under the

choice T = [τ, 1).

A third choice of a sequence of totally ordered subsets of (0, 1) is T = [ε, 1− ε] for a decreasing

sequence of ε’s in (0, 0.5) with ε → 0. This choice is similar to the previous suggestions (0, τ ] and

[τ, 1). With this choice, proposition 1 implies that there is random assignment of treatment in the

middle of the distribution of unobservables, but potentially nonrandom assignment in the tails.

Finally, when considering this difficult question of picking T , we find it helpful to remember

Manski’s (1988) sentiment: Any choice of T , however seemingly ad hoc, is still weaker than full sta-

tistical independence and hence can give researchers some idea of the identifying power of statistical

independence assumptions.
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3.2 T -independence and treatment assignment rules

In the previous subsection we gave several suggested choices of T . We showed that our second

and third examples, Tτ = (0, τ ] and T = [εJ , 1− εJ ], have an interpretation in terms of treatment

assignment. In this subsection, we expand on this point. In particular, in our first main contribution

we characterize the deviations from full independence allowed by T -independence as a restriction

on the propensity score. We study d-independence in the next subsection.

Throughout this section, we focus on the binary treatment case, X ∈ {0, 1}. Full statistical

independence, X ⊥⊥ U , is equivalent to the propensity score being constant:

p(u) = P(X = 1)

for all u ∈ [0, 1]. Consequently, any nonconstant propensity score represents a deviation from

full independence. T -independence restricts the form of these deviations. The following theorem

characterizes the set of propensity scores consistent with T -independence.

Theorem 1 (Average value characterization). Suppose A1 holds and that X is binary with P(X =

1) ∈ (0, 1). Then U is T -independent of X if and only if

1

t2 − t1

∫
[t1,t2]

p(u) du = P(X = 1) (3)

for all t1, t2 ∈ T ∪ {0, 1} with t1 < t2.

With minor extra notation, this theorem extends to any discretely distributed X. We assume

P(X = 1) ∈ (0, 1) since P(X = 1) ∈ {0, 1} implies X ⊥⊥ U . Theorem 1 says that T -independence

holds if and only if for every interval with endpoints in T ∪{0, 1} the average value of the propensity

score over that interval equals the overall average of the propensity score, since∫ 1

0
p(u) du = P(X = 1).

This overall average is just the unconditional probability of being treated. When T is finite, theorem

1 simplifies, as shown in corollary 8 in the appendix. The following lemma gives us a different view

of the average value characterization of T -independence.

Lemma 1. Suppose A1 holds and that X is binary. For t1, t2 ∈ [0, 1] with t1 < t2 we have

P(X = 1 | U ∈ [t1, t2]) =
1

t2 − t1

∫
[t1,t2]

p(u) du.

Hence the average value condition (3) is

P(X = 1 | U ∈ [t1, t2]) = P(X = 1).

Thus T -independence implies that there are many (potentially overlapping) subpopulations for
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which the probability of being treated within that subpopulation is the same as in the entire popu-

lation. Thus partial independence implies that we have random assignment across subpopulations

defined by each interval [t1, t2], but it allows for nonrandom assignment within subpopulations, in

the sense that the conditional propensity score

P(X = 1 | U = u, U ∈ [t1, t2])

may be a nontrivial function of u.

To illustrate theorem 1, suppose T = {0.5} and P(X = 1) = 0.5. Here we have just a single

nontrivial cdf independence condition which is analogous to the classical median independence as-

sumption. Figure 1 plots five different propensity scores which are consistent with T -independence

under this choice of T . This figure illustrates several features of such propensity scores: The value of

p(u) may vary over the entire range [0, 1]. p does not need to be symmetric about τ1 = 0.5, nor does

it need to be continuous. Finally, as suggested by the pictures, p must actually be nonmonotonic;

we show this in corollary 1 next.

Figure 1: Various propensity scores consistent with T = {0.5}-independence, when P(X = 1) = 0.5.

Corollary 1. Suppose the propensity score p is weakly monotonic and not constant. Then U is

not τ -cdf independent of X for all τ ∈ (0, 1).

Hence monotonic propensity scores imply that no nontrivial cdf independence conditions can

hold. For example, none of the propensity scores in figure 3 are consistent with any nontrivial cdf
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independence condition. Put differently, corollary 1 shows that a nonconstant propensity score must

be non-monotonic if it is to satisfy a τ -cdf independence condition. This result can be extended as

follows. Say that a function f changes direction at least K times if there exists a partition of its

domain into K intervals such that f is not monotonic on each interval.

Corollary 2. Suppose U is T -independent of X. Partition [0, 1] by the sets Uk = [tk−1, tk) for

k = 1, . . . ,K − 1 with t0 = 0, tK = 1, and UK = [tK−1, tK ] and such that for each k there is a

τk ∈ T with τk ∈ Uk. Suppose p is not constant over each set Uk, k = 1, . . . ,K. Then p changes

direction at least K times.

This result essentially says that such propensity scores must oscillate up and down at least K

times. For example, as in figure 1, suppose we continue to have P(X = 1) = 0.5 but we add a few

more τ ’s to T . Figure 2 shows several propensity scores consistent with T -independence for larger

choices of T . These sawtooth and triangle propensity scores illustrate the oscillation required by

corollary 2.

Figure 2: Some propensity scores consistent with T -independence when P(X = 1) = 0.5. Top:
T = {0.25, 0.5, 0.75}. Bottom: T = {0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875}.

One final feature we document is that as long as there is some interval which is not in T then

there is a propensity score which takes the most extreme values possible, 0 and 1.

Corollary 3. Suppose (0, 1)\T contains a non-degenerate interval. Then there exists a propensity
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score which is consistent with T -independence and for which the sets

{u ∈ [0, 1] : p(u) = 0} and {u ∈ [0, 1] : p(u) = 1}

have positive measure.

Figure 6 on page 25 illustrates this point. For any finite T , no matter how large, we can always

find such propensity scores that are consistent with T -independence.

Our results in this section are not specific to any given model; they only concern the stochastic

relationship between U and X. Consequently, our characterization of the deviations from full

independence allowed by T -independence applies to any model based on quantile/cdf independence

at a specific τ . This includes semiparametric binary response models based on median independence

(Manski 1975), quantile regression models (Koenker and Bassett 1978), and work on identification

of nonseparable models under ‘local independence’ (Chesher 2003). Hence, in those models, for

discrete X, the kinds of joint distributions of (U,X) which are allowed and do not correspond

to full independence must have non-monotonic propensity scores, and always allow for propensity

scores which take extreme values.

Non-monotonic and oscillatory propensity scores may not be the kind of deviations from full

independence empirical researchers wish to allow for. A perhaps more natural approach is c-

independence, which places restrictions directly on the propensity score. For example, figure 3

illustrates several different propensity scores satisfying c-independence. All of these are monotonic

propensity scores and hence are ruled out by T -independence.

Figure 3: Some propensity scores satisfying c-independence with P(X = 1) = 0.5, for various values
of c.

The first plot in figure 3 illustrates a key difference between T - and c-independence: For any

c ∈ (0, 1] and any nonempty T ⊆ (0, 1), c-independence does not imply T -independence. In

particular, for any arbitrarily small positive c, there always exists a monotonic propensity score

which satisfies c-independence, but due to its monotonicity does not satisfy τ -cdf independence

for any τ ∈ (0, 1). Conversely, because of corollary 3, for any subset T ⊆ (0, 1) which is missing

an interval and any c ∈ [0, 1), T -independence does not imply c-independence. In particular, no
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matter how ‘close’ T is to (0, 1), we can always find a propensity score whose sup-norm distance

from P(X = 1) is as large as possible. For these reasons, these two concepts are qualitatively

different.

There are, however, propensity scores which are consistent with both T and c-independence

for any arbitrarily small c and any T arbitrarily ‘close’ to (0, 1) containing an interval. These are

just the propensity scores which oscillate but remain close to P(X = 1) in magnitude. In practice

empirical researchers may wish to impose both T - and c-independence. For brevity we omit this

case from our identification analysis below.

3.3 d-independence

In the previous subsection we characterized the kinds of propensity scores consistent with T -

independence. Since these propensity scores have perhaps undesirable properties, we discussed

placing restrictions directly on the propensity score via c-independence. d-independence is a sim-

ilar concept, although the restrictions are placed on the distribution of U | X rather than the

distribution of X | U . In this subsection we study the properties of d-independence.

While we do not explicitly give a characterization of the set of propensity scores consistent

with d-independence, our theorem 4 in section 4 does so implicitly by characterizing the set of cdfs

FU |X consistent with d-independence, which can then be translated to a set of propensity scores.

In this section, we instead briefly discuss the relationships between d-independence and the other

two concepts of partial independence. The following proposition shows that c-independence implies

d-independence.

Proposition 2. Suppose X is binary. Let c ∈ [0, c] for c = max{P(X = 1),P(X = 0)}. Suppose

c-independence holds. Then d-independence holds with d(1) = c/P(X = 1) and d(0) = c/P(X = 0).

The converse, however, does not hold. For any d(x) ∈ (0, 1] and c ∈ [0, c), d-independence

does not imply c-independence. This can be seen by constructing a counterexample, such as that

in figure 8 on page 27. Put differently, regardless of how small d(x) is, there always exists a

propensity score which takes on the extreme values of 0 and 1. From this same example we also

see that monotonic propensity scores are allowed. Hence for any d(x) ∈ (0, 1) and any nonempty

T ⊆ (0, 1), d-independence does not imply T -independence. The converse, however, does hold:

T -independence implies d-independence for a nontrivial d. And as T gets ‘closer’ to (0, 1), the

implied d converges to zero. Although we omit a formal statement of this result, it can be seen by

examining figure 6 in the next section. This figure shows the cdfs of FU |X which are farthest from

the diagonal cdf FU (u) = u. The corresponding sup-norm distance can thus be read off from these

two cdfs.
T c

d

The diagram at right summarizes the qualitative relationships between the

three partial independence concepts. Any missing arrows indicate that there is not

an implication in that direction. T - and c-independence are generally unrelated.
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Both imply d-independence, but not conversely. Hence d-independence is the qualitatively weakest

partial independence concept we consider.

3.4 Partial independence in Roy models of treatment choice

A key message of theorem 1 and the subsequent results above is that failure of full independence

can be thought of as a kind of selection on unobservables. Hence failure of full independence is not

a purely statistical issue. In this final subsection, we illustrate this point in the context of several

stylized Roy models of treatment choice. In particular, we show what kinds of assumptions on

structural parameters are necessary to deliver partial independence.

Suppose there is a population of agents I. Each person i ∈ I has a number Ui ∈ [0, 1] associated

with them. There is a binary treatment. There is a function m such that m(Xi, Ui) is the outcome

person i experiences if they choose treatment Xi. Each person i knows m and their value Ui. They

choose Xi to maximize m(Xi, Ui):

Xi = 1 if and only if m(1, Ui) ≥ m(0, Ui).

Assume for simplicity that either ties happen with zero probability or people always choose treat-

ment when ties occur. Let

U = {u ∈ [0, 1] : m(1, u) ≥ m(0, u)}.

This is the set of values of the unobservable that lead a person to choose X = 1. Hence

X = 1(U ∈ U).

In this model, treatment is deterministically determined by one’s value of U . Despite this deter-

ministic selection, we will apply theorem 1 to show that some non-trivial quantile independence

conditions may hold. Specifically, we will show that the location of the set U completely determines

what quantile independence conditions arise. This set U , in turn, depends solely on the structure

of the unit level causal effects m(1, u)−m(0, u).

First we consider an example with perfect complementarity between U and the treatment X.

Suppose

m(1, u) = u and m(0, u) = 1− u.

Then U = [1/2, 1]. This setup is illustrated in figure 4. For example, if X indicates the decision

to attend college, U is unobserved ability, and m(X,U) is one’s wage, this model says that all

students in the top half of the ability distribution attend college, while none of the students with

below median ability attend college. Thus the propensity score in this model is

p(u) =

0 if u < 1/2

1 if u ≥ 1/2.
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This propensity score is monotonic and hence no nontrivial quantile independence conditions hold.

Figure 4: Obtaining partial independence from structural Roy models: On the left, with perfect
complementarity between U and treatment X, no nontrivial quantile independence conditions hold.
On the right, with a cost of treatment and concave returns, a single nontrivial quantile independence
condition holds.

Next suppose

m(1, u) =
√
u− 1/8 and m(0, u) = u.

In this example, there are diminishing returns to ability under treatment, but linear returns without

treatment. Moreover, there is a fixed cost of treatment. Here U ≈ [0.021, 0.728]. This setup is

also illustrated in figure 4. Think about the college attendance decision again. In this model, only

‘middle’ ability people find it worthwhile to attend college. The low and high ability people are

both better off not attending college. In this model, the propensity score is approximately

p(u) =


0 if u < 0.021

1 if 0.021 ≤ u ≤ 0.728

0 if u > 0.728.

(4)

This propensity score is non-monotonic and changes direction exactly once. Hence it is possible

that exactly one nontrivial quantile independence restriction holds. By applying theorem 1 we can

numerically compute which quantile the independence restriction holds at. Specifically, we need to

find the τ which makes the proportion of treated people the same above and below the cutoff:

τ − 0.021

τ
= P(X = 1 | U ≤ τ) = P(X = 1 | U ≥ τ) =

0.728− τ
1− τ

.

Solving for τ yields τ = 0.073.

In these examples we assumed m was known. This is clearly not a useful starting place for
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practice since identifying and estimating m is often the main goal of an empirical analysis. Firstly,

one goal of these examples is to simply illustrate the connection between selection models and

partial independence, as an application of theorem 1. Beyond this, however, the examples and our

earlier results suggest a qualitative framework for thinking about how to choose τ : It depends on

one’s prior beliefs about the shape of the propensity score. In fact, notice that in these examples

knowledge of m and the decision rule imply knowledge of the propensity score. But we only required

knowledge of the propensity score to compute τ ; we did not need to know m precisely. And many

different m functions can lead to the same propensity score. Hence any m which leads to the

propensity score (4) will yield T = {τ}-independence with τ = 0.073.

We can generalize this point even further. In the above examples, treatment was deterministic

given U . Hence the propensity score only takes the values 0 and 1. Therefore only a single

propensity score can be consistent with a certain τ -cdf independence condition. If we allow for

all propensity scores, not just those that take the values 0 and 1, then we obtain a large class of

propensity scores that are consistent with τ -cdf independence. This class is described by theorem

1.

To obtain such propensity scores in the Roy model, it is necessary to allow for additional

variables to affect people’s treatment decisions. To this end, we consider the generalized Roy model

(Heckman and Vytlacil 2007). In this model person i incurs the cost V1i of choosing Xi = 1 and

likewise for V0i. These costs are unobserved to us, the analysts. Each person i chooses treatment

to maximize outcomes minus costs:

Xi = 1 if and only if m(1, Ui)− V1i ≥ m(0, Ui)− V0i.

Hence the decision rule is

X = 1[V ≤ m(1, U)−m(0, U)]

where V ≡ V1 − V0. In the college attendance example, V1 represents the utility or disutility

of physically attending college. Alternatively, one could think of V1 and V0 as errors in people’s

expectations about their own outcomes.

The propensity score is

p(u) = P(X = 1 | U = u)

= P(V ≤ m(1, u)−m(0, u) | U = u)

= FV |U [m(1, u)−m(0, u) | u]. (5)

The shape of the propensity score, and hence the set T , depends on the shapes of both

1. the heterogeneous treatment effects, m(1, u)−m(0, u), and

2. the conditional cdf of V | U .

Consequently, in order for any nontrivial cdf independence conditions to hold, we must have non-
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monotonicities in either FV |U (as a function of u) or in the treatment effects m(1, u) − m(0, u).

The precise location of the τ ’s in T , in turn, depend on the location of the direction changes in

the propensity score p, which depend on the two pieces above. Thus if one wants to allow for

deviations from full independence via T -independence then the choice of τ ’s in T depends on prior

beliefs about the shapes of the two objects above. As mentioned earlier, the shape constraints

imposed by T -independence do not pin down a unique propensity score and also do not require

precise parametric knowledge of m. In section 5 we will see the implications of T -independence on

identification of m.

Next we consider the implications of c-independence in the generalized Roy model. c-independence

holds if the propensity score (5) is not farther than c from P(X = 1). For example, suppose we

observe that P(X = 1) = 0.5. Suppose V ⊥⊥ U with V ∼ N (0, 1). Then

p(u) = Φ[m(1, u)−m(0, u)].

First notice that if treatment effects are homogeneous then full independence holds. If we instead

allow for heterogeneous treatment effects, but restrict their magnitude to be between [−1, 1] then

p(u) is approximately between [0.16, 0.84] and hence c-independence holds with c = 0.34. Our

magnitude assumption on the range of treatment effects here is relevant only with respect to the

scale of V . This follows because shrinking the variance of V down to zero brings us back to the case

where the propensity score is either zero or one, and hence when c-independence does not hold. So,

in this example, a substantively restrictive c-independence assumption is akin to a statement that

treatment effect variation does not swamp the unobservables V which also drive treatment choice.

In this subsection we have illustrated the relationship between selection on unobservables and

partial independence. In a generalized Roy model of treatment choice, we outlined a qualitative

approach for selecting T or c based on prior beliefs about the shape of the two components which

make up the propensity score. If one finds non-monotonicities in these components implausible,

then this suggests that exogeneity based on c- or d-independence may be more plausible than

T -independence.

4 Partial identification of cdfs under partial independence

As we show in sections 5, 6, and 7, our identification results can be split into two steps. The first

step is to characterize sets of cdfs FU |X consistent with each of the three partial independence

assumptions and the normalization A1. We present these results, which are our second main

contribution, in this section. These results do not depend on the specific choice of econometric

model.

Specifically, let x ∈ supp(X). We first characterize the set of all cdfs FU |X(· | x) which are

consistent with T -independence and A1, where T is a union of intervals. We denote this set by

FTU |X(x). We repeat this analysis for c- and d-independence to obtain the sets FcU |X(x) and FdU |X(x).

For distinct x, x′ ∈ supp(X) we also characterize the set of all cdfs (FU |X(· | x), FU |X(· | x′)) that

20



are consistent with T -partial independence and A1. We denote this set by FTU |X(x, x′). We repeat

this analysis for c- and d-independence. For T -independence we consider the discretely supported

X case while for c- and d-independence we focus on the binary X case. Our derivations in this

section are variations on the decomposition of mixtures problem. See Cross and Manski (2002),

Manski (2007) chapter 5, and Molinari and Peski (2006) for more discussion.

4.1 Bounds under T -independence

We begin with T -independence. Throughout this subsection we only consider discretely supported

X. We consider continuously supported X on page 82 in the appendix.

Assumption A2 (Discrete support). supp(X) = {x1, . . . , xK} for some positive integer K.

Next, we restrict our attention to sets T which can be written as a union of closed intervals.

Assumption A3 (T -independence). U is T -independent of X, where T is a union of disjoint

closed intervals:

T =
J⋃
j=1

[aj , bj ] (6)

where bj < aj+1 for j = 1, . . . , J − 1.

Throughout our discussion, we let a0 = b0 = 0 and aJ+1 = bJ+1 = 1 to simplify some expres-

sions. The specification of T in equation (6) includes most cases of interest. With J = 0 we obtain

T = ∅. In this case the distribution of U | X = x is completely unrestricted. With J = 1 and

[a1, b1] = [0, 1] we obtain full independence. In this case FTU |X(x) is a singleton: {FU}. Finally,

with aj = bj for j = 1, . . . , J the set T is a grid of points.

Let pk = P(X = xk) denote the probability masses. Without loss of generality, assume pk > 0

for all k = 1, . . . ,K. Let

hk(u) = FU |X(u | xk)

= P(U ≤ u | X = xk)

denote the conditional cdf of U given X = xk.
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For a given set T written as in equation (6), define the following functions:

h
J
k (u) =



u

pk
if b0 ≤ u ≤ pka1

a1 if pka1 ≤ u ≤ a1
u if a1 ≤ u ≤ b1
u− b1
pk

+ b1 if b1 ≤ u ≤ (1− pk)b1 + pka2

a2 if (1− pk)b1 + pka2 ≤ u ≤ a2
u if a2 ≤ u ≤ b2

...

1 if (1− pk)bJ + pkτJ+1 ≤ u ≤ aJ+1

(7)

and

hJk (u) =



b0 if b0 ≤ u ≤ pkb0 + (1− pk)a1
u− a1
pk

+ a1 if pkb0 + (1− pk)a1 ≤ u ≤ a1

u if a1 ≤ u ≤ b1
b1 if b1 ≤ u ≤ pkb1 + (1− pk)a2
u− a2
pk

+ a2 if pkb1 + (1− pk)a2 ≤ u ≤ a2

u if a2 ≤ u ≤ b2
...

u− aJ+1

pk
+ aJ+1 if pkbJ + (1− pk)aJ+1 ≤ u ≤ aJ+1.

(8)

These are stepwise linear cdfs on [0, 1]: they are non-decreasing, right-continuous, and are equal

to 0 and 1 when evaluated at 0 and 1, respectively. The following theorem shows that FTU |X(xk)

is the set of all cdfs which satisfy a constraint on how quickly they increase and which lie between

these two cdfs hJk and h
J
k .

Theorem 2. Suppose A1, A2, and A3 hold. Let Fk be the set of all cdfs hk on [0, 1] that satisfy

hk(u
′)− hk(u)

u′ − u
≤ 1

pk

for any 0 ≤ u < u′ ≤ 1. Then for any k = 1, . . . ,K,

FTU |X(xk) =
{
hk ∈ Fk : hJk (u) ≤ hk(u) ≤ hJk (u) for all u ∈ [0, 1]

}
,

and this set is sharp. Moreover, (hJk , h
J
l ), (h

J
k , h

J
l ) ∈ FTU |X(xk, xl), for any xk, xl ∈ supp(X).

The last part of this theorem shows that the upper and lower bounds can be jointly attained.
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This will be useful for obtaining bounds on treatment effect parameters like the average treatment

effect. The constraint that hk ∈ Fk prevents the cdf from increasing too quickly. This is necessary

because a cdf hk that violates this constraint implies, by the law of total probability, that the

corresponding cdf P(U ≤ u | X 6= xk) would be decreasing in u. A consequence of this restriction

is that cdfs hk with discontinuities—distributions of U | X with mass points—are ruled out when

X is discrete.

Examples

To illustrate this result, we consider two special cases: T = ∅ and T = {τ1, . . . , τJ}. Consider

the first case. Even with no quantile independence constraints, the normalization A1 and discrete

support A2 deliver a nontrivial set of cdfs FU |X(· | x), because of the law of total probability:

u = FU (u) =

K∑
k=1

hk(u)pk.

Here we also see the relationship to the decomposition of mixtures problem: We know the marginal

cdf FU (u) and the weights pk, and are interested in identifying the mixing distributions hk(u),

subject to various constraints.

Equations (7) and (8) simplify to the following functions.

h
∅
k(u) =


u

pk
if 0 ≤ u ≤ pk

1 if pk ≤ u ≤ 1
and h∅k(u) =


0 if 0 ≤ u ≤ 1− pk
u− 1

pk
+ 1 if 1− pk ≤ u ≤ 1.

(9)

h
∅
k and h∅k are both valid cdfs. They are plotted in figure 5, along with their corresponding propensity

scores. Both cdfs are piecewise linear functions with slopes 0 and 1/pk. Here and below we use the

following helpful result.

Lemma 2. Suppose A1 and A2 hold. Then for each k = 1, . . . ,K,

P(X = xk | U = u) = P(X = xk)fU |X(u | xk).

This lemma shows that the propensity score is just the scaled density of U | X. Hence by

computing the densities corresponding to h
∅
k and h∅k and then rescaling them we obtain the corre-

sponding propensity scores.

Let F∅U |X(xk) denote the sharp set of cdfs consistent with A1 and A2, but with no further

independence constraints, as obtained via theorem 2. This set does exclude some cdfs. As pk → 0,

however, this set approaches the set of all possible cdfs. In theorem 8 on page 82 in the appendix

we formally derive bounds on hk for continuous X and show that they are the limit of the discrete

X bounds as pk → 0.

Next consider the case T = {τ1, . . . , τJ} with τ0 = 0, τJ+1 = 1. Equations (7) and (8) simplify
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Figure 5: Left: Upper and lower bounds on hk(u) = P(U ≤ u | X = xk) under the normalization
A1 and discrete support A2, but with no further independence constraints. Middle and Right: The
corresponding propensity scores.

to the following functions:

h
J
k (u) =



u− τ0
pk

+ τ0 if τ0 ≤ u ≤ (1− pk)τ0 + pkτ1

τ1 if (1− pk)τ0 + pkτ1 ≤ u ≤ τ1
u− τ1
pk

+ τ1 if τ1 ≤ u ≤ (1− pk)τ1 + pkτ2

τ2 if (1− pk)τ1 + pkτ2 ≤ u ≤ τ2
...

τJ+1 if (1− pk)τJ + pτJ+1 ≤ u ≤ τJ+1

(10)

and

hJk (u) =



τ0 if τ0 ≤ u ≤ pkτ0 + (1− pk)τ1
u− τ1
pk

+ τ1 if pkτ0 + (1− pk)τ1 ≤ u ≤ τ1

τ1 if τ1 ≤ u ≤ pkτ1 + (1− pk)τ2
u− τ2
pk

+ τ2 if pkτ1 + (1− pk)τ2 ≤ u ≤ τ2
...

u− τJ+1

pk
+ τJ+1 if pkτJ + (1− pk)τJ+1 ≤ u ≤ τJ+1.

(11)

h
J
k and hJk are both valid cdfs. An example is plotted in figure 6, along with their corresponding

propensity scores, for T = {τ1, τ2} with just two points. As before, these cdfs are piecewise linear

functions with slopes equal to either 0 or 1/pk. Finally, notice that the propensity scores oscillate

between the values zero and one.

These bounds hJk and h
J
k collapse to a single point for values u ∈ T , and are wider when u is
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Figure 6: Left: Upper and lower bounds on hk(u) = P(U ≤ u | X = xk) under the normalization A1,
discrete support A2, and T -independence with T = {τ1, τ2}. Middle and Right: The corresponding
propensity scores.

farther from the points in T . As the set {τ1, . . . , τJ} becomes dense in [0, 1], both h
J
k (u) and hJk (u)

converge to FU (u) = u uniformly. This occurs since full statistical independence of U and X is

fully characterized by quantile independence of U from X at all quantiles. The exact analytical

expressions we’ve obtained for these bounds will be helpful later in computing analytical identified

sets.

4.2 Bounds under c-independence

We now characterize bounds under c-independence. In this section we assume X is binary. Define

h
c
k(u) =


(

1 +
c

pk

)
u if 0 ≤ u ≤ 1/2(

1− c

pk

)
u+

c

pk
if 1/2 < u ≤ 1

and hck(u) =


(

1− c

pk

)
u if 0 ≤ u ≤ 1/2(

1 +
c

pk

)
u− c

pk
if 1/2 < u ≤ 1.

(12)

for k = 0, 1. These bounds are valid cdfs if and only if c ≤ min{p0, p1}.

Theorem 3. Suppose A1 holds, X is binary, and U is c-independent ofX for some c ∈ [0,min{p0, p1}].
Let Fck be the set of all cdfs hk on [0, 1] that satisfy

hk(u
′)− hk(u)

u′ − u
∈
[
1− c

pk
, 1 +

c

pk

]
for any 0 ≤ u < u′ ≤ 1. Then for k = 0, 1,

FcU |X(k) =
{
hk ∈ Fck : hck(u) ≤ hk(u) ≤ hck(u) for all u ∈ [0, 1]

}
.

For each k = 0, 1, this set is sharp. Moreover, (hc0, h
c
1), (h

c
0, h

c
1) ∈ FcU |X(0, 1).

As c gets closer to zero, these bounds collapse to the unconditional cdf FU (u) = u. When

c exceeds max{p0, p1}, the c-independence constraint is not binding and consequently, the cdf
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bounds are the no-assumption bounds of equation (9). When c is between p0 and p1, the above

cdf bounds are not proper cdfs on some segments. We derive the appropriate cdf bounds for this

case in proposition 7 on page 84 in the appendix. Under c-independence the slope of the cdf—

its density—is restricted by the constraint imposed by the set Fck. The law of total probability

constraints are imposed by the set Fk. Theorem 3 shows that, as with T -independence, the set

of cdfs allowed under c-independence is bounded by two piecewise linear functions with simple,

analytical expressions. Figure 7 plots an example.

Figure 7: Left: Upper and lower bounds on hk(u) = P(U ≤ u | X = xk) under the normalization
A1, binary X, and c-independence. Middle and Right: The corresponding propensity scores for
xk = 1.

4.3 Bounds under d-independence

We now characterize bounds under d-independence. We again consider only the binary X case.

We furthermore consider only the case d(0) = d/p0 and d(1) = d/p1 for d ∈ [0, 1]. This is the form

implied by c-independence in proposition 2, and we give additional motivation for this choice on

page 81 in the appendix. A final reason to prefer this choice of d(x) is that it yields lower and upper

bound cdfs that are jointly attainable. Other choices of d(x) generally do not have such properties.

For d ≤ p0p1, define

h
d
k(u) =



u

pk
if 0 ≤ u ≤ d

1− pk
u+

d

pk
if

d

1− pk
≤ u ≤ 1− d

pk

1 if 1− d

pk
≤ u ≤ 1

and hdk(u) =


0 if 0 ≤ u ≤ d

pk

u− d

pk
if
d

pk
≤ u ≤ 1− d

1− pk
u− 1

pk
+ 1 if 1− d

1− pk
≤ u ≤ 1.

(13)

When d = p0p1 these bounds are precisely the no-assumption bounds of equation (9). When

d > p0p1, the d-independence constraint is not binding and hence only the no-assumptions bounds

hold.

Theorem 4. Suppose A1 holds, X is binary, and U is d-independent of X with d(0) = d/p0 and
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d(1) = d/p1 with d ∈ [0, p0p1]. Let Fk be defined as in theorem 2. Then for k = 0, 1,

FdU |X(k) =
{
hk ∈ Fk : hdk(u) ≤ hk(u) ≤ hdk(u) for all u ∈ [0, 1]

}
.

For each k = 0, 1, this set is sharp. Moreover, (hd0, h
d
1), (h

d
1, h

d
0) ∈ FdU |X(0, 1).

Again these bounds are simple piecewise linear functions. Figure 8 plots an example. The

corresponding propensity scores for xk = 1 are shown as well. These propensity scores vary from 0

to 1 regardless of the value of d. As d→ 0, the propensity scores converge pointwise to P(X = 1),

but not uniformly.

Figure 8: Left: Upper and lower bounds on hk(u) = P(U ≤ u | X = xk) under the normalization
A1, binary X, and d-independence. Middle and Right: The corresponding propensity scores, for
xk = 1.

5 A nonseparable regression model

In the previous section we characterized sets of cdfs FU |X consistent with the normalization A1 and

the partial independence assumptions. As our third main contribution, in this and the following

two sections we use these results to study identification of nonseparable models. In this section we

study the nonseparable regression model

Y = m(X,U) (14)

where Y and X are scalar observable random variables, U is a scalar unobservable random variable,

and m is an unknown function. This outcome equation generalizes both classical linear regression

models

Y = Xβ + U

and nonparametric additively separable models

Y = g(X) + U.
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The key benefit of allowing for nonseparability of X and U is that the marginal effect of X on

Y can vary across observationally equivalent individuals. Both the classical linear model and the

nonparametric additively separable model have homogeneous effects of X on Y .

Matzkin (2003) studied identification of this model in detail. In particular, she imposed a

monotonicity assumption similar to the following.

Assumption A4 (Monotonicity). m(x, ·) is strictly increasing and continuous for all x ∈ supp(X).

She then showed that a normalization is necessary for point identification of m; see Torgovitsky

(2015a) pages 1186–1187 for additional discussion. Assumption A1 that U ∼ Unif[0, 1] is one such

convenient normalization. Notice that there are really two normalizations in A1: that U has a

known distribution, and that this known distribution is uniform. The specific choice of a uniform

is convenient, but not necessary. See Matzkin (2003) for other possible normalizations. Since U is

a scalar, this model imposes rank invariance; see Heckman, Smith, and Clements (1997) as well as

Torgovitsky (2015a) page 1187 for additional discussion. Finally, Matzkin assumed full statistical

independence between X and U .

Proposition 3. Consider the outcome equation (14) where the joint distribution of (Y,X) is

observed. Suppose A1, A4, and X ⊥⊥ U hold. Then the structural function m(x, u) is point

identified at all points (x, u) ∈ supp(X)× [0, 1].

We include the proof here because it will be informative for our later results.

Proof of proposition 3. Let (x, τ) ∈ supp(X) × [0, 1]. Consider the τth conditional quantile of Y

given X,

QY |X(τ | x) = Qm(X,U)|X(τ | x) by the outcome equation (14)

= Qm(x,U)|X(τ | x)

= m[x,QU |X(τ | x)] by A4 and quantile equivariance

= m[x,QU (τ)] by X ⊥⊥ U

= m(x, τ) by A1.

The left hand side is known from the data and hence the right hand side is point identified.

Given the normalization A1 and point identification of the structural function m, the entire

structure of the model is point identified. Hence all functionals of interest are also point identified.

For example, the quantile structural function

QSF(x, τ) = Qm(x,U)(τ) = m(x, τ),

the average structural function

ASF(x) = E[m(x, U)] =

∫ 1

0
m(x, u) du,
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the average treatment effect for a shift from x to x′,

ATE(x→ x′) = ASF(x′)−ASF(x),

and the distribution of unit level treatment effects for a shift from x to x′,

DTE(t;x→ x′) = P[m(x′, U)−m(x, U) ≤ t].

In this section, we study the same model, except we relax full independence X ⊥⊥ U . Instead,

we impose the weaker partial independence conditions defined in section 2.

Identification under partial independence

In this subsection we analyze identification of the structural function itself under partial indepen-

dence. To do this, we first generalize Matzkin’s result to the case where the distribution of U | X
falls in a known set of distributions FU |X . Her result under full independence is the special case

where FU |X is the singleton {FU (u)}. Our later results obtain by setting FU |X to be the various

sets characterized in section 4.

The key intuition for our generalization comes from partway through the proof of proposition

3. There we used A4 to show that

QY |X(τ | x) = m[x,QU |X(τ | x)].

Assuming that U | X = x is continuously distributed on [0, 1], we have

τ = QU |X(τ | x) ⇔ FU |X(τ | x) = τ

and therefore

m(x, τ) = QY |X [FU |X(τ | x) | x]. (15)

Under full statistical independence, FU |X(τ | x) = FU (τ) = τ and hence we again obtain the result

of proposition 3. Without statistical independence, however, FU |X is an unknown function. As we

showed in section 4, partial independence restrictions impose bounds on this unknown cdf. These

bounds in turn yield bounds on the structural function m.

In the above argument we assumed U | X = x was continuously distributed on [0, 1]. This does

not necessarily hold for the cdfs bounds we obtained in section 4. In particular, we will allow the

support of U | X = x to be different for different values of x. This requires adjusting the argument

above to allow for non-invertibility of FU |X . For this we use left and right quantiles. Let [yL, yU ]

denote known bounds on Y , possibly yL = −∞ and yU =∞. For any τ ∈ [0, 1] and x ∈ supp(X),

define the left quantile as the left-continuous inverse of the cdf:

Q−Y |X(τ | x) = inf{y ∈ [yL, yU ] : FY |X(y | x) ≥ τ}.
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The left quantile is the typical definition of ‘the’ quantile used in statistics and econometrics. Notice

Q−Y |X(1 | x) = sup supp(Y | X = x) and Q−Y |X(0 | x) = yL. Similarly, define the right quantile as

the right-continuous inverse of the cdf:

Q+
Y |X(τ | x) = sup{y ∈ [yL, yU ] : FY |X(y | x) ≤ τ}

= inf{y ∈ [yL, yU ] : FY |X(y | x) > τ}.

Notice Q+
Y |X(0 | x) = inf supp(Y | X = x) and Q+

Y |X(1 | x) = yU . Hosseini (2010) and Embrechts

and Hofert (2013) study properties of left and right quantiles. We collect some helpful results in

lemma 5 on page 75 in the appendix.

Finally, we define the set-quantile to be the closed interval with bounds equal to the left and

right quantiles:

Q∗Y |X(τ | x) =
[
Q−Y |X(τ | x), Q+

Y |X(τ | x)
]
.

When the distribution of Y | X is strictly increasing, the left and right quantiles are equal to

each other and the set-quantile is a single point. When the support of U | X is non-connected or

generally not equal to [0, 1], the conditional cdf is non-increasing on subsets of U | X and therefore

the left and right quantiles will differ at some values τ .

We now characterize the identified set for the structural function m(x, u). This result generalizes

Matzkin’s (2003) result under full independence.

Theorem 5. Consider the outcome equation (14). Suppose A1 and A4 hold. Let x ∈ supp(X).

Suppose the true cdf FU |X(· | x) lies in a known set FU |X(x). Let H be the set of continuous and

strictly increasing functions on supp(U). Then the identified set for the function m(x, ·) is

M(x) =
{
m(x, ·) ∈ H : m(x, ·) ∈ Q∗Y |X [FU |X(· | x) | x] for some FU |X(· | x) ∈ FU |X(x)

}
. (16)

This result shows that our characterization of the set of cdfs allows us to characterize the

identified set for the structural function. Notice that even if the conditional distributions FU |X(· | x)

are known, the structural function might not be point identified for all values (x, τ) ∈ supp(X) ×
[0, 1]. This follows since the left and right quantiles might be different from one another.

For example, suppose the conditional distributions U | X = 0 ∼ Unif[0, 1/2] and U | X = 1 ∼
Unif[1/2, 1] are known, and also that P(X = 0) = P(X = 1) = 1/2. Suppose −∞ < yL < yU <∞.

In this example, the structural function is not point identified at m(0, τ) for τ ∈ (1/2, 1) because

the conditional distribution of U | X = 0 does not take values above 1/2. By theorem 5,

Q−Y |X(FU |X(τ | 0) | 0) ≤ m(0, τ) ≤ Q+
Y |X(FU |X(τ | 0) | 0)
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for all τ ∈ [0, 1]. Let τ ∈ (1/2, 1). Then FU |X(τ | 0) = 1 by U | X = 0 ∼ Unif[0, 1/2]. Hence

Q+
Y |X(FU |X(τ | 0) | 0) = Q+

Y |X(1 | 0)

= yU .

For the lower bound, by quantile equivariance,

Q−Y |X(1 | 0) = m(0, Q−U |X(1 | 0))

= m(0, 1/2).

The third line follows since U | X = 0 ∼ Unif[0, 1/2]. Hence for any τ ∈ (1/2, 1],

m(0, τ) ∈ [Q−Y |X(1 | 0), yU ]

= [m(0, 1/2), yU ].

This example is precisely what occurs in our first Roy model example; see the left plot of figure

4 on page 18. Here we have perfect sorting of people with U ≤ 1/2 to X = 0 and people with

U ≥ 1/2 to X = 1. Since the data contain no observations for whom u > 1/2 and X = 0, it is not

surprising that we cannot point identify the value of the function m(x, u) at these points. Instead,

the identified set for the function is bounded above by the a priori logical bound on outcomes

and bounded below by m(0, 1/2). The lower bound holds by monotonicity A4 and the fact that

m(0, 1/2) is point identified as the largest outcome among people with X = 0.

Theorem 5 is an abstract result that applies for any choice of FU |X(x). By combining mono-

tonicity of Q−Y |X(· | x) and Q+
Y |X(· | x) with our results in section 4 we obtain a more concrete

characterization of the set M(x), along with identified sets for other functionals of interest. For

example, suppose T -independence A3 holds. Then substituting our largest and smallest cdfs hJk (·)
and h

J
k (·) from theorem 2 into the set quantile bounds of equation (16) and using monotonicity of

the left and right quantiles we obtain the bounds

m(xk, τ) ∈
[
Q−Y |X(hJk (τ) | xk), Q+

Y |X(h
J
k (τ) | xk)

]
(17)

for any xk ∈ supp(X) and τ ∈ [0, 1]. Importantly for our results below, these bounds are uniform

in τ , since the cdf bounds depend on τ only via their argument. For brevity, throughout the rest

of this section we primarily present formal results for T -independence. But equation (17) and the

other results in this section can be straightforwardly modified to c- and d-independence by replacing

the relevant cdf bounds by those derived in section 4.

Chesher (2003) showed that m(xk, τ) is point identified for all τ such that quantile independence

holds at τ . Our results in this section extend his result in three ways. First, his result can be used

to construct bounds as follows. Suppose T -independence holds and τj , τl ∈ T , τj < τl, but τ /∈ T
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for all τ ∈ (τj , τl). Then m(xk, τj) and m(xk, τl) are point identified and by monotonicity A4,

m(xk, τj) ≤ m(xk, τ) ≤ m(xk, τl)

for all τ ∈ (τj , τl). Bounds like this can be pieced together to obtain a bound on the entire function

m(xk, ·). When X is discrete, these bounds are not sharp. This follows because the upper and

lower bounds correspond to the cdfs of U | X given in figure 13 on page 83 in the appendix, which

are not admissible when X is discrete, since they violate the law of total probability. Our theorem

5 provides the sharp identified set for the entire structural function. Second, while Chesher (2003)

focused on the structural function at a point, we also derive bounds for various functionals of the

entire structural function. Finally, unlike Chesher, we also consider c- and d-independence. Under

c- and d-independence, the simple bounds approach above yields trivial bounds because no quantile

independence conditions hold exactly and hence there are no points at which the structural function

is point identified.

Bounds on the average structural function

Because the bounds in equation (17) are uniform over τ , integrating them from 0 to 1 yields bounds

on the average structural function. By performing this integration and substituting in the specific

functional forms for the cdf bounds obtained in section 4, we obtain simple, analytical bounds

for the average structural function. We begin with the case where T -independence holds with

T = {τ1, . . . , τJ}.

Corollary 4. Consider the outcome equation (14). Suppose A1, A2, and A4 hold. Suppose U is

T -independent of X with T = {τ1, . . . , τJ} and let τ0 = 0 and τJ+1 = 1. Let xk ∈ supp(X). Then

ASF(xk) ∈

(1− pk)
J∑
j=0

(τj+1 − τj)Q−Y |X(τj | xk) + pkE[Y | X = xk],

(1− pk)
J∑
j=0

(τj+1 − τj)Q+
Y |X(τj+1 | xk) + pkE[Y | X = xk]

 .
Moreover, the interior of this set is sharp.

Since the cdf bounds h
J
k and hJk are flat in some regions, the endpoints of the bounds in

equation (17) are not strictly increasing in τ everywhere, which means they violate A4. Hence

the endpoints of the ASF bounds are not be attainable. A similar remark holds for the analogous

d-independence result. For the analogous c-independence result, however, the endpoints might be

attainable, depending on the value of c.

In corollary 11 on page 85 in the appendix we provide a corresponding result for continuous X.

There we see that as pk → 0 in the discrete X bounds we obtain the bounds for the continuous X
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case. Next, under full statistical independence X ⊥⊥ U , it can be shown that

ASF(xk) = E[Y | X = xk]

and hence the ASF is point identified under X ⊥⊥ U . Corollary 4 generalizes this result in the

following sense. Consider the lower bound. The term

J∑
j=0

(τj+1 − τj)Q−Y |X(τj | xk)

is a lower Riemann sum over the partition of [0, 1] defined by T = {τ1, . . . , τJ}. The corresponding

term in the upper bound is the upper Riemann sum over this same partition. Assuming E[Y |X =

xk] exists, the functions Q−Y |X(· | xk) and Q+
Y |X(· | xk) will be integrable and both these sums

converge to ∫ 1

0
Q−Y |X(u | x) du = E[Y | X = x]

as the partition becomes dense in [0, 1] by lemma 5 part 3.2 But as this partition becomes dense

in [0, 1], our assumptions get ‘closer’ to the full statistical independence assumption X ⊥⊥ U .

Hence our result is consistent with, and generalizes this well-known result that the conditional

mean function point identifies the average structural function in a nonseparable model under full

statistical independence. Also note that, since full independence is always allowed as a possibility by

our three partial independence concepts, any sample analog estimator based on full independence

will converge to an element of the sets we derive.

The bounds in corollary 4 depend on Q−Y |X(0 | x) = yL and Q+
Y |X(1 | x) = yU . If the support

of Y | X is the entire real line then these quantiles will be −∞ and +∞, respectively. Hence the

bounds will be non-informative. This point applies to the bounds we derive for the ATE in a later

subsection as well, but not for the bounds we later derive on the DTE. Hence we generally need

bounded support outcomes to obtain non-trivial identified sets for the ASF and ATE. This is a

common finding in the literature on partial identification of mean parameters. For example, see

Manski (2007) pages 43–44.

Next we consider identification of the ASF under the general T -partial independence assumption

A3.

Corollary 5. Consider the outcome equation (14). Suppose A1, A2, A3, and A4 hold. Let

xk ∈ supp(X). Then

ASF(xk) ∈
[
LB[ASF(xk)],UB[ASF(xk)]

]
2This integral is the same for left and right quantiles since left and right quantiles only differ on a countable set;

see lemma 5 part 2 on page 75 in the appendix.
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where

LB[ASF(xk)] = (1− pk)
J∑
j=0

(aj+1 − bj)Q−Y |X(bj | xk)

+ (1− pk)
J∑
j=1

∫ bj

aj

Q−Y |X(u | xk) du+ pkE[Y | X = xk]

and

UB[ASF(xk)] = (1− pk)
J∑
j=0

(aj+1 − bj)Q+
Y |X(aj+1 | xk)

+ (1− pk)
J∑
j=1

∫ bj

aj

Q+
Y |X(u | xk) du+ pkE[Y | X = xk].

Moreover, the interior of this set is sharp.

These bounds simplify to those given in corollary 4 if the intervals [aj , bj ] are singletons since

the second term will drop out. In both the upper and lower bounds, the first term is again a

Riemann sum which converges to zero as T gets ‘close’ to [0, 1], while the second term will converge

to (1 − pk)E[Y |X = xk]. This shows that these bounds again collapse to the point E[Y | X = xk]

in the limiting case of full statistical independence.

ASF bounds under c- and d-independence

We now briefly describe the bounds on the average structural function under c- and d-independence.

For c-independence, ASF(xk) ∈ [LB,UB] where

LB =
1

2
E
[
Y | X = xk, Y ≤ Q−Y |X

(
1

2

(
1− c

pk

)∣∣∣∣xk)]
+

1

2
E
[
Y | X = xk, Y ≥ Q−Y |X

(
1

2

(
1− c

pk

)∣∣∣∣xk)]
and

UB =
1

2
E
[
Y | X = xk, Y ≤ Q+

Y |X

(
1

2

(
1 +

c

pk

)∣∣∣∣xk)]
+

1

2
E
[
Y | X = xk, Y ≥ Q+

Y |X

(
1

2

(
1 +

c

pk

)∣∣∣∣xk)] .
As c→ 0, the bounds collapse to the single point E[Y | X = xk], as under T -independence.
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For d-independence with the choice d(xk) = d/pk, the ASF bounds are

ASF(xk) ∈

[
(pk − 1)

∫ 1

1− d
pk(1−pk)

Q−Y |X(u | xk) du+
d

pk
Q−Y |X(0 | xk) + E[Y | X = xk],

(pk − 1)

∫ d
pk(1−pk)

0
Q+
Y |X(u | xk) du+

d

pk
Q+
Y |X(1 | xk) + E[Y | X = xk]

]
.

Again these bounds converge to E[Y | X = xk] as d → 0. The interiors of these bounds under c-

and d-independence are sharp.

Bounds on ATE, the distribution of treatment effects, and spread parameters

Next we derive bounds on the average treatment effect, for a shift from xl to xk, defined by

ATE(xl → xk) = ASF(xk)−ASF(xl)

= E[m(xk, U)−m(xl, U)].

Corollary 6. Consider the outcome equation (14). Suppose A1, A2, A3, and A4 hold. Then

ATE(xl → xk) ∈
[
LB[ASF(xk)]−UB[ASF(xl)], UB[ASF(xk)]− LB[ASF(xl)]

]
.

Moreover, the interior of this set is sharp.

Sharpness of the interior holds here because our results in section 4 showed that we can simul-

taneously achieve the upper bound cdf h
J
k and the smallest cdf for hJl . When the set T approaches

(0, 1), the bounds for ATE(xl → xk) collapses to the difference in conditional means,

E(Y | X = xk)− E(Y | X = xl).

An analogous result to corollary 6 holds for c- and d-independence.

Besides the ASF and the ATE, there are many other parameters one might be interested in. In

particular, as discussed earlier, a key reason to consider nonseparable models like (14) is that they

allow for heterogeneous treatment effects. Hence a natural object of interest is the distribution (or

cdf) of the unit level treatment effects

∆(xl → xk) = m(xk, U)−m(xl, U).

We show that we can bound the unobserved random variable ∆(xl → xk) using two point

identified random variables as in the following lemma.

Lemma 3. Consider the outcome equation (14). Suppose A1, A2, A3, and A4 hold. Let xk ∈
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supp(X). Then the following bounds hold U -almost surely:

Q−Y |X(hJk (U) | xk) ≤ m(xk, U) ≤ Q+
Y |X(h

J
k (U) | xk)

and

Q−Y |X(hJk (U) | xk)−Q+
Y |X(h

J
l (U) | xl) ≤ ∆(xl → xk) ≤ Q+

Y |X(h
J
k (U) | xk)−Q−Y |X(hJl (U) | xl).

In corollaries 4, 5, and 6 we implicitly used these bounds to derive bounds on the means of

m(xk, U) and ∆(xl → xk). The mean is sometimes called a D1-parameter (Stoye 2010 page 327;

Manski 2003 calls them D-parameters), because it respects the stochastic dominance order relation.

As discussed in Manski (2003), the cdf evaluated at a point and quantiles are also examples of D1-

parameters. Hence the bounds in lemma 3 can immediately be applied to derive bounds on quantiles

of m(xk, U) and ∆(xl → xk). For example, for the median of the treatment effect ∆(xl → xk) we

obtain

Med[Q−Y |X(hJk (U) | xk)−Q+
Y |X(h

J
l (U) | xl)]

≤ Med[∆(xl → xk)]

≤ Med[Q+
Y |X(h

J
k (U) | xk)−Q−Y |X(hJl (U) | xl)].

Furthermore, we can also immediately derive bounds on the cdfs P[m(xk, U) ≤ t] and P[m(xk, U)−
m(xl, U) ≤ t]. This latter cdf is called the distribution of unit level treatment effects.

Corollary 7. Consider the outcome equation (14). Suppose A1, A2, A3, and A4 hold. Let

xk ∈ supp(X) and t ∈ R. Then

P
(
Q−Y |X(hJk (U) | xk) ≤ t

)
≤ P

(
m(xk, U) ≤ t

)
≤ P

(
Q+
Y |X(h

J
k (U) | xk) ≤ t

)
and

P
(
Q−Y |X(hJk (U) | xk)−Q+

Y |X(h
J
l (U) | xl) ≤ t

)
≤ P

(
∆(xl → xk) ≤ t

)
≤ P

(
Q+
Y |X(h

J
k (U) | xk)−Q−Y |X(hJl (U) | xl) ≤ t

)
.

Moreover, the interiors of these sets are sharp.

Spread parameters, like the variance and other measures of dispersion, are not D1 parameters.

Nonetheless, Stoye (2010) shows how to use bounds like those in corollary 7 to derive bounds on

such spread parameters, which he calls D2-parameters. This class of parameters includes not only

the variance but also inequality measures like the Gini coefficient. Using the results of corollary

7 combined with corollary 5 we can directly apply theorem 2 of Stoye (2010) and derive explicit

bounds on the variance of treatment effects and other D2 parameters.
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Numerical illustration

We conclude this section with a brief numerical illustration. Suppose

Y = πX + (γX + 1)Φ−1[−4,4](U)

where U ∼ Unif[0, 1], U ⊥⊥ X, π = 0.4, γ = 0.4, X is binary with P(X = 1) = 1/2, and Φ[−4,4]

is the cdf for the truncated standard normal on [−4, 4]. This dgp has heterogeneous treatment

effects: units with U larger than about 0.16 have positive treatment effects, with the magnitude

of the effect increasing in U , while units with U smaller than about 0.16 have negative treatment

effects. The true ASF is

ASF(x) = E(Y | X = x) = πx

and the true conditional quantile function is

QY |X(τ | x) = πx+ (γx+ 1)Φ−1[−4,4](τ).

Figure 9 shows identified sets for ATE under various partial independence assumptions. In all

plots we see that the ATE under full independence is positive, and that this conclusion is robust to

minor deviations from full independence, but not to larger deviations. For T = (0, τ ] the identified

set is fully in the positive region for approximately all τ ≥ 0.80. With a roughly uniform grid

of quantile independence conditions we only need about 15 grid points for the identified set to

be fully in the positive region. For c-independence, deviations from the unconditional propensity

score of up to c = 0.1 are allowed while still point identifying the sign of ATE. Also note that

c = max{p0, p1} = 0.5 here. For d-independence, only very minor deviations of up to about

d = 0.02 are allowed while still point identifying the sign of ATE. Keep in mind also that c-

independence can hold for c arbitrarily close to zero even while no τ -cdf independence constraints

hold, and vice versa.

Finally, note that the general shape of all these identified sets depends on the specific dgp. Some

dgps may yield results where conclusions under full independence are robust to partial independence

deviations, while other dgps may not. For example, in the dgp we consider the identified sets shift

upward as π increases. Hence, holding all else fixed, a larger ATE implies that the sign of ATE will

be point identified under weaker independence assumptions. Here we merely illustrate the kinds of

objects empirical researchers can compute using the results we develop in this paper.

6 A nonseparable instrumental variables model

In section 5 we studied a regression model where X is ‘exogenous’ in the sense that X is partially

independent of U . In this section, we consider a nonseparable instrumental variables model where

X is endogenous and U is partially independent of an instrument Z. We also impose a relevance

condition on the joint distribution of X and Z. Throughout this section we focus on the case where
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Figure 9: Identified sets for ATE. Top left: T = {τ1, . . . , τJ} for a sequence of Halton draws.
Horizontal axis measures space between grid points. Top right: T = (0, τ ]. Bottom left: c-
independence. Bottom right: d-independence. In all plots the true ATE is plotted as a solid
horizontal line.

X and Z are binary. Under any of the three partial independence assumptions, we derive identified

sets for the structural function. We also derive sharp random variable bounds on the unit level

treatment effects which can be used to compute sharp bounds on functionals like ATE and the

DTE.

We continue to consider the nonseparable outcome equation

Y = m(X,U) (14)

where U is a scalar unobservable random variable and m is an unknown function. We also observe

an instrument Z. We build on the analysis of Chernozhukov and Hansen (2005), who suppose the

instrument is fully independent: Z ⊥⊥ U . Their analysis yields the following result.3

Proposition 4 (Chernozhukov and Hansen (2005) Theorem 2). Consider the outcome equation

(14). Suppose X and Z are binary and that A1, A4, and Z ⊥⊥ U hold. Let L be the parameter

3As in section 5, we only consider the model under rank invariance. Chernozhukov and Hansen (2005) also consider
the weaker rank similarity assumption.
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space as in Chernozhukov and Hansen (2005) equation (2.12). Suppose the rank of the matrix

Π′(m(0, τ),m(1, τ)) =(
fY |X,Z(m(0, τ) | 0, 0)P(X = 0 | Z = 0) fY |X,Z(m(1, τ) | 1, 0)P(X = 1 | Z = 0)

fY |X,Z(m(0, τ) | 0, 1)P(X = 0 | Z = 1) fY |X,Z(m(1, τ) | 1, 1)P(X = 1 | Z = 1)

)
(18)

is full for any τ ∈ [0, 1] and that (m(0, τ),m(1, τ)) ∈ L. Further assume that Π′(m(0, τ),m(1, τ))

is continuous in (m(0, τ),m(1, τ)). Then m(0, τ) and m(1, τ) are point identified for any τ ∈ [0, 1].

As with the nonseparable regression model, it is helpful to examine a simplified version of the

proof here. We have

P[Y ≤ m(X, τ) | Z = z] = P[m(X,U) ≤ m(X, τ) | Z = z]

= P[U ≤ τ | Z = z]

= P[U ≤ τ ]

= τ.

The first line follows by the outcome equation (14). The second by A4. The third by full indepen-

dence. The fourth by A1. Since X is binary,

m(X, τ) = m(1, τ)X +m(0, τ)(1−X).

So we get the moment condition

P[Y ≤ m(1, τ)X +m(0, τ)(1−X) | Z = z] = τ

for all z ∈ supp(Z). Fix τ and let mx = m(x, τ). Since Z is binary, we have two moment conditions:

P[Y ≤ m1X +m0(1−X) | Z = 0]− τ = 0

P[Y ≤ m1X +m0(1−X) | Z = 1]− τ = 0

and two unknown parameters, m1 and m0. This is a system of two nonlinear (in m0,m1) equations.

The rank condition and the proof of theorem 2 in Chernozhukov and Hansen (2005) shows that

these equations yield a unique solution.

We next replace full statistical independence of U and Z with the assumption that U is either

T -, c-, or d-independent of Z. Most of the proof above continues to hold. The key change is that

our two moment conditions become

P[Y ≤ m1X +m0(1−X) | Z = 0]− FU |Z(τ | 0) = 0

P[Y ≤ m1X +m0(1−X) | Z = 1]− FU |Z(τ | 1) = 0
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for some FU |Z ∈ FU |Z .

If the cdf FU |Z were known, this would again be a system of two equations with two unknowns.

By our results in section 4, partial independence yields an identified set FU |Z(z) for the cdf FU |Z(· |
z). We can thus combine this result with the above system to derive the identified set for (m0,m1),

as follows. First, remember that τ is fixed in this analysis. Next, define

Π1(m0,m1) = P[Y ≤ m1X +m0(1−X) | Z = 0]

Π2(m0,m1) = P[Y ≤ m1X +m0(1−X) | Z = 1].

So our moment conditions are

Π1(m0,m1) = FU |Z(τ | 0)

Π2(m0,m1) = FU |Z(τ | 1)

or

Π1(m0,m1) =
τ − P(X = 1)h1(τ)

1− P(X = 1)

Π2(m0,m1) = h1(τ)

where

h1(τ) = FU |Z(τ | 1).

For a fixed h1, let θ0(h1(τ)), θ1(h1(τ)) denote the unique solution to this system. The rank assump-

tion guarantees uniqueness. The union of solutions over the set h1 ∈ FU |Z(1) is the identified set,

which we characterize in the following result.

Theorem 6. Consider the outcome equation (14). Suppose X and Z are binary. Suppose A1 and

A4 hold. Assume (m(0, τ),m(1, τ)) ∈ L and that Π′(m(0, τ),m(1, τ)) has full rank over L. Suppose

U is either T -, c-, or d-independent of Z, with corresponding cdf bounds h1 and h1 from section 4.

Then the following bounds are sharp:

m(0, τ) ∈ [θ0(h1(τ)), θ0(h1(τ))]

m(1, τ) ∈ [θ1(h1(τ)), θ1(h1(τ))]

when θ0(h1(τ)) ≤ θ0(h1(τ)). Both bounds are reversed if θ0(h1(τ)) > θ0(h1(τ)).

In the proof we show that θ0(h1(τ)) is monotonic in h1(τ). Similarly, θ1(h1(τ)) is monotonic in

h1 in the opposite direction of θ0. When full independence Z ⊥⊥ U holds, the point identification

result proposition 4 is not fully constructive. This follows because the parameters m(0, τ) and

m(1, τ) are obtained implicitly as the solution to a system of equations. The same property holds

in our analysis under partial independence, theorem 6. Our result, however, only requires computing

the solution to this system twice, compared with once in the point identified case. Hence, in practice
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computing the identified set under partial independence is not any easier or harder than computing

the point estimate under full independence.

Bounds on unit level treatment effects

As in section 5 there are many parameters we might be interested in. In particular, we are often

interested in treatment effects. Given the bounds on the structural function, we can find bounds

on all its functionals, such as the ASF, ATE, or DTE, by integrating over the bounds of the

structural function. For example, recall the definition of the unit level treatment effect: ∆(0 →
1) = m(1, U)−m(0, U). Then since the bounds in theorem 6 hold uniformly over τ , the following

bounds hold U -almost surely:

θ1(h1(U))− θ0(h1(U)) ≤ ∆(0→ 1) ≤ θ1(h1(U))− θ0(h1(U))

when the lower bound here is smaller than the upper bound. Otherwise, the bounds are reversed.

Here h1 and h1 are the relevant partial independence cdf bounds. These random variable bounds

can be combined with general purpose results on bounds on D1 and D2 parameters, exactly as in

section 5.

7 A binary outcome model

A third and final example we discuss is the binary outcome model

Y = 1[m(X,U) ≤ 0] (19)

where U ∼ Unif[0, 1] and m(x, ·) is strictly increasing. Then

Y = 1[U ≤ m−1(X, 0)]

= 1[U ≤ g(X)]

where g(x) ≡ m−1(x, 0). The average structural function is

ASF(x) = P[U ≤ g(x)] = FU [g(x)] = g(x).

This model was studied by Matzkin (1992). Under the full statistical independence assumption

X ⊥⊥ U , g is point identified.

Proposition 5. Consider the binary outcome model (19). Suppose A1 and X ⊥⊥ U hold. Then g

is point identified.

As in the two previous models we’ve studied, it is helpful to examine the proof.
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Proof of proposition 5.

E(Y | X = x) = P(Y = 1 | X = x)

= P(U ≤ g(x) | X = x)

= FU |X [g(x) | x]

= FU [g(x)] by X ⊥⊥ U

= g(x) by A1.

Next, we relax the full independence assumption and replace it by a partial independence

assumption. It is still the case that

E(Y | X = x) = FU |X [g(x) | x].

Hence

g(x) ∈ Q∗U |X
(
E(Y | X = x) | x

)
.

Since FU |X(· | x) ∈ FU |X(x), we can characterize the set of conditional quantiles of U given X, and

plug in the identified conditional expectation E[Y | X = x] to obtain the bounds on the ASF g(x).

This leads to the following result.

Theorem 7. Consider the binary outcome model (19). Suppose A1 and A2 hold. Suppose U is

either T -, c-, or d-independent of X, with corresponding cdf bounds hk and hk from section 4.

Then the identified set for g(xk) = ASF(xk) is[
Q
−
U |X(E(Y | X = xk) | xk), Q+

U |X(E(Y | X = xk) | xk)
]

where Q
−
U |X(v | xk) = inf{y ∈ [0, 1] : hk(y) ≥ v} and Q+

U |X(v | xk) = sup{y ∈ [0, 1] : hk(y) ≤ v},
the left and right quantiles of the cdf bounds.

This result allows us to derive simple, explicit bounds for the average structural function. For

example, consider the case where T -independence holds on a grid of points T = {τ1, . . . , τJ}. Then

the quantile bounds equal

Q
−
U |X(v | xk) =



pkv if 0 ≤ v ≤ τ1
pk(v − τ1) + τ1 if τ1 < v ≤ τ2

...

pk(v − τJ) + τJ if τJ < v ≤ 1
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and

Q+
U |X(v | xk) =



(v − τ1)pk + τ1 if 0 ≤ v < τ1

(v − τ2)pk + τ2 if τ1 ≤ v < τ2
...

(v − 1)pk + 1 if τJ ≤ v ≤ 1.

Substituting v = E[Y | X = xk] yields the ASF bounds. As we can see, these functions are piecewise

linear functions and therefore the ASF bounds are easy to compute under partial independence.

The bounds under c- and d-independence have similar simple expressions. Finally, notice that in

the ‘no assumptions’ case T = ∅ these bounds simplify to the classic Manski (1990) bounds:

[pkE(Y | X = xk), pkE(Y | X = xk) + (1− pk)].

8 Conclusion

In this paper we studied three concepts of partial independence, as ways to weaken the full sta-

tistical independence assumption. We formalized them as either a set of quantile independence

conditions (T -independence), a distance between conditional and unconditional propensity scores

(c-independence), or a distance between conditional and unconditional cdfs (d-independence). Our

first contribution was to characterize the set of propensity scores consistent with T -independence,

thus providing a treatment assignment interpretation of quantile independence conditions. We

showed that nonconstant propensity scores consistent with quantile independence must be non-

monotonic and oscillatory. These properties motivated our consideration of c- and d-independence

as alternative concepts. Our second contribution was to characterize sets of cdfs FU |X consistent

with each of the partial independence concepts. These results do not depend on the specific choice

of econometric model. Our third contribution was to apply these results to derive simple, analytical

characterizations of identified sets in three popular nonseparable models.

Although we have focused on identification results in this paper, our analytical identified sets

lend themselves to sample analog estimation and inference via the existing literature on inference

under partial identification (see Canay and Shaikh 2016 for a survey). We have also omitted

covariates from our analysis. In principle we can condition on them nonparametrically, but in

practice one will typically also impose dimension reduction assumptions. We plan to examine these

issues of estimation, inference, and incorporating covariates in future work.

Finally, all of the models we studied have a single, scalar unobservable U . Many models,

however, have multiple unobservable random variables. Two important examples are the classical

selection model with an explicit first stage equation (e.g., Heckman and Vytlacil 2007) and simul-

taneous equations models (e.g., Matzkin 2008). As in the models with a scalar unobservable, these

models typically make full statistical independence assumptions. While it is not clear how to best

generalize T - and d-independence to vector U , c-independence generalizes immediately. Extending

our results to such models is an important next step.
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A Additional literature discussion

In this section we provide additional details explaining how our results compare to several ap-
proaches in the literature. We begin with a general comparison before moving on to the specifics
of several papers.
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Sensitivity analysis: Parametric paths versus nonparametric neighborhoods

In this section we discuss how using our identification results to do sensitivity analysis compares
to the previous literature. The most common approach, as in Rosenbaum and Rubin (1983), has
two key features: (1) a specific parametric deviation r from a baseline assumption of r = 0 and
(2) a parameter θ(r) that is point identified given that deviation. We call this the parametric path
approach. The object of interest is the function θ(r), and how it changes with r.

Our approach, following Manski (2007) (also see section 3 of Manski 2013), weakens the para-
metric path approach in two ways. First, we consider nonparametric neighborhoods of the baseline
assumption. The neighborhood is still indexed by a parameter r, but the set of allowed models
is no longer a singleton. Consequently, in the second step, our parameter of interest is typically
partially identified. Let Θ(r) denote the identified set. The goal is then to see how Θ(r) changes
with r. We call this the nonparametric neighborhood approach.

Figure 10: Comparing two approaches to sensitivity analysis: Parametric paths and nonparametric
neighborhoods.

In general, the nonparametric neighborhood approach will show that one’s findings are more
sensitive to deviations than the parametric path approach. This follows simply because the para-
metric path approach picks a specific sequence of submodels from the neighborhood surrounding
the baseline models. For example, suppose we are interested in a scalar parameter. Suppose Θ(r)
equals an interval [ΘL(r),ΘU (r)]. Figure 10 compares the sequence of identified sets under non-
parametric neighborhoods to a sequence of parametric submodels. Suppose we are interested in
the sensitivity of our conclusion that the parameter is positive. Then a sensitivity analysis based
on the parametric path θ(r) shown in the figure suggests that the results are quite robust to de-
viations, while a sensitivity analysis based on Θ(r) suggests the opposite. Now, there are many
different parametric submodels and at least one of them may correspond to, say, the lower bound
ΘL(r). Our point is merely that the choice of parametric submodel may substantively matter. The
current literature using parametric path approaches, including Rosenbaum and Rubin (1983) and
others we discuss below, do not justify their choice of parametric paths, a concern pointed out by
Manski (1999). Without such justification, we find a nonparametric neighborhood approach more
plausible.

It is often the case that {θ(r) : all r } = Θ(R) where Θ(R) denotes the identified set when no
assumptions on the dependence are made; for example, those of Manski (1990) in the analysis of
treatment response. See Imbens and Rubin (2015) section 22.4. As we emphasize above, however,
in the parametric path approach it is the function θ(r) which is reported, and how it varies for r
close to 0. Hence the shape of the function, rather than just its range, is substantively important.
Our nonparametric neighborhood approach helps guard against the shape of this function θ(r)
being driven solely by parametric assumptions.

In addition to considering nonparametric neighborhoods rather than parametric paths, we con-
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sider three different kinds of neighborhoods, corresponding to our T -, c-, and d-independence. We
show that the particular choice of neighborhood has substantive implications on what parameters
are and are not tightly identified. For example, in various nonseparable models Chesher (2003)
showed that a specific quantile structural function can be point identified under a single quantile
independence condition. Hence he showed that even with large deviations from independence, in
the T -independence sense, some parameters may still be point identified. But if we change the
notion of deviation to c-independence those same parameters become partially identified even for
arbitrarily small deviations from independence. Hence there are two dimensions along which one
can do sensitivity analysis: the choice of metric for measuring deviations and our choice of the
size of the neighborhood. Approaches that look at a single parametric path are restrictive in both
steps, which may lead empirical researchers to have unjustified confidence in their results.

Rosenbaum and Rubin (1983)

Here we briefly review the results of Rosenbaum and Rubin (1983). We follow the exposition
given in section 22.4 of Imbens and Rubin (2015). Consider a binary outcome and a binary treat-
ment. Let Y (0) and Y (1) denote the potential outcomes. Let X denote received treatment. Under
(Y (0), Y (1)) ⊥⊥ X we can point identify ATE. But we are concerned that this independence assump-
tion may not hold because of an omitted variable U . Suppose we believe that (Y (0), Y (1)) ⊥⊥ X | U .
If we observed U then we would once again be able to point identify ATE. Unfortunately, we do
not observe U . Instead, Rosenbaum and Rubin specify a parametric logit model for the propensity
score:

p(u) = P(X = 1 | U = u)

= Λ(γ0 + γ1u)

where Λ(s) = exp(s)/[1+exp(s)] is the logit link function. γ1 = 0 corresponds to full independence
while any γ1 6= 0 corresponds to deviations from full independence. Our c-independence is a
nonparametric generalization of this parametric model—c-independence for a small c implies that
γ1 is also small. Rosenbaum and Rubin do not study T - or d-independence. Moreover, in their
analysis they assume U is binary while we allow for continuously distributed U ’s.

Letting q = P(U = 1), they next note that, for fixed (q, γ1), γ0 is point identified by the law of
total probability constraint

P(X = 1) = Λ(γ0 + γ1)q + Λ(γ0)(1− q).

Hence, to perform their sensitivity analysis, they will vary q over [0, 1] and γ1 over R.
In the second step of their analysis, they specify a parametric logit model for the distributions

of Y (0) | U and Y (1) | U :

P[Y (1) = 1 | U = u] = Λ(α0 + α1u)

P[Y (0) = 1 | U = u] = Λ(β0 + β1u).

Similarly as above, they show that if we fixed (α1, β1) along with (q, γ1) then (α0, β0) will be point
identified. From this we can compute ATE, which is point identified. Thus their full approach is to
compute the function ATE(q, γ1, α1, β1) and see how this varies over these sensitivity parameters.
If we specified that (q, γ1, α1, β1) lay inside some known set, then the above analysis yields bounds
on ATE. As Imbens and Rubin (2015) note (also see page 158 of Rosenbaum 2002), these bounds
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equal Manski’s (1990) no assumptions bounds if we allow (q, γ1, α1, β1) ∈ [0, 1]× R3
.

Although we use nonparametric neighborhoods rather than a parametric path for the first step,
our second step analysis (sections 5, 6, and 7) is similar in spirit to Rosenbaum and Rubin’s second
step. There are several differences, however. We do not require a parametric model for the outcome
distribution. We study both binary and continuous outcomes. We do not restrict attention to the
average treatment effect. We do, however, make the rank invariance assumption which Rosenbaum
and Rubin do not need. Finally, our analysis is not restricted to a modified selection on observables
model—we have studied models with and without instruments.

Robins et al. (2000)

Robins et al. (2000) assume X is discrete with

P(X = x | Y (x) = y) = 1− T [h(x) + q(x, y)]

for all x ∈ supp(X), where T is a known cdf, such as T (s) = Λ(s), the logit link function. Equiva-
lently,

P(X 6= x | Y (x) = y) = T [h(x) + q(x, y)].

In their theorem 1 they show that for a fixed a priori q, h is point identified and the joint distribu-
tion of (X,Y (x)) is point identified for all x ∈ supp(X). q ≡ 0 implies that treatment is marginally
independent of each potential outcome, and hence this corresponds to a full independence assump-
tion. q 6= 0 represents a deviation from full independence. As with Rosenbaum and Rubin (1983),
they propose a parametric path approach by examining how the point identified parameter of in-
terest varies as q varies. Although q can be nonparametric in principle, they focus on parametric
models for q. Hence in practice they study specific parametric deviations from independence. Note,
however, that unlike Rosenbaum and Rubin (1983), they do not require a parametric model for
outcomes.

Also unlike Rosenbaum and Rubin (1983), they do not explicitly focus on the omitted variable
explanation for failure of independence. Instead they directly model the relationship between
potential outcomes and treatment assignment. In this sense, our analysis is closer to Robins et al.
(2000) than to Rosenbaum and Rubin (1983). The reason is that, under rank invariance and strict
monotonicity of the outcome equation m in the unobservable U , the propensity score we study is

p(u) = P(X = x | U = u)

= P[X = x | m(x, U) = m(x, u)]

= P[X = x | Y (x) = m(x, u)].

c-independence places constraints directly on this propensity score. This is conceptually similar to
the Robins et al. (2000) approach of modeling this propensity score. Nonetheless, as emphasized
in our introduction, our analysis differs in several important ways. We consider nonparametric
neighborhoods of full independence, rather than deviations along a parametric path. Consequently,
our deviations do not point identify the parameters of interest, and therefore we compute the
corresponding sharp identified sets. This latter analysis is aided by the structure of the nonseparable
models in the literature which we build on.

Also, as Manski (2016) emphasizes at the beginning of his section 4.2, simply specifying a
parametric selection model does not guarantee that the parameter of interest is point identified. As
our lemma 5 and the surrounding discussion shows, knowledge of the distribution of U | X is not
necessarily sufficient for point identification of the distribution of potential outcomes. Although
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the selection model considered by Robins et al. (2000) delivers point identification, they provide no
motivation or discussion to justify their choice of parametric model.

Rosenbaum (1995, 2002)

Rosenbaum (1995, 2002) essentially considered the assumption

sup
u∈supp(U)

∣∣∣∣log
P(X = 1)

P(X = 0)
− log

p(u)

1− p(u)

∣∣∣∣ ≤ G (20)

for some constant G. This approach no longer requires parametric assumptions on the propensity
score. However, Rosenbaum (1995, 2002) did not derive identified sets under this assumption. Nor
did he perform any alternative sensitivity similar to that of Rosenbaum and Rubin (1983). Instead,
he only studied the effect of the above form of deviations from independence on the finite sample
properties of inference procedures for testing the sharp null of zero treatment effect H0 : Yi(0) =
Yi(1) for i = 1, . . . , N in a randomization inference framework. Imbens and Rubin (2015) chapter
5 provide further discussion of this framework; section 22.5 also discusses the Rosenbaum (1995,
2002) approach. Rosenbaum rewrote the assumption (20) as

1

Γ
≤ p(Ui)[1− p(Uj)]
p(Uj)[1− p(Ui)]

≤ Γ.

for the constant Γ = exp(2G) ≥ 1 and all i, j = 1, . . . , N . Since the function p is unrestricted we
can let pi = p(Ui) without loss of generality. For any specified values of p1, . . . , pN , the random-
ization distribution of any statistic can be computed, under the maintained sharp null hypothesis.
Allowing the values of p(Ui) to vary within the constraints above produces a set of randomization
distributions. From this set we can compute a set of p-values, for example. We can then see how
this set of p-values changes with Γ. This is a very different approach to both Rosenbaum and Rubin
(1983) and to what we do in the present paper. An interesting question for future work would be
to extend our identification analysis to cover the log odds ratio distance (20), in addition to the
three concepts of T -, c-, and d-independence we study in the paper.

B Proofs

Proofs for section 3

Lemma 4. Suppose A1 and A2 hold. Then hk(·) is a continuous function for all k = 1, . . . ,K.

Proof of Lemma 4. Suppose by way of contradiction that hk(·) is not continuous at some point u∗.
Since cdfs are right-continuous, we must have

lim
u↗u∗

h(u) < h(u∗).

This implies
P(U = u∗ | X = xk) > 0.
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Therefore, by the law of total probability,

0 = P(U = u∗)

=
K∑
j=1

P(U = u∗ | X = xj)pj

≥ P(U = u∗ | X = xk)pk

> 0.

This is a contradiction.

Proof of proposition 1. Suppose T -independence holds. Fix u ∈ [0, 1] and x ∈ supp(X). Then

P(U ≤ u | X = x, U ∈ T ) =
P(0 ≤ U ≤ u, U ∈ T | X = x)

P(U ∈ T | X = x)

=

∫
s∈[0,u]∩T dFU |X(s | x)∫
s∈T dFU |X(s | x)

=

∫
s∈[0,u]∩T dFU (s)∫
s∈T dFU (s)

=
P(0 ≤ U ≤ u, U ∈ T )

P(U ∈ T )

= P(U ≤ u | U ∈ T ).

The first line follows by the definition of conditional probability, and since U ∼ Unif[0, 1] so that
U ≥ 0. The third line follows by T -independence. The last line follows again by the definition of
conditional probability. Since the last line does not depend on x, we have shown that X ⊥⊥ U |
{U ∈ T }.

Proof of theorem 1. This result actually holds for discretely distributed X, so we work with that
case in this proof.

(⇒) Suppose U is T -independent of X. Let t1, t2 ∈ T ∪ {0, 1} with t1 < t2. Then, for any
x ∈ supp(X),

P(X = x | U ∈ [t1, t2]) =
P(X = x, U ∈ [t1, t2])P(X = x)

P(U ∈ [t1, t2])P(X = x)

=
P(U ∈ [t1, t2] | X = x)P(X = x)

t2 − t1

=
(P(U ≤ t2 | X = x)− P(U < t1 | X = x))P(X = x)

t2 − t1

=
(P(U ≤ t2 | X = x)− P(U ≤ t1 | X = x))P(X = x)

t2 − t1

=
(t2 − t1)P(X = x)

t2 − t1
= P(X = x).

The second line follows since U ∼ Unif[0, 1]. The fourth line follows since U | X is continuously
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distributed, since X is discretely distributed (by lemma 4). The fifth line follows from T -
independence.

(⇐) Suppose that for any x ∈ supp(X),

P(X = x | U ∈ [t1, t2]) = P(X = x)

for all t1, t2 ∈ T ∪ {0, 1} with t1 < t2. Then,

P(U ∈ [t1, t2] | X = x) =
P(X = x | U ∈ [t1, t2])P(U ∈ [t1, t2])

P(X = x)

=
P(X = x)P(U ∈ [t1, t2])

P(X = x)

= P(U ∈ [t1, t2]).

The second line follows by assumption. Setting t1 = 0 and using U ∼ Unif[0, 1] gives the
result.

The result now follows by lemma 1.

Proof of lemma 1. We have

P(X = 1 | U ∈ [t1, t2]) =
P(X = 1, t1 ≤ U ≤ t2)

P(t1 ≤ U ≤ t2)

=
1

t2 − t1
P(X = 1, t1 ≤ U ≤ t2)

=
1

t2 − t1

∫ t2

t1

fX,U (1, u) du

=
1

t2 − t1

∫ t2

t1

fX,U (1, u)

fU (u)
du

=
1

t2 − t1

∫ t2

t1

P(X = 1 | U = u) du.

The fourth line follows since fU (u) = 1 by U ∼ Unif[0, 1].

Proof of corollary 1. Without loss of generality, suppose p is weakly increasing. Then for any τ ,
the average value of the propensity score to the left of τ is weakly smaller than the average value
to the right:

1

τ

∫ τ

0
p(u) du ≤ 1

1− τ

∫ 1

τ
p(u) du.

Since p is also not constant, this inequality must actually be strict for all τ ∈ (0, 1). The result
follows by theorem 1.

Proof of corollary 2. For each interval Uk, we just repeat the argument of corollary 1, conditional
on U ∈ Uk, noting that a nontrivial τ -cdf independence conditional will still hold conditional on
U ∈ Uk.
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Proof of corollary 3. Let [a, b] ⊆ (0, 1) \ T . Also, let the propensity score be equal to

p(u) =


1 if u ∈ [a, a+ P(X = 1)(b− a))

0 if u ∈ [a+ P(X = 1)(b− a), b]

P(X = 1) if u /∈ [a, b].

Let t1 and t2 be any two values in T such that t1 < t2. Then

1

t2 − t1

∫ t2

t1

p(u) du = P(X = 1)

if t1 < t2 < a or b < t1 < t2. This condition also holds if t1 < a and b < t2 since

1

t2 − t1

∫ t2

t1

p(u) du =
1

t2 − t1

(
P(X = 1)(a− t1) + 1

(
P(X = 1)(b− a) + a− a

)
+ P(X = 1)(t2 − b)

)
= P(X = 1).

Therefore, by theorem 1, T -independence holds and the propensity score attains the values 0 and
1 over non-degenerate intervals.

Proof of proposition 2. We have

sup
u∈[0,1]

|P(U ≤ u | X = 1)− P(U ≤ u)| = sup
u∈[0,1]

∣∣∣∣∫ u

0
fU |X(s | 1) ds−

∫ u

0
1 ds

∣∣∣∣
= sup

u∈[0,1]

∣∣∣∣∫ u

0

P(X = 1 | U = s)

P(X = 1)
ds−

∫ u

0

P(X = 1)

P(X = 1)
ds

∣∣∣∣
=

1

P(X = 1)
sup
u∈[0,1]

∣∣∣∣∫ u

0
(P(X = 1 | U = s)− P(X = 1)) ds

∣∣∣∣
≤ 1

P(X = 1)
sup
u∈[0,1]

∫ u

0
|P(X = 1 | U = s)− P(X = 1)| ds

≤ 1

P(X = 1)
sup
u∈[0,1]

∫ u

0
c ds

=
c

P(X = 1)
.

The fifth line follows by c-independence. Next observe that

P(U ≤ u | X = 0) =
P(U ≤ u)− P(U ≤ u | X = 1)P(X = 1)

P(X = 0)
.
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Hence

sup
u∈[0,1]

|P(U ≤ u | X = 0)− P(U ≤ u)| = sup
u∈[0,1]

∣∣∣∣P(U ≤ u)− P(U ≤ u | X = 1)P(X = 1)

P(X = 0)
− P(U ≤ u)

∣∣∣∣
=

P(X = 1)

P(X = 0)
sup
u∈[0,1]

|P(U ≤ u)− P(U ≤ u | X = 1)|

≤ P(X = 1)

P(X = 0)

c

P(X = 1)

=
c

P(X = 0)
.

The first line follows by our derivations above, the third by our result for X = 1 above.

Proofs for section 4

Proof of theorem 2. To show h
J
k (·) is the uniform upper bound, let

hk(u) = P(U ≤ u | X = xk)

and suppose there exists a value u∗ ∈ [0, 1] such that hk(u
∗) > h

J
k (u∗). Since h

J
k is a step function,

we divide the proof into three cases based on the value of u∗:

Case 1: u∗ ∈ [bj , (1− pk)bj + pkaj+1] for j = 0, . . . , J

Case 2: u∗ ∈ [(1− pk)bj + pkaj+1, aj+1] for j = 0, . . . , J

Case 3: u∗ ∈ [aj , bj ] for j = 1, . . . , J.

Case 1. Fix j = 0, . . . , J . Then

hk(u
∗) > h

J
k (u∗)

=
u∗ − bj
pk

+ bj .

Therefore, by the law of total probability,

P(U ≤ u∗ | X 6= xk) =
P(U ≤ u∗)− hk(u∗)pk

1− pk

<
u∗ − (u∗ − bj)− bjpk

1− pk
= bj .

By A3,
P(U ≤ bj | X 6= xk) = bj .

Since u∗ ≥ bj ,

bj = P(U ≤ bj | X 6= xk)

≤ P(U ≤ u∗ | X 6= xk)

< bj ,
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a contradiction.

Case 2. Fix j = 0, . . . , J . We have

hk(u
∗) > h

J
k (u∗)

= aj+1.

But u∗ ≤ aj+1, implying that hk(u
∗) ≤ hk(aj+1). Thus

aj+1 < hk(u
∗)

≤ hk(aj+1)

= aj+1,

a contradiction.

Case 3. If u∗ ∈ [aj , bj ] for j = 1, . . . , J , then hk(u
∗) = u∗ by A3 and therefore hk(u

∗) > u∗ presents
a contradiction.

To show hJk (·) is the uniform lower bound, we suppose there exists a u∗ ∈ [0, 1] such that
hk(u

∗) < hJk (u∗). We again consider three cases for the value u∗:

Case 1: u∗ ∈ [bj , pkbj + (1− pk)aj+1] for j = 0, . . . , J

Case 2: u∗ ∈ [pkbj + (1− pk)aj+1, aj+1] for j = 0, . . . , J

Case 3: u∗ ∈ [aj , bj ] for j = 1, . . . , J.

Case 1. Fix j = 0, . . . , J . We have

hk(u
∗) < hJk (u∗) = bj .

Since u∗ ≥ bj ,

bj > hk(u
∗)

≥ hk(bj)
= bj ,

a contradiction.

Case 2. Fix j = 0, . . . , J . we have

hk(u
∗) < hJk (u∗)

=
u∗ − aj+1

pk
+ aj+1.
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Therefore, by the law of total probability,

P(U ≤ u∗ | X 6= xk) =
P(U ≤ u∗)− hk(u∗)pk

1− pk

>
u∗ − (u∗ − aj+1)− aj+1pk

1− pk
= aj+1.

By assumption A3,
P(U ≤ aj+1 | X 6= xk) = aj+1.

Since u∗ ≤ aj+1,

aj+1 = P(U ≤ aj+1 | X 6= xk)

≥ P(U ≤ u∗ | X 6= xk)

> aj+1,

a contradiction.

Case 3. Similar to the previous case 3.

To show that the cdf hk must be in the set Fk, suppose there exists 0 ≤ u < u′ ≤ 1 for which

hk(u
′)− hk(u)

u′ − u
>

1

pk
.

Then

P(U ∈ (u, u′] | X 6= xk) = P(U ≤ u′ | X 6= xk)− P(U ≤ u | X 6= xk)

=
u′ − u− pk(hk(u′)− hk(u))

1− pk
< 0,

a contradiction. The second line follows by applying the law of total probability twice.

To show that the set FU |X(xk) is sharp, fix k and let hk be an arbitrary element of FU |X(xk).
Define

hl(u) =
u− pkhk(u)

1− pk
for all l 6= k. The function hl(u) is a proper cdf on [0, 1] since (1) hl(0) = 0 and hl(1) = 1, (2) it is
right continuous since hk is right continuous, and (3) it is non-decreasing since for u′ > u

hl(u
′)− hl(u) =

u′ − u− pk(hk(u′)− hk(u))

1− pk
≥ 0
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by hk being an element of Fk. It also satisfies A3 since hk does and hl ∈ Fl since

hl(u
′)− hl(u)

u′ − u
=
u′ − u− pk(hk(u′)− hk(u))

1− pk

=
1

1− pk
− pk

1− pk
hk(u

′)− hk(u)

u′ − u

≤ 1

1− pk

≤ 1

pl
.

Therefore, letting

P(U ≤ u | X = xk) = hk(u) and P(U ≤ u | X = xl) = hl(u)

for l 6= k is a proper distribution for the unobservables and we can verify that

hk(u)pk +
∑
l 6=k

hl(u)pl = u = P(U ≤ u).

To show (h
J
k , h

J
l ) ∈ FU |X(xk, xl), we construct valid cdfs hj(·) for j /∈ {k, l} such that

K∑
j=1

hj(u)pj = u.

If X is binary this step is not required. Let

h∗lk(u) =
u− pkh

J
k (u)− plhJl (u)

1− pk − pl

=



b0 if b0 ≤ u ≤ (1− pk)b0 + pka1
u− pka1 − plb0

1− pk − pl
if (1− pk)b0 + pka1 ≤ u ≤ plb0 + (1− pl)a1

a1 if plb0 + (1− pl)a1 ≤ u ≤ a1
u if a1 ≤ u ≤ b1
b1 if b1 ≤ u ≤ (1− pk)b1 + pka2
u− pka2 − plb1

1− pk − pl
if (1− pk)b1 + pka2 ≤ u ≤ plb1 + (1− pl)a2

a2 if plb1 + (1− pl)a2 ≤ u ≤ a2
u if a2 ≤ u ≤ b2

...

aJ+1 if plbJ + (1− pl)aJ+1 ≤ u ≤ aJ+1

We can verify that h∗lk(0) = 0, h∗lk(1) = 1, h∗lk is right-continuous, non-decreasing and also that it
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satisfies assumption A3. Therefore, setting hj = h∗lk for j /∈ {k, l}, we have

K∑
j=1

hj(u)pj = P(U ≤ u)

and all conditional cdfs satisfy A3. We can show that (hJk , h
J
l ) ∈ FU |X(xk, xl) by symmetry.

Proof of lemma 2. Note that

fU |X(u | xk) =
P(X = xk | U = u)fU (u)

P(X = xk)

=
P(X = xk | U = u) · 1

P(X = xk)
.

In the last line we used that U ∼ Unif[0, 1] and hence its density is equal to 1.

Proof of theorem 3. To show h
c
k is the uniform upper bound, let

hk(u) = P(U ≤ u | X = k)

and suppose there exists a value u∗ such that hk(u
∗) > h

c
k(u
∗).

Case 1. Suppose u∗ ∈ [0, 1/2]. Then,

hk(u
∗) = P(U ≤ u∗ | X = k)

=

∫ u∗

0
fU |X(v | k) dv

=

∫ u∗

0

P(X = k | U = v)

pk
dv

≤
∫ u∗

0

pk + c

pk
dv

= u∗
(

1 +
c

pk

)
= h

c
k(u
∗),

a contradiction of hk(u
∗) > h

c
k(u
∗). The third line follows by lemma 2. The fourth line follows by

c-independence.
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Case 2. Suppose u∗ > 1/2. Then as in the previous case,

hk(u
∗) =

∫ u∗

0

P(X = k | U = v)

pk
dv

= 1−
∫ 1

u∗

P(X = k | U = v)

pk
dv

≤ 1−
∫ 1

u∗

pk − c
pk

dv

= u∗
(

1− c

pk

)
+

c

pk

= h
c
k(u
∗),

a contradiction of hk(u
∗) > h

c
k(u
∗).

We can use the same arguments to show that hck is the uniform (over u) lower bound for cdfs.

To show that hk ∈ Fck. Then

hk(u
′)− hk(u)

u′ − u
=

1

u′ − u

∫ u′

u

P(X = k | U = v)

pk
dv

≤ pk + c

pk

= 1 +
c

pk
.

The second line follows by c-independence. The lower bound holds similarly.

To show this set is sharp, let hk ∈ FcU |X(k) be arbitrary. Without loss of generality, let k = 1.
Define

h0(u) =
u− p1h1(u)

1− p1
.

Clearly, h0(0) = 0, h1(1) = 1 and h0(u) is right-continuous. h0 is non-decreasing since for u′ ≥ u,

h0(u
′)− h0(u) =

u′ − u
p0

− p1
p0

(h1(u
′)− h1(u))

≥ u′ − u
p0

− (u′ − u)

(
1 + c

p1

)
p1

p0

=
u′ − u
p0

(1− p1 − c)

=
u′ − u
p0

(p0 − c)

≥ 0.
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The second line follows by h1 ∈ Fck. The last line follows since c ≤ p0. Also,

h0(u
′)− h0(u)

u′ − u
=

1

p0
− p1
p0

h1(u
′)− h1(u)

u′ − u

∈
[

1

p0
− p1
p0

(
1 +

c

p1

)
,

1

p0
− p1
p0

(
1− c

p1

)]
=

[
1− c

p0
, 1 +

c

p0

]
,

The second line follows by h1 ∈ Fck. Therefore the set is sharp.

Finally, to see that (hc0, h
c
1) ∈ FcU |X(0, 1), note that if h1 = h

c
1, then

h0(u) =
u− p1h

c
1(u)

p0

=


u− (p1 + c)u

p0
if 0 ≤ u ≤ 1/2

u− (p1 − c)u− c
p0

if 1/2 < u ≤ 1.

=


(

1− c

p0

)
u if 0 ≤ u ≤ 1/2(

1 +
c

p0

)
u− c

p0
if 1/2 < u ≤ 1.

= hc0(u).

We can show that (h
c
0, h

c
1) ∈ FcU |X(0, 1) similarly.

Proof of theorem 4. Suppose there exists a u∗ such that hk(u
∗) > h

d
k(u
∗).

Case 1. If u∗ ∈ [0, d/(1− pk)] then

hk(u
∗) >

u∗

pk
= h

∅
k(u
∗),

the no-assumptions upper bound, a contradiction.

Case 2. If
d

1− pk
≤ u ≤ 1− d

pk

then

hk(u
∗) > u∗ +

d

pk
,

which violates the d-independence assumption.

Case 3. If u∗ > 1− d/pk then hk(u
∗) > 1, a contradiction.

A similar argument can be used to show that hdk(u) is the uniform lower bound.
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To show the set is sharp, fix h1 ∈ FdU |X(1) and let

h0(u) =
u− p1h1(u)

1− p1
.

Hence

sup
u∈[0,1]

|h0(u)− u| = sup
u∈[0,1]

∣∣∣∣ p1
1− p1

(h1(u)− u)

∣∣∣∣
≤ p1

1− p1
d

p1

=
d

p0
.

Therefore it satisfies d-independence. Also, h0 ∈ FdU |X(0) because it is a proper cdf since it is

non-decreasing, right-continuous and h0(0) = 0 and h0(1) = 1.

Finally we show that (hd0, h
d
1) ∈ Fd(0, 1). To see this, note that if h0 = hd0 then

h1(u) =
u− (1− p1)hd0(u)

p1

=



u

p1
if 0 ≤ u ≤ d

p0

u+
d

p1
if
d

p0
≤ u ≤ 1− d

1− p0
1 if 1− d

1− p0
≤ u ≤ 1.

= h
d
1(u).

Likewise, we can show that (h
d
0, h

d
1) ∈ FdU |X(0, 1).

Proofs for section 5

Proof of theorem 5. By A4 and quantile equivariance (lemma 5 part 7), for u ∈ [0, 1],

Q−Y |X(u | x) = m(x,Q−U |X(u | x))

Q+
Y |X(u | x) = m(x,Q+

U |X(u | x)).

Let τ ∈ [0, 1]. Evaluating at u = FU |X(τ | x) yields

Q−Y |X(FU |X(τ | x) | x) = m(x,Q−U |X(FU |X(τ | x) | x))

≤ m(x, τ)

and

Q+
Y |X(FU |X(τ | x) | x) = m(x,Q+

U |X(FU |X(τ | x) | x))

≥ m(x, τ).

62



The inequalities follow by lemma 5 part 1 and A4. Therefore, for a fixed FU |X(τ | x),

m(x, τ) ∈ Q∗Y |X(FU |X(τ | x) | x).

Considering the union over all FU |X(· | x) ∈ FU |X(x) gives the desired bounds.
To show this set is sharp, fix m(x, ·) ∈M(x). Then there exists FU |X ∈ FU |X(x) such that

m(x, τ) ∈ Q∗Y |X(FU |X(τ | x) | x).

Let m−1(x, ·) be the inverse of m(x, ·), which exists by A4. Define Ũ = m−1(X,Y ). Then

P(Ũ ≤ τ | X = x) = P(Y ≤ m(x, τ) | X = x)

≥ P(Y ≤ Q−Y |X(FU |X(τ | x) | x) | X = x)

= P(Q−Y |X(V | x) ≤ Q−Y |X(FU |X(τ | x) | x) | X = x)

= P(V ≤ FY |X(Q−Y |X(FU |X(τ | x) | x) | x) | X = x)

= FY |X(Q−Y |X(FU |X(τ | x) | x) | x)

≥ FU |X(τ | x).

The first line follows by invertibility of m(x, ·) and the definition of Ũ . The second since m(x, τ) ∈
Q∗Y |X(FU |X(τ | x) | x). In the third we have V | X = x distributed Unif[0, 1] by lemma 5 part 3.

The fourth by lemma 5 part 6. The fifth by V | X ∼ Unif[0, 1]. The sixth by lemma 5 part 4.
Similarly,

P(Ũ < τ | X = x) = P(Y < m(x, τ) | X = x)

≤ P(Y < Q+
Y |X(FU |X(τ | x) | x) | X = x)

= P(Q+
Y |X(V | x) < Q+

Y |X(FU |X(τ | x) | x) | X = x)

= P(V < F−Y |X(Q+
Y |X(FU |X(τ | x) | x) | x) | X = x)

= F−Y |X(Q+
Y |X(FU |X(τ | x) | x) | x)

≤ FU |X(τ | x).

The first, second, and fifth lines follow as before. In the third line V | X = x ∼ Unif[0, 1] by lemma
5 part 3. The fourth line follows by lemma 5 part 6. The sixth by lemma 5 part 5.

Therefore

FU |X(τ | x) ≤ P(Ũ ≤ τ | X = x)

= P(Ũ < τ | X = x) + P(Ũ = τ | X = x)

≤ FU |X(τ | x) + P(Ũ = τ | X = x).

Since P(Ũ = τ | X = x) = 0 except on a measure zero set,

P(Ũ ≤ τ | X = x) = FU |X(τ | x)

except on a measure zero set. Let τ∗ ∈ [0, 1] be a point such that

P(Ũ ≤ τ∗ | X = x) 6= FU |X(τ∗ | x).
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Since these functions are equal on a set of measure one, we can find a sequence {εn}n≥1 where
εn > 0 and

P(Ũ ≤ τ∗ + εn | X = x) = FU |X(τ∗ + εn | x)

for any n ≥ 1. By the right-continuity of both functions, taking the limit as εn ↘ 0 yields

P(Ũ ≤ τ∗ | X = x) = FU |X(τ∗ | x),

a contradiction. Therefore,
P(Ũ ≤ τ | X = x) = FU |X(τ | x)

for all τ ∈ [0, 1].
Therefore all m(x, ·) ∈ M(x) are attainable since we can find a random variable Ũ | X = x

which generates such a structural function and has cdf FU |X .

Proof of corollary 4. We have

ASF(xk) = E[m(xk, U)]

=

∫ 1

0
m(xk, u) du

∈
[∫ 1

0
Q−Y |X(hJk (u) | xk) du,

∫ 1

0
Q+
Y |X(h

J
k (u) | xk) du

]
.

For this corollary we are assuming X is discrete. First consider the lower bound:∫ 1

0
Q−Y |X(hJk (u) | xk) du

=

J∑
j=0

∫ pkτj+τj+1(1−pk)

τj

Q−Y |X(τj | xk) du+

J∑
j=0

∫ τj+1

pkτj+τj+1(1−pk)
Q−Y |X

(
u− τj+1

pk
+ τj+1

∣∣∣∣xk) du
= (1− pk)

J∑
j=0

(τj+1 − τj)Q−Y |X(τj | xk) + pk

J∑
j=0

∫ τj+1

τj

Q−Y |X(u | xk) du

= (1− pk)
J∑
j=0

(τj+1 − τj)Q−Y |X(τj | xk) + pk

∫ 1

0
Q−Y |X(u | xk) du

= (1− pk)
J∑
j=0

(τj+1 − τj)Q−Y |X(τj | xk) + pkE[Y | X = xk].
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Next consider the upper bound:∫ 1

0
Q+
Y |X(h

J
k (u | xk) | xk) du

=

J∑
j=0

∫ (1−pk)τj+pkτj+1

τj

Q+
Y |X

(
u− τj
pk

+ τj

∣∣∣∣xk) du+
J∑
j=0

∫ τj+1

(1−pk)τj+pkτj+1

Q+
Y |X(τj+1 | xk) du

= pk

J∑
j=0

∫ τj+1

τj

Q+
Y |X(u | xk) du+ (1− pk)

J∑
j=0

(τj+1 − τj)Q+
Y |X(τj+1 | xk)

= (1− pk)
J∑
j=0

(τj+1 − τj)Q+
Y |X(τj+1 | xk) + pkE[Y | X = xk].

Next we prove sharpness of the interior of this interval. For each value A in this interior, we
must find a continuous, strictly increasing structural function inside the identified set of theorem 5
which integrates to A.

First note that the functions Q−Y |X(· | xk) and Q+
Y |X(· | xk) are strictly increasing. This follows

since the conditional cdf of Y | X = xk contains no flat regions. To see this, note that

P(Y ≤ y | X = xk) = P(m(xk, U) ≤ y | X = xk)

= P(U ≤ m−1(xk, y) | X = xk)

= FU |X(m−1(xk, y) | xk).

FU |X(· | xk) is continuous by lemma 4 and m−1(xk, ·) is continuous and strictly increasing by A4.
Hence the composition is continuous.

We split our sharpness proof into two cases.

Case 1. Suppose the functions Q−Y |X(· | xk) and Q+
Y |X(· | xk) are continuous, and therefore are

equal to each other.

The functions hJk and h
J
k are both valid cdfs that satisfy A3. Likewise,

hk(u, c) = chJk (u) + (1− c)hJk (u)

for c ∈ [0, 1] is a valid cdf that satisfies assumption A3. Define

ASF(xk, c) =

∫ 1

0
Q−Y |X(hk(u, c) | xk) du

for c ∈ [0, 1]. This function spans the entire closed interval bounds as c varies from 0 to 1, but the
functions hk(u, c) are not strictly increasing in u for all values of c. Therefore Q−Y |X(hk(u, c) | xk)
is not strictly increasing in u. Hence they violate A4 and so are not valid structural functions.4

Nonetheless, we can find a strictly increasing structural function that is arbitrarily close to the
invalid one. To see this, we can slightly perturb the function hk(u, c) by

hk(u, c, ε) = (1− ε)hk(u, c) + εFU (u)

4They are never strictly increasing for c = 0, 1, but may or may not be strictly increasing for other values of c
depending on the value of pk.
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such that hk(u, c, ε) ∈ FTU |X(xk) for small ε. This follows from FU ∈ FTU |X(xk). These perturbations

can have positive or negative ε when c ∈ (0, 1), but only positive (negative) ε when c = 1 (c = 0).
These perturbations ensure that hk(u, c, ε) is strictly increasing in u and therefore Q−Y |X(hk(u, c, ε) |
xk) is strictly increasing and continuous, and therefore a valid structural function.

The integral

ASF(xk, c, ε) =

∫ 1

0
Q−Y |X(hk(u, c, ε) | xk) du

can be made arbitrarily close to ASF(xk, c) for c ∈ [0, 1] by continuity in ε. Therefore, by varying
c ∈ [0, 1] and ε ∈ [−δ, δ] for some small δ > 0, we can attain any element in (ASF(xk, 0),ASF(xk, 1)),
as desired.

Notice that the sign constraint on ε when c = 0 or 1 is precisely why the endpoints cannot be
attained.

Case 2. An additional complication arises if Q−Y |X(· | xk) is discontinuous at a point, since the

implied structural functions Q−Y |X(hk(u, c) | xk) will not be proper structural functions due to both
their failure to be strictly increasing and their failure to be continuous.

The proof of sharpness in this case is best understood by considering an example, although the
idea can be extended to cover the general case. In particular, this example has a single discontinuity,
but the same idea applies for multiple discontinuities. On to the example: Suppose

U | X = 1 ∼ Unif([0, 1/4] ∪ [3/4, 1]) and U | X = 0 ∼ Unif[1/4, 3/4]

and p0 = p1 = 1/2. Without loss of generality we focus on the ASF at xk = 1. The set quantile
function is

Q∗Y |X(u | 1) =


m(1, u/2) for u ∈ [0, 1/2)

[m(1, 1/4),m(1, 3/4)] for u = 1/2

m(1, (u+ 1)/2) for u ∈ (1/2, 1].

For example, the left plot of figure 11 shows Q∗Y |X(u | 1) when m(x, u) = u. Hence the conditional

quantile function Q−Y |X(τ | 1) is discontinuous at the value τ = 1/2 and therefore Q−Y |X(h1(u) | 1)

will be a discontinuous function for any h1 ∈ FTU |X(1). This leaves us in a similar situation as

case 1: Although ASF(1, c) sweeps out the entire interval as c varies from 0 to 1, the function
Q−Y |X(h1(u, c) | 1) is discontinuous, and hence is not a valid structural function. An example of
this discontinuity is given in the bottom left plot of figure 12. Here we consider c = 1 and J = 0,
so that we are plugging the no-assumption bound (as shown in the top left plot of this figure) into
Q−Y |X(· | 1).

Again as in case 1, the solution is to perturb the cdf h1(u, c) to h1(u, c, ε) in such a way that there
exists a continuous selection from Q∗Y |X(h1(u, c, ε) | 1). For small ε > 0, consider the perturbation

h1(u, c, ε) =


h1(u+ ε, c) for u with h1(u+ ε, c) ≤ 1/2

1/2 for u with h1(u, c) ≤ 1/2 ≤ h1(u+ ε, c)

h1(u, c) for u with h1(u, c) ≥ 1/2.

The top right plot of figure 12 shows an example, with c = 1 and J = 0. This function h1(u, c, ε)
is a valid cdf, is in FTU |X(1) for small enough ε and, crucially, can approximate h1(u, c) arbitrar-

ily well uniformly from above for c ∈ (0, 1]. When we compute the set of identified functions
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Figure 11: Both plots consider the example with U | X = 1 ∼ Unif([0, 1/4]∪ [3/4, 1]) and m(x, u) =
u. Left: The set quantile function Q∗Y |X(u | xk) for xk = 1. Right: Q∗Y |X(FU |X(u | xk) | xk) where

FU |X is the true cdf of U | X.

Q∗Y |X(h1(u, c, ε) | 1) for ε > 0, we obtain

Q∗Y |X(h1(u, c, ε) | 1) =


m(1, h1(u+ ε, c)/2) for u with h1(u+ ε, c) < 1/2

[m(1, 1/4),m(1, 3/4)] for u with h1(u, c) ≤ 1/2 ≤ h1(u+ ε, c)

m(1, (h1(u, c) + 1)/2) for u with hk(u, c) > 1/2.

The bottom right plot of figure 12 shows an example, with c = 1 and J = 0. The key observation
here is that a continuous function can be traced out in the graph of the set function Q∗Y |X(h1(·, c, ε) |
1) that is arbitrarily close to selections from Q∗Y |X(h1(u, c) | 1), which may not be continuous.

Although we have just dealt with the discontinuity problem, it is possible that the continuous
selection we have constructed has flat regions, and thus violates the monotonicity constraint. For
example, this happens in the bottom right plot of figure 12. If this happens we can apply ideas
from case 1 to find another perturbed cdf which leads to selections from the set quantile which are
both continuous and strictly increasing and arbitrarily close to Q∗Y |X(h1(u, c) | 1).

Finally, as in case 1 we consider integrals over the continuous selections from Q∗Y |X(h1(u, c, ε) | 1)
and by varying c from 0 to 1 and ε appropriately we sweep out the entire interior of the ASF bounds,
noting that hk(u, c, ε) is continuous in c and ε.
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Figure 12: Top left: The no-assumptions lower bound cdf. Top right: an approximation to the
no-assumptions lower bound cdf. Bottom left: The left quantile of Y | X evaluated at the no-
assumptions lower bound cdf. Bottom right: The set quantile of Y | X evaluated at the approxi-
mation to the no-assumptions lower bound cdf.
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Proof of corollary 5. First consider the lower bound:∫ 1

0
Q−Y |X(hJk (u) | xk) du

=
J∑
j=0

∫ pkbj+aj+1(1−pk)

bj

Q−Y |X(bj | xk) du+

J∑
j=1

∫ bj

aj

Q−Y |X(u | xk) du

+
J∑
j=0

∫ aj+1

pkbj+aj+1(1−pk)
Q−Y |X

(
u− aj+1

pk
+ aj+1

∣∣∣∣xk) du
= (1− pk)

J∑
j=0

(aj+1 − bj)Q−Y |X(bj | xk) +

J∑
j=1

∫ bj

aj

Q−Y |X(u | xk) du+ pk

J∑
j=0

∫ aj+1

bj

Q−Y |X(u | xk) du

= (1− pk)
J∑
j=0

(aj+1 − bj)Q−Y |X(bj | xk) + (1− pk)
J∑
j=1

∫ bj

aj

Q−Y |X(u | xk) du+ pkE[Y | X = xk].

Next consider the upper bound:∫ 1

0
Q+
Y |X(h

J
k (u) | xk) du

=
J∑
j=0

∫ (1−pk)bj+aj+1pk

bj

Q+
Y |X

(
u− bj
pk

+ bj

∣∣∣∣xk) du+
J∑
j=1

∫ bj

aj

Q+
Y |X(u | xk) du

+

J∑
j=0

∫ aj+1

(1−pk)bj+aj+1pk

Q+
Y |X (aj+1 | xk) du

= (1− pk)
J∑
j=0

(aj+1 − bj)Q+
Y |X(aj+1 | xk) + (1− pk)

J∑
j=1

∫ bj

aj

Q+
Y |X(u | xk) du+ pkE[Y | X = xk].

Sharpness of the interior follows as in the proof of corollary 4.

Sketch of c-independence ASF bounds. We have

LB =

∫ 1
2

0
Q−Y |X

((
1− c

pk

)
u | xk

)
du+

∫ 1

1
2

Q−Y |X

((
1 +

c

pk

)
u− c

pk
| xk

)
du

=
1

2

(
1

2

(
1− c

pk

))−1 ∫ 1
2

(
1− c

pk

)
0

Q−Y |X (v | xk) dv

+
1

2

(
1

2

(
1 +

c

pk

))−1 ∫ 1

1
2

(
1− c

pk

)Q−Y |X (v | xk) dv

=
1

2
E
[
Q−Y |X(V | xk) | V ≤

1

2

(
1− c

pk

)]
+

1

2
E
[
Q−Y |X(V | xk) | V ≥

1

2

(
1− c

pk

)]
=

1

2
E
[
Q−Y |X(V | X) | X = xk, Q

−
Y |X(V | X) ≤ Q−Y |X

(
1

2

(
1− c

pk

)
| xk

)]
+

1

2
E
[
Q−Y |X(V | X) | X = xk, Q

−
Y |X(V | X) ≥ Q−Y |X

(
1

2

(
1− c

pk

)
| xk

)]
,
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where we defined V | X ∼ Unif[0, 1] (in particular, V ⊥⊥ X, as used in the fourth line). By lemma
5 part 3, Q−Y |X(V | X) ∼ Y and therefore the previous expression equals

1

2
E
[
Y | X = xk, Y ≤ Q−Y |X

(
1

2

(
1− c

pk

)
| xk

)]
+

1

2
E
[
Y | X = xk, Y ≥ Q−Y |X

(
1

2

(
1− c

pk

)
| xk

)]
.

Similar techniques can be used to derive the upper bound.

We next briefly consider sharpness of these ASF bounds. When c < min{p0, p1}, the distribution

P(Y ≤ y | X = k) = FU |X(m−1(k, y) | k)

=
1

P(X = k)

∫ m−1(k,y)

0
P(X = k | U = u) du

is a continuous and strictly increasing function because P(X = k | U = u) is bounded away
from zero and m−1(k, ·) is continuous and strictly increasing. Therefore its inverses Q−Y |X(· | k)

and Q+
Y |X(· | k) are strictly increasing and continuous everywhere. The cdf bounds hck(·) and

h
c
k(·) are also strictly increasing and continuous. Hence the quantile bounds Q−Y |X(hck(u) | k) and

Q+
Y |X(h

c
k(u) | k) are strictly increasing, continuous functions. Thus the endpoints are attainable.

We can show the interior is sharp by taking linear combinations of the upper and lower cdf bounds.
As with the endpoints, this linear combination function hk(u, c) leads to Q−Y |X(hk(u, c) | xk) being
a valid structural function, so that the complications that arose for T -independence in the proof of
corollary 5 do not arise for c-independence with c < min{p0, p1}. Thus the entire closed interval is
attainable and hence is the identified set.

If c ≥ min{p0, p1}, only the interior is sharp. This can be shown as in the proof of corollary
5.

Sketch of d-independence ASF bounds. We have

LB =

∫ d/pk

0
Q−Y |X(0 | xk) du

+

∫ 1−d/(1−pk)

d/pk

Q−Y |X

(
u− d

pk
| xk

)
du+

∫ 1

1−d/(1−pk)
Q−Y |X

(
u− 1

pk
+ 1 | xk

)
du

≡ T1 + T2 + T3.

The first piece is

T1 =

∫ d/pk

0
Q−Y |X(0 | xk) du

=
d

pk
Q−Y |X(0 | xk) du.
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The second and third pieces are

T2 + T3 =

∫ 1−d/(1−pk)

d/pk

Q−Y |X

(
u− d

pk
| xk

)
du+

∫ 1

1−d/(1−pk)
Q−Y |X

(
u− 1

pk
+ 1 | xk

)
du

=

∫ 1−d/pk(1−pk)

0
Q−Y |X(u | xk) du+ pk

∫ 1

1−d/pk(1−pk)
Q−Y |X (u | xk) du

=

∫ 1

0
Q−Y |X (u | xk) du+ (pk − 1)

∫ 1

1−d/pk(1−pk)
Q−Y |X (u | xk) du

= E[Y | X = xk] + (pk − 1)

∫ 1

1−d/pk(1−pk)
Q−Y |X (u | xk) du.

In the last line we used ∫ 1

0
Q−Y |X(u | xk) du = E[Y | X = xk].

Similar techniques can be used to derive the upper bound. We can use results in the proof of
corollary 5 to show the interior of the bounds is sharp.

Proof of corollary 6. The key step is that by theorem 2 it is possible to jointly achieve the cdf

bounds (hJk , h
J
l ) and (hJl , h

J
k ). Hence the bounds on the ATE follow immediately from the bounds

on the ASF’s obtained in corollary 5.
To show sharpness of the interior, let

(FU |X(u | xk), FU |X(u | xl)) = (hk(u, c), hl(u, 1− c))

where

hk(u, c) = chJk (u) + (1− c)hJk (u)

hl(u, 1− c) = (1− c)hJl (u) + ch
J
l (u).

These two cdfs satisfy assumption A3. Moreover, they are jointly attainable. When X is binary,
this holds since

pkhk(u, c) + plhl(u, c) = c
(
pkh

J
k (u) + plh

J
l (u)

)
+ (1− c)

(
pkh

J
k (u) + plh

J
l (u)

)
= u

by the last part of theorem 2. To see that the two cdfs are jointly attainable when supp(X) contains
more than two points, consider

P(U ≤ u | X /∈ {xk, xl}) =
u− pkhk(u, c)− plhl(u, 1− c)

1− pk − pl

=
u− c(pkhJk (u) + plh

J
l (u))− (1− c)(pkh

J
k (u) + plh

J
l (u))

1− pk − pl

= c
u− pkhJk (u)− plh

J
l (u)

1− pk − pl
+ (1− c)u− pkh

J
k (u)− plhJl (u)

1− pk − pl
≡ ch∗kl(u) + (1− c)h∗lk(u).

The first line follows by the law of total probability. Here h∗kl(u), h∗lk(u) are defined as in the proof of
theorem 2. These are proper cdfs that satisfy assumption A3, and therefore (hk(·, c), hl(·, 1− c)) ∈
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FTU |X(xk, xl). The proof of sharpness now continues similarly to the proof of corollary 4.

Proof of lemma 3. By theorem 5, for any τ ∈ [0, 1],

Q−Y |X(hJk (τ) | xk) ≤ m(xk, τ) ≤ Q+
Y |X(h

J
k (τ) | xk).

Since U ∈ [0, 1], the bounds hold for U as well. By corollary 6, the bound for ∆(xl → xk) similarly
holds.

Proof of corollary 7. These bounds follow directly from lemma 3 and sharpness follows from sharp-
ness of theorem 5 and arguments similar to the proof of corollary 4.

Proofs for section 6

Proof of proposition 4. This is the rank invariance case of theorem 2 in Chernozhukov and Hansen
(2005).

Proof of theorem 6. For a given cdf h1 ∈ FU |Z(1), the corresponding cdf h0 ∈ FU |Z(0) is given by

h0(u) =
u− p1h1(u)

1− p1

for any u. For a fixed cdf h1 ∈ FU |Z(1) and given τ , Chernozhukov and Hansen’s (2005) proof
of proposition 4 shows that (m(0, τ),m(1, τ)) = (θ0(h1(τ)), θ1(h1(τ))) are uniquely identified in L.
For a fixed τ , the identified set is the collection of solutions{

(θ0(h1(τ)), θ1(h1(τ))) : h1 ∈ FU |Z(1)
}
.

We characterize this set next.
We first show that θ0(·) and θ1(·) are both monotonic in their arguments. The identifying

moment conditions are:

h0(τ) =
τ − p1h1(τ)

1− p1
= P(Y ≤ θ0(h1(τ)) | X = 0, Z = 0)PX|Z(0 | 0) (21)

+ P(Y ≤ θ1(h1(τ)) | X = 1, Z = 0)PX|Z(1 | 0)

and

h1(τ) = P(Y ≤ θ0(h1(τ)) | X = 0, Z = 1)PX|Z(0 | 1) (22)

+ P(Y ≤ θ1(h1(τ)) | X = 1, Z = 1)PX|Z(1 | 1)

by the law of total probability. Using the implicit function theorem, we differentiate both sides of
(21) and (22) with respect to h1(τ) and obtain:−

p1
1− p1

1

 =

(
fY |X,Z(θ0(h1(τ)) | 0, 0)PX|Z(0 | 0) fY |X,Z(θ1(h1(τ)) | 1, 0)PX|Z(1 | 0)

fY |X,Z(θ0(h1(τ)) | 0, 1)PX|Z(0 | 1) fY |X,Z(θ1(h1(τ)) | 1, 1)PX|Z(1 | 1)

)(
θ′0(h1(τ))
θ′1(h1(τ))

)
.

= Π′(m(0, τ),m(1, τ))

(
θ′0(h1(τ))
θ′1(h1(τ))

)
.
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By the full rank assumption of the matrix Π′(m(0, τ),m(1, τ)), we find

(
θ′0(h1(τ))
θ′1(h1(τ))

)
=

(
fY |X,Z(m(0, τ) | 0, 0)PX|Z(0 | 0) fY |X,Z(m(1, τ) | 1, 0)PX|Z(1 | 0)

fY |X,Z(m(0, τ) | 0, 1)PX|Z(0 | 1) fY |X,Z(m(1, τ) | 1, 1)PX|Z(1 | 1)

)−1−
p1

1− p1

1


=

1

det(Π′(m(0, τ),m(1, τ)))

×


−
p1fY |X,Z(m(1, τ) | 1, 1)PX|Z(1 | 1)

1− p1
− fY |X,Z(m(1, τ) | 1, 0)PX|Z(1 | 0)

p1fY |X,Z(m(0, τ) | 0, 1)PX|Z(0 | 1)

1− p1
+ fY |X,Z(m(0, τ) | 0, 0)PX|Z(0 | 0)

 .

Hence the signs of the derivatives of the two components are opposites.
By the rank condition,

det(Π′(m(0, τ),m(1, τ))) 6= 0

for any τ . By the continuity of the determinant operator, the matrix Π′, and the functions
(m(0, τ),m(1, τ)), the determinant is a continuous function of τ . Therefore, by the intermediate
value theorem, this determinant is either positive for all τ , or negative for all τ .

Thus, we have shown that θ0 is increasing (or decreasing) in h1(τ), and that θ1 is decreasing
(increasing) in h1(τ). Solving the system for

P(U ≤ τ | Z = 1) = h1(τ)

will yield the lower (upper) bound for m(0, τ) and the upper (lower) bound for m(1, τ), while
solving it for

P(U ≤ τ | Z = 1) = h1(τ)

will yield the upper (lower) bound for m(0, τ) and the lower (upper) bound for m(1, τ). For
sharpness, consider

h1(u, c) = ch1(u) + (1− c)h1(u) ∈ FU |Z(1)

for c ∈ [0, 1]. Since this cdf varies from the lower to the upper bound, (θ0(h1(τ, c)), θ1(h1, τ, c))
varies from the lower to the upper bound as c varies from zero to one. By continuity of h1(τ, ·) and
of (θ0(·), θ1(·)), and by the intermediate value theorem, for any element of the bounds we derived
above there exists a c which attains it.

Proofs for section 7

Proof of theorem 7. For a fixed FU |X(· | xk) ∈ FU |X(xk), the identified set for g(xk) is determined
by the set of solutions to the equation

E[Y | X = xk] = FU |X(g(xk) | xk).

Taking Q−U |X and Q+
U |X of both sides yields

Q−U |X(E[Y | X = xk] | xk) = Q−U |X(FU |X(g(xk) | xk) | xk)

≤ g(xk)
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and

Q+
U |X(E[Y | X = xk] | xk) = Q+

U |X(FU |X(g(xk) | xk) | xk)

≥ g(xk).

The inequalities here hold by lemma 5 part 1. Thus

g(x) ∈ Q∗U |X
(
E[Y | X = xk] | xk

)
.

These bounds are sharp as in the proof of theorem 5. Next, letting FU |X range over FU |X(xk)

allows us to construct the identified set. Since hk and hk are pointwise and uniform cdf bounds for
FU |X(xk), inverting these cdf bounds provides the pointwise and uniform bounds for the left and

right quantile functions Q−U |X(· | xk) and Q+
U |X(· | xk). Hence

g(xk) ∈
[
Q
−
U |X(E(Y | X = xk) | xk), Q+

U |X(E(Y | X = xk) | xk)
]
.

Sharpness follows by defining

hk(u, c) = min{hk(u+ c), hk(u)}

for c ∈ [0, 1], where hk(u) = 1 for u > 1. Note that

hk(u, 0) = hk(u) and hk(u, 1) = hk(u).

For each c ∈ [0, 1], hk(u, c) is a proper cdf since it is non-decreasing, right-continuous and hk(0, c) =
0 and hk(1, c) = 1. We can verify that

hk(u) ≤ hk(u, c) ≤ hk(u)

for all u, c ∈ [0, 1]. Furthermore, it can be shown that hk(·, c) ∈ FU |X(xk) for any c ∈ [0, 1] for each
of the sets FU |X(xk) defined in section 4.

We can also see that the left-inverse of hk(u, c) can be written as

h−k (τ, c) = inf{u ∈ [0, 1] : min{hk(u+ c), hk(u)} ≥ τ}
= inf{u ∈ [0, 1] : hk(u+ c) ≥ τ and hk(u) ≥ τ}

= max{h−k (τ), h−k (τ)− c}.

Using a similar argument, we also have

h+k (τ, c) = max{h+k (τ), h+k (τ)− c}.

Note that h−(τ, 0) = max{h−k (τ), h−k (τ)} = h−k (τ) and h−(τ, 1) = max{h−k (τ), h−k (τ)− 1} = h
−
k (τ)

(and similarly for right-quantiles) and therefore we can sweep out the identified set by using the
left- and right-inverses of hk(u, c) and letting vary c between zero and one.
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Left and right quantile lemmas

Lemma 5. Let X be a scalar random variable with xL ≤ X ≤ xU almost surely, where xL may
be −∞ and xU may be +∞. Let F (x) = P(X ≤ x) and F−(x) = P(X < x). For τ ∈ [0, 1], define

Q−(τ) = inf{x ∈ [xL, xU ] : F (x) ≥ τ} and Q+(τ) = sup{x ∈ [xL, xU ] : F (x) ≤ τ}.

Let τ ∈ [0, 1] and x ∈ [xL, xU ]. Then the following properties hold.

1. Q−(F (x)) ≤ x and Q+(F (x)) ≥ x.

2. Q−(t) = Q+(t) for all t ∈ [0, 1] except for a set of measure zero.

3. Let Y be a random variable with cdf F . Let U ∼ Unif[0, 1]. Then the cdf of Q−(U) and
Q+(U) is also F .

4. F (Q−(τ)) ≥ τ and F (Q+(τ)) ≥ τ .

5. F−(Q+(τ)) ≤ τ .

6. Q−(τ) ≤ x⇔ τ ≤ F (x) and Q+(τ) < x⇔ τ < F−(x).

7. Let φ : R→ R be a strictly increasing continuous function. Then for all τ ∈ [0, 1],

Q−φ(X)(τ) ≡ inf{y ∈ [φ(xL), φ(xU )] : P(φ(X) ≤ y) ≥ τ}

= φ(Q−(τ))

and

Q+
φ(X)(τ) ≡ sup{y ∈ [φ(xL), φ(xU )] : P(φ(X) ≤ y) ≤ τ}

= φ(Q+(τ)).

Proof.

1. The first part is lemma 21.1 part (iv) of van der Vaart (2000). The second part follows from
x ∈ {y ∈ [xL, xU ] : F (y) ≤ F (x)}, therefore Q+(F (x)) = sup{y ∈ [xL, xU ] : F (y) ≤ F (x)} ≥
x by the definition of the supremum.

2. By definition, Q−(t) and Q+(t) differ if and only if the set {y ∈ [xL, xU ] : F (y) = t} has
nonzero measure. Also, the functions Q−(t) and Q+(t) will be discontinuous at t if and
only if {y ∈ [xL, xU ] : F (y) = t} is a flat region of the cdf, which happens if and only if
{y ∈ [xL, xU ] : F (y) = t} has measure non-zero. Therefore, Q−(t) 6= Q+(t) only on their
respective set of discontinuity points. Since Q− and Q+ are monotone functions, the Darboux-
Froda theorem (e.g., theorem 4.30 of Rudin 1976) shows that the set of discontinuities of each
function is at most countable, and hence has measure zero.

3. We have

P(Q−(U) ≤ y) = P(U ≤ F (y))

= F (y).

The first line follows by lemma 21.1 part (i) of van der Vaart (2000). The second by U ∼
Unif[0, 1]. By part 2 of this lemma, Q−(U) = Q+(U) a.s. and therefore P(Q+(U) ≤ y) = F (y).
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4. The first part is lemma 21.1 part (ii) of van der Vaart (2000). The second part follows by
Q+(τ) ≥ Q−(τ) and monotonicity of F (y).

5. This is lemma 2.1f of Hosseini (2010).

6. The first part is lemma 21.1 part (i) of van der Vaart (2000). The second part follows from
proposition 1 point (5) in Embrechts and Hofert (2013) and from the fact that F− is the
generalized inverse of Q+, a right-continuous function.

7. Both statements hold for τ ∈ (0, 1) by theorem 3.1 of Hosseini (2010). For the first statement,
equality at τ = 0 holds becauseQ−φ(X)(0) = φ(xL) andQ−(0) = xL by the support restrictions.
Equality at τ = 1 holds because of

Q−φ(X)(1) = inf{y ∈ [φ(xL), φ(xU )] : P(φ(X) ≤ y) ≥ 1}

≤ φ(Q−(1))

since P(φ(X) ≤ φ(Q−(1)) = P(X ≤ Q−(1)) = 1 ≥ 1, and also because

Q−φ(X)(1) = φ(φ−1(Q−φ(X)(1)))

≤ φ(φ−1(φ(Q−(1))))

= φ(Q−(1))

using the first inequality with φ−1. This shows that Q−φ(X)(1) = φ(Q−(1)). A similar proof

can be used to show that the statement holds for right quantiles for τ ∈ {0, 1}.

C Additional results

In this appendix we give additional results relating to various parts of the paper.

On interpretation of T -independence

In this subsection we give additional results relating to section 3. The first corollary specializes
theorem 1 to the case when T is a finite set.

Corollary 8. Suppose A1 holds. Let

T = {τ1, . . . , τJ}

and τ0 = 0 and τJ+1 = 1. Define
Uj = [τj−1, τj)

for j = 1, . . . , J and UJ+1 = [τJ , τJ+1]. Suppose X is binary with P(X = 1) ∈ (0, 1). Then U is
T -independent of X if and only if

1

|Uj |

∫
Uj
p(u) du = P(X = 1) (23)

for all j = 1, . . . , J + 1, where |Uj | = τj − τj−1.
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Corollary 8 says that T -independence for finite T holds if and only if there exists a partition of
the domain [0, 1] such that the average value of the propensity score within each partition equals
the overall average of the propensity score. An equivalent way to phrase this result is that the
average value of the propensity score has to be equal across all partition sets:

1

|Uj |

∫
Uj
p(u) du =

1

|Uk|

∫
Uk
p(u) du

for all j and k from 1, . . . , J + 1.
Applying lemma 1, when T is finite, corollary 8 shows that T = {τ1, . . . , τJ}-independence

holds if and only if
P(X = 1 | U ∈ Uj) = P(X = 1)

for all j = 1, . . . , J + 1. Or, equivalently, if

P(X = 1 | U ∈ Uj) = P(X = 1 | U ∈ Uk)

for j 6= k.

Proof of corollary 8. To give additional perspective on these results, we provide a different proof
of this corollary than the one used in theorem 1. This proof begins with lemma 6 below and then
extends it to the case where multiple cdf independence conditions hold.

(⇒) Suppose U is T -independent of X. By lemma 6,∫ τj+1

0
p(u) du = τj+1 · P(X = 1) and

∫ τj

0
p(u) du = τj · P(X = 1)

for all j = 0, . . . , J . Subtracting the second equation from the first yields∫ τj+1

τj

p(u) du = (τj+1 − τj)P(X = 1)

for all j = 0, . . . , J , as desired.

(⇐) Suppose ∫ τj+1

τj

p(u) du = (τj+1 − τj)P(X = 1)

for all j = 0, . . . , J . Letting j = 0, we have∫ τ1

0
p(u) du = τ1 · P(X = 1).

By lemma 6,

P(U ≤ τ1 | X = 1) = τ1 and P(U ≤ τ1 | X = 0) = τ1.

Letting j = 1, we have ∫ τ2

τ1

p(u) du = (τ2 − τ1)P(X = 1)

77



by assumption. Adding our average integral equality for j = 0 yields∫ τ2

0
p(u) du = τ2 · P(X = 1).

By lemma 6, this implies that

P(U ≤ τ2 | X = 1) = τ2 and P(U ≤ τ2 | X = 0) = τ2.

Repeating this argument shows that

P(U ≤ τj | X = 1) = τj and P(U ≤ τj | X = 0) = τj

for all j = 0, . . . , J .

Lemma 6. Suppose X is binary with P(X = 1) ∈ (0, 1). Then U is τ -cdf independent of X if and
only if

1

τ

∫ τ

0
p(u) du = P(X = 1).

Proof of lemma 6. Recall that by lemma 2 we have

p(u) = fU |X(u | 1)P(X = 1).

Hence ∫ τ

0
p(u) du =

∫ τ

0
fU |X(u | 1)P(X = 1) du

=

(∫ τ

0
fU |X(u | 1) du

)
P(X = 1)

= P(U ≤ τ | X = 1)P(X = 1).

(⇒) Suppose τ -cdf independence holds: P(U ≤ τ | X = 1) = τ and P(U ≤ τ | X = 0) = τ . Then∫ τ

0
p(u) du = τ · P(X = 1)

as desired.

(⇐) Next suppose ∫ τ

0
p(u) du = τ · P(X = 1)

holds. Then
τ · P(X = 1) = P(U ≤ τ | X = 1)P(X = 1)

and hence
τ = P(U ≤ τ | X = 1)

since P(X = 1) > 0. Similarly to above,∫ τ

0
[1− p(u)] du = P(U ≤ τ | X = 0)P(X = 0).
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Consider the left hand side: ∫ τ

0
[1− p(u)] du = τ −

∫ τ

0
p(u) du

= τ − τP(X = 1)

= τ [1− P(X = 1)]

= τ · P(X = 0).

Hence
τ · P(X = 0) = P(U ≤ τ | X = 0)P(X = 0)

and thus
τ = P(U ≤ τ | X = 0)

since P(X = 0) > 0. Thus τ -cdf independence holds.

When examining whether a plotted propensity score satisfies the average value condition (23),
it may be easier to visualize areas above and below the propensity score. The following corollary
shows that with T = {τ1, . . . , τJ}, T -independence is equivalent to there being a partition of the
domain such that the ratio of the area below the propensity score to the area above the propensity
score is the same across all partitions.

Corollary 9. Suppose X is binary with P(X = 1) ∈ (0, 1). Let T and Uj be defined as in corollary
8. Then T -independence holds if and only if∫

Uj p(u) du∫
Uj [1− p(u)] du

=

∫
Uk p(u) du∫

Uk [1− p(u)] du
(24)

for all j, k = 1, . . . , J .

We furthermore have that, under T -independence of U and X, these ratios equal the odds ratio:∫
Uj p(u) du∫

Uj [1− p(u)] du
=

P(X = 1)

P(X = 0)

for all j = 1, . . . , J .

Proof of corollary 9. The proportional balance condition (24) is equivalent to(∫
Uj
p(u) du

)(∫
Uk

[1− p(u)] du

)
=

(∫
Uj

[1− p(u)] du

)(∫
Uk
p(u) du

)
.

Distributing terms yields

−

(∫
Uj
p(u) du

)(∫
Uk
p(u) du

)
+ |Uk|

∫
Uj
p(u) du

= −

(∫
Uj
p(u) du

)(∫
Uk
p(u) du

)
+ |Uj |

∫
Uk
p(u) du.
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Hence equation (24) is equivalent to

1

|Uj |

∫
Uj
p(u) du =

1

|Uk|

∫
Uk
p(u) du

for all j, k = 1, . . . , J . The result then follows immediately from corollary 8.

The following result shows that if p is consistent with T -independence then we can shift and
scale p to obtain new propensity scores that are also consistent with T -independence. The first two
propensity scores in figure 1 illustrate this result.

Corollary 10. Suppose p satisfies the average value condition (23). Define

p̃(u) = C1p(u) + C2

where C1 and C2 are constants chosen such that p̃(·) ∈ [0, 1] and∫ 1

0
p̃(u) du = P(X = 1).

Then p̃ also satisfies the average value condition (23).

Proof of corollary 10. First note that∫ 1

0
p̃(u) du = C1P(X = 1) + C2.

So enforcing the integration constraint∫ 1

0
p̃(u) du = P(X = 1)

yields
C1P(X = 1) + C2 = P(X = 1)

and hence
C2

1− C1
= P(X = 1).

So suppose C1 and C2 satisfy this equation, and also that p̃(·) ∈ [0, 1]. By assumption,

1

|Uj |

∫
Uj
p(u) du = P(X = 1)

for all j = 1, . . . , J . Consider

1

|Uj |

∫
Uj
p̃(u) du = C1

1

|Uj |

∫
Uj
p(u) du+ C2

1

|Uj |
· |Uj |

= C1P(X = 1) + C2

= P(X = 1).

The last line follows by the integration constraint on the choice of C1 and C2.
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On the definitions of c- and d-independence

The following lemma shows that, for binary X, our definition of c-independence using P(X = 1 |
U = u) is equivalent to a definition using P(X = 0 | U = u) instead.

Lemma 7. U is c-independent of X if and only if

sup
u∈[0,1]

|P(X = 0 | U = u)− P(X = 0)| ≤ c.

Proof of lemma 7. We have

|P(X = 1 | U = u)− P(X = 1)| = |(1− P(X = 0 | U = u))− (1− P(X = 0))|
= |P(X = 0)− P(X = 0 | U = u)|.

Next we consider an alternative definition of d-independence. Let d̃ ∈ [0, 1]. Say U is d̃-
independent of X if

sup
u∈[0,1]

|FU |X(u | 1)− FU |X(u | 0)| ≤ d̃.

This approach to measuring distance from independence is also used in Kline and Santos (2013).
While d-independence compares the distributions of U | X to the unconditional distribution of U ,
d̃-independence compares the distributions of U | X with each other. The following lemma shows
that d̃-independence implies our d-independence.

Lemma 8. Suppose U is d̃-independent of X for d̃ = e/P(X = 0)P(X = 1) where e ∈ [0,P(X =
0)P(X = 1)]. Then U is d-independent of X with

d(0) =
e

P(X = 0)
and d(1) =

e

P(X = 1)
.

Proof of lemma 8. By the law of total probability,

FU (u) = FU |X(u | 0)P(X = 0) + FU |X(u | 1)P(X = 1).

Hence∣∣FU |X(u | 1)− FU (u)
∣∣ =

∣∣FU |X(u | 1)−
(
FU |X(u | 0)P(X = 0) + FU |X(u | 1)P(X = 1)

)∣∣
=
∣∣FU |X(u | 1)[1− P(X = 1)]− FU |X(u | 0)P(X = 0)

∣∣
=
∣∣FU |X(u | 1)P(X = 0)− FU |X(u | 0)P(X = 0)

∣∣
= |FU |X(u | 1)− FU |X(u | 0)|P(X = 0).

Thus, by d̃-independence,

sup
u∈[0,1]

∣∣FU |X(u | 1)− FU (u)
∣∣ ≤ d̃P(X = 0)

=
e

P(X = 1)
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where the last line follows by our choice of d̃. Similar arguments show

sup
u∈[0,1]

∣∣FU |X(u | 0)− FU (u)
∣∣ ≤ e

P(X = 0)
.

T -independence and continuous X

In this subsection we briefly consider the continuous X case for T -independence.

Assumption A2′ (Continuous support). X has an everywhere continuous density fX(x) with
respect to the Lebesgue measure.

In this case, the conditional distributions P(U ≤ u | X = x) are not necessarily continuous in
u. For example, if U = X with probability 1,

P(U ≤ u | X = x) = 1[x ≤ u],

a discontinuous function. Unlike when X is discrete, with continuous X the trivial bounds on the
cdf are sharp when no assumptions are imposed on the dependence between U and X.

Proposition 6. Suppose A1 and A2′ hold. Then for any x ∈ supp(X) the trivial bounds

1[u ≥ 1] ≤ FU |X(u | x) ≤ 1[u ≥ 0]

hold and are sharp for all u ∈ [0, 1].

Proof of proposition 6. The result follows by applying theorem 8 with T = ∅.

That is, without any assumptions, the cdfs P(U ≤ u | X = x) = 1[u ≥ 0] and P(U ≤ u | X =
x) = 1[u ≥ 1] are both attainable. These cdfs correspond to point masses at 0 and 1, respectively,
and are trivial bounds on the space of cdfs since no cdf can be larger than 1[u ≥ 0], or smaller than
1[u ≥ 1].

Next consider A3 and define the functions

h
J
(u) =



a1 if b0 ≤ u < a1

u if a1 ≤ u ≤ b1
a2 if b1 < u < a2

u if a2 ≤ u ≤ b2
...

1 if bJ < u ≤ aJ+1

and hJ(u) =



0 if b0 ≤ u < a1

u if a1 ≤ u ≤ b1
b1 if b1 < u < a2

u if a2 ≤ u ≤ b2
...

1 if u = aJ+1.

(25)

While hJ is a valid cdf, h
J

is not since it is not right-continuous at the points bj , j = 1, . . . , J .
Nevertheless, there exists a sequence of valid cdfs which converges pointwise to the upper bound

h
J

all points. The next theorem shows that these are sharp bounds for cdfs under T -independence.

Theorem 8. Suppose A1, A2′, and A3 hold. Let F be the set of all cdfs on [0, 1]. Then for any
x ∈ supp(X),

FTU |X(x) =
{
h ∈ F : hJ(u) ≤ h(u) ≤ hJ(u) for all u ∈ [0, 1]

}
.
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For any x ∈ supp(X), this set is sharp. Moreover, FTU |X(x, x′) = FTU |X(x) × FTU |X(x′), for any

x, x′ ∈ supp(X).

These cdf bounds are step functions which correspond to distributions with point masses at
the points in {τ0, τ1, . . . , τJ} for the upper bounds, and at {τ1, . . . , τJ , τJ+1} for the lower bound.
Figure 13 plots an example of these bounds for T = {τ1, τ2} with just two points. In this example,
hJ(u) places mass τ1 at u = τ1, mass τ2 − τ1 at u = τ2 and mass 1− τ2 at u = 1.

Figure 13: Upper and lower bounds on h(u | x) = P(U ≤ u | X = x) under the normalization A1,
discrete support A2, and T -independence with T = {τ1, τ2}.

Proof of theorem 8. First we show that h
J
(u) is an upper bound for cdfs that satisfy A3.

Case 1. Let u∗ ∈ (bj , aj+1) for j = 0, . . . , J , and suppose h(·) is a cdf such that

h(u∗) > h
J
(u∗).

Then

h(u∗) > aj+1

= h(aj+1)

The second line follows by A3. This implies that h(·) is a decreasing function, a contradiction.

Case 2. Let u∗ ∈ [aj , bj ] for j = 1, . . . , J . Then

h(u∗) = u∗

= h
J
(u∗).

The first line follows by A3. The second by definition of h
J
.

Therefore any cdf h that satisfies A3 must also satisfy h(u) ≤ hJ(u) for all u.

Now consider the lower bound hJ(u). Suppose there exists an h such that

h(u∗) < u∗
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for some u∗ ∈ (bj , aj+1), j = 0, . . . , J . Then

h(u∗) < bj

= h(bj).

The second line follows by A3. This implies that h is decreasing, a contradiction. This implies that
all h satisfying A3 satisfy h(u) ≥ hJ(u) for all u ∈ [0, 1].

To show that FU |X(x) is sharp, let h(u | x) be an arbitrary element of FU |X(x). Let

h(u | x′) = P(U ≤ u | X = x′) = u

for x′ 6= x. Then h(u | x′) is a proper cdf that satisfies A3 and we can show that the marginal
distribution of U follows that of assumption A1 since∫

supp(X)
P(U ≤ u | X = x) dFX(x) = u.

Similarly, we can show that any two cdfs h(· | x) ∈ FU |X(x) and h(· | x′) ∈ FU |X(x′) can be
attained by letting

P(U ≤ u | X = x∗) = u

for any x∗ /∈ {x, x′}.

c-independence bounds for min{p0, p1} < c ≤ max{p0, p1}

The following proposition extends theorem 3 to the case where min{p0, p1} < c ≤ max{p0, p1}.

Proposition 7. Suppose A1 holds, X is binary, and U is c-independent ofX for some min{p0, p1} <
c ≤ max{p0, p1}. Let

h
c
1(u) =


u

p1
if 0 ≤ u ≤ c

p0 + c(
1− c

p1

)
u+

c

p1
if

c

p0 + c
< u ≤ 1,

hc1(u) =


(

1− c

p1

)
u if 0 ≤ u ≤ p0

p0 + c
u− p0
p1

if
p0

p0 + c
< u ≤ 1

and

hc0(u) =
u− p1h

c
1(u)

p0

=


0 if 0 ≤ u ≤ c

p0 + c(
1 +

c

p0

)
u− c

p0
if

c

p0 + c
< u ≤ 1,

h
c
0(u) =

u− p1hc1(u)

p0

=


(

1 +
c

p0

)
u if 0 ≤ u ≤ p0

p0 + c

1 if
p0

p0 + c
< u ≤ 1.

Then

FcU |X(k) =
{
hk ∈ Fck : hck(u) ≤ hk(u) ≤ hck(u) for all u ∈ [0, 1]

}
for k = 0, 1, where Fck is defined as in theorem 3. For each k = 0, 1, this set is sharp.
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Unlike the cdf bounds in theorem 3, the knot at which these cdf bounds change is no longer
1/2. Consequently, the propensity scores corresponding to the bounds no longer change their value
at 1/2—they are asymmetric.

Proof of proposition 7. Assume p0 < c ≤ p1 without loss of generality. To show these are the
upper and lower bounds for h1(u), we first assume there exists u∗ such that h1(u

∗) > h
c
1(u
∗). If

u∗ ∈ [0, c/(p0+c)], then h1(u
∗) > u∗/p1, the no-assumption bounds, hence we have a contradiction.

If u∗ ∈ (c/(p0 + c), 1], then

h1(u
∗) =

∫ u∗

0

p(u)

p1
du

= 1−
∫ 1

u∗

p(u)

p1
du

≤ 1−
∫ 1

u∗

p1 − c
p1

du

=

(
1− c

p1

)
u∗ +

c

p1

= h
c
1(u
∗),

a contradiction. The same arguments can be used to show that hc1 is the cdf lower bound for h1,
and similarly for the bounds for when k = 0. Sharpness can be established as in the proof of
theorem 3.

Bounds for the nonseparable regression model with continuous X

Corollary 11. Consider the outcome equation (14). Suppose A1 and A4 hold. Suppose U is
T -independent of X with T = {τ1, . . . , τJ} and let τ0 = 0 and τJ+1 = 1. Let x ∈ supp(X) and
suppose the continuous support assumption A2′ holds. Then

ASF(x) ∈

 J∑
j=0

(τj+1 − τj)Q−Y |X(τj | x),
J∑
j=0

(τj+1 − τj)Q+
Y |X(τj+1 | x)

 .
Moreover, the interior of this set is sharp.

Proof of corollary 11. The bounds on the average structural functions are

ASF(x) ∈
[∫ 1

0
Q−Y |X(hJ(u) | x) du,

∫ 1

0
Q+
Y |X(h

J
(u) | x) du

]
,

where ∫ 1

0
Q−Y |X(hJ(u) | x) du =

J∑
j=0

∫ τj+1

τj

Q−Y |X(τj | x) du

=
J∑
j=0

(τj+1 − τj)Q−Y |X(τj | x)
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and ∫ 1

0
Q+
Y |X(h

J
(u) | x) du =

J∑
j=0

∫ τj+1

τj

Q+
Y |X(τj+1 | x) du

=

J∑
j=0

(τj+1 − τj)Q+
Y |X(τj+1 | x).

The proof of sharpness follows as in the proof of corollary 4.
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