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Abstract

The distributional impact of the low-carbon transition is an increasingly important topic both for aca-

demics and policymakers. Quantifying where the costs and benefits fall can provide greater insight into the

equity and cost-effectiveness of government policies, and improve our understanding of household investment

decisions. This paper provides new evidence on the distribution of returns from energy efficiency measures

both over time and across household-type. A range of econometric techniques are applied to a database of

over four million households over an eight year period to quantify heterogeneity, persistence and how these

factors impact the relative cost-effectiveness of measures. Results suggest that more deprived households

experience lower energy savings, the difference persists over time, and that significantly heterogeneity may

be present across levels of deprivation and income deciles that can not be explained by differences in baseline

consumption. Measures have been largely cost-effective but savings are much lower than previous policy

evaluations using ex-ante estimates would suggest.
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1 Introduction

Residential buildings account for around 30 percent of the United Kingdom’s energy consumption and constitute

the third largest sector by emissions (BEIS, 2018). With the introduction of recent legislation to achieve net

zero emissions by 2050 (UK Climate Change Act, 2019), major steps to reduce emissions occurring in homes

will be necessary. Energy efficiency measures will play an increasing role in achieving these reduction targets.

In addition to the challenge of the decarbonisation of the domestic energy sector, more than 10 percent of the

UK’s population still lives in fuel poverty today (BEIS, 2019). For this reason, energy efficiency programmes to

date have typically pursued two objectives simultaneously: reducing emissions and combating fuel poverty.

Yet, policy evaluations often do not take into account the distributional impacts of energy efficiency measures

and tend to be based on energy saving estimates from ex-ante engineering models. Previous studies have shown

that the engineering estimates of energy savings can be more than three times what is actually realised and

the upfront investment costs can be up to twice the actual savings (Allcott and Greenstone, 2017; Fowlie et al.,

2018).

We build on this research tackling the question of how much savings energy efficiency measures actually

deliver, a question that is more difficult to answer than it may appear. In contrast to previous research, we

further evaluate how these savings are distributed, both across households and over time. Providing answers to

these questions is important both for understanding why households appear to under-invest in energy efficiency

measures relative to what is socially or even privately optimal, the so-called “energy-efficiency gap”1 and evalu-

ations of policies aimed at encouraging adoption of energy efficiency measures. Overstated returns make private

investments seem more attractive, and makes policies appear more cost-effective than they actually are. This

issue is exacerbated by the fact that many policy evaluations rely on ex-ante engineering estimates of savings,

rather than observed outcomes.

Evaluations of energy efficiency improvements tend to take a short time-scale, usually a window of a couple

of years on either side of the intervention in order to assess the magnitude of savings. This is despite the fact

that time-scale has proven an important factor when examining the impact of building energy codes on energy

consumption (Kotchen, 2017), and on the effect of behavioural interventions to reduce energy consumption

(Allcott and Rogers, 2014). The impact of energy efficiency measures could vary over time for various reasons.

Specific factors related to usage patterns in any particular period may bias results both before and after, while

1The reluctance of some consumers to make energy saving investments that offer them seemingly positive net-present value
(NPV) returns has been widely studied. For example see Hausman (1979); Blumstein et al. (1980); Jaffe and Stavins (1994); Golove
and Eto (1996); Allcott and Greenstone (2012). However, there has been much debate on the size of this gap and the relative
contribution of market failures, behavioural anomalies or model and measurement error. A recent paper by Gerarden et al. (2015)
argues that the energy efficiency gap may not be as large as expected and that unobserved costs, overstated savings from adoption,
consumer heterogeneity, inappropriate discount rates and uncertainty may all contribute to the low adoption rate not being as
“paradoxical as it first appears. A related literature focuses on supply side market failures, imperfect competition and suboptimal
rate of innovation. See for example Goldberg (1998); Cohen et al. (2017); Brucal et al. (2017)
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poor installation quality or degradation in the installed equipment may affect the results post-installation.

Variation over time could affect the accuracy of measurement, the attractiveness of the investment, or the

cost-effectiveness of a government scheme.

Additionally, it has been shown that rebound effects can exhibit significant heterogeneity across income

groups (Aydin et al., 2017)2. Understanding the way in which cross-sectional and temporal variation interact is

crucial to developing a complete picture of the distributional impact of energy efficiency policies and measures.

This research extends the above literature by examining both the heterogeneity and persistence of savings

associated with installing widely-used energy efficiency measures. In order to conduct this analysis we exploit an

extremely large database of home energy efficiency upgrades and metered energy consumption3, covering over

four million households and a period of eight years. By combining statistical matching and a range of panel

econometric estimators we control for unobserved heterogeneity and selection into various government schemes

which funded the upgrades. Another novel feature of this analysis is that our database covers the universe of

households entering into energy efficiency schemes administered by energy suppliers in the UK, thus reducing

the potential for “site-selection bias” as identified by Allcott (2015).

The data allows us to examine the variation in performance depending on when measures were installed,

how they perform over time, how this varies by dwelling and socioeconomic characteristics, and ultimately

how this affects the cost-effectiveness of measures for different household types. Results indicate significant

cross-sectional and temporal variation in energy savings. In particular, the results demonstrate that energy

savings are lower for more deprived households. Using predicted income data, heterogeneity becomes even more

pronounced showing extremely low savings in the lowest decile and significant differences between the lowest

deciles. Quantile regression analysis suggests that differential baseline energy consumption does explain some

of the difference between socioeconomic groups, but not all. We also present suggestive evidence that savings

diminish over time for loft insulation and heating system replacements. The measures are generally still NPV

positive, and compare favourably with the cost-effectiveness of other initiatives, but the returns are much lower

than expected.

It is important to state that more deprived households may trade-off energy savings with increased internal

temperatures resulting in increased well-being or health benefits. For this reason we cannot make claims about

total welfare gains and how they are distributed. However, the results do raise concerns over distributional

factors given how the costs of policies are subsequently levied on households.

The rest of the paper is organised as follows; Section 2 provides the context in which this analysis takes place;

2Other recent work has demonstrated the way in which energy efficiency incentives are distributed across income groups (Jacobsen,
2019).

3The National Energy Efficiency Framework Database (NEED). Further details available at:
https://www.gov.uk/government/collections/national-energy-efficiency-data-need-framework
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Section 4 the data; Section 3 describes the methodological approach employed and considerations undertaken;

Section 5 outlines the results; Section 6 provides the results of robustness checks and sensitivity analysis; Section 7

provides a concluding discussion.

2 Background

The Supplier Obligation (SO), first introduced to the UK in 1994, has become the principal policy instrument

for implementing energy efficiency improvements in the domestic sector in the UK (Rosenow, 2012). The

Supplier Obligations are an example of a “Tradable White-Certificate” (TWC) scheme. These are regulatory

mechanisms, employing a market-based approach to deliver energy savings. Theoretically, they can be considered

a hybrid subsidy-tax instrument, in which suppliers provide subsidies for energy efficiency upgrades that are then

recovered through increased energy prices (Giraudet et al., 2012), having parallels with traditional demand-side

management (DSM) programmes in that companies are required to invest in projects that ultimately reduce

demand for their product (Sorrell et al., 2009b).

As outlined in Bertoldi and Rezessy (2008) and Giraudet et al. (2012), SOs have three main features: an

obligation is placed on energy companies to achieve a quantified target of energy savings; savings are based on

standardised ex-ante calculations; the obligations can be traded with other obligated parties. This flexibility

ideally allows suppliers to choose the most cost-effective way to reach their target. Suppliers bear the cost of

installations in the first instance, costs are then passed through to their entire population of customers through

increases in energy prices (Chawla et al., 2013)4 . Clearly, this may have distributional consequences if certain

segments of the population are less likely to avail of the schemes. To alleviate this concern, targets were imposed

regarding the proportion of savings to be achieved from lower income groups.

The former Department of Energy and Climate Change (DECC)5, sets the savings targets which are then

enforced by the energy regulator, the Office of Gas and Electricity Markets (Ofgem). Ofgem sets and administers

individual savings targets for each energy supplier. Energy suppliers have various options to achieve their targets

such as contracting installers, subsidising energy efficiency products, cooperating with local authorities, delivery

agents or supermarkets, or directly working with their customers (Rosenow, 2012).

4Other recent work has examined this question in a US context(Burger et al., 2020).
5now Department for Business, Energy and Industrial Strategy (BEIS)
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Figure 1: Time-span of selected UK Energy Efficiency Programmes from 2002-2012.
NEED data used in this research is from 2005-2012

Figure 1 gives an overview of SOs from 2002-2012. The first Energy Efficiency Commitment (EEC1) ran from

2002 to 2005, followed by EEC2 in 2005. In 2008, EEC2 was replaced by the Carbon Emissions Reduction Target

(CERT) which ran until 2012. In 2009, the Community Energy Saving Programme (CESP) was introduced in

parallel with CERT. While the main architecture of SOs did not change, the savings targets and the costs of the

delivering the programmes increased over time. Rosenow (2012) provides a comprehensive overview of the main

changes in each scheme from 1994 - 2012 with regards to the target, the costs, social equity implications and

other changes in design. The main change concerned the target size, increasing substantially in lifetime savings

from 2.7 to 494 terawatt hours (TWh) between 1994 and 2012 (Rosenow, 2012).

From 2002, all programmes included a target for disadvantaged households and fuel poverty increasingly

came to the fore. Eventually, CESP only allowed projects to be carried out in specific low income areas of

Britain, the lowest 10-15% of areas ranked in Income Domain of the Indices of Multiple Deprivation (Hough and

Page, 2015). Thus, CESP was only available in certain geographical regions. Furthermore, CESP introduced a

new bonus structure that incentivised the installation of multiple measures in a single dwelling and the treatment

of as many dwellings as possible in the same area (Duffy, 2013). Table 1 summarises the key features of the

schemes under consideration.

A key feature of all previous evaluations of the above policies is that the energy savings achieved were based

on model ex-ante estimates and not actual ex-post data. Engineering model estimates tend to overstate actual

savings significantly, as they are derived from lab-based estimates and factors such as occupancy and behaviour

are typically not considered. This would lead to concern over the accuracy of measurement regarding both the

energy savings achieved and the cost-effectiveness of various policies in delivering savings.
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Table 1: Overview of Supplier Obligations

ECC1 ECC2 CERT CESP

Target 62 TWh 130 TWh 494 TWh 19.25 Mt CO2
Annual costs (millions) 167 400 1,158 unknown
% savings in priority group 50% 50% 40% 10-15% most deprived areas

Total measures installed
Cavity wall insulation 791,524 1,760,828 2,568,870 3,000
Loft insulations 754,741 1,780,302 3,897,324 23,503
Replacement heating system 366,488 2,018,812 31,986 42,898

Total estimated energy saving by
measure
Insulation 56% 75% 66.20% -
Heating 9% 8% 8.20% -
Lighting 24% 12% 17.30% -
Appliances 11% 5% 5.90% -
Other - - 2.40% -

Notes: Information on estimated total costs, energy savings and primary measures installed through selected UK
energy efficiency programmes from 2005-2012. This table does not provide a comprehensive account of each policy,
rather a mapping of measures installed through each policy and data included in NEED. Savings presented are estimated
based on engineering models. Estimated savings by measure presents the contribution of each measure to total savings
for each policy. Source: Adapted from information presented in Lees (2006, 2008); Rosenow (2012); Duffy (2013); Ofgem
(2013)

3 Methods

3.1 Empirical framework

Lancastrian Demand Theory suggests that households do not derive utility from consumption of a good but from

the characteristics of the good and its combination with other goods (Lancaster, 1966). In this particular case,

households derive benefits from their consumption of energy services and not units of energy per se. Energy

services can be considered as a final good produced by the combination of energy inputs and capital equipment.

The services produced include lighting, space heating, water heating. The capital equipment includes heating

systems and insulation. These are intermediate goods in the production of thermal comfort or other measures

of household satisfaction (Quigley and Rubinfeld, 1989).

The benefit a household derives from an improvement in the capital equipment can be realised through

either a reduction in energy units required to maintain the previous level of energy service or through increased

consumption of energy services, due to a reduction in their effective price. The latter effect is sometimes referred

to as the “rebound effect” and has been widely studied.6

6Empirical estimates of the size of this effect vary considerably. See Sorrell et al. (2009a) for an overview. Increased energy
service consumption could result in a range of other benefits to households and has been described as the multiple benefits of energy
efficiency (Ryan and Campbell, 2012)
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As outlined by Nordhaus (1996); Hunt and Ryan (2015); Fouquet (2018) amongst others, not accounting for

energy services in any empirical framework may result in model mis-specification and biased estimates. However,

energy services can be difficult to observe. To account for this Hunt and Ryan (2015) suggest adding additional

terms to the empirical framework in order to account for unobserved energy efficiency. These include adding

exogenous time trends, information on past energy prices and the components of past energy prices - all of which

help to account for any underlying changes in unobserved energy efficiency. Taking this on board, we propose a

reduced-form framework with a rich set of fixed-effects which account for both exogenous improvements in energy

efficiency and changes in energy prices without explicitly modelling these factors. In addition, by examining

heterogeneity in energy savings for different household types following installation of similar capital equipment,

we can implicity observe changes in energy services derived by different households.

3.2 The baseline model

Energy consumption is determined by a range of factors such as temperature, characteristics of the dwelling and

its inhabitants, and energy prices. We estimate the following baseline panel specification:

ln(yit) = αi + γt + ρrt + δDijt + εit (1)

Where yit denotes consumption of either electricity or natural gas (both in kWhs) by household i in year

t, αi is a household fixed-effect, γt is a year fixed-effect which controls for unobserved factors which vary at an

annual level such as broader macroeconomic conditions and weather patterns, ρrt is a year-by-region fixed effect

to control for factors which vary at a sub-national level, such as more localised economic shocks and weather

patterns, Dijt is the treatment dummy denoting measure j in household i at year t. The key parameter of

interest is δ the Average Treatment Effect on the Treated (ATT).

The model is estimated as a fixed effects panel specification controlling for unobserved time-invariant house-

hold characteristics which might affect energy consumption. Over the course of the analysis, a variety of ex-

tensions to the above are estimated, to account for interactions between upgrades and household socioeconomic

characteristics, and to examine the performance of upgrades over time. Models are primarily estimated for gas

consumption, but electricity consumption is also considered. Standard errors are clustered at the region level in

all specifications7.

7Abadie et al. (2017) suggest clustering standard errors at the level of treatment assignment unless one is estimating a fixed-effects
regression, in which case clustering is necessary at the level of the fixed effect if there is heterogeneity in treatment effects. This is
true in our case and we cluster at the region level. However, this results in a small number of clusters (10). To account for the low
number of clusters we run a Wild Bootstrap estimation with 5000 replications and Webb weights as per Roodman et al. (2019) and
Webb (2013). Comparing results, the confidence intervals of our estimates are extremely stable for bootstrapped standard errors
and cluster robust standard errors at the region level. Given our extremely large sample size, bootstrapping is very computationally
intensive. For this reason we perform it as a robustness check and present results in the Supplementary Material.
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3.3 Event study analysis

Building on our baseline model the next step is to examine how upgrades perform over longer periods of time, a

key novelty of this research. In order to do this we perform a series of Event-Study analyses. In all estimations

we include a matched control group of households. We run our baseline specification however we initialise

our treatment indicator at 0 for the year of upgrade with all previous years (−n, ...,−1) and all subsequent

years (+1, ...,+n). Applying this methodology allows us to stack all observations in order to exploit the full

sample of pre- and post-upgrade years8. This affords us a number of benefits: (i) It allows us to assess whether

pre-treatment trends are similar and that the parallel-path assumption holds; (ii) It allows us to rule out the

possibility of any treatment-effect over time resulting from specific factors in any given year (although we also

include year fixed effects); (iii) It allows us to estimate the size of the initial treatment-effect, then decompose

it over time.

3.4 Quantile regression

In order to more deeply explore heterogeneity we next estimate a series of quantile regression models. Standard

linear regression enable an analysis of the relationship between regressors and outcome based on the conditional

mean function E(y/x). Quantile regression allows an analysis of this relationship at different points in the

conditional distribution of y, allowing for a potentially richer characterisation of the data.

Undertaking this analysis is important to further understand the relationship between varying levels of

baseline energy consumption, the socioeconomic characteristics of the households and the resultant energy

saving from installing measures. For example, it might be the case that savings are related more to baseline

consumption levels than to the socioeconomic characteristics of the household. The quantile regression estimator

for quantile p minimises the following objective function:

Q(βp) =

N∑
i:Yit≥X′

it

p|Yit −X ′itβp|+
N∑

Yit<X′
it

(1− p)|Yit −X ′itβ| (2)

where 0 < p < 1. In this analysis quantile regressions are estimated at 20th percentile of the annual gas

consumption distribution, resulting in p = 0.1, 0.2, ...0.9.

3.5 Pre-processing data using statistical matching

Prior to undertaking analysis we pre-process the data using statistical matching. There is strong evidence that

the presence of unobserved heterogeneity leads to inaccurate econometric estimates in a fixed-effects OLS setting

8We are very grateful to one of our Referees for making this suggestion
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(Ferraro and Miranda, 2017; Gibbons et al., 2014). Self-selection bias occurs as households voluntarily decide

to apply upgrades in their homes or take part in government funded schemes, potentially causing the treatment

and control group to differ systematically in aspects that both affect their likelihood of taking part in energy

efficiency programs, and their energy consumption, causing the failure of the conditional mean independence

assumption (Wooldridge, 2010). Unobserved heterogeneity between households means that households respond

differently to common shocks. For instance, increasing energy prices might lead to different behaviour of low

and high income households. One strategy to overcome this threat and to obtain consistent and unbiased

estimators is to apply a matching technique (Wooldridge, 2010). Recent research has shown that by combining

statistical matching with Differences-In-Differences estimation (DID), the accuracy of evaluations can approach

that achieved by a randomised-controlled trial (RCT) (Ferraro and Miranda, 2017). We should note that

(Chabé-Ferret, 2017) caution about the use of Difference-In-Differences with conditioning on pre-treatment

outcomes when the Parallel Trend Assumption (PTA) fails. In our case the Event-Study analysis in Section 5.4

demonstrates that pre-treatment energy consumption trends in upgrade and control group are very similar, and

the PTA does not fail.

Coarsened-exact matching (CEM) is a non-parametric statistical procedure which improves the estimation

of causal effects by reducing imbalance in observed variables between treatment and control groups (Iacus et al.,

2008; Blackwell et al., 2009). Iacus et al. (2012) compare CEM with a range of other matching methods using

Monte Carlo simulations and conclude that CEM has superior performance in terms of the bias and variance of

the ATT. Alberini and Towe (2015) use a similar approach in an analysis of home energy audits in the state of

Maryland.

Our extremely large sample size allows a high level of precision in matching. A high degree of balance is

achieved across variables used in matching and variables not used in matching as measured by the standardised

differences, variance ratios and most importantly, the pre-treatment trends. Detailed information on the proce-

dures used, the degree of balance obtained and comparison with other matching methods can be found in the

online Appendix to this article.

4 Data

4.1 The National Energy Efficiency Database framework

The primary dataset used for analysis is National Energy Efficiency Database framework (NEED). This dataset

contains dwelling-level data on four million households, over an eight-year period. Information comes from a
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range of sources including meter point electricity and gas consumption data9, Valuation Office Agency (VOA)

property attribute data, the Homes Energy Efficiency Database (HEED) containing data on energy efficiency

measures installed, and modelled data provided by Experian on household characteristics. An overview of data

types and sources is provided in Table 2.

Table 2: Data sources combined in NEED

Type of variable Source

Energy efficiency measures HEED/Ofgem/DECC

Energy consumption Energy Supplier

Property attributes VOA

Household characteristics Experian

Note: Description of data sources included in NEED database

The NEED database includes measures installed through EEC2, CERT and CESP schemes. These schemes

were by far the most prevalent mechanism for delivering energy savings in residential dwellings in the UK over

this period. The database does not include an exhaustive list of measures installed as part of the various schemes,

appliances and lighting also featured but are not included. However, as Table 1 demonstrates, insulation and

heating comprised the vast majority of estimated energy savings across various schemes over this period. In

total over two million measures were installed over the period within our sample.

All insulation installations in our dataset were funded through government schemes. Heating upgrades were

funded through both public and private means. In the early part of the sample (pre-2007) boiler installations were

likely to have been funded through government schemes, however government support for replacement boilers

was withdrawn during EEC2, as a combination of previous support schemes and new building regulations in 2005

had already delivered a significant penetration of new condensing boilers. Therefore the boiler data we report

on is a combination of publicly and privately funded investments. As specified in the 2005 Building Regulations,

all replacement boilers were required to be condensing gas or oil and have a minimum efficiency rating of 86

percent.

4.2 The English Housing Survey (EHS)

One limitation of the NEED dataset is that household income data is not made available to academic researchers.

We attempt to over come this limitation by supplementing the NEED dataset with the English Housing Survey

(EHS). The EHS is a cross-sectional survey, which reports information on socio-economic characteristics, includ-

9According to the NEED methodology meter readings are obtained from the existing administrative systems of the energy
companies and provided by the data aggregators. Gas data are weather corrected by the aggregators.
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ing income, and dwelling information of households at two-year intervals. Several common variables in the EHS

and NEED allow to us predict EHS Basic income (annual net household income (HRP + Partner) including

savings) for the households in NEED for different periods from 2005 to 2012. The income prediction model

uses LASSO methods for feature selection and we run a number of sensitivity checks. The Appendix includes

a detailed explanation of the income prediction process. Given that income is predicted rather than observed,

this does not form the core of our analysis. However, it provides a useful comparison for our analysis using the

area-level Index of Multiple Deprivation (IMD).

4.3 Descriptive statistics

Descriptive statistics for all variables used in the analysis are presented in Table 3. Due to space considerations,

further detail on all variables contained within the dataset is provided in Table A1 in the online Appendix. This

includes an overview of the information used in constructing the area-level IMD groupings.
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Table 3: Selected summary statistics

Variable Type Mean Std. Dev. Min Max

Gas consumption continuous 16951 7839 0 50000

Electricity consumption continuous 3975 2243 100 25000

Total energy continuous 20925 9047 550 75000

log(Gas) continuous 9.625 0.503 6.215 10.820

log(Electricity) continuous 8.147 0.536 4.605 10.127

log(Total energy) continuous 9.853 0.453 6.310 11.225

Year cavity wall binary 0.147 0.354 0 1

Year loft insulation binary 0.115 0.319 0 1

Year new boiler binary 0.153 0.360 0 1

Region categorical 5.649 2.619 1 10

Year categorical 2008.5 2.291 2005 2012

Fuel type binary 0.991 0.096 0 1

Property age categorical 3.132 1.577 1 6

Property type categorical 3.067 1.614 1 6

IMD group categorical 3.126 1.433 1 5

Electricity price continuous 0.121 0.014 0.094 0.138

Gas price continuous 0.035 0.006 0.024 0.044

Predicted income continuous 26975 8912 3438 62591

Income quintile categorical 3.248 1.408 1 5

Income decile categorical 6.019 2.857 1 10

Note: Summary statistics for variables used in regressions and additional calculations.

N=5,502,936 ; n=687,925; t=8

Figure 2 depicts annual uptakes of energy efficiency measures by IMD group. In all years, the largest number

of loft insulation installations and heating system replacements were done by the most deprived households (IMD

group 1). In the years 2005 to 2007, this is also true for cavity wall insulations but from 2008 on the number

of installations increased with the income level of households. However, logistic regressions (see Appendix)

show that controlling for region and dwelling characteristics, the odds of up-taking cavity wall insulations

are still higher for the most deprived households then for better-off households. This also holds true for loft

insulation installations and heating system replacements. This pattern reflects the prioritisation of disadvantaged
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households as prescribed by the SO.
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Figure 2: Number of installations by IMD group and year. Unweighted sample.

Table 4 presents a correlation matrix of IMD group and predicted income within our final sample used in the

analysis. We compare IMD group with a continuous measure of income along with income quintile and decile.

We collapse our continuous income measure into quintiles in order to make a direct comparison with IMD group

in our analysis. A further categorisation into deciles allows us to extend our analysis of variation. We observe

a reasonably high correlation and a highly statistically significant relationship between all measures of income

and IMD group.

Table 4: Correlation of predicted income and IMD group

IMD group Income Income quintile Income decile

IMD group 1
Income 0.5785* 1
Income quintile 0.6262* 0.8808* 1
Income decile 0.6373* 0.9099* 0.9843* 1

Note: single asterisks statistical significance at the 0.1% level

5 Results

All reported results are estimates of the average treatment effect on the treated (ATT) and can be interpreted

as percentage energy savings, unless otherwise stated. Multiple upgrade and control groups are created for

the entire period of analysis and for each individual year. This allows us to calculate the average effect and

to examine trends over time. Analysis is restricted to households with electricity consumption between 100

and 25,000 kWh, and gas consumption between 3000 and 50,000 kWh. Outliers are excluded to minimise risk
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of inclusion of invalid consumption readings or non-domestic properties10. Following this we create dummy

variables to indicate if household energy (either electricity or gas) changed by more than 50, 60 or 70 percent in

any given year. These dummy variables are then used in sensitivity analysis to control for any large changes which

might haver been the result of unobserved changes in occupancy. For comparison purposes we also calculate the

energy savings in kWh for electricity and total energy (Table D1 in the online Appendix). As these measures

primarily impact heating and natural gas is by far the main fuel used for heating the focus of our analysis will be

on a subset of dwellings using natural gas for heating. Additional results from a range of sensitivity checks and

applying different data trimming are presented in Table E1 in the online Appendix and discussed in Section 6.

5.1 Central estimates

The central estimates from our main specification are presented in Table 5. Results show that the energy savings

over time are quite consistent for each measure, regardless of when the installation took place. Annual gas savings

for cavity wall insulation range from 9.4 - 11.1 percent, loft insulation 2.6 - 3.9 percent, and replacement heating

systems 8 - 10.1 percent. These results are consistent with Adan and Fuerst (2015) and Hamilton et al. (2016)

who perform similar analysis on this dataset and other related data.

10Properties above this threshold for either gas or electricity are likely to be non-domestic users. Properties below are likely
to include dwellings that only use gas for non-heating purposes. Properties below the threshold for electricity are likely to be
dwellings in which electricity supplies are not being used or are new builds and not yet occupied. In total restricting the sample
in this way removes about four percent of the sample. This restriction is applied as part of BEIS Validation and quality as-
surance. Available here: https://www.gov.uk/government/publications/domestic-national-energy-efficiency-data-framework-need-
methodology. A similar restriction is also applied by Adan and Fuerst (2015).
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Table 5: The effect of energy efficiency upgrades on energy consumption

(1) (2) (3) (4) (5) (6) (7)

Full sample 2006 upgrades 2007 upgrades 2008 upgrades 2009 upgrades 2010 upgrades 2011 upgrades

Cavity wall insulation -0.094*** -0.097*** -0.111*** -0.099*** -0.098*** -0.097*** -0.101***

(0.001) (0.002) (0.003) (0.002) (0.002) (0.002) (0.002)

Loft insulation -0.030*** -0.026*** -0.031*** -0.028*** -0.027*** -0.039*** -0.035***

(0.001) (0.003) (0.003) (0.002) (0.002) (0.002) (0.002)

Replacement boiler -0.092*** -0.080*** -0.093*** -0.087*** -0.102*** -0.109*** -0.099***

(0.001) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Household fixed effects Y Y Y Y Y Y Y

Year fixed effects Y Y Y Y Y Y Y

Year*region fixed effects Y Y Y Y Y Y Y

Observations 5502936 617022 545627 564756 730447 746573 871379

Number of households 687925 77128 68203 70595 91306 93322 108922

R squared 0.349 0.327 0.353 0.370 0.369 0.386 0.367

Notes: This table reports coefficient estimates and standard errors from eight separate regressions. The dependent variable in all regressions is the logarithm

of annual gas consumption in kilowatt hours. Column(1) ”All” denotes efficiency upgrades occurring at any time during the sample period. Columns (2-7) relate

to upgrades occurring only in the relevant year. Each individual year denotes upgrades occurring solely in that year. For each upgrade group a matched control

group is created using coarsened-exact matching. The sample includes metered energy consumption records from 2005 to 2012. Standard errors are clustered at

the region level. Triple asterisks denote statistical significance at the 1% level; double asterisks at the 1% level; single asterisks at the 10% level.

5.2 Heterogeneity by level of deprivation

The next set of results, presented in Figure 3, show the interaction of the treatment variable with the variable

indicating the socioeconomic characteristics (deprivation level) of the area in which the household resides. Energy

savings are much greater for those households living in more affluent areas (IMD = 5), compared to those in less

affluent areas (IMD = 1). This is true for all upgrade types. Combining all measures, the annual savings range

from approximately 15 percent for those in the lowest IMD category to approximately 25 percent for those in

the highest. This result raises concerns over distributional issues as the costs of these policies were likely applied

as a flat-rate tariff on energy bills (Chawla et al., 2013). If savings are concentrated in the higher income groups,

this suggest a further loading of policy costs onto those least able to afford it. Particularly as a flat-rate charge

is already regressive, disproportionately affecting those on lower incomes.
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Figure 3: Average Treatment effect on the Treated (ATT) for each IMD group.
ATT is percentage reduction in energy consumption following installation of energy
efficiency measure.

5.3 Heterogeneity by predicted household income level

Since IMD is a composite indicator for several socioeconomic characteristics, the use of the predicted income

enriches our analysis with more specific information on the relationship between energy consumption and income.

We interact income category with the treatment for both income quintile and decile. The results presented in

Figure 4 show a broadly similar pattern with those of IMD group. Energy savings are smallest for the lowest

quintile and largest for the highest quintile. Interestingly, the heterogeneity in energy savings is even more

pronounced for predicted income as the difference in ATT between the lowest and the highest income quantile

are larger than between the lowest and highest IMD group.

Performing the same analysis with income deciles provides an even more fine-grained picture of the disparity

in energy saving between income groups. Variations that are masked within quantiles and IMD groups become

apparent. The results depicted in Figure 5 suggest that the difference in ATT are largest at both ends of the

distribution. Thus, households in the first decile have significantly smaller energy savings than for households

in the second decile regarding cavity and heating system measures and households with the highest incomes in

the 10th-decile have higher energy savings than high-income households in the ninth decile.

As our income variable is predicted rather than observed we treat these results with a degree of caution, and

will use IMD group for subsequent socioeconomic categorisation. However, by undertaking a comparison with

IMD we provide a degree of assurance that the use of IMD is valid as a socioeconomic indicator. If anything

IMD group represents a lower bound on the degree of variation that exists in the population.
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Figure 4: Average Treatment effect on the Treated (ATT) for each income quintile.
ATT is percentage reduction in energy consumption following installation of energy
efficiency measure.
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Figure 5: Average Treatment effect on the Treated (ATT) for each income decile.
ATT is percentage reduction in energy consumption following installation of energy
efficiency measure.

5.4 Event Study analysis

Building on the above analysis we now apply an Event Study methodology. The use of this method allows for

a comprehensive assessment of the treatment effect over time for all years. All Event Study figures display the

percentage difference in energy consumption between upgrade and control group for all periods. Given that

the time of treatment varies across the sample, we can extend our analysis to six periods pre- and six periods

post-upgrade.
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Figure 6 presents results of installing any measure for all households, decomposed by IMD group. Across all

IMD groups pre-treatment trends are very similar, and not statistically different from zero in almost all cases11.

The full savings resulting from any measure are realised by year plus 1. This is due to a slight mismatch in

the calendar year for energy consumption and installation of measures, rather than any delayed impact12. For

this reason we consider the treatment period to be between (−1 ≤ t ≤ t+ 1). The magnitude of the treatment

effect is lowest for IMD group 1 and savings increase with increasing affluence, in line with our previous results.

The observe difference by IMD group persists over time. In the online Appendix we provide more detailed

information on the breakdown of savings over time by measure. The savings for cavity wall insulation are again

lower for more deprived groups and savings appear quite persistent over time for all groups. A similar pattern is

observed for loft insulation, however for IMD group 1 the savings are statistically close to zero. The confidence

interval on the estimate actually includes zero in later years pointing towards an erosion of savings, but this

is also potentially due to lower number of observations in later periods. For heating system upgrades, again

savings are lower for more deprived households. For all groups savings appear to erode over time. However when

performing this sample split, the pre-treatment trend shows some evidence of an increase also, suggesting that

other factors may also be influencing the post-treatment trend. All of these results are presented graphically in

the online Appendix.

11For IMD group 1 the difference is marginally different from zero in early periods but is of low magnitude.
12The gas consumption year is October-September. See Appendix for further information
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Figure 6: Composite measure: Event Study analysis of percentage savings for all
households and by IMD group. Upgrade occurs during period −1 ≤ t ≤ +1

5.5 Quantile regression analysis

We next run a series of quantile regressions to further tease-out the heterogenous effects across the distribution

of the dependent variable. We first estimate a quantile regression for the entire sample across all years, following

this we estimate separate models for each IMD group. Results in kWh are presented in Figure 7. A number of

interesting findings emerge.

Firstly, as one might expect, households at the higher percentiles of energy consumption save more energy

after installing measures. This relationship is broadly linear across all measures and IMD groups. Secondly,

savings from cavity wall insulation are largely comparable to that of boiler replacement across all quantiles and

groups13. Savings from both of these measures exceed savings from loft insulation. Thirdly, while the patterns

13However, replacing a heating system costs considerably more than installing cavity wall insulation. See Section I of the Appendix
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are largely comparable across IMD groups, as per previous results the level of savings are lower for the more

deprived groups. In fact, savings are close to zero at the lower end of the energy consumption distribution

for the lowest IMD groups. These results suggest that level of deprivation and baseline consumption are both

contributing factors in determining the level of savings.
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Figure 7: Quantile regression results estimated for 10 quantiles of the dependent
variable. Estimation performed for all groups together and for each IMD group sep-
arately. The grey/red line denotes loft insulation; green/yellow cavity wall insulation
and blue/red boiler upgrade.

5.6 Cost-effectiveness and Net Present Value calculations

Taking our estimates of the estimated energy savings for different households we can develop more realistic

assessments of the cost-effectiveness of measures than had been previously calculated. While much of the

measures observed in our sample are funded by utilities, funding for heating system upgrades finished in 2007.
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From that point onwards they have been privately funded by households. The rest of the measures were funded

by utilities, although households did make a small contribution14.

We acknowledge that the following set of results do not fully describe the incentives faced by households

or utilities in our sample. But in the spirit of Fowlie et al. (2018) we would argue that it is still informative

to investigate the return on investment, despite the fact that suppliers funded the majority of these measures.

During our sample period, other schemes such as the Warm Front funded very similar upgrades and were fully

publicly funded. In addition, many households who would consider making these investments are not eligible

for support and are faced with the type of investment decisions we examine.

A number of published academic and policy papers provide cost-estimates. The estimates we present in Panel

A of Table 6 are based on a range of previous studies, outlined in more detail in Tables I1, I2 and I3 in the online

Appendix. The costs we present are the costs incurred by the energy companies in installing each measure.

These may understate the actual costs in some cases, and can thus be considered a lower bound. For example,

the cost for replacement heating system used (£200) for past policy evaluations is the assumed additional cost

of installing a high efficiency system, over and above a typical lower-efficiency system. We consider this estimate

to be a lower bound. The Energy Savings Trust estimate the costs of boiler replacements to range from £700

to £6,000 (EST, 2013). On average the installation of condensing boiler costs around £2,400 per dwelling. In

a 2015 review Frontier Economics assumed that the fixed cost of for gas-fired condensing boilers lie between

£2,200-3,000 (Economics, 2015). For the purposes of comparison we consider the upper bound for a replacement

heating system installation to have been £2000 in 2006.

The internal rate of return (IRR) on a project is the discount rate (r) that yields a net-present value of zero,

or the discount rate at which the average value of avoided discounted future energy costs equals the upfront

investment cost. Formally, this can be calculated using the below formula:

NPV =

T∑
t=1

Ct

(1 + r)t
− C0 (3)

Where T is the estimated lifespan of the measure, Ct are the avoided energy costs in year t, C0 is the upfront

investment cost and r is the IRR which we solve for. The IRR is calculated based on the econometric estimates

we observe, for varying estimated lifespans of measures and assuming constant future energy prices.

Panel B of Table 6 presents estimated IRRs for each measure, calculating the IRR for 10, 20 and 30 years.

Our preferred estimated lifespan is 10 years for replacement heating system and 30 years for both types of

insulation. Assuming a lifespan of 30 years or more, cavity wall insulation is an attractive investment yielding a

14Based on Lees 2008 suppliers bore 80-93 percent of the costs for cavity wall insulation in the Priority (low-income) groups and
50-65 percent of the costs for all other households.
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return of 16 percent. Loft insulation is less attractive yielding 6 percent. Whether to invest in a heating system

depends greatly on whether one uses the estimated policy cost or private cost.

The next set of results, presented in Panel C, Table 6 takes the preferred estimated lifespan and presents

IRR estimates for each measure and each IMD group, along with the sample average for comparison purposes.

A considerable degree of variation exists around the sample average, with households living in more deprived

areas experiencing much lower returns than those in more affluent areas.

To broaden the perspective somewhat we also consider two other measures of cost-effectiveness: the cost

per tonne of CO2 removed and the cost per kWh of energy saved. These are calculated at the sample average

and allow a comparison of the overall cost of these policies with other similar initiatives. The estimated cost

per kWh of energy saved is calculated by summing up the annual estimated savings over the expected lifetime

of the measure. To calculate the cost per tonne of CO2 removed, we convert our kWh estimates based on the

estimated CO2 produced in consuming one kWh of gas and electricity based on DEFRA/DECC greenhouse

gas conversion factors. These are reported in Table 6, detailed information on the underlying assumptions is

presented in Section I in the online Appendix.

Cavity wall insulation is the most cost-effective measure, followed by loft insulation and replacement heating

systems. Relative to the estimated social cost of carbon and natural gas prices, insulation and the lower esti-

mate for replacement heating systems seem relatively cost effective. However, at the upper bound of replacement

heating system cost it does not represent an attractive investment.

Converting the cost per kWh saved in 2000 GBP to 2015 USD it is possible to compare the cost of these

interventions with a wide range of other initiatives, such as behavioural programmes, building code changes,

subsidies and information provision. These are based on a recent review paper by Gillingham et al. (2018).

Table K1 in the online Appendix demonstrates that these measures, and in particular cavity wall insulation,

compare quite favourably with most other initiatives.
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Table 6: Cost-effectiveness of each measure

Cavity wall insula-

tion

Loft insulation Replacement

boiler (policy

cost)

Replacement

boiler (private

cost)

Panel A: Cost assumptions (GBP)

Estimated average cost of installation 350 285 200 2000

Panel B: Internal Rate of Return (IRR) over a range of product lifetime assumptions

IRR 10 7% -8% 17% -24%

IRR 20 15% 4% 23% -7%

IRR 30 16% 6% 23% -2%

Panel C: Internal Rate of Return (IRR) over all IMD groups

Sample Average 16% 6% 17% -24%

IMD1 11% 5% 12% -26%

IMD2 14% 5% 14% -25%

IMD3 16% 5% 17% -24%

IMD4 17% 7% 20% -23%

IMD5 18% 9% 22% -22%

Panel D: Cost-effectiveness

GBP per tonne of CO2 removed 36 90 60 600

GBP per kWh saved 0.0072 0.0171 0.0141 0.1412

6 Sensitivity analysis and robustness

This section presents the results of a range of sensitivity analyses and robustness tests. All results are presented

in Sections D, G and H of the online Appendices. The aim is to present information on the stability of the

results across a range of sample splits and alternative specifications.

Considering Table G1, Column 1 presents results when the entire sample is included without using a matched

control group. This is useful as it provides quantification of the degree of bias that might exist should selection

not be controlled for. The coefficients for both type of insulation remain consistent with our central estimates,

however heating system replacement is considerably lower. Column 2 performs the same estimation including

only dwellings in which natural gas is the primary source of cental heating. This reduces the sample size slightly

and results in a slight improvement in model fit (as measured by R2), and an increase in size of the coefficient

on replacement heating system. Columns 3 and 4 repeat this analysis however we now introduce a matched

control group in both cases. Column 5 presents results using a matched control group, where natural gas is

the primary source of central heating. However, in this specification we also include electricity consumption

as an explanatory variable. This is likely endogenous as households could substitute between both types of

heating, and should be treated with caution. However, this variable contains much information about household

behaviour, appliance usage and occupancy that is otherwise omitted in our estimations, and is interesting to

consider for that reason - particularly if it has an effect on our main results. Inclusion of this variable does not
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affect our central estimates giving us confidence in their accuracy.

Taking the sample used to estimate Column 4 results (matched upgrade and control group, primary heating

is gas), we now estimate a number of additional specifications in which we exclude households with large annual

changes in energy consumption. This is to control for any large changes that might be as a result of changes

in occupancy. Column’s (6-8) present these results in which we exclude dwellings with any annual changes in

either gas or electricity greater than ±50, 40 and 30 percent respectively of the previous year’s consumption.

When this sensitivity check is included, sample size drops significantly and model fit improves considerably

(R2 = 0.398). The coefficients on both insulation measures do not change much, but the effect of heating

system replacement increases. The results in column’s (6-8) are otherwise consistent with each other and for

this reason we favour Column 8 as the preferred specification as this maximises sample size while also accounting

for potential unobserved occupancy changes. Finally, in Column 9 we again include electricity consumption as

an explanatory variable and results remain largely unchanged.

Table D1 provides a comparison of our preferred estimates using Coarsened-Exact Matching with results

generated using both Nearest Neighbour and Kernel Matching techniques. The results are stable across all

matching procedures. Table H1 details of standard errors calculated using alternative clustering methods.

7 Discussion and conclusions

The aim of this research was to explore the distributional impacts of energy efficiency measures. Variation in

energy savings was quantified across a range of domains, by measure, over time, by household type and how this

variation impacts the financial rate of return. In order to comprehensively and robustly explore heterogeneity

we apply Statistical matching, panel econometric estimators, Quantile regression and an Event-Study analysis

to an extremely large database of energy efficiency measures and metered consumption. The database includes

a representative sample from the universe of households entering into energy efficiency schemes administered by

energy suppliers in the UK, mitigating site-selection bias.

Our results indicate that cavity wall insulation and heating system replacement (installation of a condensing

gas boiler) result in an energy saving of about 10 percent of annual consumption, while loft insulation results

in approximately a three percent reduction. These savings are consistent regardless of when the measures were

installed over the sample period. Households living in more deprived areas observe less savings (both in absolute

and percentage terms) than those in more affluent areas. This result is true for all measures examined. Our

composite measure of deprivation may also be masking significant heterogeneity, extremely low savings are

observed in the lowest decile when savings are decomposed by predicted income. Quantile regression analysis

suggests that differential baseline energy consumption does explain some of the difference between socioeconomic
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groups, but not all. Differences between groups persist over time, and we also present suggestive evidence that

savings diminish over time for loft insulation and heating system replacements. This is an interesting avenue for

future research.

The results of this analysis provide both academic and policy insights. Our academic contribution is to

more comprehensively explore heterogeneity in savings from installing energy efficiency measures, allowing us

to better quantify their cost-effectiveness. As far as we are aware this is the first paper to examine longer run

effects and how they vary by levels of household deprivation. This adds to a growing literature examining longer

run effects of building energy codes (Kotchen, 2017) and information stimuli (Allcott and Rogers, 2014).

Better estimation of the financial return on investment provides insight for both policy design and policy

evaluation. Pay-as-you-save financing mechanisms are becoming increasingly popular for energy efficiency. For

example, the Green Deal was a recent policy initiative in the UK (2011-2015) which provided households with

loans in order to finance energy efficiency measures at interest rates of approximately eight percent. This was

widely considered to have been a spectacular failure. The National Audit Office conducted an independent

audit of the Green Deal scheme, finding that during its lifespan the scheme only funded one percent of energy

efficient measures installed nationally. It also found that the scheme saved negligible amounts of CO2 and that

households did not see the loans as an attractive proposition. Concerns were raised prior to the Green Deal

policy that it would not have sufficient appeal for householders. These relate to a range of factors, including

uncertainty regarding energy savings, limited financial appeal, and limited awareness of the scheme (Dowson

et al., 2012). A key factor in limiting its appeal were the high rates of interest charged on loans (Rosenow and

Eyre, 2016). Given the results we observe, it is clear that this rate is not sufficiently low to provide incentives

for many households to partake in this scheme. In particular, low income households would actually lose money

by making these improvements unless energy prices rise significantly. Market-based interventions will only work

for certain segments of the population and policy needs to take this into account.

A question one might ask is why lower income households experience lower rates of return? A body of

literature on the rebound effect identifies changes in energy service consumption that might reduce the expected

savings (Sorrell et al., 2009a). It has also been shown that significant heterogeneity in the rebound effect is

determined by household income and wealth (Aydin et al., 2017)15. A naive assessment might suggest that

environmental policy is more effective when focused on better-off households. However, this is true only in the

narrow sense that upgrades to such households will be more effective at reducing energy use and carbon emissions.

Total welfare gains from upgrades may well be greater for upgrades to low income households, particularly if

lower income households trade-off lower energy savings with increased internal temperatures and this results in

improved well-being and even health outcomes. Evidence suggests this might be the case with regard to health

15This has also been shown in an inter-temporal sense by Fouquet (2018)
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(Wilkinson et al., 2009; Hamilton et al., 2015) and poverty alleviation (Hills, 2012; Watson and Maitre, 2015).

The benefits of energy efficiency investments need to be re-considered with a greater focus on the non-financial

benefits, from both a public and private perspective. At a societal level this means a greater focus on carbon

emissions reduction, as opposed to cost-savings. In particular for low-income households, where much policy is

directed, a greater focus on quantifying other welfare benefits and including them in cost-benefit calculations is

essential.
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1 Appendix

1.1 Overview of NEED dataset

Table A1: Description of variables in NEED

Variable Description

HH ID Household identifier. A unique value for each record. Created specifically for these datasets.

REGION Region code - formally Government Office Region. See ONS website for more details: http://www.ons.gov.uk/ons/guide-

method/geography/beginner-s-guide/administrative/england/government-office-regions/index.html.

IMD ENG English Index of multiple deprivation 2010. Households are allocated to five groups (quintiles) based on the deprivation rank of

the 2001 Lower Layer Super Output Area (LSOA) they are located in. Households in the 20 per cent most deprived LSOAs are in

the bottom quintile (1) and households in the 20 per cent least deprived LSOAs are in the top quintile (5).

IMD WALES Welsh Index of multiple deprivation 2011. Households are allocated to one of five bands based on the deprivation rank of the LSOA

(2001) they are located in. 1, most deprived, 5 least deprived.

FP ENG EUL only. Fuel Poverty Indicator for England. Households are allocated to one of five bands based on the estimate of the proportion

of households in fuel poverty in the LSOA (2001) they are located in. Uses the 2011 estimates of fuel poverty low income high cost

definition.

EPC INS DATE EUL Only. Provides information on the date of the EPC inspection (based on lodgement date).

GconsYEAR Weather corrected annual gas consumption. Based on meter point data from Xoserve and independent gas transporters. Readings

relate to October to September each year (e.g. 2012 consumption is October 2011 to September 2012). See here for more information

on this source: https://www.gov.uk/government/publications/regional-energy-data-guidance-note.

GconsYEARValid Flag indicates records with valid consumption and households off the gas network.

EconsYEAR Annual electricity consumption in kWh - values relate to end January to end January each year (e.g. 2012

consumption is end January 2012 to end January 2013). See here for more information on this source:

https://www.gov.uk/government/publications/regional-energy-data-guidance-note.

EconsYEARValid Valid electricity consumption (between 100 and 25,000 inclusive)

E7Flag2012 Shows whether the electricity meter is an E7 (profile 2) meter - this does not necessarily mean the household has an E7 tariff, some

households will have an E7 meter without an E7 tariff.

MAIN HEAT FUEL Main fuel used to heat the property, based on information from Energy Performance Certificate

PROP AGE Banded year of construction based on EPC data.

PROP TYPE Type of property (based on combination of EPC built form and property type).

FLOOR AREA BAND Banded floor area based on EPC (m2).

EE BAND Energy Efficiency Band Based on EPC (A and B grouped).

LOFT DEPTH Amount of loft insulation as assessed by EPC (all properties with loft insulation recorded as installed through a Government scheme

are assigned 2 irrespective of EPC information). No information could occur where the information is missing from the EPC or

where the property does not have a loft.

WALL CONS Wall construction as recorded on EPC.

CWI Cavity wall insulation installed through Government schemes. This includes measures recorded as installed on HEED, including,

Energy Efficiency Commitment, Community Energy Savings Programme and Carbon Emissions Reduction Target.

CWI YEAR Year of CWI installation

LI Loft insulation installed through Government schemes. This includes measures recorded as installed on HEED, including, Energy

Efficiency Commitment, Community Energy Savings Programme and Carbon Emissions Reduction Target.

LI YEAR Year of LI installation

BOILER This includes boilers installed through Government schemes, and those registered by CORGI (up to 2009) and Gas Safe (2009

onwards).

BOILER YEAR Year of Boiler installation

WEIGHT EUL Only. Weighting based on Region, property age, property type and floor area band. Summing all weights gives (approximate)

total number of households in England and Wales 2011.
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B Socioeconomic information

The NEED dataset comprises information on household characteristics modelled by Experian and matched with

indicators based on the geographic location of the property (DECC, 2016).1 For reasons of data protection, the

dataset was anonymised and household-level information on variables such as income and tenure-type are not

available. However, the dataset does include two composite indicators of the socio-economic background of the

households.

1. Index of multiple deprivation (IMD)

NEED contains two variables describing IMDs: IMD 2010 for England and IMD 2011 for Wales. Both

indicators classify Lower Layer Super Output Areas (LSOAs) according to a quintile ranking that is based

on eight different domains that are incorporated using a weighting scheme. The first quintile (IMD=1)

indicates the most deprived areas. Table B1 shows the composition of domains that are incorporated in

the indicators and their weight in percent.

2. Fuel poverty indicator (FP)

Combining data from the English Housing Survey and Census data, the fuel poverty indicator indicates

if households are fuel poor based on the households’ income and energy requirements, as well as on fuel

prices (BEIS, 2013).

Table B1: Composition of IMD in %

England 2010 Wales 2011

Income 22.5 23.5

Employment 22.5 23.5

Health 13.5 14

Education 13.5 14

Access/barriers to services 9.3 10

Living environment/ housing 9.3 5

Physical environment 0 5

Crime [Wales: Community Safety] 9.3 5

Note: Composition of domains and weights in percent of

indicators comprising Index of multiple deprivation.

Source: Payne and Abel (2012); ONS (2011)

1Experian is a commercial organisation which produces modelled data of household characteristics at address level. These are
derived from a range of sources including Census outputs and Experian’s consumer survey.
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Table B2: Logistic regressions

(1) (2) (3) (4)
Upgrade Cavity Loft Boiler

2005 Gas 1.000*** (0.000) 1.000*** (0.000) 1.000*** (0.000) 1.000*** (0.000)
2005 Electricity 1.000*** (0.000) 1.000*** (0.000) 1.000*** (0.000) 1.000*** (0.000)

Cavity wall
Other 0.609*** (0.001) 0.0803*** (0.000) 0.900*** (0.002) 0.965*** (0.002)

East Midlands 1.340*** (0.003) 1.218*** (0.004) 1.705*** (0.005) 1.058*** (0.003)
East of London 1.023*** (0.002) 0.991** (0.003) 1.207*** (0.003) 0.949*** (0.002)
London 0.857*** (0.002) 0.744*** (0.003) 0.807*** (0.002) 0.859*** (0.002)
North East 1.651*** (0.005) 1.821*** (0.006) 2.011*** (0.006) 0.999 (0.003)
North West 1.356*** (0.003) 1.613*** (0.004) 1.749*** (0.004) 0.869*** (0.002)
South East
South West 1.185*** (0.003) 1.224*** (0.004) 1.371*** (0.004) 0.997 (0.002)
Wales 1.233*** (0.003) 1.312*** (0.005) 1.847*** (0.006) 0.791*** (0.002)
West Midlands 1.217*** (0.003) 1.288*** (0.004) 1.473*** (0.004) 0.948*** (0.002)
Yorkshire and The Humber 1.355*** (0.003) 1.347*** (0.004) 1.644*** (0.004) 1.039*** (0.002)

Detached house 1.096*** (0.002) 1.078*** (0.003) 1.155*** (0.003) 1.025*** (0.002)
Semi-detached house
End terrace house 0.908*** (0.002) 0.846*** (0.002) 0.949*** (0.002) 1.000 (0.002)
Mid terrace house 0.802*** (0.001) 0.672*** (0.002) 0.875*** (0.002) 0.949*** (0.002)
Bungalow 1.377*** (0.003) 1.042*** (0.002) 1.440*** (0.003) 1.252*** (0.003)
Flat (inc. maisonette) 0.528*** (0.001) 0.495*** (0.002) 0.233*** (0.001) 0.943*** (0.003)

Before 1930
1930-1949 1.277*** (0.002) 1.692*** (0.005) 1.272*** (0.003) 1.136*** (0.002)
1950-1966 1.477*** (0.003) 2.058*** (0.006) 1.265*** (0.003) 1.212*** (0.003)
1967-1982 1.338*** (0.003) 1.920*** (0.006) 1.289*** (0.003) 1.116*** (0.002)
1983-1995 0.835*** (0.002) 0.861*** (0.003) 0.966*** (0.003) 0.995 (0.003)
1996 onwards 0.301*** (0.001) 0.406*** (0.002) 0.247*** (0.001) 0.459*** (0.002)

IMD group 1 1.419*** (0.003) 1.278*** (0.003) 1.401*** (0.003) 1.214*** (0.002)
IMD group 2 1.169*** (0.002) 1.166*** (0.003) 1.236*** (0.003) 1.010*** (0.002)
IMD group 3 1.073*** (0.002) 1.099*** (0.002) 1.134*** (0.002) 0.972*** (0.002)
IMD group 4 1.014*** (0.002) 1.034*** (0.002) 1.038*** (0.002) 0.971*** (0.002)
IMD group 5

Gas
Other 0.976*** (0.004) 1.234*** (0.008) 1.224*** (0.007) 0.831*** (0.004)
1 to 50 m2 0.976*** (0.003) 0.836*** (0.003) 0.768*** (0.003) 1.075*** (0.003)
51-100 m2
101-150 m2 0.938*** (0.001) 0.879*** (0.002) 0.958*** (0.002) 0.969*** (0.001)
Over 151 m2 0.867*** (0.002) 0.630*** (0.002) 0.836*** (0.003) 1.049*** (0.003)

Observations 2527182 2527182 2527182 2527182
Pseudo R-squared 0.063 0.184 0.068 0.011

Notes: This table reports odds ratio/ coefficient estimates and standard errors from four separate regressions. Columns (1) to (4) report odds ratio from
logit regressions. The dependent variable in column (1) indicates whether a dwelling had an efficiency upgrades occurring at any time during the sample period.
In every regression in columns (2), (3) and (4), the dependent variable indicate a different type of upgrade. The standard errors are given in brackets. The
reference group of dummy variables is printed in italic.
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C Predicting income

In the first stage of the prediction process, we estimate income using the EHS data. The dependent variable

in our model is the EHS Basic income, which provides information on annual net household income (HRP +

Partner) including savings for 75,361 households. We consider to included all variables that are available in

NEED and that could explain income in the estimation model and transform these variables such that the

categories of the variables correspond to the NEED variables. See tables C1, C2 and C3 for the transformation

of the variables property type, property age and region. EHS does not provide information for households in

Wales and region of residence was not reported in the first wave 2005-2006. IMD is given in deciles for each

wave. We merge the IMD groups in EHS such that they correspond to the quantiles in NEED. The floor area

band is continuous in the EHS, we thus group the variable in the same band with as the NEED data.

Table C1: Government regions

Govern. Region NEED EHS EHS frequency

E12000001 North East North East 2,670

E12000002 North West North West 6,577

E12000003 Yorkshire and The Humber Yorkshire and The Humber 5,324

E12000004 East Midlands East Midlands 4,047

E12000005 West Midlands West Midlands 4,440

E12000006 East of England East 4,848

E12000007 London London 6,093

E12000008 South East South East 6,919

E12000009 South West South West 4,665

W99999999 Wales Missing 0
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Table C2: Property age

NEED EHS Frequency EHS

before 1930 1850 to 1899 6,600

before 1930 1900 to 1918 5,957

before 1930 1919 to 1944 12,911

1930-1949 1945 to 1964 17,971

1950-1966 1965 to 1974 12,224

1967-1982 1975 to 1980 5,724

1967-1982 1981 to 1990 6,727

1983-1995 post 1990 7,904

after 1996 pre 1850 2,336

Table C3: Property type

NEED EHS Frequency EHS

end terrace end terrace 8,043

mid terrace mid terrace 15,015

semi detached semi detached 19,698

detached detached 10,359

bungalow bungalow 7,434

flat converted flat 2,754

flat purpose built flat, low rise 13,289

flat purpose built flat, high rise 1,762

From the pre-selected variables, we choose the features to be included in the estimation model based on

standard linear regression by stepwise selection process choosing features with the lowest p-values, as well as

Lasso method for feature selection. The LASSO method is standardised method to determine the right set of

features. The LASSO estimator solves an optimisation problem that minimises the sum of squared errors with

an upper bound of the sum of the absolute values of the model parameters, thus penalising the inclusion of

redundant and irrelevant features and thus avoiding overfitting. The LASSO estimator selects all variables and

thus does not partial-out any of our pre-selected variables. It further reveals that floor area is the most important

variable in the model (see figure 1). Applying a 5-fold cross-validation shows that the lowest cross-validation

mean square error can be obtained with the inclusion of all variables (eight features) (See figure 2). The range
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of the lambda that optimises the mean-square error and penalises overfitting lies between eight and five model

features with an upper bound at five. Since most coefficients are significant, we decide to include all our variables

in the model.

Figure 1: Glmnet for the basic model
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Figure 2: 5-fold cross-validation

In the final model, we include the variables IMD group, region, an indicator for the main heating fuel, as

well as dwelling characteristics such as property type, property age and floor area and estimate with dwelling

weights to ensure representability of our results. Most variables are highly significant with a p-value at 0.01

(See table ??). We estimate a separate model for the period 2005-2006, since region was not reported in the

2005/2006 EHS survey. Including interactions in the model, does not increase the predictive power of the model

(see adjusted R-square of model 2 in table ??) but enormously increases the computational costs of predicting

income in NEED. This is so because the coefficient matrix we obtain in the first step inflates for every variable

we add in the model. Multiplication of matrices in the second step then becomes increasingly complex and

consumes a lot of computational power.

In a second step, we use the coefficients from the first stage to predict income in NEED.
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Table C4: First stage: Estimation model

Annual net household income

(1) Basic model (2) With interactions (3) Basic model for 2005-2006

IMD group 1
IMD group 2 2, 796.644∗∗∗ (279.734) 2, 770.539∗∗∗ (279.804) 2, 624.671∗∗∗ (454.017)
IMD group 3 5, 289.021∗∗∗ (287.551) 5, 291.229∗∗∗ (287.489) 5, 130.349∗∗∗ (467.529)
IMD group 4 7, 427.007∗∗∗ (292.931) 7, 409.695∗∗∗ (292.897) 6, 080.672∗∗∗ (476.019)
IMD group 5 10, 648.520∗∗∗ (309.355) 10, 560.590∗∗∗ (309.853) 8, 961.979∗∗∗ (493.569)
1-50 m2
51-100 m2 4, 036.371∗∗∗ (322.444) 3, 646.616∗∗∗ (556.121) 4, 127.138∗∗∗ (542.831)
101-150 m2 10, 874.310∗∗∗ (391.415) 8, 506.496∗∗∗ (783.703) 10, 767.440∗∗∗ (651.143)
Over 151 m2 22, 352.340∗∗∗ (473.674) 19, 818.060∗∗∗ (822.730) 25, 869.620∗∗∗ (795.843)
North East
North West 557.708 (446.241) 547.668 (446.157)
Yorkshire and The Humber 358.595 (465.801) 364.322 (465.718)
East Midlands −108.940 (481.903) −88.658 (481.843)
East Midlands 859.607∗ (465.957) 874.109∗ (465.888)
East of England 2, 235.437∗∗∗ (467.484) 2, 276.779∗∗∗ (467.567)
London 9, 392.044∗∗∗ (457.411) 9, 405.638∗∗∗ (457.349)
South East 3, 763.329∗∗∗ (444.634) 3, 771.052∗∗∗ (444.561)
South West 175.792 (470.415) 229.325 (470.466)
Before 1930
1930-1949 −2, 239.046∗∗∗ (299.586) −2, 347.805∗∗∗ (300.414) −2, 720.271∗∗∗ (480.367)
1950-1966 −4, 355.881∗∗∗ (291.591) −4, 447.088∗∗∗ (292.174) −4, 974.613∗∗∗ (473.609)
1967-1982 −3, 448.846∗∗∗ (284.707) −3, 556.549∗∗∗ (285.567) −3, 666.762∗∗∗ (459.227)
1983-1995 −1, 978.010∗∗∗ (368.180) −2, 129.114∗∗∗ (369.603) −2, 028.518∗∗∗ (610.119)
After 1996 956.453∗∗∗ (321.266) 801.340∗∗ (322.932) −4.798 (571.549)
End terrace house
Mid terrace house −367.296 (343.774) −384.567 (343.722) 1, 339.147∗∗ (564.087)
Semi detached house 1, 960.954∗∗∗ (329.205) 1, 972.677∗∗∗ (329.148) 2, 024.877∗∗∗ (541.306)
Detached house 4, 576.612∗∗∗ (388.216) 4, 660.368∗∗∗ (388.545) 4, 091.597∗∗∗ (646.439)
Bungalow −3, 482.680∗∗∗ (409.284) −3, 385.405∗∗∗ (410.300) −2, 120.809∗∗∗ (676.932)
Flat −2, 237.751∗∗∗ (374.749) −2, 346.431∗∗∗ (375.511) 408.501 (621.779)
Period 09-10 1, 010.673∗∗∗ (212.320) 1, 009.994∗∗∗ (212.275)
Period 11-12 1, 203.948∗∗∗ (211.793) 1, 206.842∗∗∗ (211.748)
51-100 m2 * Gas fired system 729.085 (645.868)
101-150 m2 * Gas fired system 2, 912.586∗∗∗ (846.116)
Over 151 m2 * Gas fired system 3, 300.171∗∗∗ (890.828)
Gas fired system 2, 076.278∗∗∗ (259.358) 838.314 (547.178) 2, 648.456∗∗∗ (421.372)
Constant 11, 385.180∗∗∗ (649.024) 12, 329.070∗∗∗ (721.926) 11, 062.750∗∗∗ (864.028)

Observations 43,839 43,839 15,648
R2 0.236 0.236 0.216
Adjusted R2 0.235 0.236 0.215
Residual Std. Error 693,191.300 (df = 43810) 693,039.000 (df = 43807) 653,324.300 (df = 15629)
F Statistic 482.922∗∗∗ (df = 28; 43810) 437.097∗∗∗ (df = 31; 43807) 238.987∗∗∗ (df = 18; 15629)

Note: The table reports coefficient estimates and standard errors from three regressions using alternative model specification. The dependent variable in all
regressions is the annual net household income. Column (1) reports the results from the basic model that includes EHS data from 2007 to 2012. Column (2)
includes interaction terms, Column (3) uses EHS data for the years 2005 and 2006 for which the region variable is not available.
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D Matching

D.1 Coarsened-Exact Matching procedure

The CEM procedure initially coarsens continuous variables into discrete bins, each with their own “Bin Signa-

ture” or strata. Households are then exactly matched to another household in the same strata. The algorithm

works by selecting strata that make treated and control groups balanced with respect to X. This can be per-

formed for multiple variables. Weights are produced in which unmatched observations receive a weight of zero.

Matched units receive a weight of one if they belong to the treatment group and a weight of mC

mT

ms
T

ms
C

if they

belong to the control group. This is formally described by Iacus et al. (2012) as:

wi =


1 i ∈ T s

mC

mT

ms
T

ms
C

i ∈ Cs

(1)

Where wi is the calculated weight for observationi, (T s, Cs) the treated and control units in stratum s,

(mT ,mC) the total number of treated and control units and (ms
T ,m

s
C) the number of treated and control units

in stratum s. The trade-off with CEM is choosing between the bin width or number of strata and proportion of

disgarded unmatched observations. Overly narrow bin widths result a large number of strata, making matching

more difficult and resulting in more unmatched observations. Overly wide bin widths result in a low number

of strata, making matching easier but observations may not be sufficiently similar. This is more of a problem

when working with small sample sizes.

In this case we are concerned with matching the group that received the energy efficiency upgrades with the

group that did not. Covariates on which the matching is performed should be predictors of household energy

consumption and simultaneously impact the uptake of energy efficiency upgrades. The IMD of the area in

which the household resides, provides information on the household’s socioeconomic environment, an important

predictor of energy consumption and energy efficiency uptakes (Hamilton et al., 2014). Dwelling characteristics,

such as the period in which the dwelling was built has an important impact on residential energy consumption

(Brounen et al., 2012; Harold et al., 2015). Regional differences in weather patterns will also affect fuel con-

sumption. In addition, Alberini and Towe (2015) provide evidence that matching solely based on dwelling or

household characteristics is not sufficient and can be optimised if past energy usage is also included. Taking

into consideration all these factors, matching is performed on the following variables: property age, fuel-type,

energy consumption in the pre-treatment years, location of dwelling and the IMD of the area in which the house-

hold resides. By performing matching on energy consumption in prior years, we can account for unobservable

household and property characteristics that might vary over time, such as the household size, composition and
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appliance usage. The large sample size allows us to perform 1:1 matching in which each treatment household is

matched with a similar control household.

D.2 Assessing the quality of matching

The quality of the matching process depends on the similarity in the distribution of covariates between treated

and matched control group. This is commonly assessed by comparing the standardised difference and variance

ratio of the variables in both groups, before and after matching (Caliendo and Kopeinig, 2005). The standardised

difference is the difference in sample means in the treated and control group, divided by the corresponding sample

variances. Formally:

d =
xtreatment − xcontrol√

s2treatment+s2control

2

(2)

It allows for a comparison of balance which is independent of the sample size and measurement unit (Austin,

2009). The smaller the difference, the better, and it is recommended that this ratio should not exceed 10 percent

(Austin, 2009). The variance ratio measures the ratio of the mean variance in the treated and control group for

each covariate. Formally:

F =
s2treatment

s2control
(3)

This should be close to unity (Austin, 2009; Ferraro and Miranda, 2017). A significant divergence from this

indicates that the matching model is misspecified. Further methods of balance diagnostic include assessing the

magnitude of the difference between treatment and matched control group covariates using tests for statistical

significance. However, the use of the t-test for balance testing is criticised for several reasons under which the

most problematic is the dependence on the sample size. For instance, randomly discarding control units will

always increase the balance, falsely indicating a better balance (Imai et al., 2008).
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Table D1: Unmatched sample

Unmatched sample Treated Control Balance

Variable Mean Variance Skewness Mean Variance Skewness Std-diff Var-ratio

Variables used in matching prop age 2.96 1.98 0.16 3.00 3.00 0.31 -0.03 0.66

imd both 2.85 2.11 0.15 2.96 2.01 0.05 -0.08 1.05

region 5.34 7.33 0.03 5.81 6.31 -0.29 -0.18 1.16

fuel type 0.98 0.02 -7.43 0.98 0.02 -6.33 0.04 0.74

Gcons2005 18124 78900000 0.65 17394 86200000 0.73 0.08 0.92

Variables not used in matching prop type 3.33 2.63 0.22 3.56 2.92 0.08 -0.14 0.90

floor area 2.20 0.40 0.89 2.20 0.46 0.77 -0.01 0.86

loft depth 2.03 0.28 0.04 2.08 0.53 -0.13 -0.08 0.52

wall cons 0.73 0.20 -1.02 0.59 0.24 -0.36 0.29 0.82

FP ENG 2.95 1.97 0.06 2.89 2.12 0.10 0.04 0.93

Econs2005 3903 7653561.00 2.16 3998.54 8374713 2.14 -0.03 0.91

Note: Comparison of means, standard deviations and skewness of variables in both Treatment and Control groups prior to CEM.

Comparison provided of variables used in matching procedure and variables not used in matching procedure.

Table D2: Matched sample all years

All years matched sample Treated Control Balance

Variable Mean Variance Skewness Mean Variance Skewness Std-diff Var-ratio

Variables used in matching prop age 2.91 2.32 0.24 2.91 2.31 0.24 0.00 1.00

imd both 2.92 2.07 0.09 2.92 2.07 0.09 0.00 1.00

region 5.62 6.83 -0.15 5.62 6.82 -0.15 0.00 1.00

fuel type 0.98 0.02 -7.45 0.98 0.02 -7.47 0.00 1.01

Gcons2005 18020 84200000 0.67 18017 84300000 0.67 0.00 1.00

Variables not used in matching prop type 3.36 2.68 0.19 3.48 2.87 0.14 -0.07 0.93

floor area 2.21 0.42 0.86 2.21 0.45 0.80 0.00 0.93

loft depth 2.04 0.30 0.03 2.05 0.52 -0.08 -0.02 0.57

wall cons 0.67 0.22 -0.71 0.63 0.23 -0.52 0.09 0.95

FP ENG 2.95 2.04 0.06 2.96 2.09 0.05 -0.01 0.98

Econs2005 3945.89 7999389.00 2.15 4028.94 8182317.00 2.09 -0.03 0.98

Note: Comparison of means, standard deviations and skewness of variables in both Treatment and Control groups after CEM performed.

Comparison provided of variables used in matching procedure and variables not used in matching procedure.
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Table D3: Percentage of observations matched

Dwellings receiving upgrades Count

Full database 1,869,372

2005 or unknown upgrade date 416,994

Remaining sample 1,452,378

Matched sample 1,286,419

Unmatched 165,959

Matched as a percentage of eligible 89%

Note: Information on proportion of observations

included in final matched sample.
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Table D4: Results under different matching procedures

(1) (2) (3)

CEM Matching Nearest neighbour matching Kernel matching

Cavity wall insulation -0.094*** -0.094*** -0.096***

(0.001) (0.002) (0.003)

Loft insulation -0.030*** -0.029*** -0.031***

(0.001) (0.003) (0.003)

Replacement boiler -0.092*** -0.093*** -0.097***

(0.001) (0.002) (0.002)

Control variables Y Y Y

Household fixed effects Y Y Y

Year fixed effects Y Y Y

Year*region fixed effects Y Y Y

Observations 5,502,936 3,341,747 3,263,178

Number of households 687,925 417,751 407,928

R squared 0.349 0.363 0.411

Notes: This table reports coefficient estimates and standard errors from three regressions using alternative matching procedures. The dependent variable in all

regressions is the logarithm of annual gas consumption in kilowatt hours. Column(1) reports the results from the preferred CEM procedure, Column (2) from

Nearest Neighbour matching and Column (3) reports results from a Kernel matching procedure. Triple asterisks denote statistical significance at the 1% level;

Double asterisks at the 1% level; single asterisks at the 10% level.
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E Results in kWh

Table E1: Results in units of energy saved (kWh)

(1) (2) (3)

Gas Elec Tot Energy

Cavity wall insulation -1254.909*** -23.002 -1277.911***

(41.989) -14.009 (46.216)

Loft insulation -375.539*** -8.901 -384.440***

(36.250) -11.268 (39.533)

Replacement boiler -1229.965*** -98.273*** -1328.238***

(32.918) -10.796 (35.722)

Control variables Y Y Y

Household fixed effects Y Y Y

Year fixed effects Y Y Y

Year*region fixed effects Y Y Y

Observations 549072 549072 549072

Number of households 68,634 68634 68634

R squared 0.337 0.092 0.357

Notes: This table reports coefficient estimates and standard errors from three separate regressions. The dependent variable in all regressions is annual energy

consumption. Column(1) is Gas, (2) Electricity and (3) Total Energy. For each upgrade group a matched control group is created using coarsened-exact matching.

The sample includes billing records from 2005 to 2012. Standard errors are clustered at the household level. Triple asterisks denote statistical significance at the

1% level; Double asterisks at the 1% level; single asterisks at the 10% level.
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F Event-Study results by measure
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Figure 3: Cavity-wall insulation: Event-study analysis of percentage savings for all
households and by IMD Group. Upgrade occurs during period −1 ≤ t ≤ +1
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Figure 4: Loft insulation: Event-study analysis of percentage savings for all house-
holds and by IMD Group. Upgrade occurs during period −1 ≤ t ≤ +1
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Figure 5: Heating system replacement: Event-study analysis of percentage savings
for all households and by IMD Group. Upgrade occurs during period −1 ≤ t ≤ +1
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G Results from alternative specifications

Table G1: Results from alternative specifications

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Full sample Only gas Matched sample Only gas and matched Only gas, matched and elec 50 drop 60 drop 70 drop 70 drop, elec

Cavity wall insulation -0.092*** -0.092*** -0.083*** -0.084*** -0.083*** -0.095*** -0.096*** -0.094*** -0.092***

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Loft insulation -0.025*** -0.026*** -0.018*** -0.019*** -0.020*** -0.029*** -0.030*** -0.030*** -0.029***

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Replacement boiler -0.055*** -0.062*** -0.038*** -0.045*** -0.049*** -0.090*** -0.092*** -0.092*** -0.091***

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

0.179*** 0.138***

(0.000) (0.001)

Control variables Y Y Y Y Y Y Y Y Y

Household fixed effects Y Y Y Y Y Y Y Y Y

Year fixed effects Y Y Y Y Y Y Y Y Y

Year*region fixed effects Y Y Y Y Y Y Y Y Y

Observations 20,180,976 19,886,106 14,090,155 13,912,535 13,912,535 3,516,155 4,530,404 5,502,936 5,502,936

Number of households 2,527,073 2,489,345 1,764,246 1,741,574 1,741,574 439,545 566,339 687,925 687,925

Number of households 0.115 0.118 0.115 0.118 0.168 0.398 0.375 0.349 0.369
Notes: This table reports coefficient estimates and standard errors from nine separate regressions. The dependent variable in all regressions is the logarithm of annual gas consumption in kilowatt hours. For each

upgrade group a matched control group is created using coarsened-exact matching. The sample includes billing records from 2005 to 2012. Standard errors are clustered at the household level. Triple asterisks denote

statistical significance at the 1% level; Double asterisks at the 1% level; single asterisks at the 10% level.
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H Bootstrapping standard errors

Table H1: Comparison of standard error clustering for main model

Point Estimate [95% Conf. Interval]

Panel A: Standard errors clustered at the individual level
Cavity wall insulation -0.09442 -0.0960 -0.0928
Loft insulation -0.02969 -0.0311 -0.0282
Replacement boiler -0.09227 -0.0936 -0.0909

Panel B: Standard errors clustered at the region level
Cavity wall insulation -0.09442 -0.1035 -0.0853
Loft insulation -0.02969 -0.0333 -0.0261
Replacement boiler -0.09227 -0.1007 -0.0839

Panel C: Standard errors clustered at the region level. Wild bootstrap with 5000 replications
Cavity wall insulation -0.09442 -0.1029 -0.0848
Loft insulation -0.02969 -0.0332 -0.0258
Replacement boiler -0.09227 -0.1008 -0.0836

Panel D: Standard errors clustered at the region level. Wild bootstrap with 500 replications
Cavity wall insulation -0.09442 -0.1031 -0.0837
Loft insulation -0.02969 -0.0335 -0.0258
Replacement boiler -0.09227 -0.1010 -0.0833
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I Cost assumptions

Table I1: Sources of cost assumptions

Low High

Cavity wall (pre 1976) 300 325

Cavity wall (post 1976) 300 325

Loft 300mm (currently none) 138 273

Loft 300mm (currently 100mm) 86 211

Loft 300mm (currently 200mm) 35 170

Condensing boiler 100 300

Source: Shorrock et al. (2005)

Note: All costs in GBP

Table I2: Sources of cost assumptions

EESOP1 (1994) EESOP2 EESOP3 EEC1 (2005)

Cavity wall insulation 223 219 261 261

Condensing boiler 450 270 165 114

Source: Lees (2006)

Note: All costs in GBP

Table I3: Sources of cost assumptions

Defra EEC1 Defra EEC2 Defra CERT Lees 2005 Lees 2008

Cavity wall insulation 268 313 380 274 350

Loft insulation (top up) 213 260 286 217 275

Loft insulation (virgin) 213 260 286 252 295

A and B boiler 145 120

A and B boiler and heating control 217 190

All boilers 50 45

Source: Lees (2006, 2008)

Note: All costs in GBP
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J Carbon saving assumptions

Table J1: Assumptions for CO2 saving calculation

(1) Cavity wall insulation (2) Loft insulation (3) Replacement heating system

Gas Elec Gas Elec Gas Elec

kg CO2 per (kWh) 0.18 0.52 0.18 0.52 0.18 0.52

Total annual saving (kWh) 1551.46 67.51 546.22 10.74 1363.85 52.29

Total annual saving (kgCO2) 284.85 35.42 100.29 5.63 250.40 27.43

Lifespan 30 30 30 30 12 12

Total lifetime savings (kgCO2) 8545.41 1062.54 3008.56 168.99 3004.82 329.16

Notes: Source: Based on DEFRA/DECC Greenhouse gas conversion factors 2011. Available at https://www.gov.uk/government/publications/2011-

guidelines-to-defra-decc-s-greenhouse-gas-conversion-factors-for-company-reporting-methodology-paper-for-emission-factors
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K Comparison of cost-effectiveness

Table K1: Comparison of cost-effectiveness

Intervention type Reference Evaluation type Relevant subset Percent

reduction in

energy

usage

Engineering

estimates of

percent reduc-

tion

in energy usage

Cost effectiveness

(cents per kWh

saved, 2015 USD)

Behavioral programs Allcott (2011) RCT NA 2 3.6

Allcott and Rogers (2014) RCT One-shot intervention 4.4

Two-year intervention 1.1 to 1.8

Four-year intervention 1.2 to 1.8

Ayres et al. (2013) RCT Sacramento, California 2 5.5

Puget Sound, Washington 1.2 2

Building codes Novan et al. (2017) RD analysis NA 1.3 20 24.4

Efficient equipment or energy savings subsidy Alberini and Towe (2015) Matching NA 5.3 3.9

Alberini et al. (2014) DID Rebate of $1,000 or more 0

Rebate of $450 5.5 47.9

Rebate of $300 6.2 28.2

Burlig et al. (2017) Machine learning NA 2.9 to 4.5 11.6 to 18

Davis et al. (2014) DID regression Refrigerators 8 27.2

Air conditioners plus 1.7 4.5

Information provision Alberini and Towe (2015) Matching 5.5

Supplier Obligation (TWC) McCoy & Kotsch (2018) Matching, FE regression Cavity wall insulation 9.4 20.0 1.54 to 2.31

Loft insulation 3 5.2 3.65 to 5.47

Replacement heating system 9.2 24.9 3.02 to 30.19

Previous estimate of UK Supplier obligation (Lees, 2008)) 1.92

Note: Adapted from Gillingham et al. (2018)
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