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Abstract

The “energy-efficiency gap” is a topic that has received much attention in the academic literature. While

the role of market and behavioural failures have been discussed at length, much less focus has been on

quantifying the magnitude of heterogeneity and persistence that exists in the realised savings from installing

measures. This paper fills a gap in the literature by providing new evidence on the persistence of savings over

time for various measures and household types. Not only do households in more deprived areas experience

lower energy savings, for certain measures the savings erode more quickly over time for these households.

This result is important for improving our understanding of the incentives faced by households, for better

evaluating the cost-effectiveness of public policies and raises new concerns over the how the costs and benefits

of policies are distributed. It also suggests that the energy-efficiency gap requires less explanation than some

would suggest.
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1 Introduction

How much savings do energy efficiency measures actually deliver? Answering this seemingly straightforward

question is crucial to understanding why households appear to under-invest in energy efficiency measures rel-

ative to what is socially or even privately optimal, the so-called “energy-efficiency gap”.1 However, there has

been much debate on the size of this gap and the relative contribution of market failures, behavioural anomalies

or model and measurement error. A recent paper by Gerarden et al. (2015) argues that the energy efficiency

gap may not be as large as expected and that unobserved costs, overstated savings from adoption, consumer

heterogeneity, inappropriate discount rates and uncertainty may all contribute to the low adoption rate not

being as “paradoxical as it first appears.”2 This is a problem that affects both individual incentives to invest

and evaluations of policies aimed at encouraging adoption of energy efficiency measures, as overstated returns

make private investments seem more attractive, and makes policies appear more cost-effective than they actually

are. This issue is exacerbated by the fact that many policy evaluations rely on ex-ante engineering estimates of

savings, and rarely consider behavioural responses.

A November 2017 Wall Street Journal op-ed by Sam Ori explored “Why Government energy-efficiency pro-

grams sound great-but often don’t work” (Ori, 2017). This piece focused on research which demonstrated that

the upfront investment costs can be up to twice the actual savings, and the engineering estimates of energy

savings can be more than three times what is actually realised (Fowlie et al., 2018). Other research by Allcott

and Greenstone (2017) adds further evidence of overstated savings from ex-ante engineering estimates and also

highlights large unobserved benefits and costs which evaluations tend to miss.

Evaluations of energy efficiency improvements tend to take a short time-scale, usually a window of 1-2 years

on either side of the intervention in order to assess the magnitude of savings. This is despite the fact that

time-scale has proven an important factor when examining the impact of building energy codes on energy con-

sumption (Kotchen, 2017), and on the effect of behavioural interventions to reduce energy consumption (Allcott

and Rogers, 2014). Treatment effects can vary over time due to a range of factors. This could also be the case for

energy efficiency measures as specific factors related to usage patterns in any particular period may bias results

both before and after, while poor installation quality or degradation in the installed equipment may affect the

results post-installation. Variation over time could affect the accuracy of measurement, the attractiveness of

1The reluctance of some consumers to make energy saving investments that offer them seemingly positive net-present value
(NPV) returns has been widely studied. For example see Hausman (1979); Blumstein et al. (1980); Jaffe and Stavins (1994); Golove
and Eto (1996); Allcott and Greenstone (2012).

2A related literature focuses on supply side market failures, imperfect competition and suboptimal rate of innovation. See for
example Goldberg (1998); Cohen et al. (2017); Brucal et al. (2017)
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the investment, or the cost-effectiveness of a government scheme. Further, variations in energy prices both be-

fore and after the installation may affect both expectations and realisations of the investment’s net-present value.

This research contributes by providing information on the persistence and heterogeneity of savings associ-

ated with installing energy efficiency measures. Uniquely, we demonstrate how the savings from measures change

over time for different household types. Not only do households in more deprived areas experience lower energy

savings, the savings erode more quickly over time - in some cases reducing by 50 percent within six years (for

measures expected to last twice this amount of time). This result has important implications for improving our

understanding of the investment incentives households face and also for improving our evaluations of energy

efficiency policies.

In order to conduct this analysis we exploit an extremely large database of home energy efficiency upgrades

and metered energy consumption3, covering over four million households and a period of eight years. By com-

bining statistical matching and a range of panel econometric estimators we control for unobserved heterogeneity

and selection into various government schemes which funded the upgrades. Another novel feature of this anal-

ysis is that our database covers the universe of households entering into energy efficiency schemes administered

by energy suppliers in the UK, thus reducing the potential for “site-selection bias” as identified by Allcott (2015).

The data allows us to examine the variation in performance depending on when measures were installed, how

they perform over time; how this varies by dwelling and socioeconomic characteristics, and ultimately how this

affects the cost-effectiveness of measures for different household types. Results indicate significant cross-sectional

and temporal variation in energy savings, that the persistence of savings varies by the type of measure installed

and the socioeconomic characteristics of the household. The measures are generally still NPV positive, and com-

pare favourably with the cost-effectiveness of other initiatives, but the returns are much lower than expected.

This research also raises concerns over distributional factors given how the costs of policies are subsequently

levied on households.

The rest of the paper is organised as follows; Section 2 provides the context in which this analysis takes

place; Section 3 the data; Section 4 describes the methodological approach employed and considerations under-

taken; Section 5 outlines the results; Section 6 provides the results of robustness checks and sensitivity analysis;

Section 7 provides a concluding discussion.

3The National Energy Efficiency Framework Database (NEED). Further details available at:
https://www.gov.uk/government/collections/national-energy-efficiency-data-need-framework
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2 Background

The Supplier Obligation (SO), first introduced to the UK in 1994, has become the principal policy instrument for

implementing energy efficiency improvements in the domestic sector in the UK (Rosenow, 2012). The Supplier

Obligations are an example of a “Tradable White-Certificate” (TWC) scheme. These are regulatory mecha-

nisms, employing a market-based approach to deliver energy savings. Theoretically, they can be considered a

hybrid subsidy-tax instrument, in which suppliers provide subsidies for energy efficiency upgrades that are then

recovered through increased energy prices (Giraudet et al., 2012), having parallels with traditional demand-side

management (DSM) programmes in that companies are required to invest in projects that ultimately reduce

demand for their product (Sorrell et al., 2009b).

As outlined in Bertoldi and Rezessy (2008) and Giraudet et al. (2012), SOs have three main features: an

obligation is placed on energy companies to achieve a quantified target of energy savings; savings are based on

standardised ex-ante calculations; the obligations can be traded with other obligated parties. This flexibility

ideally allows suppliers to choose the most cost-effective way to reach their target. Suppliers bear the cost of

installations in the first instance, costs are then passed through to their entire population of customers through

increases in energy prices (Chawla et al., 2013). Clearly, this may have distributional consequences if certain

segments of the population are less likely to avail of the schemes. To alleviate this concern, targets were imposed

regarding the proportion of savings to be achieved from lower income groups.

The former Department of Energy and Climate Change (DECC)4, sets the savings targets which are then

enforced by the energy regulator, the Office of Gas and Electricity Markets (Ofgem). Ofgem sets and administers

individual savings targets for each energy supplier. Energy suppliers have various options to achieve their targets

such as contracting installers, subsidising energy efficiency products, cooperating with local authorities, delivery

agents or supermarkets, or directly working with their customers (Rosenow, 2012).

4now Department for Business, Energy and Industrial Strategy (BEIS)
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Figure 1: UK Energy Efficiency Programmes 2005-2012

Figure 1 gives an overview of SOs from 2002-2012. The first Energy Efficiency Commitment (EEC1) ran from

2002 to 2005, followed by EEC2 in 2005. In 2008, EEC2 was replaced by the Carbon Emissions Reduction Target

(CERT) which ran until 2012. In 2009, the Community Energy Saving Programme (CESP) was introduced in

parallel with CERT. While the main architecture of SOs did not change, the savings targets and the costs of the

delivering the programmes increased over time. Rosenow (2012) provides a comprehensive overview of the main

changes in each scheme from 1994 - 2012 with regards to the target, the costs, social equity implications and

other changes in design. The main change concerned the target size, increasing substantially in lifetime savings

from 2.7 to 494 terawatt hours (TWh) between 1994 and 2012 (Rosenow, 2012).

From 2002, all programmes included a target for disadvantaged households and fuel poverty increasingly

came to the fore. Eventually, CESP only allowed projects to be carried out in specific low income areas of

Britain, the lowest 10-15% of areas ranked in Income Domain of the Indices of Multiple Deprivation (Hough and

Page, 2015). Thus, CESP was only available in certain geographical regions. Furthermore, CESP introduced a

new bonus structure that incentivised the installation of multiple measures in a single dwelling and the treatment

of as many dwellings as possible in the same area (Duffy, 2013). Table 1 summarises the key features of the

schemes under consideration.
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Table 1: Overview of Supplier Obligations

ECC1 ECC2 CERT CESP

Target 62 TWh 130 TWh 494 TWh 19.25 Mt CO2

Annual costs (millions) 167 400 1,158 unknown

% savings in priority group 50% 50% 40% 10-15% most de-

prived areas

Measures installed

Cavity wall insulation 791,524 1,760,828 2,568,870 3,000

Loft insulations 754,741 1,780,302 3,897,324 23,503

Replacement heating sys-

tems

366,488 2,018,812 31,986 42,898

Source: Based on information from Lees (2006, 2008); Rosenow (2012); Duffy (2013)

A key feature of all previous evaluations of the above policies is that the energy savings achieved were based

on model ex-ante estimates and not actual ex-post data. Engineering model estimates tend to overstate actual

savings significantly, as they are derived from lab-based estimates and factors such as occupancy and behaviour

are typically not considered. This would lead to concern over the accuracy of measurement regarding both the

energy savings achieved and the cost-effectiveness of various policies in delivering savings.

This work leverages an extremely large dataset of energy efficiency measures to shed new light on the savings

delivered by the principal policy initiatives in the UK during the period 2002-2012.

3 Data

The National Energy Efficiency Database (NEED) contains dwelling-level data on four million households, over

an eight-year period. Information comes from a range of sources including meter point electricity and gas con-

sumption data, Valuation Office Agency (VOA) property attribute data, the Homes Energy Efficiency Database

(HEED) containing data on energy efficiency measures installed, and modelled data provided by Experian on

household characteristics. An overview of data types and sources is provided in Table 2.
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Table 2: Data sources combined in NEED

Type of variable Source

Energy efficiency measures HEED/Ofgem/DECC

Energy consumption Energy Supplier

Property attributes VOA

Household characteristics Experian

Source: NEED database

The remainder of this section will discuss the measures installed, energy consumption and the socioeconomic

characteristics of households. Further detail on all variables contained within the dataset is provided in Table A1

and descriptive statistics in Table A2. This includes detailed dwelling information.

3.1 Measures installed

The NEED database includes measures installed through EEC2, CERT and CESP schemes. These schemes were

by far the most prevalent mechanism for delivering energy savings in residential dwellings in the UK over this

period. The database does not include an exhaustive list of measures installed as part of the various schemes,

appliances and lighting also featured but are not included. However, as Table 3 demonstrates, insulation and

heating comprised the vast majority of estimated energy savings across various schemes over this period. In

total over two million measures were installed over the period within our sample, this is graphically represented

in Figure 2.

Table 3: Energy savings by scheme and measure

EEC1 EEC2 CERT

2002-2005 2005-2008 2008-2012

Insulation 56% 75% 66.20%

Heating 9% 8% 8.20%

Lighting 24% 12% 17.30%

Appliances 11% 5% 5.90%

Other - - 2.40%

Source: Lees (2006, 2008); Ofgem (2013)

Note: savings reported are estimates
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Figure 2: Energy efficiency measures installed, 2005-2012. Source: author’s calcula-
tion based on NEED data

All insulation installations in our dataset were funded through government schemes. Heating upgrades were

funded through both public and private means. In the early part of the sample (pre-2007) boiler installations were

likely to have been funded through government schemes, however government support for replacement boilers

was withdrawn during EEC2, as a combination of previous support schemes and new building regulations in 2005

had already delivered a significant penetration of new condensing boilers. Therefore the boiler data we report on

is a combination of publicly and privately funded investments. As specified in the 2005 Building Regulations, all

replacement boilers were required to be condensing gas or oil and have a minimum efficiency rating of 86 percent.

3.2 Energy consumption

Figure 3 illustrates that on average, gas consumption reduced by 27% between 2005 and 2012 and electricity

consumption reduced by 14%. Both of these trends are encouraging signs that the various polices in place over

this period were having an effect.
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Figure 3: Average domestic energy consumption UK, 2005-2012. Source: author’s
calculation based on NEED data

3.3 Socioeconomic characteristics

The NEED dataset comprises information on household characteristics modelled by Experian and matched with

indicators based on the geographic location of the property (DECC, 2016).5 For reasons of data protection, the

dataset was anonymised and household-level information on variables such as income and tenure-type are not

available. However, the dataset does include two composite indicators of the socio-economic background of the

households.

1. Index of multiple deprivation (IMD)

NEED contains two variables describing IMDs: IMD 2010 for England and IMD 2011 for Wales. Both

indicators classify Lower Layer Super Output Areas (LSOAs) according to a quintile ranking that is based

on eight different domains that are incorporated using a weighting scheme. The first quintile (IMD=1)

indicates the most deprived areas. Table 4 shows the composition of domains that are incorporated in the

indicators and their weight in percent.

5Experian is a commercial organisation which produces modelled data of household characteristics at address level. These are
derived from a range of sources including Census outputs and Experian’s consumer survey.
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Table 4: Composition of IMD in %

England 2010 Wales 2011

Income 22.5 23.5

Employment 22.5 23.5

Health 13.5 14

Education 13.5 14

Access/barriers to services 9.3 10

Living environment/ housing 9.3 5

Physical environment 0 5

Crime [Wales: Community Safety] 9.3 5

Source: Payne and Abel (2012); ONS (2011)

2. Fuel poverty indicator (FP)

Combining data from the English Housing Survey and Census data, the fuel poverty indicator indicates

if households are fuel poor based on the households’ income and energy requirements, as well as on fuel

prices (BEIS, 2013).

4 Econometric approach

4.1 Empirical framework

Lancastrian Demand Theory suggests that households do not derive utility from consumption of a good but from

the characteristics of the good and its combination with other goods (Lancaster, 1966). In this particular case,

households derive benefits from their consumption of energy services and not units of energy per se. Energy

services can be considered as a final good produced by the combination of energy inputs and capital equipment.

The services produced include lighting, space heating, water heating. The capital equipment includes heating

systems and insulation. These are intermediate goods in the production of thermal comfort or other measures

of household satisfaction (Quigley and Rubinfeld, 1989).

The benefit a household derives from an improvement in the capital equipment can be realised through

either a reduction in energy units required to maintain the previous level of energy service or through increased

consumption of energy services, due to a reduction in their effective price. The latter effect is sometimes referred

to as the “rebound effect” and has been widely studied.6

6Empirical estimates of the size of this effect vary considerably. See Sorrell et al. (2009a) for an overview. Increased energy
service consumption could result in a range of other benefits to households, as has been described as the multiple benefits of energy
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As outlined by Nordhaus (1996); Hunt and Ryan (2015); Fouquet et al. (2018) amongst others, not account-

ing for energy services in any empirical framework may result in model mis-specification and biased estimates.

However, energy services can be difficult to observe. To account for this Hunt and Ryan (2015) suggest adding

additional terms to the empirical framework in order to account for unobserved energy efficiency. These in-

clude adding exogenous time trends, information on past energy prices and the components of past energy

prices - all of which help to account for any underlying changes in unobserved energy efficiency. Taking this

on board, we propose a reduced-form framework with a rich set of fixed-effects which account for both exoge-

nous improvements in energy efficiency and changes in energy prices without explicitly modelling these factors.

In addition, by examining heterogeneity in energy savings for different household types following installation

of similar capital equipment, we can implicity observe changes in energy services derived by different households.

4.2 The model

Energy consumption is determined by a range of factors such as temperature, characteristics of the dwelling and

its inhabitants, and energy prices. We estimate the following baseline panel specification:

ln(yit) = αi + γt + ρrt + δ

3∑
j=1

Dijt + εit (1)

Where yit denotes consumption of either electricity or natural gas (both in kWhs) by household i in year

t, αi is a household fixed-effect, γt is a year fixed-effect which controls for unobserved factors which vary at

an annual level such as broader macroeconomic conditions and weather patterns, ρrt is a year-by-region fixed

effect to control for factors which vary at a sub-national level, such as more localised economic shocks and

weather patterns, Dit is the treatment dummy. The key parameter of interest is δ the average treatment effect

on the treated (ATT). The model is estimated as a first-differenced fixed effects panel specification controlling

for unobserved time-invariant household characteristics which might affect energy consumption. Over the course

of the analysis, a variety of extensions to the above are estimated, to account for interactions between upgrades

and household socioeconomic characteristics, and to examine the performance of upgrades over time. All models

are estimated for both gas and electricity consumption. Standard errors are clustered at the household level in

all specifications. As will be described in the following sections, the data allow us to create multiple treatment

and control groups. Treatment groups are created for the entire sample period and for each individual year of

upgrade. This allows us to examine how treatment effects vary over time.

efficiency (Ryan and Campbell, 2012)
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4.3 Identification

4.3.1 The problem of unobserved heterogeneity

The fixed effects estimators described above are based on the assumption of conditional mean independence or

unconfoundedness, selection on observables or ignorability (Caliendo and Kopeinig, 2005; Angrist and Pischke,

2009; Wooldridge, 2010), which requires that both of the following equations hold:

E[Y 0
it |Ai, t,Xit, Dit] = E[Y 0

it |Ai, t,Xit] (2)

and

E[Y 1
it |Ai, t,Xit, Dit] = E[Y 1

it |Ai, t,Xit] (3)

Thus, it assumes that Dit is strictly exogenous and as good as randomly assigned conditional on Ai (Angrist

and Pischke, 2009). As we are primarily interested in the effect on the households who enrolled in the schemes

- the average treatment effect on the treated (ATT), and not necessarily the effect on the whole population -

the average treatment effect (ATE), the condition of unconfoundedness can be relaxed and equation (3) can be

ignored. The parameter of interest is, the ATT is defined as:

ATT = E[Y 1
it − Y 0

it |Dit = 1] (4)

There is strong evidence that the presence of unobserved heterogeneity leads to inaccurate estimates of the

ATE and ATT in a fixed-effects OLS setting (Ferraro and Miranda, 2017; Gibbons et al., 2014). Self-selection

bias occurs as households voluntarily decide to apply upgrades in their homes or take part in government funded

schemes, potentially causing the treatment and control group to differ systematically in aspects that both affect

their likelihood of taking part in energy efficiency programs, and their energy consumption, causing the fail-

ure of the conditional mean independence assumption (Wooldridge, 2010). Unobserved heterogeneity between

households means that households respond differently to common shocks. For instance, increasing energy prices

might lead to different behaviour of low and high income households. Second, the crucial assumption of a linear

model with additive and homogeneous effects implies that the fixed effect estimates give a weighted average

based on the frequency of groups as well as the sample variances within groups (Gibbons et al., 2014). This is

problematic as the fixed effects estimator overweights groups that have larger variance of treatment conditional

upon other covariates and underweights groups with smaller conditional variance if heterogenous treatment is

prevalent (Ferraro and Miranda, 2017). One strategy to overcome this threat and to obtain consistent and
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unbiased estimators is to pre-process the data through statistical matching (Wooldridge, 2010). The following

section outlines this approach.

4.4 Matching

Policy evaluations of secondary data typically employ statistical matching, along with differences-in-differences

estimation, or exploit the longitudinal nature of the data with a panel fixed-effects specification. However, both

of these measures may suffer from bias through either unobserved temporal effects or unobserved heterogeneity.

Recent research has shown that by combining these methodologies, the accuracy of evaluations can approach

that achieved by a randomised-controlled trial (RCT) (Ferraro and Miranda, 2017).

Coarsened-exact matching (CEM) is a non-parametric statistical procedure which improves the estimation

of causal effects by reducing imbalance in observed variables between treatment and control groups (Iacus et al.,

2008; Blackwell et al., 2009). Iacus et al. (2012) compare CEM with a range of other matching methods using

Monte Carlo simulations and conclude that CEM has superior performance in terms of the bias and variance of

the ATT. Alberini and Towe (2015) use a similar approach in an analysis of home energy audits in the state of

Maryland.

The CEM procedure initially coarsens continuous variables into discrete bins, each with their own “Bin

Signature” or strata. Households are then exactly matched to another household in the same strata. The

algorithm works by selecting strata that make treated and control groups balanced with respect to X. This can

be performed for multiple variables. Weights are produced in which unmatched observations receive a weight

of zero. Matched units receive a weight of one if they belong to the treatment group and a weight of mC

mT

ms
T

ms
C

if

they belong to the control group. This is formally described by Iacus et al. (2012) as:

wi =


1 i ∈ T s

mC

mT

ms
T

ms
C

i ∈ Cs

(5)

Where wi is the calculated weight for observationi, (T s, Cs) the treated and control units in stratum s,

(mT ,mC) the total number of treated and control units and (ms
T ,m

s
C) the number of treated and control units

in stratum s. The trade-off with CEM is choosing between the bin width or number of strata and proportion of

disgarded unmatched observations. Overly narrow bin widths result a large number of strata, making matching

more difficult and resulting in more unmatched observations. Overly wide bin widths result in a low number
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of strata, making matching easier but observations may not be sufficiently similar. This is more of a problem

when working with small sample sizes.

In this case we are concerned with matching the group that received the energy efficiency upgrades with the

group that did not. Covariates on which the matching is performed should be predictors of household energy

consumption and simultaneously impact the uptake of energy efficiency upgrades. The IMD of the area in

which the household resides, provides information on the household’s socioeconomic environment, an important

predictor of energy consumption and energy efficiency uptakes (Hamilton et al., 2014). Dwelling characteristics,

such as the period in which the dwelling was built has an important impact on residential energy consumption

(Brounen et al., 2012; Harold et al., 2015). Regional differences in weather patterns will also affect fuel con-

sumption. In addition, Alberini and Towe (2015) provide evidence that matching solely based on dwelling or

household characteristics is not sufficient and can be optimised if past energy usage is also included. Taking

into consideration all these factors, matching is performed on the following variables: property age, fuel-type,

energy consumption in the pre-treatment years, location of dwelling and the IMD of the area in which the house-

hold resides. By performing matching on energy consumption in prior years, we can account for unobservable

household and property characteristics that might vary over time, such as the household size, composition and

appliance usage. The large sample size allows us to perform 1:1 matching in which each treatment household is

matched with a similar control household.

Matching is performed multiple times. In the first instance a matched control group is created for all

households who installed upgrades at any point during the sample period (TALL, CALL). Following this, a

matched control group is created for each individual year in which households installed measures between 2006

and 2011 (T2006, C2006)(T2007, C2007), (T2008, C2008), (T2009, C2009), (T2010, C2010), (T2011, C2011)7. Thus multiple

treatment and control groups are created. This enables us to systematically vary the length of time in both

pre-treatment and post-treatment data and to compare how treatment effects vary at different points in time.

4.4.1 Quality of matching

The quality of the matching process depends on the similarity in the distribution of covariates between treated

and matched control group. This is commonly assessed by comparing the standardised difference and variance

ratio of the variables in both groups, before and after matching (Caliendo and Kopeinig, 2005). The standardised

difference is the difference in sample means in the treated and control group, divided by the corresponding sample

variances. Formally:

72005 and 2012 are omitted to allow for pre-and post-upgrade comparisons
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d =
xtreatment − xcontrol√

s2treatment+s2control

2

(6)

It allows for a comparison of balance which is independent of the sample size and measurement unit (Austin,

2009). The smaller the difference, the better, and it is recommended that this ratio should not exceed 10 percent

(Austin, 2009).

The variance ratio measures the ratio of the mean variance in the treated and control group for each covariate.

Formally:

F =
s2treatment

s2control
(7)

This should be close to unity (Austin, 2009; Ferraro and Miranda, 2017). A significant divergence from this

indicates that the matching model is misspecified. Further methods of balance diagnostic include assessing the

magnitude of the difference between treatment and matched control group covariates using tests for statistical

significance. However, the use of the t-test for balance testing is criticised for several reasons under which the

most problematic is the dependence on the sample size. For instance, randomly discarding control units will

always increase the balance, falsely indicating a better balance (Imai et al., 2008).

As can be demonstrated by Figure 4 and Tables B1 and B2 our extremely large sample size allows a high level

of precision in matching. A high degree of balance is achieved on both variables used in matching and variables

not used in matching as can be seen from the standardised differences, variance ratios and the distributions of

matched electricity and gas consumption.
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Figure 4: Energy consumption in pre-treatment year 2005, before and after match-
ing. Source: author’s calculation based on NEED data

Another important element in assessing the quality of matching is that the parallel paths assumption is not

violated. This assumption states that without treatment, the average change for the treated group would have

been equal to the observed average change in the control group. Figure 5 demonstrates that this assumption

holds for all treatment and control groups.

16



U
p
g
ra

d
e
 p

e
ri
o
d

1
2

0
0

0
1

4
0

0
0

1
6

0
0

0
1

8
0

0
0

2004 2006 2008 2010 2012
year

Upgrade Control
1

2
0

0
0

1
4

0
0

0
1

6
0

0
0

1
8

0
0

0

2004 2006 2008 2010 2012
year

Upgrade Control

1
2

0
0

0
1

4
0

0
0

1
6

0
0

0
1

8
0

0
0

2
0

0
0

0

2004 2006 2008 2010 2012
year

Upgrade Control

1
2

0
0

0
1

4
0

0
0

1
6

0
0

0
1

8
0

0
0

2
0

0
0

0

2004 2006 2008 2010 2012
year

Upgrade Control

1
2

0
0

0
1

4
0

0
0

1
6

0
0

0
1

8
0

0
0

2004 2006 2008 2010 2012
year

Upgrade Control

1
2

0
0

0
1

4
0

0
0

1
6

0
0

0
1

8
0

0
0

2
0

0
0

0

2004 2006 2008 2010 2012
year

Upgrade Control

Figure 5: Energy consumption trend in upgrade and control group. Note: For each
year in which an upgrade occurs we create separate upgrade and control groups.
Source: author’s calculation based on NEED data

5 Results

All reported results are estimates of the average treatment effect on the treated (ATT) and can be interpreted as

percentage energy savings. Multiple upgrade and control groups are created for the entire period of analysis and

for each individual year. This allows us to calculate the average effect and to examine trends over time. Analysis

is restricted to households with electricity consumption between 100 and 25,000 kWh, and gas consumption

between 3000 and 50,000 kWh. Outliers are excluded to minimise risk of inclusion of invalid consumption

readings or non-domestic properties. Following this we create dummy variables to indicate if household energy

(either electricity or gas) changed by more than 50, 60 or 70 percent in any given year. These dummy variables

are then used in sensitivity analysis to control for any large changes which might haver been the result of
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unobserved changes in occupancy. For comparison purposes we also calculate the energy savings in kWh for

electricity and total energy (Table C1). As these measures primarily impact heating and natural gas is by far

the main fuel used for heating the focus of our analysis will be on a subset of dwellings using natural gas for

heating. Additional results from a range of sensitivity checks and applying different data trimming are presented

in Table D1 and discussed in Section 6.

5.1 The effect of energy efficiency upgrades by year of upgrade

Table 5 shows that the energy savings over time are quite consistent for each measure, regardless of when the

installation took place. Annual gas savings for cavity wall insulation range from 8-11 percent, loft insulation

2-3 percent, and replacement heating systems 8-10 percent. These results are consistent with Adan and Fuerst

(2015) and Hamilton et al. (2016) who perform similar analysis on this dataset and other related data. This

gives us confidence in the accuracy of our central estimates and we proceed on that basis.

Table 5: The effect of energy efficiency upgrades on energy consumption

(1) (2) (3) (4) (5) (6) (7)

Full sample 2006 upgrades 2007 upgrades 2008 upgrades 2009 upgrades 2010 upgrades 2011 upgrades

Cavity wall insulation -0.094*** -0.097*** -0.111*** -0.099*** -0.098*** -0.097*** -0.101***

(0.001) (0.002) (0.003) (0.002) (0.002) (0.002) (0.002)

Loft insulation -0.030*** -0.026*** -0.031*** -0.028*** -0.027*** -0.039*** -0.035***

(0.001) (0.003) (0.003) (0.002) (0.002) (0.002) (0.002)

Replacement boiler -0.092*** -0.080*** -0.093*** -0.087*** -0.102*** -0.109*** -0.099***

(0.001) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Control variables Y Y Y Y Y Y Y

Household fixed effects Y Y Y Y Y Y Y

Year fixed effects Y Y Y Y Y Y Y

Year*region fixed effects Y Y Y Y Y Y Y

Observations 617022 545627 564756 730447 746573 871379

Number of households 77128 68203 70595 91306 93322 108922

R squared 0.349 0.327 0.353 0.370 0.369 0.386 0.367

Notes: This table reports coefficient estimates and standard errors from eight separate regressions. The dependent variable in all regressions is the

logarithm of annual gas consumption in kilowatt hours. Column(1) ”All” denotes efficiency upgrades occurring at any time during the sample period.

Columns (2-8) relate to upgrades occurring only in the relevant year. Each individual year denotes upgrades occurring solely in that year. For each

upgrade group a matched control group is created using coarsened-exact matching. The sample includes billing records from 2005 to 2012. Standard errors

are clustered at the household level. Triple asterisks denote statistical significance at the 1% level; double asterisks at the 1% level; single asterisks at the 10% level.
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5.2 Heterogeneity and persistence in returns to energy efficiency upgrades

5.2.1 By measure and IMD group

The next set of results, presented in Figure 6, show the interaction of the treatment variable with the variable

indicating the socioeconomic characteristics (deprivation level) of the area in which the household resides. Energy

savings are much greater for those households living in more affluent areas (IMD = 5), compared to those in less

affluent areas (IMD = 1)8. This is true for all upgrade types. Combining all measures, the annual savings range

from approximately 15 percent for those in the lowest IMD category to approximately 25 percent for those in

the highest. This result raises concerns over distributional issues as the costs of these policies were likely applied

as a flat-rate tariff on energy bills (Chawla et al., 2013). If savings are concentrated in the higher income groups,

this suggest a further loading of policy costs onto those least able to afford it. Particularly as a flat-rate charge

is already regressive, disproportionately affecting those on lower incomes.

8Further analysis using quantile regression techniques indicates that this result holds for different levels of energy consumption.
Results available on request.
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Figure 6: Average Treatment effect on the Treated (ATT) for different IMD groups.
Source: author’s calculation based on NEED data

5.2.2 By measure and over time

A key novelty of this research is the ability to examine how measures perform over longer periods of time.

Figure 7 presents results of estimations in which the treatment variable is interacted with the year variable to

examine the persistence of savings over time. The reported results are for upgrades occurring between 2006 and

2007. This period is chosen as it allows a matched control group to be created using 2005 consumption level, and

allows the analyst to observe the longest possible post-upgrade time series. Cavity wall and loft insulation show

no clear time trend or degradation. This is not surprising as these measures are expected to last for 30-40 years

(Dowson et al., 2012). However, for replacement heating systems the ATT shows a clear decreasing time path.

This indicates that energy savings are greatest in the years immediately following installation and decreases

thereafter. Given that the estimated lifespan for condensing gas boilers of this vintage was 12 years (Dowson
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et al., 2012), our results have implications for assessments of both household investment decisions and policy

evaluations and require deeper analysis.
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Figure 7: Persistence of Average Treatment effect on the Treated (ATT) over time
by measure. Source: author’s calculation based on NEED data

5.2.3 Heating system replacements by IMD group over time

The reduction in savings could be due to degradation of equipment or a behavioural response from households.

Changes to building regulations in 2005 mandated all replacement boilers to have a minimum of 86% efficiency.

Other than this we do not have any detailed product characteristics. However, by decomposing this trend by

socioeconomic group it is possible to examine whether this effect varies for different household types. Not only

are energy savings less for those in lower income areas, the trend of decreasing savings over time is much more

pronounced for these households. The savings for those is the lowest IMD group have halved within five years.
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Figure 8: Average Treatment effect on the Treated (ATT) for replacement heating
system. Persistence over time and by IMD group. Source: author’s calculation based
on NEED data

It is not clear what exactly is causing this erosion of savings, particularly whether it is caused by a behavioural

response or due to technical factors. The Home Energy Efficiency Database (HEED) sheds some light, however

a number of data quality issues exist9, making firm inference problematic. This database allows us to break

down heating system replacements funded through the supplier obligations by tenure type. Information is also

provided on whether households had heating control systems installed along with their heating replacement.

From Table 6 it is clear that a very low proportion of condensing boiler replacements were accompanied by

installation of heating controls during this period. The proportion of households with heating system controls

is much higher for “Owner Occupier” than for other categories, apart from “Unknown”. Given that many more

deprived households live in categories such as “Privately rented”, “Rented from a housing association”, “Rented

9Not least the fact that a considerable proportion of heating control installations are in dwellings of “Unknown” tenure
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from Local Authority” and “Social housing” it is quite possible that this is a contributing factor to the smaller

and less persistent savings that these households experience.

Table 6: Heating system replacement and heating control installation 2002-2012

Heating system measure Condensing Boiler Condensing Boiler (Intelligent Controls) Percentage with heating controls

Other tenure 1,001 8 0.80%

Owner Occupier 117,737 4,167 3.54%

Privately rented 33,020 102 0.31%

Rented from a housing association 11,272 22 0.20%

Rented from Local Authority 21,455 27 0.13%

Social housing 15,402 25 0.16%

Unknown 14,307 2,941 20.56%

Grand Total 214,194 7,292 3.40%

Source: Home Energy Efficiency Database (HEED). Energy Savings Trust

5.3 Cost effectiveness of measures

5.3.1 Estimated costs to suppliers and private costs of measures

Taking our estimates of both the ATT and the impact over time for different households we can develop more

realistic assessments of the cost-effectiveness of measures than have been previously calculated. In order to do

this, we need information on the costs. Cost estimates can be difficult to obtain and exhibit a wide degree

of variation exists. To that end some assumptions must be made in order to make some back-of-the-envelope

calculations. Usefully, a number of published academic and policy papers provide cost-estimates. The estimates

we present in Table 7 are based on a range of previous studies, outlined in more detail in Tables F1, F2 and

F3. The costs we present are the costs incurred by the energy companies in installing each measure. These

may understate the actual costs in some cases, and can thus be considered a lower bound. For example, the

cost for replacement heating system used (£200) for past policy evaluations is the assumed additional cost of

installing a high efficiency system, over and above a typical lower-efficiency system. We consider this estimate

to be a lower bound. The Energy Savings Trust estimate the costs of boiler replacements to range from £700

to £6,000 (EST, 2013). On average the installation of condensing boiler costs around £2,400 per dwelling. In

a 2015 review Frontier Economics assumed that the fixed cost of for gas-fired condensing boilers lie between

£2,200-3,000 (Economics, 2015). For the purposes of comparison we consider the upper bound for a replacement

heating system installation to have been £2000 in 2006.
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Table 7: Cost assumptions for each measure

Measure Cost assumptions (GBP)

Cavity wall insulation 350

Loft insulation 285

Replacement boiler lower (policy cost) 200

Replacement boiler upper (private cost) 2000

Source: Based on Lees (2006, 2008); Shorrock et al. (2005)

5.3.2 Internal rate of return (IRR)

The internal rate of return (IRR) on a project is the discount rate (r) that yields a net-present value of zero,

or the discount rate at which the average value of avoided discounted future energy costs equals the upfront

investment cost. Formally, this can be calculated using the below formula:

NPV =

T∑
t=1

Ct

(1 + r)t
− C0 (8)

Where T is the estimated lifespan of the measure, Ct are the avoided energy costs in year t, C0 is the upfront

investment cost and r is the IRR which we solve for. The IRR is calculated based on the econometric estimates

we observe, for varying estimated lifespans of measures and assuming constant future energy prices. While these

measures were largely funded by the energy companies, it is useful to estimate the private returns as this would

be a critical factor in determining uptake in the absence of such schemes.

Table 8 presents estimated IRRs for each measure, calculating the IRR for 10, 20 and 30 years. Our preferred

estimated lifespan is 10 years for replacement heating system and 30 years for both types of insulation. Assuming

a lifespan of 30 years or more, cavity wall insulation is an attractive investment yielding a return of 16 percent.

Loft insulation is less attractive yielding 6 percent. Whether to invest in a heating system depends greatly on

whether one uses the estimated policy cost or private cost. The low and highly negative returns in some cases

suggest that there may not be much of an energy efficiency gap to explain with regard to replacement heating

systems.

24



Table 8: IRR for each measure

Cavity wall Loft BoilerL (policy cost) BoilerU (private cost)

IRR 10 7% -8% 17% -24%

IRR 20 15% 4% 23% -7%

IRR 30 16% 6% 23% -2%

Source: Author’s calculations

The next set of results, presented in Table 9 presents IRR estimates for each measure and each IMD group,

along with the sample average for comparison purposes. A considerable degree of variation exists around the

sample average, with households living in more deprived areas experiencing much lower returns than those in

more affluent areas.

Table 9: IRR for each measure and IMD group

Sample Average IMD1 IMD2 IMD3 IMD4 IMD5

Cavity wall 16% 11% 14% 16% 17% 18%

Loft 6% 5% 5% 5% 7% 9%

BoilerL 17% 12% 14% 17% 20% 22%

BoilerU -24% -26% -25% -24% -23% -22%

Source: Author’s calculations

The final set of IRR estimates we present, adjusts the future energy savings from a heating system replacement

to correspond with the observed estimates in Figure 8. In this case, savings erode more quickly over time for

households living in more deprived areas. Taking this in account results in a further reduction in the IRR for

lower income households.

Table 10: IRR for each measure and IMD group adjusting for time-path of energy
savings

IMD1 IMD2 IMD3 IMD4 IMD5

BoilerL 6% 12% 16% 20% 19%

BoilerU -29% -26% -23% -21% -22%

Source: Author’s calculations
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5.3.3 Other measures of cost-effectiveness

To broaden the perspective somewhat we also consider two other measures of cost-effectiveness: the cost per

tonne of CO2 removed and the cost per kWh of energy saved. These are calculated at the sample average and

allow a comparison of the overall cost of these policies with other similar initiatives. The estimated cost per

kWh of energy saved is calculated by summing up the annual estimated savings over the expected lifetime of

the measure. To calculate the cost per tonne of CO2 removed, we convert our kWh estimates based on the

estimated CO2 produced in consuming one kWh of gas and electricity based on DEFRA/DECC greenhouse

gas conversion factors. These are reported in Table 11, detailed information on the underlying assumptions is

presented in Table G1.

Cavity wall insulation is the most cost-effective measure, followed by loft insulation and replacement heating

systems. Relative to the estimated social cost of carbon and natural gas prices, insulation and the lower estimate

for replacement heating systems seem relatively cost effective. However, at the upper bound of replacement

heating system cost it does not represent an attractive investment.

Table 11: Cost-effectiveness of each measure

GBP per tonne of CO2 GBP per kWh

Cavity wall insulation 36 0.0072

Loft insulation 90 0.0171

BoilerL 60 0.0141

BoilerU 600 0.1412

Source: See Table G1 for detail on underlying cost assumptions

Converting the cost per kWh saved in 2000 GBP to 2015 USD it is possible to compare the cost of these

interventions with a wide range of other initiatives, such as behavioural programmes, building code changes,

subsidies and information provision. These are based on a recent review paper by Gillingham et al. (2018).

Table H1 demonstrates that these measures, and in particular cavity wall insulation, compare quite favourably

with most other initiatives.

6 Sensitivity analysis and robustness

This section presents the results of a range of sensitivity analyses and robustness tests. All results are presented

in Tables D1 and E1 in the Appendices. The aim is to present information on the stability of the results across
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a range of sample splits and alternative specifications.

Considering Table D1 first, Column 1 presents results when the entire sample is included without using a

matched control group. This is useful as it provides quantification of the degree of bias that might exist should

selection not be controlled for. The coefficients for both type of insulation remain consistent with our central

estimates, however heating system replacement is considerably lower. Column 2 performs the same estimation

including only dwellings in which natural gas is the primary source of cental heating. This reduces the sample

size slightly and results in a slight improvement in model fit (as measured by R2), and an increase in size of the

coefficient on replacement heating system. Columns 3 and 4 repeat this analysis however we now introduce a

matched control group in both cases. Column 5 presents results using a matched control group, where natural

gas is the primary source of central heating. However, in this specification we also include electricity consump-

tion as an explanatory variable. This is likely endogenous as households could substitute between both types of

heating, and should be treated with caution. However, this variable contains much information about household

behaviour, appliance usage and occupancy that is otherwise omitted in our estimations, and is interesting to

consider for that reason - particularly if it has an effect on our main results. Inclusion of this variable does not

affect our central estimates giving us confidence in their accuracy.

Taking the sample used to estimate Column 4 results (matched upgrade and control group, primary heating

is gas), we now estimate a number of additional specifications in which we exclude households with large annual

changes in energy consumption. This is to control for any large changes that might be as a result of changes in

occupancy. Column’s (6-8) present these results in which we exclude dwellings with any annual changes in either

gas or electricity greater than ±50, 40 and 30 percent respectively of the previous year’s consumption. When this

sensitivity check is included, sample size drops significantly and model fit improves considerably (R2 = 0.398).

The coefficients on both insulation measures do not change much, but the effect of heating system replacement

increases. The results in column’s (6-8) are otherwise consistent with each other and for this reason we favour

Column 8 as the preferred specification as this maximises sample size while also accounting for potential un-

observed occupancy changes. Finally, in Column 9 we again include electricity consumption as an explanatory

variable and results remain largely unchanged.

Finally, Table E1 provides a comparison of our preferred estimates using Coarsened-Exact Matching with

results generated using both Nearest Neighbour and Kernel Matching techniques. The results are stable across

all matching procedures.
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7 Discussion and conclusions

The aim of this research was to estimate the extent to which heterogeneity and persistence effect the returns to

commonly installed energy efficiency measures, and how this ultimately impacts household incentives and the

cost-effectiveness of policies. By combining statistical matching and a range of panel econometric estimators we

control for unobserved heterogeneity and selection into various government schemes which funded the upgrades.

Leveraging an extremely large database of energy efficiency measures and metered consumption allows us to

systematically explore heterogeneity. The database includes the universe of households entering into energy

efficiency schemes administered by energy suppliers in the UK, mitigating site-selection bias.

Our results indicate that cavity wall insulation and heating system replacement (installation of a condensing

gas boiler) result in an energy saving of about 10 percent of annual consumption, while loft insulation results

in approximately a three percent reduction. These savings are consistent regardless of when the measures were

installed over the sample period. Households living in more deprived areas observe less savings (both in absolute

and percentage terms) than those in more affluent areas. This result is true for all measures examined. In addi-

tion to this, savings from heating system replacements erode quickly over time for the most deprived households,

but remain stable for more affluent households. As far as we are aware this result has not been shown before.

It is not entirely clear what is causing this result. Due to changes in the UK building regulations in 2005, all

boiler replacements we observe are required to be of 86% or higher efficiency. Therefore, this finding would not

appear to be as a result of differences in quality of the system. However, heating system controls appear to have

been installed less frequently for lower income households, and this could be a contributing factor. Condensing

boilers require regular servicing. If servicing rates differed systematically across the population this might also

have an impact on the results. Along with potential technical explanations, behavioural factors might also be

driving some of this effect. We could be observing a delayed rebound effect as households become accustomed to

warmer internal temperatures over time, and the reduced cost of heating services allow those previously income

constrained households greater thermal comfort.

The results of this analysis provide both academic and policy insights. Our academic contribution is to

provide new evidence on the performance of energy efficiency measures over time allowing us to better quantify

the size of the energy-efficiency gap. As far as we are aware this is the first paper to examine longer run effects

and how they vary by levels of household deprivation. This adds to a growing literature examining longer run

effects of building energy codes (Kotchen, 2017) and information stimuli (Allcott and Rogers, 2014).
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While we cannot identify the precise source of the savings erosion, we can quantify how it affects the financial

return on investment. This provides important insights for both policy design and policy evaluation. Pay-as-

you-save financing mechanisms are becoming increasingly popular for energy efficiency. For example, the Green

Deal was a recent policy initiative in the UK (2011-2015) which provided households with loans in order to

finance energy efficiency measures at interest rates of approximately eight percent. This was widely considered

to have been a spectacular failure. The National Audit Office conducted an independent audit of the Green

Deal scheme, finding that during it’s lifespan the scheme only funded one percent of energy efficient measures

installed nationally. It also found that the scheme saved negligible amounts of CO2 and that households did not

see the loans as an attractive proposition. Concerns were raised prior to the Green Deal policy that it would not

have sufficient appeal for householders. These relate to a range of factors, including uncertainty regarding energy

savings, limited financial appeal, and limited awareness of the scheme (Dowson et al., 2012). A key factor in

limiting its appeal were the high rates of interest charged on loans (Rosenow and Eyre, 2016). Given the results

we observe, it is clear that this rate is not sufficiently low to provide incentives for many households to partake

in this scheme. In particular, low income households would actually lose money by making these improvements

unless energy prices rise significantly. Market-based interventions will only work for certain segments of the

population and policy needs to take this into account.

A question one might ask is why lower income households experience lower rates of return? A body of

literature on the rebound effect identifies changes in energy service consumption that might reduce the expected

savings (Sorrell et al., 2009a). It has also been shown that significant heterogeneity in the rebound effect is

determined by household income and wealth (Aydin et al., 2017).10. A naive assessment might suggest that

environmental policy is more effective when focused on better-off households. However, this is true only in the

narrow sense that upgrades to such households will be more effective at reducing energy use and carbon emis-

sions. Total welfare gains from upgrades may well be greater for upgrades to low income households, particularly

if lower income households trade-off lower energy savings with increased internal temperatures and this results in

improved well-being and even health outcomes. Evidence suggests this might be the case with regard to health

(Wilkinson et al., 2009; Hamilton et al., 2015) and poverty alleviation (Hills, 2012; Watson and Maitre, 2015).

Ultimately, this research helps to improve our understanding of the incentives faced by households when mak-

ing energy efficiency investments, provides a methodology for better evaluating the cost-effectiveness of public

policies and raises new concerns over the how the costs and benefits of policies are distributed. It also suggests

that the energy-efficiency gap requires less explanation than some would suggest. At an individual household

10This has also been shown in an inter-temporal sense by Fouquet et al. (2018)
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level, the private benefits of energy efficiency investments need to be re-considered with a greater focus on the

non-financial benefits. While at a societal level a greater focus on carbon emissions reduction, as opposed to

cost-savings is required.
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8 Appendix

8.1 Overview of NEED dataset

Table A1: Description of variables in NEED

Variable Description

HH ID Household identifier. A unique value for each record. Created specifically for these datasets.

REGION Region code - formally Government Office Region. See ONS website for more details: http://www.ons.gov.uk/ons/guide-

method/geography/beginner-s-guide/administrative/england/government-office-regions/index.html.

IMD ENG English Index of multiple deprivation 2010. Households are allocated to five groups (quintiles) based on the deprivation rank of

the 2001 Lower Layer Super Output Area (LSOA) they are located in. Households in the 20 per cent most deprived LSOAs are in

the bottom quintile (1) and households in the 20 per cent least deprived LSOAs are in the top quintile (5).

IMD WALES Welsh Index of multiple deprivation 2011. Households are allocated to one of five bands based on the deprivation rank of the LSOA

(2001) they are located in. 1, most deprived, 5 least deprived.

FP ENG EUL only. Fuel Poverty Indicator for England. Households are allocated to one of five bands based on the estimate of the proportion

of households in fuel poverty in the LSOA (2001) they are located in. Uses the 2011 estimates of fuel poverty low income high cost

definition.

EPC INS DATE EUL Only. Provides information on the date of the EPC inspection (based on lodgement date).

GconsYEAR Weather corrected annual gas consumption. Based on meter point data from Xoserve and independent gas transporters. Readings

relate to October to September each year (e.g. 2012 consumption is October 2011 to September 2012). See here for more information

on this source: https://www.gov.uk/government/publications/regional-energy-data-guidance-note.

GconsYEARValid Flag indicates records with valid consumption and households off the gas network.

EconsYEAR Annual electricity consumption in kWh - values relate to end January to end January each year (e.g. 2012

consumption is end January 2012 to end January 2013). See here for more information on this source:

https://www.gov.uk/government/publications/regional-energy-data-guidance-note.

EconsYEARValid Valid electricity consumption (between 100 and 25,000 inclusive)

E7Flag2012 Shows whether the electricity meter is an E7 (profile 2) meter - this does not necessarily mean the household has an E7 tariff, some

households will have an E7 meter without an E7 tariff.

MAIN HEAT FUEL Main fuel used to heat the property, based on information from Energy Performance Certificate

PROP AGE Banded year of construction based on EPC data.

PROP TYPE Type of property (based on combination of EPC built form and property type).

FLOOR AREA BAND Banded floor area based on EPC (m2).

EE BAND Energy Efficiency Band Based on EPC (A and B grouped).

LOFT DEPTH Amount of loft insulation as assessed by EPC (all properties with loft insulation recorded as installed through a Government scheme

are assigned 2 irrespective of EPC information). No information could occur where the information is missing from the EPC or

where the property does not have a loft.

WALL CONS Wall construction as recorded on EPC.

CWI Cavity wall insulation installed through Government schemes. This includes measures recorded as installed on HEED, including,

Energy Efficiency Commitment, Community Energy Savings Programme and Carbon Emissions Reduction Target.

CWI YEAR Year of CWI installation

LI Loft insulation installed through Government schemes. This includes measures recorded as installed on HEED, including, Energy

Efficiency Commitment, Community Energy Savings Programme and Carbon Emissions Reduction Target.

LI YEAR Year of LI installation

BOILER This includes boilers installed through Government schemes, and those registered by CORGI (up to 2009) and Gas Safe (2009

onwards).

BOILER YEAR Year of Boiler installation

WEIGHT EUL Only. Weighting based on Region, property age, property type and floor area band. Summing all weights gives (approximate)

total number of households in England and Wales 2011.
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Table A2: Summary statistic

Variable Category n untreated n treated Total n Mean Gas Mean Electr.

Regions North East 83,698 115,415 199,113 15510.84 3462.747

North West 236,794 266,874 503,668 15208.41 3900.542

Yorkshire (a.t.H.) 188,290 201,006 389,296 15493.32 3813.363

East Midlands 174,550 179,017 353,567 15177.16 4003.458

West Midlands 199,366 185,984 385,350 15007.05 4146.137

East of England 246,651 184,685 431,336 15068.45 4371.629

London 389,548 185,003 574,551 15372.6 4135.165

South East 363,751 270,953 634,704 15507.96 4382.642

South West 229,357 176,074 405,431 13845.36 4457.526

Wales 105,071 104,361 209,432 14676.42 3789.692

FP 1 515,635 359,281 874,916 13103.34 3998.862

2 409,940 374,097 784,037 15036.81 4164.775

3 396,893 363,103 759,996 15661.29 4219.243

4 375,062 336,290 711,352 16214.88 4197.805

5 414,474 332,241 746,715 16104.2 4078.469

IMD 1 450,616 455,048 905,664 12817.86 3603.685

2 469,230 377,913 847,143 14104.08 3890.909

3 466,882 353,377 820,259 15181.31 4246.657

4 431,621 338,563 770,184 16325 4429.783

5 398,727 344,471 743,198 17867.73 4495.282

Age before 1930 606,589 391,713 998,302 16716.21 4303.14

1930-1949 251,402 314,856 566,258 16863.97 4047.436

1950-1966 290,718 431,623 722,341 14515.74 3873.33

1967-1982 369,192 436,771 805,963 13831.01 3931.536

1983-1995 299,008 201,981 500,989 13410.3 4250.797

1996 onwards 400,167 92,428 492,595 13966.06 4287.513

Type Detached 295,374 251,537 546,911 21843.34 5448.197

Semi-detached 408,987 514,204 923,191 16433.14 4138.248

End-Terrace 191,830 186,240 378,070 14938.36 3952.917

Mid-Terrace 450,951 385,582 836,533 13771.39 3729.568

Bungalow 138,088 238,298 376,386 15926.08 3978.159

Flat 731,846 293,511 1,025,357 9899.633 3788.039

Floor 1 to 50 m2 361,530 167,965 529,495 8516.688 3344.52

51-100 m2 1,334,455 1,259,914 2,594,369 13586.52 3790.722

101-150 m2 366,210 335,292 701,502 19912.04 4829.909

Over 151 m2 154,881 106,201 261,082 27939.23 6902.986
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B Balance tables for matched variables

Table B1: Unmatched sample

Unmatched sample Treated Control Balance

Variable Mean Variance Skewness Mean Variance Skewness Std-diff Var-ratio

Variables used in matching prop age 2.96 1.98 0.16 3.00 3.00 0.31 -0.03 0.66

imd both 2.85 2.11 0.15 2.96 2.01 0.05 -0.08 1.05

region 5.34 7.33 0.03 5.81 6.31 -0.29 -0.18 1.16

fuel type 0.98 0.02 -7.43 0.98 0.02 -6.33 0.04 0.74

Gcons2005 18124 78900000 0.65 17394 86200000 0.73 0.08 0.92

Variables not used in matching prop type 3.33 2.63 0.22 3.56 2.92 0.08 -0.14 0.90

floor area 2.20 0.40 0.89 2.20 0.46 0.77 -0.01 0.86

loft depth 2.03 0.28 0.04 2.08 0.53 -0.13 -0.08 0.52

wall cons 0.73 0.20 -1.02 0.59 0.24 -0.36 0.29 0.82

FP ENG 2.95 1.97 0.06 2.89 2.12 0.10 0.04 0.93

Econs2005 3903 7653561.00 2.16 3998.54 8374713 2.14 -0.03 0.91

Table B2: Matched sample all years

All years matched sample Treated Control Balance

Variable Mean Variance Skewness Mean Variance Skewness Std-diff Var-ratio

Variables used in matching prop age 2.91 2.32 0.24 2.91 2.31 0.24 0.00 1.00

imd both 2.92 2.07 0.09 2.92 2.07 0.09 0.00 1.00

region 5.62 6.83 -0.15 5.62 6.82 -0.15 0.00 1.00

fuel type 0.98 0.02 -7.45 0.98 0.02 -7.47 0.00 1.01

Gcons2005 18020 84200000 0.67 18017 84300000 0.67 0.00 1.00

Variables not used in matching prop type 3.36 2.68 0.19 3.48 2.87 0.14 -0.07 0.93

floor area 2.21 0.42 0.86 2.21 0.45 0.80 0.00 0.93

loft depth 2.04 0.30 0.03 2.05 0.52 -0.08 -0.02 0.57

wall cons 0.67 0.22 -0.71 0.63 0.23 -0.52 0.09 0.95

FP ENG 2.95 2.04 0.06 2.96 2.09 0.05 -0.01 0.98

Econs2005 3945.89 7999389.00 2.15 4028.94 8182317.00 2.09 -0.03 0.98
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Table B3: Percentage of observations matched

Dwellings receiving upgrades Count

Full database 1,869,372

2005 or unknown upgrade date 416,994

Remaining sample 1,452,378

Matched sample 1,286,419

Unmatched 165,959

Matched as a percentage of eligible 89%
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C Results in kWh

Table C1: Results in units of energy saved (kWh)

(1) (2) (3)

Gas Elec Tot Energy

Cavity wall insulation -1254.909*** -23.002 -1277.911***

(41.989) -14.009 (46.216)

Loft insulation -375.539*** -8.901 -384.440***

(36.250) -11.268 (39.533)

Replacement boiler -1229.965*** -98.273*** -1328.238***

(32.918) -10.796 (35.722)

Control variables Y Y Y

Household fixed effects Y Y Y

Year fixed effects Y Y Y

Year*region fixed effects Y Y Y

Observations 549072 549072 549072

Number of households 68,634 68634 68634

R squared 0.337 0.092 0.357

Notes: This table reports coefficient estimates and standard errors from three separate regressions. The dependent variable in all regressions is annual energy

consumption. Column(1) is Gas, (2) Electricity and (3) Total Energy. For each upgrade group a matched control group is created using coarsened-exact matching.

The sample includes billing records from 2005 to 2012. Standard errors are clustered at the household level. Triple asterisks denote statistical significance at the

1% level; Double asterisks at the 1% level; single asterisks at the 10% level.
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D Results from alternative specifications

Table D1: Results from alternative specifications

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Full sample Only gas Matched sample Only gas and matched Only gas, matched and elec 50 drop 60 drop 70 drop 70 drop, elec

Cavity wall insulation -0.092*** -0.092*** -0.083*** -0.084*** -0.083*** -0.095*** -0.096*** -0.094*** -0.092***

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Loft insulation -0.025*** -0.026*** -0.018*** -0.019*** -0.020*** -0.029*** -0.030*** -0.030*** -0.029***

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Replacement boiler -0.055*** -0.062*** -0.038*** -0.045*** -0.049*** -0.090*** -0.092*** -0.092*** -0.091***

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

0.179*** 0.138***

(0.000) (0.001)

Control variables Y Y Y Y Y Y Y Y Y

Household fixed effects Y Y Y Y Y Y Y Y Y

Year fixed effects Y Y Y Y Y Y Y Y Y

Year*region fixed effects Y Y Y Y Y Y Y Y Y

Observations 20,180,976 19,886,106 14,090,155 13,912,535 13,912,535 3,516,155 4,530,404 5,502,936 5,502,936

Number of households 2,527,073 2,489,345 1,764,246 1,741,574 1,741,574 439,545 566,339 687,925 687,925

Number of households 0.115 0.118 0.115 0.118 0.168 0.398 0.375 0.349 0.369

Notes: This table reports coefficient estimates and standard errors from nine separate regressions. The dependent variable in all regressions is the logarithm of annual gas consumption in kilowatt hours. For each

upgrade group a matched control group is created using coarsened-exact matching. The sample includes billing records from 2005 to 2012. Standard errors are clustered at the household level. Triple asterisks denote

statistical significance at the 1% level; Double asterisks at the 1% level; single asterisks at the 10% level.
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E Results from alternative matching procedures

Table E1: Results under different matching procedures

(1) (2) (3)

CEM Matching Nearest neighbour matching Kernel matching

Cavity wall insulation -0.094*** -0.094*** -0.096***

(0.001) (0.002) (0.003)

Loft insulation -0.030*** -0.029*** -0.031***

(0.001) (0.003) (0.003)

Replacement boiler -0.092*** -0.093*** -0.097***

(0.001) (0.002) (0.002)

Control variables Y Y Y

Household fixed effects Y Y Y

Year fixed effects Y Y Y

Year*region fixed effects Y Y Y

Observations 5,502,936 3,341,747 3,263,178

Number of households 687,925 417,751 407,928

R squared 0.349 0.363 0.411

Notes: This table reports coefficient estimates and standard errors from three regressions using alternative matching procedures. The dependent variable in all

regressions is the logarithm of annual gas consumption in kilowatt hours. Column(1) reports the results from the preferred CEM procedure, Column (2) from

Nearest Neighbour matching and Column (3) reports results from a Kernel matching procedure. Triple asterisks denote statistical significance at the 1% level;

Double asterisks at the 1% level; single asterisks at the 10% level.
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F Cost assumptions

Table F1: Sources of cost assumptions

Low High

Cavity wall (pre 1976) 300 325

Cavity wall (post 1976) 300 325

Loft 300mm (currently none) 138 273

Loft 300mm (currently 100mm) 86 211

Loft 300mm (currently 200mm) 35 170

Condensing boiler 100 300

Source: Shorrock et al. (2005)

Note: All costs in GBP

Table F2: Sources of cost assumptions

EESOP1 (1994) EESOP2 EESOP3 EEC1 (2005)

Cavity wall insulation 223 219 261 261

Condensing boiler 450 270 165 114

Source: Lees (2006)

Note: All costs in GBP

Table F3: Sources of cost assumptions

Defra EEC1 Defra EEC2 Defra CERT Lees 2005 Lees 2008

Cavity wall insulation 268 313 380 274 350

Loft insulation (top up) 213 260 286 217 275

Loft insulation (virgin) 213 260 286 252 295

A and B boiler 145 120

A and B boiler and heating control 217 190

All boilers 50 45

Source: Lees (2006, 2008)

Note: All costs in GBP
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G Carbon saving assumptions

Table G1: Assumptions for CO2 saving calculation

(1) Cavity wall insulation (2) Loft insulation (3) Replacement heating system

Gas Elec Gas Elec Gas Elec

kg CO2 per (kWh) 0.18 0.52 0.18 0.52 0.18 0.52

Total annual saving (kWh) 1551.46 67.51 546.22 10.74 1363.85 52.29

Total annual saving (kgCO2) 284.85 35.42 100.29 5.63 250.40 27.43

Lifespan 30 30 30 30 12 12

Total lifetime savings (kgCO2) 8545.41 1062.54 3008.56 168.99 3004.82 329.16

Notes: Source: Based on DEFRA/DECC Greenhouse gas conversion factors 2011. Available at https://www.gov.uk/government/publications/2011-

guidelines-to-defra-decc-s-greenhouse-gas-conversion-factors-for-company-reporting-methodology-paper-for-emission-factors
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H Comparison of cost-effectiveness

Table H1: Comparison of cost-effectiveness

Intervention type Reference Evaluation type Relevant subset Percent

reduction in

energy

usage

Engineering

estimates of

percent reduc-

tion

in energy usage

Cost effectiveness

(cents per kWh

saved, 2015 USD)

Behavioral programs Allcott (2011) RCT NA 2 3.6

Allcott and Rogers (2014) RCT One-shot intervention 4.4

Two-year intervention 1.1 to 1.8

Four-year intervention 1.2 to 1.8

Ayres et al. (2013) RCT Sacramento, California 2 5.5

Puget Sound, Washington 1.2 2

Building codes Novan et al. (2017) RD analysis NA 1.3 20 24.4

Efficient equipment or energy savings subsidy Alberini and Towe (2015) Matching NA 5.3 3.9

Alberini et al. (2014) DID Rebate of $1,000 or more 0

Rebate of $450 5.5 47.9

Rebate of $300 6.2 28.2

Burlig et al. (2017) Machine learning NA 2.9 to 4.5 11.6 to 18

Davis et al. (2014) DID regression Refrigerators 8 27.2

Air conditioners plus 1.7 4.5

Information provision Alberini and Towe (2015) Matching 5.5

Supplier Obligation (TWC) McCoy & Kotsch (2018) Matching, FE regression Cavity wall insulation 9.4 20.0 1.54 to 2.31

Loft insulation 3 5.2 3.65 to 5.47

Replacement heating system 9.2 24.9 3.02 to 30.19

Previous estimate of UK Supplier obligation (Lees, 2008)) 1.92

Adapted from Gillingham et al. (2018)
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