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Michel Berthélemy1, Petyo Bonev2, Damien Dussaux3, and
Magnus Söderberg4
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Abstract

When evaluating policy treatments that are persistent and endogenous,
available instrumental variables often exhibit more variation over time than
the treatment variable. This leads to a weak instrumental variable prob-
lem, resulting in uninformative confidence intervals. We propose two new
estimation approaches that strengthen the instrument. We derive their
theoretical properties and show in Monte Carlo simulations that they out-
perform standard IV-estimators. We use our procedures to estimate the
effect of public utility divestiture in the U.S. nuclear energy sector. Our
results show that divestiture significantly increases production efficiency.
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1 Introduction

We consider a situation where analysts have access to panel observations of a
binary policy variable (treatment) and a dependent variable (policy outcome). It
is assumed that the treatment is endogenous and that an instrumental variable
is available. Moreover, in a context of a policy evaluation, the treatment is
sometimes persistent, i.e. once the policy is implemented it remains in place
for several or all remaining periods.1 Leading examples of such policies are
legal and regulatory changes in infrastructure sectors where assets have long
lifetimes. Moreover, typical instruments are based on economic shocks and
exhibit much higher variation over time than the treatment variable.2 As a
result, the instrument becomes weak and, furthermore, it weakens over time
even when it is strong on the cross sectional level. We refer to this phenomenon
as the persistent treatment problem. In this paper, we propose two methods
that strengthen the instrument by excluding unnecessary variation.

The first method, which we denote as the Forward Variation Reduction (FVR)
approach, takes the value of the instrument in the first treated period and copies
it to all future periods. This transformation is carried out for each unit. Next,
a standard Two Stage Least Squares (TSLS) is performed using the transformed
instrument. The intuition behind the FVR approach is that variation in the
instrumental variable is uninformative in periods after the implementation of
the treatment due to the persistence of the treatment.

The second method, the Forward and Backward Variation Reduction (FBVR)
approach, is an extension of the FVR approach. As its name indicates, the
instrument variation is also restricted backwards: all instrument values during
periods prior to the period when the treatment is first implemented are set equal
to the value of the instrument in the last untreated period. In this way, we only
retain the variation that triggers a change in the treatment variable. For both
approaches, we prove identification and derive asymptotic properties.

In Monte Carlo simulations, we study the small sample properties of the
FVR and FBVR approaches and compare them to OLS and standard TSLS. We
construct a data generation process that allows us to compare the results ob-
tained at different instrument strength, holding the endogeneity level constant,
and vice versa. The simulations build on a discrete choice framework that has

1Policy persistence can occur because: 1) it takes time to evaluate a policy change since, for
example, policy shifts obstruct information about true market conditions (Warren and Wilken-
ing, 2012); 2) it might not be possible to implement another change quickly since market agents
may lobby for the protection of sunk investments (Coate and Morris, 1999); 3) uncertainty about
future gains and losses alters voters’ preferences in favour of the status quo (Fernandez and
Rodrik, 1991).

2Examples and references are provided in section 3 .
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been used earlier by Honoré and Tamer (2006) and Carro (2007a). The FVR and
FBVR approaches perform substantially better than both OLS and TSLS: the
95% confidence intervals of FVR/FBVR are up to 6 times smaller than the 95%
confidence intervals of the TSLS and the empirical bias is up to 6 times smaller
than the empirical OLS bias. The efficiency gap between FVR/FBVR and TSLS
increases linearly with the number of periods. These results are consistent with
our analysis of the problem of persistent treatment and are robust to the choices
of instrument distribution, endogeneity level, and instrument strength.

In addition to their superior small sample performance, the FVR and FBVR
have various conceptual and practical advantages. First, they can be applied in
a nonlinear panel data setting, as the crucial idea only relies on the separability
of the unobserved idiosyncratic error term. Second, both approaches are easy
to implement, intuitive and therefore readily accessible to practitioners. Third,
in comparison to a local average treatment effect estimator, where only the last
untreated and first treated observations are used, no observations are ignored.
We demonstrate the importance of the last point in a simulation study.

Lastly, we use the FVR/FBVR approaches to evaluate the effect of public util-
ity divestiture on nuclear reactor production availability in the U.S. To the best
of our knowledge, this is the first empirical study that takes both the persistence
and endogeneity of the treatment into consideration. We find that divestiture of
U.S. nuclear reactors causes a significant increase in their production availability
by at least 7%.

2 Related literature

The literature on weak instruments in a TSLS context is still growing, see Stock
et al. (2002) for an overview of some of these papers. We contribute to this
literature in two distinct ways. First, we formally describe a new setting that
leads to a weak instrument. A distinctive characteristic of the persistent treat-
ment problem is that the instrument becomes weak(er) over time. Intuitively,
after the point in time of treatment of an individual, the treatment variable
and the instrument become independent. The higher the number of time pe-
riods, the more severe the problem. Second, we suggest an enhancement of
the instrument in such a setting through a modification of the first stage. The
two closest related papers are those of Ratkovic and Shiraito (2014) and Kuer-
steiner and Okui (2010). Both of these papers suggest methods for improving
the performance of the instrument(s). Their settings, however, differ substan-
tially from ours. Ratkovic and Shiraito (2014) consider a case in which the
instrument is weak because some agents are not influenced by the instrument
(non-compliers). The authors tackle the problem by modelling non-compliance
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and down-weighting those observations. In our case, however, the weakness
of the instrument evolves over time due to the persistence of the treatment and
not due to non-compliance. Kuersteiner and Okui (2010) consider a setting
with many instruments and suggest to average over the first stage predictions
produced by different sets of instruments. In our setting, however, the model is
just-identified so this approach is not applicable.

3 The problem of persistent treatment

Suppose we have panel observations on a binary random variable Dit (treat-
ment) and on an outcome variable Yit. The index i indicates the cross sectional
unit with i = 1, . . . ,n, and the index t indicates a time period. As motivating
examples, Dit might be an indicator variable for market deregulation or for
obtaining a college degree. Yit might be a measure of firm-level productivity
or individual wage. In many cases, the treatment variable Dit is endogenous
due to unobserved selection into (or out of) treatment. Suppose we observe
a period-specific instrument Zit for Dit. Using the exogenous variation of the
instrument, it is often possible to identify the causal effect of Dit on Yit, Angrist
and Krueger (2001). The persistent treatment problem arises when the variation
of the instrument over time is much higher than the variation of the treatment
variable. In particular, there is a persistent treatment problem if the following
three conditions are fulfilled:

• The treatment is endogenous,

• The treatment is persistent: once a unit is treated, the treatment variable
does not change its value for many, or all, subsequent periods,

• The instrument values vary from period to period.

These features are common when policies are evaluated. Instruments often
vary more than policy-state variables over time since instruments are frequently
based on economic shocks. Examples of such instruments are source-weighted
exchange rates, Revenga (1992), Bertrand (2004), and exposure to oil shocks
Raphael and Winter-Ebmer (2001). As a result of the three features listed above,
the higher the number of periods of observation T is, the weaker the instrument.

In the context of GMM (and related approaches), a weak instrument might
lead to a variety of estimation problems that are well known in the literature,
Stock et al. (2002). In the just-identified case, the asymptotic variance is very
high. As a result, the confidence intervals will be uninformative. Moreover, the
confidence intervals may not have the correct nominal coverage, Staiger and
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Stock (1997). In the over-identification case, the use of many weak instruments
might in addition lead to a large bias of the estimator.

In this paper, we consider only the just-identified case. The main reason is
that our approaches for strengthening the instrument impose a natural upper
bound of the number of instruments that can be used ( see section 6.1 for details).3

In the just-identified case, GMM is known to be approximately unbiased in small
samples. The main concern in this setting is the large variance of the GMM
estimator, which results from the weak instrument.

We first formalise the problem of persistent treatment in a simplified frame-
work. Generalisations to more complex settings are discussed at the end of the
section.

Consider the panel model

Yit = αDit + Uit, (3.1)

where Yit,Dit are defined as above and Uit is the unobserved disturbance of the
model with cov(Dit,Uit) , 0. When Yit represents production efficiency, Uit might
capture maintenance routines that affect also market deregulation. Similarly, Uit

might capture unobserved motivation that is correlated with the intention to
obtain a master degree.4 α is the causal effect of Dit on Yit to be estimated. For
ease of exposure, we assume that there are no observed covariates other than Dit

and that Zit is one-dimensional. Note that this paper is on fixed T panels with
asymptotics over N → ∞ (short panel). For the formalisation of the problem of
persistent treatment, however, we will allow T to grow to infinity.

Definition: we call a binary treatment variable Dit a persistent treatment
(PT) when

lim
t→∞

P{Dit = 1} = 1. (PT1)

This definition is fulfilled for example in a setting in which i) each unit is
treated eventually and ii) once treated, its treatment status remains unchanged.
Although all our simulations and empirical examples assume both i) and ii), ii)
is not necessary for the PT1 problem to exist and we do not assume it in our
theoretical part in the next sections. Both i) and ii) are typical in policy reform
settings, for which the number of periods of observation T is substantial (but still
smaller than the number of cross sectional units n). If condition ii) is satisfied,
then (PT1) is equivalent to the condition

lim
t→∞

P{Ti ≤ t} = 1, (PT2)

3In addition, many instruments might not be available in applications (which, in fact, is
typically the case).

4Most panel models impose a one-way error model, Uit = µi + Vit, where µi is an individual
specific effect and Vit the idiosyncratic part of the disturbance, see for example Baltagi (2008).
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where Ti is defined as the period in which individual i receives Dit = 1 for the
first time. The random variable Ti is discrete and can be interpreted as the
duration to treatment of individual i.

Empirical example: dynamic discrete choice To illustrate the relevance of
our theoretical results, we use a dynamic discrete choice example throughout
the paper. Dynamic discrete choice models have gained importance in econo-
metrics in recent years, see e.g. Heckman and Navarro (2007) and Taber (2000).
The decision to receive the treatment or not is modelled each period with an
underlying utility threshold model. Suppose that for t = 2, . . . ,T, the treatment
variable is generated according to the rule

Dit = 1{−θZit + Uit < 0} if Dit−1 = 0 and Dit = 1 if Dit−1 = 1. (3.2)

Di1 is generated simply as 1{−θZi1 + Ui1 < 0}. The rule in the indicator function
might depict the decision of a policy maker in period t that depends on some
social welfare benefit θZit and some social cost Uit. A regulation is introduced
in period t if the benefits are higher than the cost.5 It is the participation of the
structural regression error Uit in the first stage that makes the treatment variable
Dit endogenous.

Define Yi = (Yi1, . . . ,YiT)′, Zi = (Zi1, . . . ,ZiT)′, Di = (Di1, . . . ,DiT)′ and Ui =
(Ui1, . . . ,UiT)′. We assume that E1) Z1, . . .Zn are independent, E2) U1, . . .Un

are independent, E3) Z1, . . .Zn are jointly independent from U1, . . .Un, E4) for
each i and t, Zit ∼ N(0, θ−2/2) and Uit ∼ N(0, 0.5), E5) and finally that for
each i, Zi1, . . . ,ZiT are independent and Ui1, . . . ,UiT are independent. Under the
assumptions above, the term−θZi1 +Ui1 follows a standard normal distribution.
In this very simple setting, we can formulate the following lemma:

Lemma 3.1. Under assumptions E1-E5, conditions (PT1) and (PT2) hold.

The proof can be found in Appendix A. �
Condition (PT1) weakens the relation between the treatment variable and

the instrument over time. Intuitively, after the point in time of treatment, the in-
strument and the treatment variable are independent. This intuition is captured
by the following result:

Proposition 3.0.1. Suppose that condition (PT1) is fulfilled. Furthermore, assume that
the sequence (Zit)t=1,... is stochastically bounded, i.e. Zit = OP(1). Then

lim
t→∞

cov(Dit,Zit) = 0 (3.3)
5In the empirical evaluation section, we discuss a concrete example.
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Empirical example: dynamic discrete choice (continued) Consider the dy-
namic discrete choice setting with Dit generated under the rule 3.2. Figure 1
depicts how the correlation ρit between Dit and Zit decreases over time. Al-
though this correlation is roughly 25% on a cross-sectional level, it decreases
when further periods are added. For values of T ≥ 20, this correlation remains
within the interval (−0.05, 0.05) and its empirical distribution is centered at 0.

[Insert Figure 1 about here]
Note that condition (3.3) is satisfied for any instrument whose variation

does not ”explode” over time, in particular also for a constant. The condition,
however, will lead to a weak instrument problem only if the variation of the
instrument does not decrease quickly with increasing t. In the simple setup of
homoskedastic errors, this can be expressed with the following condition (we
refer to it as Weak Instrument due to Persistent Treatment (WIPT):

T∑
t=1

E[DitZit] = o(
T∑

t=1

E[Z2
it]), (3.4)

where the convergence is over T→∞.
To demonstrate the use of the WIPT condition, we assume that model (3.1)

holds. The following Lemma holds:

Lemma 3.2. Suppose that (Yi,Di,Z1)i=1,2... are i. i. d. with finite second moments and
thatE[ZitUit] = 0 for all i and t. In addition, assume for the errors thatE[U2

it | Zit] = σ2
u.

Then under the standard rank condition6 E[D′iZi] , 0, it holds for the asymptotic
variance Avar(α̂) of the (pooled) panel TSLS estimator α̂ under WIPT

Avar(α̂)→∞ (3.5)

as T→∞.

The proof is straightforward. Under the assumptions of the lemma, the
asymptotic variance of the pooled estimator of α fulfills

Avar(α̂) =σ2
u

( T∑
t=1

E[DitZit]
T∑

t=1

E[ZitZit]−1
T∑

t=1

E[DitZit]
)−1

(3.6)

= σ2
u

(∑T
t=1E[DitZit]
√
E[ZitZit]

)−2
→∞.

For the first equality, see for example chapter 8 in Wooldridge (2002). The as-
sumptions of the lemma, in particular the independence of the sample draws

6See assumption SIV.2 on page 186 in Wooldridge (2002).
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over time, make it possible to use a pooled estimator. We adopt this assumption
together with homoskedasticity because then the variance of the pooled esti-
mator has a very simple representation. These assumptions are however not
necessary for our theoretical part in the next sections. The WIPT condition can
be interpreted in the following way. The covariance between the instrument
and the treatment (the l.h.s. of (3.4)) decreases much faster than the variance of
the instrument (r.h.s. of (3.4)) over time .

If Zi1, . . . ,ZiT are identically distributed, or at least have the same second
moment µ2

Z, then the WIPT condition is equivalent to the condition

T∑
t=1

E[DitZit] = o(
√

T). (WIPT2)

Empirical example: dynamic discrete choice (continued) We now demon-
strate, that the (WIPT2) condition is fulfilled in the simple dynamic discrete
choice setting we constructed. The following proposition holds.

Proposition 3.0.2. Under assumptions E1-E5, condition (WIPT2) is fulfilled.

Corollary 3.0.1. Under assumptions E1-E5, the asymptotic variance Avar(α̂) of the
pooled TSLS estimator grows to infinity as T→∞:

lim
T→∞

Avar(α̂) = ∞ (3.7)

�
Remarks. 1. Although we use the TSLS estimator throughout the paper, in

the just-identified case (the case of concern in this paper) all GMM versions, and
in particular the STSLS and the system IV estimator (see p. Wooldridge (2002),
are equivalent. Furthermore, the GMM and Limited Information Maximum
Likelihood (LIML) Estimator are numerically equivalent. 2. It is straightfor-
ward to generalise the WIPT (and WIPT2) condition to a setting with observed
covariates, heteroscedasticity and dependent (over time) sample draws. More-
over, the condition holds also with demeaned variables as in the fixed effects
TSLS model. Thus, and taking the previous remark into account, the persistent
treatment problem holds for a very broad class of empirical settings.

4 Two approaches for strengthening the instrument
in the context of persistent treatment

We now present two approaches for strengthening the instrument in the context
of a PT. Both approaches remove unnecessary variation of the instrument.
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4.1 Model and Notation

Consider the following linear model,

Yit = αDit + Xitβ + Ci + Uit, (4.1)

where Xit is a 1×(K−1) dimensional random vector of observed individual char-
acteristics, Ci is unobserved and time-constant and Uit is the unobserved error
term. We allow for two types of endogeneity. First, we allow for corr(Xit,Ci) , 0.
Second, as in the previous section, corr(Dit,Uit) is allowed to be different from
zero. Due to the endogeneity of the treatment variable, the standard fixed effects
(FE) estimator is potentially biased. Assume further that there is an observable
M-dimensional random vector Zit = (Zit,1,Zit,2, . . . ,Zit,M) that is exogenous and
can be used as an instrument for the endogenous treatment Dit. For now, we
put no restrictions on M. The analysis in section 6.1, however, reveals that our
FVR and FBVR approaches do not allow for M being greater than 2. Write
Wit := (Dit,Xit) and Zit := (Xit,Zit). Furthermore, define Ȳi := 1

T

∑
t=1 Yit and

Ỹit := Yit − Ȳi (and with analogous notation for all other random variables). The
demeaned model 4.1 is

Ỹit = αD̃it + X̃itβ + Ũit, (4.2)

or, equivalently,

Ỹit = W̃itγ + Ũit, (4.3)

where γ = (α, β′)′. Finally, using matrix notation, model 4.3 can be written as

Ỹi = W̃iγ + Ũi, (4.4)

where Ỹi = (Ỹi1, . . . , ỸiT)′ and analogously for W̃i and Ũi. Throughout the paper
we assume that the observations (Yi,Wi,Zi) are i.i.d..

The standard approach is to use a pooled TSLS method to estimate γ. The
standard assumptions are:

1 : E[Uit | Zi1,Zi2, . . .ZiT,Ci] = 0 for t = 1, . . . ,T.

2 : rank(E[Z̃′itZ̃i]) = rank(
∑T

t=1E[Z̃′itZ̃it]) = L, where L is the dimension of Zit,
L = K + M.

3 : rank(E[Z̃′iW̃i]) = rank(
∑T

t=1E[Z̃′itW̃it]) = K.

Assumption 1 states the strict exogeneity of the instrument. Assumption 2 states
that none of the elements of Zit is a linear combination of the other elements.
Assumption 3 is a rank condition that states that the instrument and the endoge-
nous regressor are sufficiently related. Under assumptions 1-3, the parameter γ
of the structural equation (4.1) is identified.
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4.2 The FVR approach

The FVR consists of two steps. First, the instrument is adjusted in the following
way. For each cross sectional unit, the values of the instrument for all periods
after the period of treatment (this is the first period t in which the treatment
variable Dit for an individual i takes value 1) are set equal to the value of the
instrument in the period of treatment. In a second step, TSLS FE is performed
with the adjusted instrument. The simple example in Table 1 illustrates this
procedure.

[Insert Table 1 about here]
The second column contains the dependent variable, for example the per-

centage of operating hours in a certain period of time. The third column contains
the values of the treatment variable, for example a dummy variable represent-
ing market deregulation. The fourth column contains the instrument, e.g. the
number of lobby group members. The last column contains the values of the
transformed instrument. The treatment is received in period 3, and the value
of the instrument in this period is copied to all other subsequent periods (here
only period 4) to create the transformed instrument.

For a formal definition, we introduce the following additional notation. Let
Ti be the period at which agent i is treated for the first time, i = 1, . . . ,n, and let
Ti > 1 for all i. Let Pi = P(Ti) denote the random T × T transformation matrix
which is defined in the following way. Its first Ti − 1 columns are equal to the
first Ti − 1 columns of the T × T-identity matrix IT. Its Ti column has a 1 as
elements pkl for which k ≥ l and a 0 elsewhere. The columns Ti + 1 . . . ,T consists
entirely of zeros. For units with Ti > T, we set Pi = IT. That is, the values of
the instrument in these cases remain unchanged. For such units, the values of
Zit,Wit,Yit for t > T and Ti are not observed. In this case, Ti might be either finite
(censored Ti) or infinite (non-treated). For simplicity, we focus on the first case,
that is, we assume that Ti can be at most equal to T̄ < ∞. This restriction can
be easily relaxed and has no influence on the main intuition and results. As an
example for Pi, suppose that T = 4 and that for some i Ti = 3. Then Pi = Pi(3) is
equal to

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0.


Multiplication with P(Ti) transforms the vector (a1, . . . , aT)′ into the vector
(a1, . . . aTi−1, aTi , aTi , . . . , aTi)

′. Further, define the (deterministic) time-demeaning
matrix QT as

QT = IT − jT( j′T jT)−1 j′T,

10



where jT is a T × 1-vector with all elements equal to 1. Multiplication with
QT transforms the vector (a1, . . . , aT)′ into the vector (a1 − T−1 ∑T

t=1 at, . . . , aT −

T−1 ∑T
t=1 at)′.

The FVR estimation approach can now be formally described in the following
way.

Step 1: Replace Zi with Z̈i := PiZi. Write Z̈i := (Xi, Z̈i) and let the rows of the
matrix Z̈i be denoted by Z̈it = (Xit, Z̈it), t = 1, . . . ,T.

Step 2: Estimate the equation

QTYi = QTWiγ + QTUi (4.5)

via (pooled) TSLS using QTZ̈i as an instrument for QTWi. The estimator is
defined as

γ̂FVR :=
[
(

n∑
i=1

W̃′

i
˜̈Zi)(

n∑
i=1

˜̈Z′i˜̈Zi)−1(
n∑

i=1

˜̈Z′iW̃i)
]−1

(
n∑

i=1

W̃′

i
˜̈Zi)(

n∑
i=1

˜̈Z′i˜̈Zi)−1(
n∑

i=1

˜̈Z′iỸi),

(4.6)

where Ỹi = QTYi (with analogous notation for all other variables ).

4.3 The FBVR approach

Similar to FVR, the FBVR transforms the instrument and then performs standard
TSLS FE estimation procedure with the transformed instrument. The instrument
is transformed in the following way. For all treatment periods (Dit = 1), the
values of the instrument in FBVR and FVR are equivalent. For all periods prior
to the treatment, the values of the instrument in FBVR are set equal to the value
of the instrument in the last untreated period (Ti − 1). As in the case of FVR, the
instrument values for non-treated units remain unchanged. The data example
in Table 2 illustrates this procedure. Thus, the FBVR approach additionally
restricts the variation of the instrument backwards.

[Insert Table 2 about here]
Formally, let the random matrix Qi has its Ti − 1-th column equal to ZTi−1 up

to the Ti− 1-th row and eventually zero, and its Ti-th column equal to zero up to
the Ti−1-th row and then equal to ZTi (all other columns are equal to zero). Then
define Z̊i := QiZi for Ti ≤ T and Z̊i := Zi for Ti > T, and and write Z̊i := (Xi, Z̊i).
Then the FBVR estimator is defined as

γ̂FBVR :=
[
(

n∑
i=1

W̃′

i
˜̊Zi)(

n∑
i=1

˜̊Z′i˜̊Zi)−1(
n∑

i=1

˜̊Z′iW̃i)
]−1

(
n∑

i=1

W̃′

i
˜̊Zi)(

n∑
i=1

˜̊Z′i˜̊Zi)−1(
n∑

i=1

˜̊Z′iỸi),
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(4.7)

4.4 Identification

The cost of strengthening the instrument in both approaches is a potential en-
dogeneity problem. Both Z̈i and Z̊i depend on the time to treatment Ti, and
Ti depends in a complex, non-linear way on Ui. As a consequence, stronger
assumptions are needed to ensure identification. We adopt the following as-
sumptions:

R1 E[Uit | Zi1,Zi2, . . .ZiT,Ci,Ti = k] = 0 for t = 1, . . . ,T and k = 1, . . . ,T

R2 a) rank(E[˜̈Z′i˜̈Zi]) = rank(
∑T

t=1E[˜̈Z′it˜̈Zit]) = L.

R2 b) rank(E[˜̊Z′i˜̊Zi]) = rank(
∑T

t=1E[˜̊Z′it˜̊Zit]) = L.

R3 a) rank(E[˜̈Z′iW̃i]) = rank(
∑T

t=1E[˜̈Z′itW̃it]) = K.

R3 b) rank(E[˜̊Z′iW̃i]) = rank(
∑T

t=1E[˜̊Z′itW̃it]) = K.

R1 is the new stronger assumption. It resembles the standard orthogonality
condition in the TSLS panel framework, which is implied by the standard strict
exogeneity restriction. The main difference is that in R1 the expectation contains
a function that depends on the treatment point in time. Contrary to the strict
exogeneity assumption, however, assumption R1 has no intuitive interpreta-
tion that can be directly linked to economic theory. Below we deal with this
disadvantage in two different ways. First, in section 5, we discuss low-level
assumptions in a particular context that imply R1. These low-level assumptions
are easier to relate to economic intuition. Second, we test R1 in a simulation
study in the framework of dynamic discrete choice. The results of the simulation
reveal that R1 is a valid assumption in this context. The discussion of low-level
assumptions and the simulation results can be used in applied research as a
basis of decision whether it is plausible to use our approaches. The main result
of this section is the following proposition:

Proposition 4.1. Suppose that either assumptions R1, R2 a), R3 a) or R1, R2 b), R3
b) hold. Then γ is identified.

The proof is provided in Appendix A.
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4.5 Asymptotic properties

Define A = E[W̃′

i
˜̈Zi], B = E[˜̈Z′i˜̈Zi]−1, Ω = E[˜̈Z′iŨiŨi

′˜̈Zi], and
G = (ABA′)−1ABΩBA′(ABA′)−1 (Ω is assumed to be positive definite). We define

Ã, B̃, Ω̃ and G̃ analogously but with ˜̈Zi replaced by ˜̊Zi. In addition, we denote by
(V)lm the element of the matrix V with row index l and column index m.

We need the following additional assumptions.

R4 a) E[| (W̃′

i
˜̈Zi)km |] < ∞, E[| (˜̈Z′i˜̈Zi)lm |] < ∞ and E[| (˜̈Z′iŨi)m1 |] < ∞ for

k = 1, . . . ,K, l = 1 . . . ,M and m = 1, . . . ,M.

R4 b) E[| (W̃′

i
˜̊Zi)km |] < ∞, E[| (˜̊Z′i˜̊Zi)lm |] < ∞ and E[| (˜̊Z′iŨi)m1 |] < ∞ for

k = 1, . . . ,K, l = 1 . . . ,M and m = 1, . . . ,M..

R5 a) E[| (˜̈Z′iŨi)m1 |
2] < ∞ for m = 1, . . . ,M.

R5 b) E[| (˜̊Z′iŨi)m1 |
2] < ∞ for m = 1, . . . ,M.

Assumptions R4 and R5 are standard TSLS assumptions, see for example theo-
rems 3.1 and 3.2 in Wooldridge (2002). Under the i.i.d. assumption, assumption

R4 a) ensures that n−1(
∑n

i=1 W̃′

i
˜̈Zi), n−1(

∑n
i=1

˜̈Z′i˜̈Zi) and n−1(
∑n

i=1
˜̈Z′iŨi) converge in

probability to their sample counterparts (due to the Weak Law of Large Num-

bers). Similarly for assumption R4 b) with ˜̈Zi replaced by ˜̊Zi. Assumption R5

a) ensures that n−1/2(
∑n

i=1
˜̈Z′iŨi) converges in distribution to a normal distribu-

tion. We can now state the asymptotic properties of the FVR and the FBVR
approaches.

Proposition 4.5.1. Asymptotic properties
Under assumptions R1-R4, it holds

γFVR
p
→ γ and γFBVR

p
→ γ. (4.8)

If in addition R5 holds, then

√
n(γFVR − γ) d

→ N(0,G) and
√

n(γFBVR − γ) d
→ N(0, G̃). (4.9)

We omit the proofs of this proposition since it follows identical steps as in the

proofs of propositions 5.1 and 4.2 in Wooldridge (2002) with Zi replaced by ˜̈Zi

(˜̊Zi). Inference can be performed via consistently estimating G and G̃. A consis-
tent estimate of G can be obtained by replacing A,B and Ω by consistent estimates
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(equivalently for G̃). The standard approach is to take the sample averages Â =

n−1 ∑n
i=1 W̃′

i
˜̈Zi, B̂ =

(
n−1 ∑n

i=1
˜̈Z′i˜̈Zi

)−1
and Ω̂ = n−1 ∑n

i=1
˜̈Z′iÛiÛ′i

˜̈Zi. Here, Ûi is a resid-
ual obtained with a consistent estimator for γ. Under the assumptions of propo-

sition (4.5.1)
√

n(γFVR−γ) d
→ N(0, Ĝ), where Ĝ = (ÂB̂Â′)−1ÂB̂Ω̂B̂Â′(ÂB̂Â′)−1. The

resulting estimator is robust to heteroskedasticity and serial correlation across
time.

Remark. In some cases, the i.i.d. assumption on the cross-sectional units
might be violated. A typical example for cross-sectional dependence is when
the observations belong to clusters such as schools or families. In such cases,
adjustments are necessary to reflect the nature of the cross-sectional dependence.
Typical methods to deal with clusters are explicit modelling of peer effects,
Sacerdote (2011), or an adjustment of the standard errors to make them cluster-
robust, see e.g. Cameron and Miller (2015) for a discussion. Both approaches
can be applied directly in our setting in a straight-forward way.

5 Towards low-level assumptions that imply assump-
tion R1

Assumption R1 is more difficult to evaluate than the standard orthogonality
assumption (E[ZilUip] = 0 for all l and p). General low-level assumptions are
hard to find due to the nonlinearity of the condition. In particular, 1{Ti =
k} depends in a nonlinear way on (Zit,Uit)t∈{1,...,T}. We therefore focus on one
particular model of the first stage, namely the dynamic discrete choice data
generation process, introduced in the empirical example in section 3 and also
used in the simulation study in section 7.

Suppose now that the first stage is generated according to the rule

Dit = 1{δDit−1 + θZit + ρUit + εit > 0}, (5.1)

where t ≥ 2. For t = 1, we define Di1 = 1{θZi1 + ρUi1 + εi1 > 0}. The term
Uit is as before the error from the second stage (the structural equation). The
term εit is an unobserved exogenous variation. For simplicity, the instrument is
one-dimensional and there are no other observed covariates. The persistence of
the treatment is achieved by a very large parameter value δ. Setting δ = ∞ gives
the data generating process

Dit =

1{θZit + ρUit + εit > 0} if Dt−1 = 0
1 if Dt−1 = 1.

(5.2)
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If in addition εit = 0 and ρ = 1, then we obtain the specification of the constructed
empirical example in section 3.

Additional assumptions. To make our task tractable, we adopt the following
additional assumptions:

L1: E[Zit] = 0.
L2 a): For each t ∈ {1, . . . ,T}, Zit y (Zi1, . . .Zit−1,Zit+1, . . . ,ZiT)
L2 b): For each t ∈ {1, . . . ,T}, Uit y (Ui1, . . .Uit−1,Uit+1, . . . ,UiT).
L3: The vectors (Zit)t=1,...,T, (Uit)t=1,...,T, and (εit)t=1,...,T are jointly independent.

Discussion of the additional assumptions. L1 is adopted for simplicity
of exposition. By assuming a zero-mean instrument in assumption L1, we
essentially focus on the important feature of the instrument, namely its variation.
In particular, an instrument Zit and its zero-mean counterpart Zit−E[Zit] i) have
the same variance, ii) lead to identical first-stage F-statistics and iii) lead to
identical estimates from the structural equation. L1 can be achieved through a
simple (mechanical) normalisation of the instrument on a cross-sectional level.
The assumption is fulfilled for the demeaned instrument Z̃it in the fixed effects
model when the instrument Zit is either identically distributed over time or has
at least the same mean in each period. Therefore, assumption L1 is not a strong
assumption. It is fulfilled (per construction) in the empirical example in section
3.

Assumption L2 a) imposes that there is no serial dependence in the instru-
ment. This assumption might be plausible in a context where the instrument
is chosen to be an economic shock. If the instrumental value in a subsequent
period is anticipated due to serial correlation, this could lead to a violation of
the exogeneity assumption if the agents act upon the anticipation. As a conse-
quence, preferred instruments are based on economic variables that are hard to
predict with past values. One example is fluctuations in exchange rates due to
speculations on the financial market, see Revenga (1992). Another often chosen
method for constructing an instrument is to isolate the random component of
variation by eliminating smooth changes caused by factors evolving over time.
Cho et al. (2012) and Hoxby (2000) for example use random variations of pop-
ulation in an area. Such unpredictability is compatible with the notion of an
”economic shock”.

Assumption L2 b) imposes that there is no serial dependence in the regres-
sion error of the structural equation.7 Its weaker version - no serial correlation
- is the standard assumption in the Random Effects (RE) model and is imposed
to show the efficiency of the RE estimator. In addition, no serial correlation

7Note that assumption L2 does not preclude serial dependence in the exogenous variation of
the first stage (εit)t=1,...,T.
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is imposed in the FE model in combination with a GLS estimation procedure.
Under assumption L2 b), all serial dependence in the total regression error is
due to the unobserved fixed effect Ci. Although this assumption might be hard
to justify in some settings, serial correlation is easily tested with conventional
methods, see for example chapters 7.8.5 and 8 in Wooldridge (2002). If the null
hypothesis of no serial correlation is not rejected, the researcher might be willing
to conclude that there is no serial dependence as well. This conclusion would
be particularly justified in the standard AR(1) model Uit = νUit−1 + ξit with
ν ∈ (−1, 1) and i.i.d. ξit. If the hypothesis is rejected, then there are still various
ways to deal with serial correlation in order to satisfy L2 b). First, one might
include additional lags of the exogenous independent variables Xit−1, . . . ,Xit−l,
where l is some integer smaller than t. This is a typical method used in the
literature to ensure dynamic completeness in the conditional mean, see e.g.
chapter 7.8.3 Wooldridge (2002). Models that are dynamically complete do not
have serial correlation. Intuitively, adding past observed information could po-
tentially account for all the dependence of the dependent variable over time.
Related approaches include to explicitly model the dependence over time, for
example through time dummies (which represent aggregate influences in sepa-
rate periods) or time trend. Papers of Wansbeek and Knaap (1999) and Alvarez
and Arellano (2003) are examples of studies that impose time trend and serially
uncorrelated disturbances. Finally, under additional assumption on the joint
distribution of (Ui1, . . . ,UiT) it is possible to rescale the model so that L2 b) is
approximately true. In particular, assume that the variance of (Ui1, . . . ,UiT) is
given by the matrix ΩU. Multiplying both sides of the structural equation by
Ω−1/2

U yields disturbances (U∗i1, . . . ,UiT∗) whose variance matrix is given by the
identity matrix (this is the standard approach used to calculate the (infeasible)
GLS estimator). Under the additional assumption of joint normal distribution,
the serial uncorrelatedness yields serial independence.8

Assumption L3 is stronger than the usual strict exogeneity assumption.
However, this differentiation is not important in applied work. To the best
of the authors’ knowledge, all empirical papers defend the validity of their
exclusion restrictions by arguing that the instrument is independent from the
regression error. Economic intuition is based on this independence and not on
the zero-conditional-mean assumption.

We now use these assumptions to explore when R1 is fulfilled. First, note

8Since ΩU is rarely known, one must estimate it in a first step.
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that

E[1{Ti = k}ZilUip] = E[E[1{Ti = k}ZilUip | 1{Ti = k}]]
= E[E[1{Ti = k}ZilUip | Ti = k]P{Ti = k}

+ E[1{Ti = k}ZilUip | 1{Ti = k} = 0]P{1{Ti = k} = 0}]
= E[E[ZilUip | Ti = k]P{Ti = k} + 0P{1{Ti = k} = 0}]
= E[ZilUip | Ti = k]P{Ti = k}.

Therefore, if P{Ti = k} > 0 for all k then assumption R1 is equivalent to the
assumption
R1*: E[ZilUip | Ti = k] = 0 for all l, p, k ∈ {1, . . . ,T}.

Under the persistent treatment assumption (Dit = 1 if Dit−1 = 1) and the
discrete choice first stage, we can write

E[ZilUip | Ti = k] = E[ZilUip | Dk = 1,Dk−1 = 0]
= E[ZilUip | Dk = 1,Dk−1 = 0, . . . ,D1 = 0
= E[ZilUip | δDk−1 + θZik + ρUik + εik > 0,
δDk−2 + θZik−1 + ρUik−1 + εik−1 ≤ 0, . . . ,
δD1 + θZi2 + ρUi2 + εi2 ≤ 0,D1 = 0]

= E[ZilUip | θZik + ρUik + εik > 0,
θZik−1 + ρUik−1 + εik−1 ≤ 0, . . . ,
θZi2 + ρUi2 + εi2 ≤ 0, θZi1 + ρUi1 + εi1 ≤ 0] =: A.

We can differentiate between the following cases.

• Case I: l, p > k. Due to assumptions L2 and L3, we obtain A = E[ZilUip] = 0.

• Case II: l > k > p or p > k > l or l > k ≥ p or p > k ≥ l . If l > k > p, then

A = E[ZilUip | θZip + ρUip + εip ≤ 0]
= E[Zil]E[Uip | θZip + ρUip + εip ≤ 0] = 0,

where the last equality is due to assumption L1. The cases p > k > l,
l > k ≥ p and p > k ≥ l are treated analogously.

• Case III: l, p < k (cases with less or equal are treated analogously). Then
A = E[ZilUip | θZip + ρUip + εip ≤ 0, θZil + ρUil + εil ≤ 0].

Therefore, the task to find low-level assumptions that imply R1 reduce in this
framework to finding conditions under which A = 0 in Case III. Although this is
still a hard technical task (these conditions will depend on the joint distribution
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of all 6 random variables), it has the advantage that the conditional expectation
does not depend on the time to treatment Ti but solely on the instrument, the
regression error and the unobserved exogenous variation. Our simulations in
section 7 reveal that under symmetric distributions of these three components,
R1* cannot be rejected. Symmetry of the distribution of the instrument can be
verified empirically, and symmetry of the distribution of the error term can be at
least discussed based on knowledge and/or assumptions about the error term.
We leave the mathematical proof of this result for future research.

6 Discussion on alternative specifications and some
limitations

6.1 Multiple instruments and multicollinearity

The FBVR approach imposes a restriction on the maximum number of instru-
ments used. To see this, suppose we have three instruments, Zi = (Zi,1 . . . ,Zi,T)′,
Vi = (Vi,1 . . . ,Vi,T)′ and Wi = (Wi,1 . . . ,Wi,T)′. Let β2 be an arbitrary constant and
define

β1 =
Vi,TiWi,Ti−1 − Vi,Ti−1Wi,Ti

Zi,Ti−1Wi,Ti − Zi,TiWi,Ti−1
and

β3 = −
β1Zi,Ti−1 + β2Vi,Ti−1

Wi,Ti−1
.

It holds for the transformed instruments

β1Z̊i + β2V̊i + β3W̊i = 0.

Although β1 and β3 are random variables, for each realisation of (Zi,Vi,Wi) there
is a linear dependence between the three instruments. In other words, for more
than two instruments there is a data induced perfect multicolinearity problem.
Note that this is not a real drawback of the FBVR approach, since multiple
instruments are used only to enhance their strength and the FBVR approach
achieves high strength in a different way.

6.2 Distributed lag formulation

In this subsection, we investigate Distributed Lag (DL) formulations of the
structural equation (4.1). Since the number of periods T is held fixed, the
DL specification can only be a finite DL formulation. In a DL formulation,
lagged values of the independent variable have a direct impact on the outcome
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variable. We analyse two different specifications: i) a specification with lags of
the treatment variable and ii) a specification with lags of Xit.

Specification i) can be written in the following form:

Yit = α1Dit + α2Dit−1 + · · · + αkDit−k+1 + Xitβ + Ci + Uit, (6.1)

where k is a positive integer such that t > k. Including a lagged treatment
variable allows for a ”dynamic treatment effect” in the sense that the total effect
of the treatment on the dependent variable can be split into different periods. A
typical argument against a DL formulation is multicollinearity among the lagged
explanatory variables. This problem is particularly relevant in the setting of a
persistent treatment. To see this, assume that T = 3 and that one lag of the
treatment variable is included in the structural equation. Further, assume that
the distribution of Ti is uniform: P{Ti = k} = 1/3 for k = 1, 2, 3. Then Di2 is equal
to one with probability 2/3 and Di3 is almost surely equal to 1. Therefore, in
two thirds of the cases, Di3 and Di2 will have the same value. Since both Di3 and
Di2 are regressors of Yi3, this will lead to a data-induced multicollinearity and a
dramatic increase of the standard errors. If P{Ti < T} = 1, then DT−1 and DT are
both equal to 1 which leads to a perfect multicollinearity and the rank condition
R3 is violated.

Specification ii) does not have to suffer from the same drawback. If the lags
of the other observed covariates Xit are not highly correlated, then a DL specifi-
cation can be estimated under assumptions R1-R5. Note that the orthogonality
condition in R1 implies that past values of the observed covariates Xit are not
correlated to current values of the error term, once the fixed effect Ci has been
averaged out. A DL formulation therefore does not induce endogeneity of the
lags.

6.3 Including time dummies

The question we analyse now is whether including time-specific effects into the
main structural equation would lead to multicollinearity for similar reasons as
described in 6.1. Let λ1, . . . , λT−1 be dummy variables with λt = 1 if the period of
observation is t, and 0 otherwise, t = 1 . . . ,T − 1. Perfect multicollinearity arises
when Dit is a linear combination of λ1, . . . , λT−1:

Dit = δ1λ1 + · · · + δT−1λT−1 (6.2)

Since, however, λ1, . . . , λT−1 are deterministic functions of the period of obser-
vation t, equation (6.2) implies that Dit is also a deterministic function of time.
As a consequence, all units would have to be treated in the same period of
observation t, a feature that we explicitly preclude in our model setting. This
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conclusion is reached for the standard TSLS model as well, since it only considers
the structural equations, not the first stage.

The first stage can be analyzed using equivalent arguments. The instrument
in both our approaches is transformed as a function of the point in time of
treatment Ti.9 Therefore, perfect multicollinearity is only induced if there is
no variation in Ti. Hence, incorporating time-specific effects into our setup
does not violate the rank conditions (R2 and R3) and does not lead to perfect
multicollinearity on the population level. We demonstrate this in the empirical
investigation, where we include time-specific effects in the main specification.

Even if the rank condition on the population is not violated, incorporating
time-specific effects might dramatically increase the standard errors if there is
little variation in the point in time of treatment Ti in the sample at hand. Low vari-
ation in Ti in the sample will namely lead to a high data-induced multicollinearity
of (Dit, λ1, . . . , λT−1).

6.4 A note on a first-differencing approach

In this section, we briefly discuss an alternative estimation approach often used
in the context of panel data, namely that of first differencing (FD). For a random
variable At, define ∆At to be the difference between At and its first time lag At−1:
∆At = At − At−1. Then a first-differencing transformation on the main model
(4.3) leads to the reduced form model

∆Yit = ∆Witγ + ∆Uit, t = 2, . . . ,T. (6.3)

A standard FD approach in our context runs a pooled TSLS regression on the
first-differenced data.

First, note that a FD approach alone cannot mitigate the persistent treatment
problem. To see this, consider Table 3. It is built in the same way as Table 1
and uses the same numerical example. The difference is that the values in Table
3 are first-differenced. The table contains therefore only the periods 2, 3, and
4. The first-differenced treatment variable still has only two possible values 0
and 1 (−1 is not an admissible value because we do not allow the (persistent)
treatment to change from 1 back to 0). Moreover, for all periods after Ti, the
value of ∆Dit is equal to 0. The first-differenced instrument, on the other hand,
is allowed to change values from period to period, because we have not placed
any persistence assumptions on its increments (first differences) . Thus, the FD
approach on its own must necessarily suffer from the WIPT problem.

[Insert Table 3 about here]
9Note, that in both FVR and FBVR approaches, only the exclusion restriction Zit is trans-

formed, not the included exogenous covariates Xit.
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The FD transformation can be used, however, in a combination with the
FVR and the FBVR approaches in the same way as the within transforma-
tion. The adjustment of the instrument has analogous steps, see for example
the last column of Table 3 for the FVR-transformed instrument. Assumption
R1 (in relation to assumptions R2 and R3) is sufficient for consistency (and
identification) in the context of the FD transformation.10 This can be seen in
a straightforward way. In particular, consider the k-th element of the vector
∆Z̈i := (∆Z̈i2, . . . ,∆Z̈iT). It is equal to the expression (A.5) in the appendix (see
proof of proposition 4.1), but with the term −T−1 ∑Ti

l=1 Zil − T−1(T − Ti)ZiTi re-
placed by the term −Zik−11{Ti ≥ k}−ZiTi−11{Ti < k}. All further steps of the proof
of proposition 4.1 presented in the appendix are analogous. Together with as-
sumptions R4 and R5, this implies the consistency and normality of the FVR and
FBVR approaches with a FD transformed model. This result is not surprising,
as it holds for the standard TSLS procedures as well, see p. 279 in Wooldridge
(2002) for a discussion.

The FD is preferred to the standard within transformation when there are
reasons to believe that the errors follow a random walk. In such cases, under a
standard homoskedasticity-type assumption (see for example assumption FD.3
in chapter 10.3.1 of Wooldridge (2002)), the FD approach is more efficient than
the within estimator. Because the manipulations of the FVD and the FBVR
approach does not alter the form of the errors (only the instrument is trans-
formed), this advantage of the FD approach carries over when FVR and FBVR
are subsequently used.

6.5 A ”local treatment” estimation approach

We analyse an approach, in which only observations just after and just before
the point of treatment Ti are used.11 Formally, suppose that i is held fixed. If
2 ≤ Ti ≤ T, then the observations of the i-th unit from the periods Ti − 1 and Ti

are kept while all other periods are excluded. If Ti > T (or if the unit is never
treated), or Ti = 1 (immediately treated), then the observations on unit i are not
used. As an example consider Table 4.

[Insert Table 4 about here]
It represents a panel of length 4 with 4 observational units (O1 to O4). Each

row represents one period of observation t. For each unit and each period of
observation, the table contains a triple (Yit,Dit,Xit,Zit) of observed values for the

10With R2 and R3 appropriately modified: instead of the W̃i variable, one has to insert a ∆Wi
variable, i.e. FD-transformed variable.

11We write ”local treatment” in inverted commas to emphasize that this approach is not to
be confused with the Local Average Treatment Effect (LATE) approach from the cross section
literature.
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dependent variable, the treatment variable, an exogenous observed covariate
and the instrument (in that order). The units O1 - O3 are treated in the second,
fourth, and the first period, respectively, and the fourth unit is not treated. In a
first step, the ”local treatment” approach would reduce this panel to the panel
shown in Table 5. Only observations on units O1 and O2 around the treatment
period are kept, i.e. periods 1 and 2 for unit O1 and periods 3 and 4 for unit O2.
In a second step, a standard panel TSLS is performed.

[Insert Table 5 about here]
To compare this method with our proposed approaches (FVR and FBVR),

we first note that assumption R1 is sufficient for the validity of the exclusion
restriction in the ”local treatment” approach. To see this, write

E[ZiTiUiTi] =

T∑
t=1

E[ZitiUiti1{T = t}]. (6.4)

When we pick up observations right before and right after the random treatment
period Ti, the left hand side of (6.4) must be equal to zero in order to have a valid
instrument. This is ensured when R1 holds, because R1 implies that the r.h.s of
(6.4) is zero. Thus, R1 ensures identification and consistency.

One big disadvantage of the ”local treatment” approach, however, is that the
number of observations used for estimation is dramatically reduced. There are
two reasons for this reduction: first, only units treated between the second and
the last period of observation are included. The loss of observation increases
with the share of untreated cross-sectional units. Second, only two observations
are included for each included unit of observation. Thus, the number of lost
observations is T−2 per included unit. In the example above, the initial number
of 16 observations is reduced to 4, leading to a 75% reduction of all observations.
We demonstrate in the Monte Carlo section that such a loss of observations leads
to a dramatic increase in MSE.

7 Monte Carlo Simulations

7.1 Data Generating Process

Our data generating process builds on previous work estimating dynamic binary
choice models with unobserved heterogeneity (Honoré and Tamer, 2006; Carro,
2007b). It consists of a structural model (7.1) and a discrete choice model (7.2):

Yit = αDit + Xitβ + Ci + Uit (7.1)
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Dit = 1{µ + δDit−1 + θZit + Xitβ + ρUit + εit > 0} (7.2)

The sole exogenous regressor is Xit = 5Git where Git is an i.i.d. random variable
drawn from a continuous uniform distribution U(0, 1). Ci equals 1

T

∑
t Xit to

ensure that unobserved heterogeneity is correlated with Xit. The error term of
the structural equation is U(0, 1) ∼ i.i.d.N(0, 1).

The first term of the discrete choice equation µ is the intercept. Other things
equal, its value influences the share of units that gets treated. The lagged treat-
ment variable D(it− 1) is included to create persistence in the treatment. Setting
δ sufficiently high ensures that treated units remain treated for all subsequent
(observed) periods. A strictly exogenous variable Zit ∼ i.i.d.N(0, 1) is used as
an instrumental variable for the endogenous treatment Dit. The strength of the
instrument Zit is controlled by the size of the parameter θ. The error term of the
structural equation Uit is included to ensure that Dit is endogenous. The higher
the value of ρ, the higher the level of endogeneity. Finally, εit ∼ i.i.d.N(0, 1) is a
random exogenous noise.

The α and the β parameters are set equal to 1. In the next section, we
compute the percentage empirical bias and the 95% confidence interval for the
different estimators at different values of θ and ρ. To ensure that the level of
endogeneity (instrumental strength) does not change when the value of θ(ρ)
is modified, the parameter λ is set equal to

√
(1 − θ2 − ρ2). This allows us to

keep Var
[
θZit + ρUit + λVit

]
equal to 1 when the value of θ or ρ changes. In our

baseline simulation, we generate data for 1,000 units (n = 1, 000) over 15 time
periods (T = 15). We choose the value for µ so that approximately half of the
units receive treatment during the observation period.

7.2 Simulation Results

We draw 1,000 samples for each of ten different empirical settings. The strength
of the instrumental variable, captured by θ, is the only parameter that varies
between the empirical settings. In all setting, n = 1, 000, T = 15, α = β = 1,
δ = 50, µ = −1.663, the exclusion restriction Zit is normally distributed, and
the share of units treated equal to 50%. Table 6 and Table 7 show the absolute
empirical bias and the 95% confidence interval of the simulated α coefficient
estimated by six different fixed-effect estimators: OLS, TSLS, Two Stage Local
Treatment Estimator (TSLTE), TSLS-Probit, FVR, and FBVR. The Two Stage Local
Treatment Estimator is a TSLS estimator using only the observations before and
after the treatment time.12 TSLS-Probit uses the predictions of a Probit model

12This is the estimation approach based on the strategy considered in section 6.5.
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as an instrument for the treatment in a TSLS (Wooldridge Jeffrey, 2002). Table 6
also reports the Root Mean Square Error, the average first stage F-statistic, and
the type II error frequency. The only difference between the two tables is the
level of endogeneity equal to ρ = 0.4 in Table 6 and to ρ = 0.6 in Table 7.

Before looking at the relative performance of the five IV-estimators, we per-
form some consistency checks. Within Table 6 and Table 7, the absolute bias
of the OLS estimate is the same in all empirical settings. This significant bias
appears by design since the endogeneity parameter ρ is different from 0. The
absolute bias of OLS is higher in Table 7 than in Table 6 since ρ is larger in Table
7. As expected, the distribution of α̂OLS does not change either as the strength
of the instrument varies. As the level of endogeneity decreases and the strength
of the instrument increases, the absolute bias of the five IV-estimators declines
and their distributions tighten around the true value of α. The only exception
is TSLTE whose bad performance is due to the large loss of observations as
explained in Section 6.5. For clarity and because TSLTE is highly biased, we
focus in the following on TSLS, TSLS-Probit, FVR, and FBVR. We will use TSLS
to refer to both TSLS and TSLS-Probit estimators as they provide very similar
results.

In almost all empirical settings, the absolute bias of FVR and FBVR is higher
than the absolute bias of TSLS but has the same order of magnitude and is
very small. However in every setting, FVR and FBVR are clearly more efficient
than TSLS. More precisely, the 95% confidence interval of TSLS is 5 to 6 times
larger than the 95% confidence interval of the FVR and FVBR. Importantly, this
efficiency gap is the same for the different levels of strength of the original
instrument θ.13 Therefore, TSLS does not catch up FVR and FBVR in terms
of efficiency as the original instrument gets stronger. Finally, FBVR performs
slightly better than FVR in terms of bias while both estimators are equivalently
efficient.

The 95% confidence bounds of TSLS are not only larger than the bounds of
FVR and FBVR, they are also misleading. TSLS frequently fails to reject the null
hypothesis while it is not true in our case. Their type II error frequency goes
up to 80%.14 Even if it diminishes with the strength of the instrument, the false
inference remains frequent. Unlike TSLS, both FVR and FBVR almost never fails
to reject the null hypothesis.15 The higher efficiency of both FVR and FBVR is
also reflected in the reported first stage F-statistics that are much larger than for

13Only for the lowest strength of the original instrument θ = 0.2, the efficiency gap is between
a factor 8 and 9.

14Note that this frequent error takes place even when the first stage F-statistics is higher than
10 which is the rule of thumb value used by applied econometricians.

15The highest type II error frequency for both FVR and FBVR equals 1.3 % and corresponds
to the empirical setting having the weakest original instrument.
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the competing IV estimators. These results are observed in both Table 6 and
Table 7.

Finally, the FVR and FBVR performance relative to TSLS increases with the
length of the panel. Table 8 and Table 9 both show the simulation results with
different panel length T varying from 4 to 24.16 The only difference between
the tables is the endogeneity level ρ that is higher in Table 9 than in Table 8. In
both tables, we obtain practically the same results. As T increases, the precision
of TSLS decreases. This result corresponds precisely to the WIPT problem.
In contrast, the precision of FVR and FBVR improves as T gets higher. The
efficiency gap increases linearly with T and goes from 2 when T = 4 to 9 when
T = 24. When the panel is short T = 4, FVR and FBVR still performs better than
TSLS which erroneously fails to reject the null hypothesis 25% of the time. Note
that the absolutes biases are not affected by variation in T.

In summary, we draw four conclusions based on our Monte Carlo Simula-
tion results. First, when an endogenous treatment is highly persistent, standard
approaches such as TSLS and TSLS-Probit give uninformative confidence inter-
vals that frequently lead to type II errors, and this is consistent with theoretical
predictions. Second, the FVR and the FBVR estimators prove to be substantially
more efficient in a wide range of empirical settings. Third, FVR and FBVR
generate estimates that are substantially less biased than OLS given that the
instrument Z is sufficiently related to the treatment D. Fourth, the efficiency
gap between the FVR and FBVR approaches and TSLS increases linearly with
the length of the panel. This is consistent with our analysis of the problem of
persistent treatment.

We perform several robustness checks to verify the sensitivity of our main
results. First, we allow the instrumental variable Zit to be drawn from a non-
normal distribution. Second, we generate samples where the share of units
treated varies from 30% to 90%. Details of how these robustness tests were
performed, as well as the results, are presented in Appendix B.

[Insert Table 6 to 9 about here]

7.3 Empirical test of the identifying assumption

Assumption R1 is crucial for identification and that it guarantees consistent
estimation when using the FVR and FBVR approaches. Similar to the standard
strict exogeneity assumption, assumption R1 is non-testable in an empirical
context since the error term is unobserved. In this section, we provide evidence
that R1 holds under the data generating process described by equation (7.1) and

16T and µ are the only parameters that vary within these tables. We change µ to keep the
share of units treated close to 50% for each setting to make them comparable.
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(7.2). Note that R1 implies the following assumption:
R1* E

[
ZitUip|Ti = k

]
= 0 for all t, k, p ∈ {1, . . . ,T}.

The data generating process is the same as in previous sections except that we
generate only 100 samples and T = 11 for tractability. We setθ = 0.4, ρ = 0.4, and
µ = −1.662. For each t, k, p we calculate the sample average P̄ktp = 1

nk

∑
i∈K ZitUip

and the sample standard deviation sktp =
√

1
nk−1

∑
i∈K(ZitUip − P̄ktp)2 where nk is

the number of units treated in period k. Under R1*, the statisticTktp =
P̄ktp

sktp/
√

nk
has

a Student distribution t(nk − 1). Appendix C reports the number of rejections
together with sample means and variances of the test statistics for some values
of t, k, p. For each combination of t, k, p, we fail to reject R1*. Thus, in this setting,
additional conditioning on the point in time of treatment does not lead to a
violation of the exclusion restriction. This is a novel result.

8 Empirical investigation: the effect of utility di-
vestiture on nuclear reactor unavailability

In this section, we evaluate the effect of electricity utility divestiture on nu-
clear reactors’ unavailability factor in the U.S.17 Such an ex-post evaluation is
valuable to reactor stakeholders since it gives information about the effect of
asset divestiture on reactor performance. The results can also be used to inform
policy-makers about the treatment’s welfare and environmental effects.18 None
of the divestiture actions are reversed during the sample period we consider
and this treatment is therefore persistent.

Economic theory predicts that divestiture increases competition, which im-
proves economic performance. Green (1996) employs a supply function equilib-
rium model and finds that partial divestiture leads to a reduction of deadweight
loss. Borenstein and Bushnell (1999) model the California electricity market after
deregulation as a static Cournot market with a competitive fringe and they find
that divestiture can reduce market power. More recently, Zhang (2007) explains
that restructured U.S. reactors are no longer able to simply pass on the costs of
repair and maintenance performed during outages, and that this has increased
incentives to reduce outages.

17Detailed descriptions of this market transformation process have been presented by several
authors, e.g. Delmas and Tokat (2005), Zhang (2007), Davis and Wolfram (2012), and references
therein.

18See Davis and Wolfram (2012) for a quantification of the effects of nuclear reactor divestiture
on electricity prices and CO2 emissions.
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Two studies have previously investigated the effect of divestiture, and closely
related reforms, on nuclear reactor performance in the U.S. Zhang (2007) inves-
tigates how the reactor availability factor is affected by the intended and actual
implementation of retail competition and she relaxes the assumption that the
deregulatory reform is exogenous. Her results, based on standard TSLS mod-
els, indicate that increased retail competition increases reactor availability but
the coefficient of the endogenous reform variable is never significant. Davis
and Wolfram (2012) focus solely on utility divestiture and they assume that
divestiture is exogenous. Their OLS results suggest that divestiture increases
the availability factor by 10 percentage points, and the effect is statistically sig-
nificant. Thus, these two studies illustrate two empirical traps: first that the
instrument is weak, and second that the endogeneity problem is ignored.

8.1 Data

We use a balanced sample with annual data that represents all U.S. nuclear
reactors from 1994 to 2011. The first utility to divest its assets did so in 1999,
and the last one divested in 2007. Of a total 103 U.S. nuclear reactors, 47% were
subject to divestiture during this time period. Data is collected from different
sources. We use annual data about nuclear reactors’ outage duration, location
and technical characteristics from the IAEA PRIS database. This includes the
state where the reactors are located, the year they were first connected to the
grid, and technical characteristics in terms of technology (PWR versus BWR),
containment structure, and steam generator type. Data on the year of divestiture
is collected from Davis and Wolfram (2012). Finally, data about state level
political majority comes from the US census bureau.

Table 10 presents descriptive statistics and information about relevant vari-
ables. The maximum value of UF is 100, indicating no production during a
whole year. A closer examination of the data reveals 20 such observations. In
the subsequent estimations we either include a dummy variable to control for
these observations or exclude them as a test of robustness. It should also be
emphasized that as the minimum value for Age is 1, no reactor has entered the
market during the sample period.

[Insert Table 10 about here]

8.2 Model and main results

Our structural equation uses the reactor unavailability factor (UF) as dependent
variable and utility divestiture (Divest) as an independent variable. We control
for reactor age and include both Age and Age2. This is because a newly built
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reactor may have to be calibrated to site-specific conditions at the beginning of
its life. After the calibration period, the probability of disruption declines. As
the reactor gets older, disruptions may increase again due to greater demand
for repairs and maintenance. A further control (S) is an indicator that takes the
value 1 when UF = 100, that is when reactors have not produced any electricity
during a given year.

Moreover, we include year fixed effects ηt and reactor fixed effects λi. Year
fixed effects capture all regulatory and economic variations at federal level.
Reactor fixed effects capture stable conditions, such as technology choices, firm
culture and geographical characteristics. This specification is flexible in the
sense that it allows analysts to include regressors that are correlated with λi,
such as maintenance costs or procedures that are influenced by technology, but
that are unobserved in our data.

To estimate the effect of divestiture on the performance of nuclear reactos,
we use the following model:

UFit = β0Divestit + β1Ageit + β2Age2
it + β3Sit + ηt + λi + εit (8.1)

where i is the reactor, t is the year and εit is the error term. In this model, Divestit

is potentially correlated with εit. This is because Divestit is a function of the
state-level electricity price in year t (Ando and Palmer, 1998; Delmas and Tokat,
2005; Fabrizio et al., 2007; Damsgaard, 2003), but state-level electricity price in
year t is also a function of UFit (Zhang, 2007). The reason why a high electricity
price increases the likelihood of divestiture is that it tends to be interpreted as
a sign of market failure that triggers policy action. The positive impact of UFit

on the electricity price in year t is explained by the fact that nuclear power is a
base-load component in the electricity generation mix. More expensive sources
of energy have to be used whenever reactor operations are disrupted. A similar
type of simultaneity applies to the nuclear sector’s lobby group activity: more
intense lobby activity in year t reduces regulatory pressure on the industry and,
thus, increases UFit. At the same time, increased lobby group activity reduces
the likelihood of divestiture. Since both state-level electricity and lobby group
activity are unobserved in our data set, Divestit becomes endogenous.

In our base specification, we take the share of state level electricity con-
sumption by industrial customers in the previous period (Indt−1) as our only
instrumental variable. The choice of instrument is based on the political econ-
omy of the electricity market restructuring process. In particular, Joskow (1997)
stresses the importance of interest groups that supported electricity market re-
forms in the U.S. during the 1990s. At this time, the expectation was that large
industrial consumers would benefit from stronger competition and thus more
actively support electricity market restructuring. This instrument is also used
by Zhang (2007).
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The estimations of (8.1) using the FVR and FBVR approaches are compared
to the following alternative approaches: 1) OLS, which is used by Davis and
Wolfram (2012), i.e. where endogeneity is ignored, 2) TSLS, which is used by
Zhang (2007), i.e. where treatment persistence is ignored, and 3) TSLS-Probit,
which also ignores treatment persistence, but is potentially more efficient than
the TSLS.

[Insert Table 11 about here]
The main results are presented in Table 11. If we assume that FBVR provides

the least biased estimate, then the OLS estimate appears to be slightly upward-
biased. This may be because the nuclear industry’s lobby group activity is
unobserved and is negatively related to Divestit and positively related to UFit.
The second noteworthy observation is that the standard error SE(β0) for the
TSLS is about twice as large as for the TSLS-Probit and FVR approaches, and
SE(β0) is about six times as large as for the FBVR approach. The SEs of the
TSLS, TSLS-Probit and the FVR approaches are so large we cannot statistically
distinguish the divestiture effect from zero. The conclusion based on the FBVR
is that the divestiture of electricity utilities reduces the unavailability factor of
the nuclear reactors by 7.6%.

Finally, we check the robustness of our empirical findings. One first ro-
bustness test is to use an alternative instrumental variable. Thus, we replace
Indt−1 with a dummy variable that indicates whether the state has a Republican
majority (Rept−1). The results are similar to our base estimation. The coefficient
estimated by FBVR, which equals -11, is lower but not statistically different from
the coefficient obtained in Table 11. The methodology and detailed results are
given in Appendix D.

The results presented so far rely on the assumption that untreated units
are completely unaffected by reactors that are treated. As an additional test
of robustness, we evaluate the reasonableness of this assumption. A detailed
description of the methodology and results is given in Appendix E. The results
indicate that we cannot reject the null hypothesis that there are no spillover
effects from the divestiture of other reactors.

9 Conclusion

Policies are often endogenous and persistent. This leads to a weak instrumental
variable problem when the values of available instrument(s) change from period
to period. In this paper, we develop two approaches to strengthen the instrument
in this context by removing unnecessary instrument variation. In the FVR
approach, we first set the values of the instrument in all treated periods equal to
the value of the instrument in the first treated period. Next, TSLS is performed
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with the transformed instrument. In the FBVR approach, the instrument is also
transformed backward by taking the instrumental value in the last untreated
period and copy it to all previous periods.

We theoretically prove identification and derive asymptotic properties. The
main intuition of the approaches does not depend on linearity, suggesting that
similar techniques can be used for a variety of models. Moreover, our ap-
proaches could be used to evaluate structural models.

We also evaluate small sample properties for the FVR/FBVR approaches
through Monte Carlo simulations. FVR/FBVR empirical standard errors are up
to 70 times smaller than for TSLS, and FVR/FBVR empirical bias is up to 10
times smaller than for OLS. These results are largely robust to the instrument
distribution, endogeneity level and instrument strength.

We use the FVR/FBVR approaches to evaluate the effect of the divestiture
of nuclear reactors in the U.S. implemented in the 1990s and 2000s. Studies
that have previously evaluated this policy reform have either ignored treatment
endogeneity or produced uninformative confidence intervals. We find that
divestiture has reduced the reactor unavailability factor by approximately 7.6%
and the effect is statistically significant.
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Figure 1: The correlation ρit = corr(Dit,Eit) on the y axis with (increasing) T on
the x axis. The data generating process is the dynamic discrete choice described
in the empirical example (assumptions E1- E5). θ is chosen to be 0.4. For each
T, the sample size is 1000.



Table 1: FVR: a data example

Period Y D Z ZFVR

1 65 % 0 14 295 14 295
2 64 % 0 13 700 13 700
3 70 % 1 15 487 15 487
4 72 % 1 12 001 15 487

Table 2: FBVR: a data example

Period Y D Z ZFBVR

1 65 % 0 14 295 13 700
2 64 % 0 13 700 13 700
3 70 % 1 15 487 15 487
4 72 % 1 12 001 15 487

Table 3: FD: a data example

Period ∆Y ∆D ∆Z ∆ZFVR

2 -1 % 0 -595 -595
3 6% 1 1787 1787
4 2% 0 -3486 0

Table 4: A ”local treatment” approach: a data example

Period O1 O2 O3 O4

1 (65,0,11, 140) (59,0,13, 140) (65,1,16, 210) (71,0,14, 140)
2 (64,1,12, 210) (65,0,13, 120) (63,1,15, 150) (69,0,11, 130)
3 (66,1,13, 170) (62,0,11, 120) (64,1,11, 160) (67,0,13, 120)
4 (67,1,11, 140) (67,1,12, 180) (60,1,17, 165) (68,0,18, 110)



Table 5: A ”local treatment” approach: a data example continued. Transformed
panel.

O1 O2

(65,0,11, 140) (62,0,11, 120)
(64,1,12, 210) (67,1,12, 180)
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Table 8: simulation results with different T

Empirical Estimator Average Absolute 95% 95% RMSE Average Type II error
setting share of units bias lower upper first stage frequency (%)

treated (%) bound bound F-stat

1 T = 4 OLS 50 0.36 1.26 1.46 0.13 0.0
TSLTE 50 0.14 0.69 1.58 0.07 112 1.1

TSLS 50 0.01 0.26 1.71 0.14 56 24.8
TSLS-Probit 50 0.02 0.27 1.70 0.13 58 23.9

FVR 50 0.10 0.51 1.30 0.05 186 1.5
FBVR 50 0.02 0.63 1.33 0.03 238 0.2

2 T = 8 OLS 50 0.26 1.19 1.34 0.07 0.0
TSLTE 50 0.34 0.98 1.70 0.15 165 0.0

TSLS 50 0.00 0.15 1.85 0.19 52 35.2
TSLS-Probit 50 0.00 0.17 1.83 0.18 54 34.4

FVR 50 0.11 0.63 1.15 0.03 547 0.0
FBVR 50 0.03 0.73 1.21 0.02 674 0.0

3 T = 12 OLS 50 0.20 1.14 1.26 0.04 0.0
TSLTE 50 0.44 1.10 1.78 0.23 193 0.0

TSLS 50 0.00 0.00 2.01 0.26 46 43.2
TSLS-Probit 50 0.00 0.01 1.99 0.26 47 42.6

FVR 50 0.10 0.68 1.11 0.02 945 0.0
FBVR 50 0.03 0.77 1.16 0.01 1,157 0.0

4 T = 16 OLS 50 0.17 1.11 1.22 0.03 0.0
TSLTE 50 0.50 1.20 1.80 0.28 211 0.0

TSLS 50 0.00 -0.10 2.11 0.32 40 51.3
TSLS-Probit 50 0.00 -0.09 2.09 0.31 41 49.8

FVR 50 0.09 0.72 1.10 0.02 1,375 0.0
FBVR 50 0.03 0.80 1.15 0.01 1,669 0.0

5 T = 20 OLS 50 0.14 1.09 1.19 0.02 0.0
TSLTE 50 0.55 1.24 1.85 0.32 228 0.0

TSLS 50 0.00 -0.17 2.18 0.36 35 58.0
TSLS-Probit 50 0.00 -0.15 2.16 0.35 36 57.0

FVR 50 0.08 0.76 1.08 0.01 1,834 0.0
FBVR 50 0.02 0.83 1.12 0.01 2,224 0.0

6 T = 24 OLS 50 0.12 1.08 1.16 0.02 0.0
TSLTE 50 0.59 1.30 1.89 0.37 240 0.0

TSLS 50 0.01 -0.23 2.21 0.39 32 59.3
TSLS-Probit 50 0.01 -0.22 2.19 0.38 33 57.9

FVR 50 0.07 0.79 1.07 0.01 2,301 0.0
FBVR 50 0.02 0.85 1.11 0.00 2,803 0.0

Notes. Simulation results from 1,000 replications generated from the estimation of parameter α of the structural model
Yit = αDit + Xitβ+ Ci + Uit generated from the discrete choice model Dit = 1{µ+ δDit−1 +θZit + Xitβ+ ρUit + εit > 0}. The sole
exogenous regressor is Xit = 5Git where Git is an i.i.d. random variable drawn from a continuous uniform distribution U(0, 1).
Ci equals 1

T
∑

t Xit to ensure that unobserved heterogeneity is correlated with Xit. The error term of the structural equation
Uit and the error term εit of the discrete choice model are both i.i.d.N(0, 1). Each numbered group of rows corresponds to a
unique empirical setting where only T and µ varies. We change µ to keep the share of units treated close to 50% for each
setting to make them comparable. In all setting, n = 1, 000, α = β = 1, θ = 0.4, ρ = 0.4, δ = 50, the exclusion restriction
Zit is normally distributed, and the parameter λ equals

√
(1 − θ2 − ρ2) to keep the share of units treated equal to 50% in all

settings. TSLS denotes the two stage least square estimates, TSLTE denotes the two stage local treatment estimator which
corresponds to a TSLS estimator using only the observations before and after the treatment time, TSLS-Probit is Wooldridge’s
modification of TSLS, FVR is the Forward Variation Reduction estimator, and FBVR is the Forward and Backward Variation
Reduction estimator.



Table 9: simulation results with different T when endogeneity ρ is higher

Empirical Estimator Average Absolute 95% 95% RMSE Average Type II error
setting share of units bias lower upper first stage frequency (%)

treated (%) bound bound F-stat

7 T = 4 OLS 50 0.54 1.44 1.64 0.29 0.0
TSLTE 50 0.20 0.76 1.65 0.09 112 0.8

TSLS 50 0.02 0.25 1.71 0.14 56 24.6
TSLS-Probit 50 0.02 0.26 1.70 0.13 58 23.7

FVR 50 0.14 0.47 1.25 0.06 187 3.2
FBVR 50 0.03 0.62 1.32 0.03 239 0.1

8 T = 8 OLS 50 0.39 1.32 1.46 0.16 0.0
TSLTE 50 0.51 1.16 1.85 0.29 164 0.0

TSLS 50 0.00 0.15 1.85 0.19 53 36.4
TSLS-Probit 50 0.00 0.16 1.83 0.18 55 35.5

FVR 50 0.17 0.57 1.10 0.05 547 0.0
FBVR 50 0.05 0.70 1.19 0.02 673 0.0

9 T = 12 OLS 50 0.30 1.25 1.36 0.09 0.0
TSLTE 50 0.66 1.34 1.98 0.46 193 0.0

TSLS 50 0.00 -0.01 2.01 0.27 46 42.6
TSLS-Probit 50 0.00 0.01 2.00 0.26 47 42.2

FVR 50 0.15 0.63 1.06 0.04 943 0.0
FBVR 50 0.05 0.75 1.15 0.01 1156 0.0

10 T = 16 OLS 50 0.25 1.19 1.30 0.06 0.0
TSLTE 50 0.76 1.46 2.06 0.60 212 0.0

TSLS 50 0.00 -0.11 2.10 0.32 40 51.2
TSLS-Probit 50 0.00 -0.09 2.08 0.31 41 50.4

FVR 50 0.13 0.68 1.06 0.03 1374 0.0
FBVR 50 0.04 0.78 1.14 0.01 1673 0.0

11 T = 20 OLS 50 0.21 1.17 1.26 0.05 0.0
TSLTE 50 0.83 1.53 2.12 0.70 227 0.0

TSLS 50 0.00 -0.18 2.18 0.36 35 56.6
TSLS-Probit 50 0.00 -0.16 2.16 0.35 36 55.8

FVR 50 0.12 0.72 1.04 0.02 1828 0.0
FBVR 50 0.04 0.81 1.11 0.01 2217 0.0

12 T = 24 OLS 50 0.18 1.14 1.23 0.03 0.0
TSLTE 50 0.89 1.61 2.17 0.81 239 0.0

TSLS 50 0.01 -0.24 2.21 0.39 32 60.0
TSLS-Probit 50 0.01 -0.22 2.19 0.38 33 59.3

FVR 50 0.11 0.75 1.04 0.02 2293 0.0
FBVR 50 0.03 0.83 1.10 0.01 2787 0.0

Notes. Simulation results from 1,000 replications generated from the estimation of parameter α of the structural model
Yit = αDit + Xitβ+ Ci + Uit generated from the discrete choice model Dit = 1{µ+ δDit−1 +θZit + Xitβ+ ρUit + εit > 0}. The sole
exogenous regressor is Xit = 5Git where Git is an i.i.d. random variable drawn from a continuous uniform distribution U(0, 1).
Ci equals 1

T
∑

t Xit to ensure that unobserved heterogeneity is correlated with Xit. The error term of the structural equation
Uit and the error term εit of the discrete choice model are both i.i.d.N(0, 1). Each numbered group of rows corresponds to a
unique empirical setting where only T and µ varies. We change µ to keep the share of units treated close to 50% for each
setting to make them comparable. In all setting, n = 1, 000, α = β = 1, θ = 0.4, ρ = 0.6, δ = 50, the exclusion restriction
Zit is normally distributed, and the parameter λ equals

√
(1 − θ2 − ρ2) to keep the share of units treated equal to 50% in all

settings. TSLS denotes the two stage least square estimates, TSLTE denotes the two stage local treatment estimator which
corresponds to a TSLS estimator using only the observations before and after the treatment time, TSLS-Probit is Wooldridge’s
modification of TSLS, FVR is the Forward Variation Reduction estimator, and FBVR is the Forward and Backward Variation
Reduction estimator.
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Table 11: estimation output of model (8.1)

OLS TSLS TSLS-Probit FVR FBVR
Divest(0/1) -7.143*** 7.095 5.762 -6.771 -7.624***

(1.452) (13.460) (6.976) (5.594) (2.202)
Age 0.150 -0.216 -0.182 0.141 0.162

(0.218) (0.419) (0.243) (0.252) (0.210)
Age2 -0.010** -0.010** -0.010** -0.010** -0.010**

(0.005) (0.004) (0.004) (0.004) (0.004)

Year dummies Yes Yes Yes Yes Yes
Treatment of obs. Dummy Dummy Dummy Dummy Dummy
where UF = 100 variable variable variable variable variable

R2 0.39 0.37 0.38 0.44 0.44
No. obs. 1,851 1,851 1,851 1,851 1,851

Notes. The dependent variable is UF, the total number of outage hours divided by
maximum potential generation hours. For all column except OLS, the share of state
level electricity consumption by industrial customers in the previous period is the
unique original instrument for the divestiture treatment. SE in brackets are robust
to heteroskedasticity and autocorrelation with a Bartlett bandwidth = 2. *p < 0.10,
**p < 0.05, *** p < 0.01.



Appendices

A Proofs of propositions

Proof of lemma 3.1. It holds

P{Ti = k} = P{−θZi1 + Ui1 ≥ 0 . . . ,−θZik−1 + Uik−1 ≥ 0,−θZik + Uik < 0}
= P{−θZi1 + Ui1 ≥ 0} . . .P{−θZik−1 + Uik−1 ≥ 0}P{−θZik + Uik < 0}

= (
1
2

)k, �

where the second equality is due to the independence assumption and the third
due to −θZik−1 + Uik−1 ∼ N(0, 1). Thus we obtain

P{Ti ≤ t} =
t∑

k=1

P{Ti = k} =
t∑

k=1

(
1
2

)k = 1 − (
1
2

)t
→ 1.

with t → ∞. Because we have assumed Dit = 1 if Dit−1 = 1, condition (PT1)
holds as well.

Proof of proposition 3.0.1. Let P denote the probability measure, with respect to
which all one dimensional variables (Yit,Dit,Uit,Zit) are measurable.

First, we have

E[Dit] =

∫
DitdP =

∫
1{Dit = 1}DitdP +

∫
1{Dit = 0}DitdP

=

∫
1{Dit = 1}.1dP = P{Dit = 1} t→∞

−→ 1. �

For the covariance cov(Dit,Zit), we have

| cov(Dit,Zit) | =| E[DitZit] − E[Dit]E[Zit] |=|
∫

DitZitdP −
∫

DitdP
∫

ZitdP |

≤|

∫
DitZitdP −

∫
ZitdP | + |

∫
ZitdP −

∫
DitdP

∫
ZitdP |

=: A + B.

For A, we obtain

A =|

∫
(Dit − 1)ZitdP |=|

∫
1{Dit = 1}(Dit − 1)ZitdP +

∫
1{Dit = 0}(Dit − 1)ZitdP |

=|

∫
1{Dit = 0}ZitdP | .



Since per assumption 1{Dit = 0} = oP(1) and Zit = OP(1), it holds that 1{Dit =
0}Zit = oP(1) and therefore A = o(1).

For B, we obtain

B =|

∫
ZitdP(1 −

∫
DitdP) |= O(1)o(1) = o(1).

As a result, cov(Dit,Zit) = o(1).

Proof of proposition (3.0.2). We observe first that Dit = 1{Ti < t} + 1{Ti ≥ t}1{Uit <
θZit}. Using this equality, we obtain

E[DitZit] = E[(1{Ti < t} + 1{Ti ≥ t}1{Uit < θZit})Zit]
= E[1{Ti < t}Zit] + E[1{Ti ≥ t}1{Uit < θZit}Zit]
=: A + B �

Since 1{Ti < t} =
∑t−1

k=1 1{Ti = k}, it holds that

A =

t−1∑
k=1

E[1{Ti = k}Zit] =

t−1∑
k=1

E[1{Ti = k}]E[Zit] =

t−1∑
k=1

E[1{Ti = k}]0 = 0,

where the second equality holds due to independence of the instrument and
the error and the third equality holds per assumption.

Further, we observe that1{Ti < t} =
∑t−1

k=1 1{Ti = k}depends only on Ui1, . . .Uit−1

and on Zi1, . . .Zit−1. Consequently, 1{Ti < t} is independent from Uit and Zit per
assumption and therefore independent from 1{Uit < θZit}Zit. Using this inde-
pendence and writing 1{Ti < t} + 1{Ti ≥ t} = 1, we obtain for B

B = E[1{Uit < θZit}Zit] − E[1{Ti < t}1{Uit < θZit}Zit]
= E[1{Uit < θZit}Zit] − E[1{Ti < t}]E[1{Uit < θZit}Zit]

= E[1{Uit < θZit}Zit](1 − P{Ti < t}) = C(1 − P{Ti < t}) = C
(1
2

)t
,

where C is a constant equal to E[1{Uit < θZit}Zit] which per construction does
not depend on t. It follows that∑T

t=1E[DitZit]
√

T
=

C
∑T

t=1 2−t

√
T

= o(1), (A.1)

which completes the proof.



Proof of proposition 4.1. We provide a proof for the case of a single (endogenous)
covariate and a single instrument. The generalisation to the case of additional
covariates and multiple instruments follows the same steps and is omitted.
Assume first that T̄ = T. It holds

E[1{Ti = k}ZilUip] = 0 (A.2)

for all k, l, p ∈ {1, 2, . . . ,T}. This follows from

E[1{Ti = k}ZilUip] = E[E[1{Ti = k}ZilUip | Ti]]

=

T∑
t=1

E[1{t = k}ZilUip | Ti = t]P{Ti = t} = 0

+ E[ZilUip | Ti = k]P{Ti = k} = 0. �

The last equality holds due to assumption R1 and

E[ZilUip | Ti = k] = E[E[ZilUip | Zil,Ti = k] | Ti = k]
= E[ZilE[Uip | Zil,Ti = k] | Ti = k]

Due to analogical arguments, it holds

E[TiZilUip] = 0 (A.3)

for all l, p ∈ {1, 2, . . . ,T}.
Identification of FVR: Multiply model 4.3 with ˜̈Zi to obtain

˜̈Z′iỸi = ˜̈Z′iW̃iγ + ˜̈Z′iŨi. (A.4)

The identification proof follow the steps of proof for the standard TSLS model.

We show now E[˜̈Z′iŨi] = 0. The k-th element of the vector ˜̈Zi is equal to

Zik1{Ti ≥ k} + ZiTi1{Ti < k} − T−1
Ti∑

l=1

Zil − T−1(T − Ti)ZiTi (A.5)

We prove now that the expectation of the product of any of these four terms with
Uip is equal to zero for any p. For the first term it holds because of A.2 and because
1{Ti ≥ k} =

∑T
l=k 1{Ti = l}. For the second term, observe that ZiTi =

∑T
l=i 1{Ti = l}Zil

and 1{Ti = l}1{Ti = m} = 0 whenever l , m and then analogous argument as
for the first term applies. For the third term, observe that

∑Ti
l=1 Zil =

∑T
k=1 1{Ti =

k}
∑k

l=1 Zil and hence E[
∑Ti

l=1 ZilUip] =
∑T

k=1
∑k

l=1E[1{Ti = k}ZilUip] = 0. Finally,



E[ZilUip] = 0 and with A.3 we obtain E[T−1(T − Ti)ZiTiZilUip] = 0. Therefore, all

summands in the sum ˜̈Z′iŨi have an expectation zero. Thus E[˜̈Z′iŨi] = 0. Using
assumptions R2 a) and R3 a), we finally obtain

γ = E[Π˜̈Z′iW̃i]−1E[Π˜̈Z′iỸi], (A.6)

with Π := E[˜̈Z′i˜̈Zi]−1E[˜̈Z′iW̃i].
Identification of FBVR: The proof follows identical steps as for the FVR

approach. Observe that the k-th element of ˜̊Zi is equal to

Žik −
1
T

(
(Ti − 1)ZiTi−1 + (T − (Ti − 1))ZiTi

)
,

where Žik = 1{Ti > k}ZiTi−1 + 1{Ti ≤ k}ZiTi . Therefore, showing that E[˜̊Z′iŨi] = 0
amounts to showing that

E[1{Ti > k}ZiTi−1Uit]−E[1{Ti > k}ZiTiUit]+E[TiZiTi−1Uit]−E[TiZiTiUit] = 0, (A.7)

which was already established above.
The case of T̄ > T goes analogically by introducing 1{Ti > T} and 1{Ti ≤ T}.

In the first case, all expressions are the same as in the standard TSLS case, and
the second case is as above.

B Monte Carlo Simulations: robustness checks

Distribution of the original instrument

To check the robustness of our results, we run the simulations under different
conditions. Honoré and Kyriazidou (2000) suggest that normally distributed
explanatory variables produce smaller bias than non-normally distributed vari-
ables. In Table 12 and Table 13, we report simulations where Z is drawn from a
χ2-distribution, which is skewed. Like Akay (2012), we standardize this distri-

bution by calculating
χ2

(1)−1
√

2
to facilitate comparison with the N(0, 1) distribution.

The only difference between the tables is the endogeneity level ρ that is higher
in Table 13 than in Table 12. These results are similar to those shown in Table 6
and Table 7 where FVR and FBVR are found to be the most efficient estimators.
There are two differences. First, the variances of the competing estimators FVR,
FBVR, TSLS and TSLS-Probit are smaller than when Z is drawn from a normal
distribution. Second, the efficiency gap equal to a factor 2.5 is lower than in the
normal distribution case but remain large.



Treatment frequency

In our baseline results, the share of treated units equals 50%. In Table 14 and
Table 15, we perform simulations in which the share of treated units varies
from 30% to 90%.19 The only difference between the tables is the endogeneity
level ρ that is higher in Table 15 than in Table 14. Between 50% and 90% the
efficiency of FVR and FBVR does not vary significantly and both estimators
do not generate type II errors. At 30%, the confidence intervals of the FVR and
FBVR estimators are slightly wider, whereas the TSLS and TSLS-Probit generates
a significant amount of type II errors. Finally the efficiency gap, measured by
the ratio between 95% confidence interval of TSLS and the interval of F(B)VR, is
increasing the share of units treated. This is because the dataset used for F(B)VR
and the dataset used for TSLS become more similar as the share of treated units
reduces.20

19We start at 30% because estimations with TSLS and TSLS-Probit do not converge at lower
shares.

20The similarity comes from the fact that at low share of units treated the transformed instru-
ment is applied to a lower proportion of units.



Ta
bl

e
12

:s
im

ul
at

io
n

re
su

lt
s

w
it

h
χ

2 -d
is

tr
ib

ut
ed

or
ig

in
al

in
st

ru
m

en
tZ

Em
pi

ri
ca

ls
et

ti
ng

Es
ti

m
at

or
A

ve
ra

ge
sh

ar
e

of
A

bs
ol

ut
e

95
%

lo
w

er
95

%
up

pe
r

R
M

SE
A

ve
ra

ge
fir

st
Ty

pe
II

er
ro

r
un

it
s

tr
ea

te
d

(%
)

bi
as

bo
un

d
bo

un
d

st
ag

e
F-

st
at

fr
eq

ue
nc

y
(%

)

1
θ

=
0.

2
O

LS
48

0.
17

1.
12

1.
23

0.
03

0.
0

ρ
=

0.
4

TS
LT

E
48

0.
22

0.
66

1.
78

0.
13

60
2.

6
T

SL
S

48
0.

02
-0

.4
8

2.
45

0.
56

25
66

.7
TS

LS
-P

ro
bi

t
48

0.
01

-0
.4

6
2.

43
0.

54
26

65
.6

FV
R

48
0.

07
0.

67
1.

20
0.

02
64

7
0.

1
FB

V
R

48
0.

01
0.

74
1.

24
0.

02
75

7
0.

0

2
θ

=
0.

3
O

LS
49

0.
17

1.
11

1.
22

0.
03

0.
0

ρ
=

0.
4

TS
LT

E
49

0.
11

0.
74

1.
48

0.
05

14
2

0.
0

T
SL

S
49

0.
00

0.
20

1.
79

0.
17

72
30

.9
TS

LS
-P

ro
bi

t
49

0.
00

0.
21

1.
78

0.
16

74
29

.6
FV

R
49

0.
05

0.
78

1.
11

0.
01

1,
83

8
0.

0
FB

V
R

49
0.

01
0.

84
1.

14
0.

01
2,

10
9

0.
0

3
θ

=
0.

4
O

LS
50

0.
16

1.
10

1.
21

0.
03

0.
0

ρ
=

0.
4

TS
LT

E
50

0.
04

0.
77

1.
31

0.
02

27
6

0.
0

T
SL

S
50

0.
00

0.
46

1.
54

0.
08

14
8

5.
8

TS
LS

-P
ro

bi
t

50
0.

00
0.

47
1.

53
0.

07
15

3
5.

4
FV

R
50

0.
04

0.
84

1.
08

0.
01

3,
88

7
0.

0
FB

V
R

50
0.

00
0.

89
1.

11
0.

00
4,

42
9

0.
0

4
θ

=
0.

5
O

LS
51

0.
14

1.
09

1.
19

0.
02

0.
0

ρ
=

0.
4

TS
LT

E
51

0.
01

0.
79

1.
24

0.
01

48
8

0.
0

T
SL

S
51

0.
00

0.
59

1.
41

0.
04

24
9

0.
5

TS
LS

-P
ro

bi
t

51
0.

00
0.

59
1.

41
0.

04
25

8
0.

4
FV

R
51

0.
04

0.
87

1.
06

0.
00

7,
02

7
0.

0
FB

V
R

51
0.

00
0.

91
1.

08
0.

00
8,

01
9

0.
0

5
θ

=
0.

6
O

LS
52

0.
13

1.
07

1.
18

0.
02

0.
0

ρ
=

0.
4

TS
LT

E
52

0.
02

0.
83

1.
21

0.
01

81
4

0.
0

T
SL

S
52

0.
00

0.
66

1.
34

0.
03

36
2

0.
0

TS
LS

-P
ro

bi
t

52
0.

00
0.

67
1.

33
0.

03
37

5
0.

0
FV

R
52

0.
03

0.
89

1.
05

0.
00

11
,4

39
0.

0
FB

V
R

52
0.

00
0.

92
1.

07
0.

00
13

,1
51

0.
0

N
ot

es
.

Si
m

ul
at

io
n

re
su

lt
s

fr
om

1,
00

0
re

pl
ic

at
io

ns
ge

ne
ra

te
d

fr
om

th
e

es
ti

m
at

io
n

of
pa

ra
m

et
er
α

of
th

e
st

ru
ct

ur
al

m
od

el
Y

it
=
α

D
it

+
X

it
β

+
C

i
+

U
it

ge
ne

ra
te

d
fr

om
th

e
di

sc
re

te
ch

oi
ce

m
od

el
D

it
=
1
{µ

+
δD

it−
1

+
θ
Z

it
+

X
it
β

+
ρ

U
it

+
ε i

t
>

0}
.

Th
e

so
le

ex
og

en
ou

s
re

gr
es

so
r

is
X

it
=

5G
it

w
he

re
G

it
is

an
i.i

.d
.

ra
nd

om
va

ri
ab

le
dr

aw
n

fr
om

a
co

nt
in

uo
us

un
if

or
m

di
st

ri
bu

ti
on

U
(0
,1

).
C

i
eq

ua
ls

1 T
∑ t

X
it

to
en

su
re

th
at

un
ob

se
rv

ed
he

te
ro

ge
ne

it
y

is
co

rr
el

at
ed

w
it

h
X

it
.

T
he

er
ro

r
te

rm
of

th
e

st
ru

ct
ur

al
eq

ua
ti

on
U

it
an

d
th

e
er

ro
rt

er
m
ε i

t
of

th
e

di
sc

re
te

ch
oi

ce
m

od
el

ar
e

bo
th

i.i
.d
.N

(0
,1

).
Ea

ch
nu

m
be

re
d

gr
ou

p
of

ro
w

s
co

rr
es

po
nd

s
to

a
un

iq
ue

em
pi

ri
ca

ls
et

ti
ng

w
he

re
on

ly
th

e
st

re
ng

th
of

th
e

in
st

ru
m

en
tθ

va
ri

es
.I

n
al

ls
et

ti
ng

,n
=

1,
00

0,
T

=
15

,α
=
β

=
1,
ρ

=
0.

4,
δ

=
50

,µ
=
−

1.
68

9,
th

e
ex

cl
us

io
n

re
st

ri
ct

io
n

Z
it

is
dr

aw
n

fr
om

a
st

an
da

rd
iz

ed
χ

2 -d
is

tr
ib

ut
io

n,
an

d
th

e
pa

ra
m

et
er
λ

eq
ua

ls
√ (1
−
θ

2
−
ρ

2 )
to

ke
ep

th
e

sh
ar

e
of

un
it

s
tr

ea
te

d
eq

ua
lt

o
50

%
in

al
ls

et
ti

ng
s.

TS
LS

de
no

te
s

th
e

tw
o

st
ag

e
le

as
ts

qu
ar

e
es

ti
m

at
es

,T
SL

T
E

de
no

te
s

th
e

tw
o

st
ag

e
lo

ca
lt

re
at

m
en

te
st

im
at

or
w

hi
ch

co
rr

es
po

nd
s

to
a

TS
LS

es
ti

m
at

or
us

in
g

on
ly

th
e

ob
se

rv
at

io
ns

be
fo

re
an

d
af

te
r

th
e

tr
ea

tm
en

tt
im

e,
T

SL
S-

Pr
ob

it
is

W
oo

ld
ri

ge
m

od
ifi

ca
ti

on
of

TS
LS

,F
V

R
is

th
e

Fo
rw

ar
d

V
ar

ia
ti

on
R

ed
uc

ti
on

es
ti

m
at

or
,a

nd
FB

V
R

is
th

e
Fo

rw
ar

d
an

d
Ba

ck
w

ar
d

V
ar

ia
ti

on
R

ed
uc

ti
on

es
ti

m
at

or
.



Ta
bl

e
13

:s
im

ul
at

io
n

re
su

lt
s

w
it

h
χ

2 -d
is

tr
ib

ut
ed

or
ig

in
al

in
st

ru
m

en
tZ

w
he

n
en

do
ge

ne
it

y
ρ

is
hi

gh
er

Em
pi

ri
ca

ls
et

ti
ng

Es
ti

m
at

or
A

ve
ra

ge
sh

ar
e

of
A

bs
ol

ut
e

95
%

lo
w

er
95

%
up

pe
r

R
M

SE
A

ve
ra

ge
fir

st
Ty

pe
II

er
ro

r
un

it
s

tr
ea

te
d

(%
)

bi
as

bo
un

d
bo

un
d

st
ag

e
F-

st
at

fr
eq

ue
nc

y
(%

)

6
θ

=
0.

2
O

LS
48

0.
26

1.
20

1.
31

0.
07

0.
0

ρ
=

0.
6

TS
LT

E
48

0.
34

0.
79

1.
88

0.
19

60
2.

0
T

SL
S

48
0.

02
-0

.5
1

2.
46

0.
57

25
66

.6
TS

LS
-P

ro
bi

t
48

0.
02

-0
.4

9
2.

44
0.

56
26

65
.5

FV
R

48
0.

10
0.

63
1.

17
0.

03
64

7
0.

1
FB

V
R

48
0.

03
0.

72
1.

23
0.

02
75

4
0.

0

7
θ

=
0.

3
O

LS
49

0.
25

1.
19

1.
30

0.
06

0.
0

ρ
=

0.
6

TS
LT

E
49

0.
16

0.
80

1.
52

0.
06

14
3

0.
0

T
SL

S
49

0.
01

0.
20

1.
79

0.
16

72
30

.7
TS

LS
-P

ro
bi

t
49

0.
00

0.
21

1.
78

0.
16

75
29

.2
FV

R
49

0.
08

0.
75

1.
08

0.
01

1,
84

0
0.

0
FB

V
R

49
0.

02
0.

83
1.

14
0.

01
2,

11
5

0.
0

8
θ

=
0.

4
O

LS
50

0.
23

1.
18

1.
29

0.
06

0.
0

ρ
=

0.
6

TS
LT

E
50

0.
06

0.
79

1.
33

0.
02

27
7

0.
0

T
SL

S
50

0.
00

0.
46

1.
54

0.
08

14
9

6.
0

TS
LS

-P
ro

bi
t

50
0.

00
0.

47
1.

53
0.

07
15

4
5.

4
FV

R
50

0.
07

0.
81

1.
05

0.
01

3,
89

9
0.

0
FB

V
R

50
0.

01
0.

88
1.

10
0.

00
4,

44
5

0.
0

9
θ

=
0.

5
O

LS
51

0.
21

1.
16

1.
27

0.
05

0.
0

ρ
=

0.
6

TS
LT

E
51

0.
02

0.
79

1.
25

0.
01

48
7

0.
0

T
SL

S
51

0.
00

0.
59

1.
41

0.
04

24
9

0.
4

TS
LS

-P
ro

bi
t

51
0.

00
0.

59
1.

41
0.

04
25

8
0.

4
FV

R
51

0.
06

0.
85

1.
04

0.
01

7,
02

4
0.

0
FB

V
R

51
0.

00
0.

91
1.

08
0.

00
8,

01
8

0.
0

10
θ

=
0.

6
O

LS
52

0.
19

1.
14

1.
24

0.
04

0.
0

ρ
=

0.
6

TS
LT

E
52

0.
03

0.
84

1.
22

0.
01

81
3

0.
0

T
SL

S
52

0.
00

0.
66

1.
34

0.
03

36
2

0.
0

TS
LS

-P
ro

bi
t

52
0.

00
0.

67
1.

33
0.

03
37

4
0.

0
FV

R
52

0.
05

0.
87

1.
03

0.
00

11
,4

44
0.

0
FB

V
R

52
0.

00
0.

92
1.

07
0.

00
13

,1
67

0.
0

N
ot

es
.

Si
m

ul
at

io
n

re
su

lt
s

fr
om

1,
00

0
re

pl
ic

at
io

ns
ge

ne
ra

te
d

fr
om

th
e

es
ti

m
at

io
n

of
pa

ra
m

et
er
α

of
th

e
st

ru
ct

ur
al

m
od

el
Y

it
=
α

D
it

+
X

it
β

+
C

i
+

U
it

ge
ne

ra
te

d
fr

om
th

e
di

sc
re

te
ch

oi
ce

m
od

el
D

it
=
1
{µ

+
δD

it−
1

+
θ
Z

it
+

X
it
β

+
ρ

U
it

+
ε i

t
>

0}
.

Th
e

so
le

ex
og

en
ou

s
re

gr
es

so
r

is
X

it
=

5G
it

w
he

re
G

it
is

an
i.i

.d
.

ra
nd

om
va

ri
ab

le
dr

aw
n

fr
om

a
co

nt
in

uo
us

un
if

or
m

di
st

ri
bu

ti
on

U
(0
,1

).
C

i
eq

ua
ls

1 T
∑ t

X
it

to
en

su
re

th
at

un
ob

se
rv

ed
he

te
ro

ge
ne

it
y

is
co

rr
el

at
ed

w
it

h
X

it
.

T
he

er
ro

r
te

rm
of

th
e

st
ru

ct
ur

al
eq

ua
ti

on
U

it
an

d
th

e
er

ro
rt

er
m
ε i

t
of

th
e

di
sc

re
te

ch
oi

ce
m

od
el

ar
e

bo
th

i.i
.d
.N

(0
,1

).
Ea

ch
nu

m
be

re
d

gr
ou

p
of

ro
w

s
co

rr
es

po
nd

s
to

a
un

iq
ue

em
pi

ri
ca

ls
et

ti
ng

w
he

re
on

ly
th

e
st

re
ng

th
of

th
e

in
st

ru
m

en
tθ

va
ri

es
.I

n
al

ls
et

ti
ng

,n
=

1,
00

0,
T

=
15

,α
=
β

=
1,
ρ

=
0.

6,
δ

=
50

,µ
=
−

1.
68

9,
th

e
ex

cl
us

io
n

re
st

ri
ct

io
n

Z
it

is
dr

aw
n

fr
om

a
st

an
da

rd
iz

ed
χ

2 -d
is

tr
ib

ut
io

n,
an

d
th

e
pa

ra
m

et
er
λ

eq
ua

ls
√ (1
−
θ

2
−
ρ

2 )
to

ke
ep

th
e

sh
ar

e
of

un
it

s
tr

ea
te

d
eq

ua
lt

o
50

%
in

al
ls

et
ti

ng
s.

TS
LS

de
no

te
s

th
e

tw
o

st
ag

e
le

as
ts

qu
ar

e
es

ti
m

at
es

,T
SL

T
E

de
no

te
s

th
e

tw
o

st
ag

e
lo

ca
lt

re
at

m
en

te
st

im
at

or
w

hi
ch

co
rr

es
po

nd
s

to
a

TS
LS

es
ti

m
at

or
us

in
g

on
ly

th
e

ob
se

rv
at

io
ns

be
fo

re
an

d
af

te
r

th
e

tr
ea

tm
en

tt
im

e,
T

SL
S-

Pr
ob

it
is

W
oo

ld
ri

ge
m

od
ifi

ca
ti

on
of

TS
LS

,F
V

R
is

th
e

Fo
rw

ar
d

V
ar

ia
ti

on
R

ed
uc

ti
on

es
ti

m
at

or
,a

nd
FB

V
R

is
th

e
Fo

rw
ar

d
an

d
Ba

ck
w

ar
d

V
ar

ia
ti

on
R

ed
uc

ti
on

es
ti

m
at

or
.



Ta
bl

e
14

:s
im

ul
at

io
n

re
su

lt
s

w
it

h
di

ff
er

en
ts

ha
re

s
of

un
it

s
tr

ea
te

d

Em
pi

ri
ca

ls
et

ti
ng

Es
ti

m
at

or
A

ve
ra

ge
sh

ar
e

of
A

bs
ol

ut
e

95
%

lo
w

er
95

%
up

pe
r

R
M

SE
A

ve
ra

ge
fir

st
Ty

pe
II

er
ro

r
un

it
s

tr
ea

te
d

(%
)

bi
as

bo
un

d
bo

un
d

st
ag

e
F-

st
at

fr
eq

ue
nc

y
(%

)

1
θ

=
0.

4
O

LS
30

0.
19

1.
11

1.
26

0.
04

0.
0

ρ
=

0.
4

TS
LT

E
30

0.
62

1.
26

1.
98

0.
42

15
0

0.
0

T
SL

S
30

0.
02

-0
.7

1
2.

75
0.

78
28

72
.9

TS
LS

-P
ro

bi
t

30
0.

02
-0

.6
6

2.
69

0.
73

30
71

.3
FV

R
30

0.
12

0.
58

1.
19

0.
04

82
6

0.
1

FB
V

R
30

0.
08

0.
63

1.
21

0.
03

92
3

0.
1

2
θ

=
0.

4
O

LS
50

0.
17

1.
12

1.
23

0.
03

0.
0

ρ
=

0.
4

TS
LT

E
50

0.
49

1.
18

1.
80

0.
26

20
7

0.
0

T
SL

S
50

0.
02

-0
.0

6
2.

09
0.

30
41

50
.1

TS
LS

-P
ro

bi
t

50
0.

02
-0

.0
4

2.
07

0.
29

42
49

.5
FV

R
50

0.
09

0.
72

1.
11

0.
02

1,
25

8
0.

0
FB

V
R

50
0.

03
0.

80
1.

15
0.

01
1,

52
7

0.
0

3
θ

=
0.

4
O

LS
60

0.
17

1.
12

1.
22

0.
03

0.
0

ρ
=

0.
4

TS
LT

E
60

0.
43

1.
13

1.
73

0.
21

22
8

0.
0

T
SL

S
60

0.
02

0.
10

1.
93

0.
22

46
39

.7
TS

LS
-P

ro
bi

t
60

0.
01

0.
10

1.
92

0.
22

47
39

.7
FV

R
60

0.
07

0.
76

1.
09

0.
01

1,
46

7
0.

0
FB

V
R

60
0.

00
0.

86
1.

14
0.

01
1,

86
2

0.
0

4
θ

=
0.

4
O

LS
75

0.
17

1.
12

1.
21

0.
03

0.
0

ρ
=

0.
4

TS
LT

E
75

0.
33

1.
05

1.
61

0.
13

24
9

0.
0

T
SL

S
75

0.
01

0.
26

1.
77

0.
15

54
25

.0
TS

LS
-P

ro
bi

t
75

0.
01

0.
26

1.
77

0.
15

55
25

.0
FV

R
75

0.
05

0.
81

1.
08

0.
01

1,
79

2
0.

0
FB

V
R

75
0.

04
0.

92
1.

15
0.

00
2,

43
3

0.
0

5
θ

=
0.

4
O

LS
90

0.
16

1.
12

1.
20

0.
03

0.
0

ρ
=

0.
4

TS
LT

E
90

0.
22

0.
93

1.
51

0.
07

25
1

0.
0

T
SL

S
90

0.
01

0.
36

1.
67

0.
11

62
14

.1
TS

LS
-P

ro
bi

t
90

0.
01

0.
36

1.
67

0.
11

62
14

.5
FV

R
90

0.
02

0.
86

1.
10

0.
00

2,
11

7
0.

0
FB

V
R

90
0.

08
0.

98
1.

18
0.

01
3,

06
1

0.
0

N
ot

es
.

Si
m

ul
at

io
n

re
su

lt
s

fr
om

1,
00

0
re

pl
ic

at
io

ns
ge

ne
ra

te
d

fr
om

th
e

es
ti

m
at

io
n

of
pa

ra
m

et
er
α

of
th

e
st

ru
ct

ur
al

m
od

el
Y

it
=
α

D
it

+
X

it
β

+
C

i
+

U
it

ge
ne

ra
te

d
fr

om
th

e
di

sc
re

te
ch

oi
ce

m
od

el
D

it
=
1
{µ

+
δD

it−
1

+
θ
Z

it
+

X
it
β

+
ρ

U
it

+
ε i

t
>

0}
.

Th
e

so
le

ex
og

en
ou

s
re

gr
es

so
r

is
X

it
=

5G
it

w
he

re
G

it
is

an
i.i

.d
.

ra
nd

om
va

ri
ab

le
dr

aw
n

fr
om

a
co

nt
in

uo
us

un
if

or
m

di
st

ri
bu

ti
on

U
(0
,1

).
C

i
eq

ua
ls

1 T
∑ t

X
it

to
en

su
re

th
at

un
ob

se
rv

ed
he

te
ro

ge
ne

it
y

is
co

rr
el

at
ed

w
it

h
X

it
.

T
he

er
ro

r
te

rm
of

th
e

st
ru

ct
ur

al
eq

ua
ti

on
U

it
an

d
th

e
er

ro
r

te
rm

ε i
t

of
th

e
di

sc
re

te
ch

oi
ce

m
od

el
ar

e
bo

th
i.i
.d
.N

(0
,1

).
Ea

ch
nu

m
be

re
d

gr
ou

p
of

ro
w

s
co

rr
es

po
nd

s
to

a
un

iq
ue

em
pi

ri
ca

ls
et

ti
ng

w
he

re
on

ly
m

u
va

ri
es

in
or

de
r

to
ch

oo
se

th
e

sh
ar

e
of

un
it

s
tr

ea
te

d.
In

al
ls

et
ti

ng
,n

=
1,

00
0,

T
=

15
,α

=
β

=
1,
θ

=
0.

4,
ρ

=
0.

4,
δ

=
50

,t
he

ex
cl

us
io

n
re

st
ri

ct
io

n
Z

it
is

no
rm

al
ly

di
st

ri
bu

te
d,

an
d

th
e

pa
ra

m
et

er
λ

eq
ua

ls
√ (1
−
θ

2
−
ρ

2 )
.

TS
LS

de
no

te
s

th
e

tw
o

st
ag

e
le

as
t

sq
ua

re
es

ti
m

at
es

,T
SL

TE
de

no
te

s
th

e
tw

o
st

ag
e

lo
ca

lt
re

at
m

en
t

es
ti

m
at

or
w

hi
ch

co
rr

es
po

nd
s

to
a

TS
LS

es
ti

m
at

or
us

in
g

on
ly

th
e

ob
se

rv
at

io
ns

be
fo

re
an

d
af

te
r

th
e

tr
ea

tm
en

tt
im

e,
TS

LS
-P

ro
bi

ti
s

W
oo

ld
ri

ge
m

od
ifi

ca
ti

on
of

TS
LS

,F
V

R
is

th
e

Fo
rw

ar
d

V
ar

ia
ti

on
R

ed
uc

ti
on

es
ti

m
at

or
,a

nd
FB

V
R

is
th

e
Fo

rw
ar

d
an

d
Ba

ck
w

ar
d

V
ar

ia
ti

on
R

ed
uc

ti
on

es
ti

m
at

or
.



Ta
bl

e
15

:s
im

ul
at

io
n

re
su

lt
s

w
it

h
di

ff
er

en
ts

ha
re

s
of

un
it

s
tr

ea
te

d
w

he
n

en
do

ge
ne

it
y
ρ

is
hi

gh
er

Em
pi

ri
ca

ls
et

ti
ng

Es
ti

m
at

or
A

ve
ra

ge
sh

ar
e

of
A

bs
ol

ut
e

95
%

lo
w

er
95

%
up

pe
r

R
M

SE
A

ve
ra

ge
fir

st
Ty

pe
II

er
ro

r
un

it
s

tr
ea

te
d

(%
)

bi
as

bo
un

d
bo

un
d

st
ag

e
F-

st
at

fr
eq

ue
nc

y
(%

)

6
θ

=
0.

4
O

LS
30

0.
28

1.
20

1.
35

0.
08

0.
0

ρ
=

0.
6

TS
LT

E
30

0.
94

1.
58

2.
30

0.
92

15
0

0.
0

T
SL

S
30

0.
01

-0
.7

3
2.

76
0.

79
28

72
.9

TS
LS

-P
ro

bi
t

30
0.

01
-0

.6
8

2.
70

0.
75

30
71

.5
FV

R
30

0.
18

0.
52

1.
13

0.
06

82
7

0.
2

FB
V

R
30

0.
12

0.
58

1.
18

0.
04

92
4

0.
2

7
θ

=
0.

4
O

LS
50

0.
26

1.
21

1.
32

0.
07

0.
0

ρ
=

0.
6

TS
LT

E
50

0.
73

1.
43

2.
03

0.
56

20
7

0.
0

T
SL

S
50

0.
02

-0
.0

6
2.

09
0.

30
41

50
.4

TS
LS

-P
ro

bi
t

50
0.

01
-0

.0
4

2.
07

0.
29

42
49

.8
FV

R
50

0.
13

0.
67

1.
06

0.
03

1,
25

7
0.

0
FB

V
R

50
0.

04
0.

78
1.

14
0.

01
1,

52
5

0.
0

8
θ

=
0.

4
O

LS
60

0.
25

1.
20

1.
30

0.
07

0.
0

ρ
=

0.
6

TS
LT

E
60

0.
65

1.
36

1.
93

0.
44

22
8

0.
0

T
SL

S
60

0.
01

0.
11

1.
92

0.
22

47
39

.8
TS

LS
-P

ro
bi

t
60

0.
01

0.
11

1.
91

0.
21

48
39

.3
FV

R
60

0.
11

0.
72

1.
05

0.
02

1,
47

3
0.

0
FB

V
R

60
0.

00
0.

85
1.

15
0.

01
1,

86
9

0.
0

9
θ

=
0.

4
O

LS
75

0.
25

1.
20

1.
29

0.
06

0.
0

ρ
=

0.
6

TS
LT

E
75

0.
50

1.
23

1.
78

0.
27

25
0

0.
0

T
SL

S
75

0.
01

0.
26

1.
76

0.
15

55
25

.7
TS

LS
-P

ro
bi

t
75

0.
01

0.
26

1.
76

0.
15

55
25

.6
FV

R
75

0.
08

0.
78

1.
05

0.
01

1,
79

4
0.

0
FB

V
R

75
0.

05
0.

94
1.

17
0.

01
2,

44
1

0.
0

10
θ

=
0.

4
O

LS
90

0.
25

1.
21

1.
29

0.
06

0.
0

ρ
=

0.
6

TS
LT

E
90

0.
33

1.
04

1.
62

0.
13

25
1

0.
0

T
SL

S
90

0.
01

0.
35

1.
67

0.
11

62
15

.3
TS

LS
-P

ro
bi

t
90

0.
01

0.
35

1.
67

0.
11

62
15

.5
FV

R
90

0.
04

0.
85

1.
08

0.
00

2,
11

5
0.

0
FB

V
R

90
0.

12
1.

03
1.

22
0.

02
3,

06
5

0.
0

N
ot

es
.

Si
m

ul
at

io
n

re
su

lt
s

fr
om

1,
00

0
re

pl
ic

at
io

ns
ge

ne
ra

te
d

fr
om

th
e

es
ti

m
at

io
n

of
pa

ra
m

et
er
α

of
th

e
st

ru
ct

ur
al

m
od

el
Y

it
=
α

D
it

+
X

it
β

+
C

i
+

U
it

ge
ne

ra
te

d
fr

om
th

e
di

sc
re

te
ch

oi
ce

m
od

el
D

it
=
1
{µ

+
δD

it−
1

+
θ
Z

it
+

X
it
β

+
ρ

U
it

+
ε i

t
>

0}
.

Th
e

so
le

ex
og

en
ou

s
re

gr
es

so
r

is
X

it
=

5G
it

w
he

re
G

it
is

an
i.i

.d
.

ra
nd

om
va

ri
ab

le
dr

aw
n

fr
om

a
co

nt
in

uo
us

un
if

or
m

di
st

ri
bu

ti
on

U
(0
,1

).
C

i
eq

ua
ls

1 T
∑ t

X
it

to
en

su
re

th
at

un
ob

se
rv

ed
he

te
ro

ge
ne

it
y

is
co

rr
el

at
ed

w
it

h
X

it
.

T
he

er
ro

r
te

rm
of

th
e

st
ru

ct
ur

al
eq

ua
ti

on
U

it
an

d
th

e
er

ro
r

te
rm

ε i
t

of
th

e
di

sc
re

te
ch

oi
ce

m
od

el
ar

e
bo

th
i.i
.d
.N

(0
,1

).
Ea

ch
nu

m
be

re
d

gr
ou

p
of

ro
w

s
co

rr
es

po
nd

s
to

a
un

iq
ue

em
pi

ri
ca

ls
et

ti
ng

w
he

re
on

ly
m

u
va

ri
es

in
or

de
r

to
ch

oo
se

th
e

sh
ar

e
of

un
it

s
tr

ea
te

d.
In

al
ls

et
ti

ng
,n

=
1,

00
0,

T
=

15
,α

=
β

=
1,
θ

=
0.

4,
ρ

=
0.

6,
δ

=
50

,t
he

ex
cl

us
io

n
re

st
ri

ct
io

n
Z

it
is

no
rm

al
ly

di
st

ri
bu

te
d,

an
d

th
e

pa
ra

m
et

er
λ

eq
ua

ls
√ (1
−
θ

2
−
ρ

2 )
.

TS
LS

de
no

te
s

th
e

tw
o

st
ag

e
le

as
t

sq
ua

re
es

ti
m

at
es

,T
SL

TE
de

no
te

s
th

e
tw

o
st

ag
e

lo
ca

lt
re

at
m

en
t

es
ti

m
at

or
w

hi
ch

co
rr

es
po

nd
s

to
a

TS
LS

es
ti

m
at

or
us

in
g

on
ly

th
e

ob
se

rv
at

io
ns

be
fo

re
an

d
af

te
r

th
e

tr
ea

tm
en

tt
im

e,
TS

LS
-P

ro
bi

ti
s

W
oo

ld
ri

ge
m

od
ifi

ca
ti

on
of

TS
LS

,F
V

R
is

th
e

Fo
rw

ar
d

V
ar

ia
ti

on
R

ed
uc

ti
on

es
ti

m
at

or
,a

nd
FB

V
R

is
th

e
Fo

rw
ar

d
an

d
Ba

ck
w

ar
d

V
ar

ia
ti

on
R

ed
uc

ti
on

es
ti

m
at

or
.



C Test of identifying assumption

Table 16: size of the test statistics, number of rejections out of 100 cases

t = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10 k = 11
p = 1 Mean 0.09 0.121 -0.084 0.014 0.129 -0.13 -0.035 -0.133 -0.035 0.017

Variance 0.826 1.136 1.159 1.018 1.195 0.795 0.83 1.347 0.996 0.97
10% 0 0 0 0 0 0 0 0 0 0

p = 2 Mean 0.033 0.037 0.045 0.299 -0.038 -0.037 0.074 -0.171 0.069 -0.025
Variance 1.381 1.142 1.115 0.944 1.144 1.125 1.272 0.991 1.071 1.217

10% 0 0 0 0 0 0 0 0 0 0
p = 3 Mean 0.049 0.131 0.083 0.089 0.086 -0.088 0.044 0.121 -0.083 -0.178

Variance 1.069 1.125 0.941 0.731 1.135 1.397 0.806 1.082 1.022 1.432
10% 0 0 0 0 0 0 0 0 0 0

p = 4 Mean -0.114 0.037 0.106 -0.128 0.152 0.057 -0.207 -0.119 -0.038 -0.047
Variance 1.016 1.083 1.11 0.953 1.024 0.762 0.965 1.066 0.979 1.042

10% 0 0 0 0 0 0 0 0 0 0
p = 5 Mean -0.006 0.003 0.082 0.113 -0.089 0.023 -0.066 0.196 -0.166 0.004

Variance 0.803 0.979 0.809 1.052 1.107 0.971 1.16 0.83 1.075 1.324
10% 0 0 0 0 0 0 0 0 0 0

p = 6 Mean -0.15 0.045 -0.028 -0.014 -0.154 -0.078 0.05 0.09 0.032 0.016
Variance 1.249 1.136 0.889 0.98 1.121 0.803 1.154 1.161 1.263 1.189

10% 0 0 0 0 0 0 0 0 0 0
p = 7 Mean 0.141 -0.031 0.058 -0.058 -0.016 -0.002 -0.068 -0.046 -0.045 0.091

Variance 0.779 0.899 1.063 1.244 0.897 1.089 0.882 1.118 1.21 1.063
10% 0 0 0 0 0 0 0 0 0 0

p = 8 Mean 0.102 0.022 -0.071 0.149 0.103 -0.043 0.13 -0.078 0.081 0.097
Variance 0.979 0.921 0.994 0.974 1.049 0.963 0.979 1.037 1.17 1.116

10% 0 0 0 0 0 0 0 0 0 0
p = 9 Mean 0.174 0.047 0.125 -0.205 0 -0.011 0.085 0.027 0.025 -0.007

Variance 1.064 1.002 1.012 1.119 0.996 1.216 1.017 1.113 0.918 1.198
10% 0 0 0 0 0 0 0 0 0 0

p = 10 Mean -0.057 0.013 -0.037 -0.018 -0.122 -0.077 0.022 0.072 0.132 0.117
Variance 0.733 0.905 1.093 0.992 1.193 1.028 1.279 0.942 0.786 1.002

10% 0 0 0 0 0 0 0 0 0 0
p = 11 Mean 0.073 0.006 -0.063 -0.243 0.162 -0.059 0.023 0.016 -0.099 0.336

Variance 0.968 1.223 1.052 1.024 0.966 1.008 1.142 1.059 1.042 1.125
10% 0 0 0 0 0 0 0 0 0 0

Notes. The data generating process is the same as in previous sections except that we generate only 100 samples and T = 11 for
tractability. We set θ = 0.4, ρ = 0.4, and µ = −1.662. For each t, k, p we calculate the sample average P̄ktp = 1

nk

∑
i∈K ZitUip and

the sample standard deviation sktp =
√

1
nk−1

∑
i∈K(ZitUip − P̄ktp)2 where nk is the number of units treated in period k. Under

R1’, a hypothesis that holds under R1 that is the identifying assumption of the F(B)VR estimator, the statistic Tktp =
P̄ktp

sktp/
√

nk

has a Student distribution t(nk − 1).



Table 17: size of the test statistics, number of rejections out of 100 cases

t = 2 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10 k = 11
p = 1 Mean 0.057 -0.13 -0.106 0.149 0.078 0.069 0.081 0.013 0.042 -0.12

Variance 1.147 1.174 1.058 1.017 0.852 0.966 1.064 1.032 0.783 0.968
10% 0 0 0 0 0 0 0 0 0 0

p = 2 Mean 3.023 -0.115 -0.111 -0.208 -0.201 -0.037 -0.212 -0.141 -0.133 -0.159
Variance 1.278 0.821 0.989 1.219 0.989 0.987 0.819 1.293 1.147 1.142

10% 0 0 0 0 0 0 0 0 0 0
p = 3 Mean -0.088 -0.009 -0.05 -0.024 0.033 -0.189 -0.048 0.126 -0.041 0.085

Variance 0.811 0.945 1.418 1.272 1.329 1.078 0.946 1.136 1.129 0.9
10% 0 0 0 0 0 0 0 0 0 0

p = 4 Mean -0.047 -0.131 -0.237 -0.16 0.077 -0.013 0.028 0.014 -0.041 -0.015
Variance 1.043 0.95 1.101 1.316 1.453 0.808 0.923 0.948 0.98 1.02

10% 0 0 0 0 0 0 0 0 0 0
p = 5 Mean 0.136 0.025 -0.073 -0.144 0.101 0.021 -0.016 0.073 -0.07 -0.019

Variance 1.178 1.078 1.164 1.047 1.006 0.921 0.917 1.024 1.385 1.238
10% 0 0 0 0 0 0 0 0 0 0

p = 6 Mean -0.066 0.034 0.076 0.152 -0.361 0.075 0.036 -0.149 -0.053 0.076
Variance 0.938 0.926 1.009 1.131 1.173 1.071 1.147 0.985 1.179 1.28

10% 0 0 0 0 0 0 0 0 0 0
p = 7 Mean 0.042 0.022 0.083 0.013 0.138 -0.223 -0.059 0.096 0.156 0.087

Variance 0.914 0.976 1.147 1.118 1.078 1.023 1.177 0.801 0.956 0.839
10% 0 0 0 0 0 0 0 0 0 0

p = 8 Mean -0.041 -0.003 -0.014 0.047 0.119 -0.033 -0.199 -0.058 -0.09 0.123
Variance 1.162 1.045 0.939 1.189 1.014 0.942 0.891 1.198 1.022 1.09

10% 0 0 0 0 0 0 0 0 0 0
p = 9 Mean -0.015 0.002 0.004 -0.205 0.065 0.105 0.068 -0.042 -0.119 0.284

Variance 1.188 1.134 0.964 1.158 0.957 0.973 0.924 1.063 1.085 1.148
10% 0 0 0 0 0 0 0 0 0 0

p = 10 Mean 0.13 -0.226 -0.153 -0.135 0.022 -0.06 0.142 0.154 0.02 -0.016
Variance 1.055 0.887 1.229 1.294 0.754 1.232 1.08 1.066 1.218 1.013

10% 0 0 0 0 0 0 0 0 0 0
p = 11 Mean 0.041 0.262 0.03 0.145 -0.045 -0.172 -0.049 -0.004 -0.057 0.156

Variance 0.845 1.076 0.99 1.079 1.258 1.332 1.061 1.224 1.321 1.245
10% 0 0 0 0 0 0 0 0 0 0

Notes. The data generating process is the same as in previous sections except that we generate only 100 samples and T = 11 for
tractability. We set θ = 0.4, ρ = 0.4, and µ = −1.662. For each t, k, p we calculate the sample average P̄ktp = 1

nk

∑
i∈K ZitUip and

the sample standard deviation sktp =
√

1
nk−1

∑
i∈K(ZitUip − P̄ktp)2 where nk is the number of units treated in period k. Under

R1’, a hypothesis that holds under R1 that is the identifying assumption of the F(B)VR estimator, the statistic Tktp =
P̄ktp

sktp/
√

nk

has a Student distribution t(nk − 1).



Table 18: size of the test statistics, number of rejections out of 100 cases

t = 3 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10 k = 11
p = 1 Mean -0.088 -0.125 -0.027 0.07 -0.008 -0.074 -0.007 0.028 0.021 -0.056

Variance 0.914 1.192 0.926 1.154 1.068 1.122 0.967 1.383 1.104 0.811
10% 0 0 0 0 0 0 0 0 0 0

p = 2 Mean 0.128 -0.433 -0.079 0.064 -0.098 0.136 0.022 -0.09 -0.127 -0.052
Variance 0.859 1.088 1.022 1.338 0.996 1.236 1.144 0.979 0.968 0.998

10% 0 0 0 0 0 0 0 0 0 0
p = 3 Mean 0.027 2.956 -0.264 -0.323 -0.198 0.024 -0.265 -0.096 -0.198 -0.238

Variance 0.942 1.167 1.021 0.812 0.946 1.19 1.293 0.895 1.102 0.969
10% 0 0 0 0 0 0 0 0 0 0

p = 4 Mean 0.08 0.037 -0.048 -0.241 -0.012 0.053 -0.064 0.062 -0.169 0.056
Variance 1.262 0.767 1.109 1.102 1.052 0.762 0.958 0.988 1 0.832

10% 0 0 0 0 0 0 0 0 0 0
p = 5 Mean -0.096 -0.013 0.094 -0.166 -0.072 -0.042 -0.034 0.051 0.11 0.042

Variance 0.897 1.237 1.277 0.982 1.061 0.905 1.157 1.051 0.997 1.088
10% 0 0 0 0 0 0 0 0 0 0

p = 6 Mean -0.018 -0.039 -0.061 0.016 -0.215 -0.104 -0.086 -0.286 0.052 -0.134
Variance 0.882 1.161 1.16 0.862 0.954 0.994 0.851 1.042 0.737 0.955

10% 0 0 0 0 0 0 0 0 0 0
p = 7 Mean -0.175 -0.13 0.247 -0.025 -0.035 -0.465 -0.08 0.13 0.135 -0.122

Variance 1.162 1.249 0.925 1.27 0.942 0.936 0.967 1 0.971 1.247
10% 0 0 0 0 0 0 0 0 0 0

p = 8 Mean 0.045 0.016 0.041 -0.138 -0.155 -0.015 -0.19 -0.082 0.11 -0.135
Variance 1.101 1.172 1.189 0.929 1.101 0.85 1.078 1.042 1.023 1.413

10% 0 0 0 0 0 0 0 0 0 0
p = 9 Mean -0.13 0.025 -0.056 -0.192 0.064 0.04 0.105 -0.174 0.054 -0.009

Variance 0.683 1.124 1.193 0.946 0.972 1.001 1.019 0.821 0.923 0.972
10% 0 0 0 0 0 0 0 0 0 0

p = 10 Mean -0.029 0.03 -0.068 0.025 0.026 0.098 0.059 0.049 -0.145 0.104
Variance 0.927 1.421 1 0.911 0.999 1.434 0.752 1.178 1.015 0.93

10% 0 0 0 0 0 0 0 0 0 0
p = 11 Mean 0.061 -0.083 0.045 0.151 -0.145 -0.061 -0.148 0.015 0.11 -0.091

Variance 0.888 1.068 0.984 0.896 0.978 1.293 1.122 0.989 0.997 1.315
10% 0 0 0 0 0 0 0 0 0 0

Notes. The data generating process is the same as in previous sections except that we generate only 100 samples and T = 11 for
tractability. We set θ = 0.4, ρ = 0.4, and µ = −1.662. For each t, k, p we calculate the sample average P̄ktp = 1

nk

∑
i∈K ZitUip and

the sample standard deviation sktp =
√

1
nk−1

∑
i∈K(ZitUip − P̄ktp)2 where nk is the number of units treated in period k. Under

R1’, a hypothesis that holds under R1 that is the identifying assumption of the F(B)VR estimator, the statistic Tktp =
P̄ktp

sktp/
√

nk

has a Student distribution t(nk − 1).



Table 19: size of the test statistics, number of rejections out of 100 cases

t = 4 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10 k = 11
p = 1 Mean 0.084 0.207 0.083 -0.063 -0.114 -0.006 0.19 0.018 0.061 -0.159

Variance 1.014 1.127 1.169 0.997 1.109 1.08 0.981 1.097 1.042 0.84
10% 0 0 0 0 0 0 0 0 0 0

p = 2 Mean -0.038 -0.16 -0.268 0.026 0.103 0.007 0.196 0.025 0.055 -0.055
Variance 1.062 1.012 1.304 1.253 1.002 1.281 1.335 1.087 0.815 1.031

10% 0 0 0 0 0 0 0 0 0 0
p = 3 Mean -0.004 0.02 -0.067 0.143 0.101 -0.011 0.009 -0.048 -0.104 -0.114

Variance 0.896 0.907 0.943 0.797 1.143 0.986 0.729 1.068 1.17 0.938
10% 0 0 0 0 0 0 0 0 0 0

p = 4 Mean 0.09 0.199 2.814 -0.137 -0.178 -0.087 -0.101 -0.274 -0.099 -0.119
Variance 0.974 0.865 0.725 1.036 1.187 1.051 0.839 0.949 0.989 1.084

10% 0 0 0 0 0 0 0 0 0 0
p = 5 Mean 0.084 -0.19 0.027 -0.231 0.068 -0.159 0.039 0.098 -0.052 0.118

Variance 1.035 0.986 1.513 0.722 1.247 1.033 1.328 1.116 1.19 1.041
10% 0 0 0 0 0 0 0 0 0 0

p = 6 Mean 0.144 -0.079 -0.203 -0.023 -0.034 -0.005 0.008 0.219 0.114 0.014
Variance 1.017 1.096 1.236 1.208 0.926 1.236 0.889 0.997 1.068 1.375

10% 0 0 0 0 0 0 0 0 0 0
p = 7 Mean -0.035 -0.064 0.137 -0.01 0.118 -0.205 -0.184 -0.038 0.187 -0.021

Variance 0.905 0.831 0.778 1.093 0.99 1.017 1.148 1.123 1.045 1.053
10% 0 0 0 0 0 0 0 0 0 0

p = 8 Mean 0.063 0.049 -0.002 -0.001 -0.009 0.074 -0.161 0.099 0.123 -0.1
Variance 1.051 1.152 1.022 0.997 1.136 0.992 1.231 1.022 1.081 0.887

10% 0 0 0 0 0 0 0 0 0 0
p = 9 Mean 0.174 0.098 -0.079 -0.048 -0.119 0.02 0.009 -0.071 -0.158 0.082

Variance 0.937 0.897 1 1.086 1.165 0.814 0.939 1.177 1.171 1.29
10% 0 0 0 0 0 0 0 0 0 0

p = 10 Mean -0.018 -0.052 0.117 0.044 -0.036 -0.05 0.076 0.008 -0.172 0.196
Variance 0.78 0.962 0.957 1.07 1.24 1.034 1.214 1.355 0.988 0.916

10% 0 0 0 0 0 0 0 0 0 0
p = 11 Mean 0.078 -0.087 -0.02 0.119 -0.084 -0.03 0.099 -0.016 0.111 -0.005

Variance 0.968 1.164 0.98 0.923 1.096 0.872 1.146 1.029 0.772 1.356
10% 0 0 0 0 0 0 0 0 0 0

Notes. The data generating process is the same as in previous sections except that we generate only 100 samples and T = 11 for
tractability. We set θ = 0.4, ρ = 0.4, and µ = −1.662. For each t, k, p we calculate the sample average P̄ktp = 1

nk

∑
i∈K ZitUip and

the sample standard deviation sktp =
√

1
nk−1

∑
i∈K(ZitUip − P̄ktp)2 where nk is the number of units treated in period k. Under

R1’, a hypothesis that holds under R1 that is the identifying assumption of the F(B)VR estimator, the statistic Tktp =
P̄ktp

sktp/
√

nk

has a Student distribution t(nk − 1).



Table 20: size of the test statistics, number of rejections out of 100 cases

t = 5 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10 k = 11
p = 1 Mean 0.121 0.146 0.018 -0.169 0.068 -0.077 -0.002 0.05 -0.061 -0.054

Variance 1.084 1.12 1.118 0.807 0.906 1.228 1.036 1.243 1.104 1.036
10% 0 0 0 0 0 0 0 0 0 0

p = 2 Mean -0.113 0.049 -0.038 -0.043 0.005 -0.126 0.032 0.085 -0.149 -0.08
Variance 0.777 1.001 1.24 0.929 1.203 1.43 1.035 1.089 1.101 1.014

10% 0 0 0 0 0 0 0 0 0 0
p = 3 Mean 0.128 0.21 0.014 -0.344 -0.152 0.021 0.06 0.013 0.024 0.047

Variance 0.889 1.11 1.139 0.91 1.219 1.065 1.202 0.97 0.958 1.144
10% 0 0 0 0 0 0 0 0 0 0

p = 4 Mean -0.18 -0.004 0.122 -0.325 0.066 -0.059 0.081 -0.006 0.14 0.093
Variance 1.226 0.905 1.152 1.257 1.04 1.197 1.075 0.974 0.886 0.981

10% 0 0 0 0 0 0 0 0 0 0
p = 5 Mean 0.04 -0.058 0.009 2.589 -0.304 -0.352 -0.186 -0.273 -0.019 -0.087

Variance 1.209 1.219 1.515 0.791 0.793 0.836 0.801 1.012 1.209 1.128
10% 0 0 0 0 0 0 0 0 0 0

p = 6 Mean 0.042 0.042 0.049 0.141 -0.239 0.041 0.075 0.073 -0.057 0.126
Variance 1.227 1.14 1.038 1.006 0.965 1.278 1.007 0.874 1.002 0.998

10% 0 0 0 0 0 0 0 0 0 0
p = 7 Mean -0.211 0.08 0.155 0.072 0.013 0.002 0.085 0.109 0.056 0.158

Variance 1.422 0.9 1.066 1.09 0.859 0.961 1.262 0.763 1.02 0.933
10% 0 0 0 0 0 0 0 0 0 0

p = 8 Mean 0.023 -0.056 -0.074 0.041 0.009 -0.01 -0.35 -0.178 -0.028 -0.063
Variance 0.914 1.181 1.171 1.145 1.113 1.172 1.225 1.027 1.092 0.986

10% 0 0 0 0 0 0 0 0 0 0
p = 9 Mean -0.011 0.113 -0.11 0.096 -0.014 0.007 0.033 -0.251 -0.125 -0.177

Variance 1.05 0.986 1.327 1.157 0.93 1.051 1.176 1.28 1.03 0.971
10% 0 0 0 0 0 0 0 0 0 0

p = 10 Mean 0.081 0.04 -0.092 -0.037 -0.202 0.134 -0.098 -0.123 -0.062 -0.14
Variance 1.605 0.986 1.173 1.18 1.166 1.194 0.93 1.068 0.927 1.182

10% 0 0 0 0 0 0 0 0 0 0
p = 11 Mean -0.031 0.038 0.064 -0.171 -0.037 0.175 0.093 0.019 -0.02 -0.239

Variance 1.028 1.295 0.92 0.987 1.014 0.827 0.949 0.962 0.902 1.304
10% 0 0 0 0 0 0 0 0 0 0

Notes. The data generating process is the same as in previous sections except that we generate only 100 samples and T = 11 for
tractability. We set θ = 0.4, ρ = 0.4, and µ = −1.662. For each t, k, p we calculate the sample average P̄ktp = 1

nk

∑
i∈K ZitUip and

the sample standard deviation sktp =
√

1
nk−1

∑
i∈K(ZitUip − P̄ktp)2 where nk is the number of units treated in period k. Under

R1’, a hypothesis that holds under R1 that is the identifying assumption of the F(B)VR estimator, the statistic Tktp =
P̄ktp

sktp/
√

nk

has a Student distribution t(nk − 1).



Table 21: size of the test statistics, number of rejections out of 100 cases

t = 6 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10 k = 11
p = 1 Mean -0.065 -0.061 0.131 0.098 -0.077 -0.009 0.03 0.069 0.022 -0.023

Variance 0.99 0.899 1.062 1.178 0.931 0.91 0.931 1.131 1.118 0.828
10% 0 0 0 0 0 0 0 0 0 0

p = 2 Mean 0 -0.018 0.094 -0.01 -0.132 -0.015 -0.079 -0.053 0.087 0.118
Variance 0.909 0.968 0.987 0.973 0.835 0.871 0.941 0.939 1.123 1.02

10% 0 0 0 0 0 0 0 0 0 0
p = 3 Mean 0.054 0.181 -0.145 0.083 -0.091 0 -0.105 0.169 -0.015 0.086

Variance 0.859 1.062 1.249 0.997 1.362 1.113 1.134 1.052 0.801 1.056
10% 0 0 0 0 0 0 0 0 0 0

p = 4 Mean 0.052 0.177 -0.007 -0.028 -0.117 0.067 0.188 0.081 -0.02 0.143
Variance 1.085 0.882 1.095 1.16 0.855 1.001 0.964 1.328 0.963 0.891

10% 0 0 0 0 0 0 0 0 0 0
p = 5 Mean 0.199 0.052 0.053 -0.045 -0.098 0.064 0.133 -0.009 -0.075 -0.131

Variance 1.269 1.154 1.095 1.075 1.438 1.204 1.229 0.915 0.965 1.257
10% 0 0 0 0 0 0 0 0 0 0

p = 6 Mean -0.06 0.023 0.093 -0.021 2.66 -0.182 -0.178 -0.083 -0.151 -0.089
Variance 0.966 1.25 1.024 0.739 0.7 0.984 1.031 1.059 1.235 0.915

10% 0 0 0 0 0 0 0 0 0 0
p = 7 Mean 0.033 -0.04 0.173 0.01 0.106 -0.126 0.077 0.05 0.164 -0.003

Variance 0.931 0.918 1.267 1.078 1.083 1.171 0.8 1.044 1.15 1.211
10% 0 0 0 0 0 0 0 0 0 0

p = 8 Mean -0.058 0.056 -0.112 0.179 -0.142 0.013 -0.125 0.008 -0.011 -0.041
Variance 0.931 0.845 0.989 0.987 0.843 1.454 1.048 1.232 1.21 0.89

10% 0 0 0 0 0 0 0 0 0 0
p = 9 Mean -0.056 -0.031 0.203 0.089 -0.085 0.146 0.135 -0.065 0.035 -0.1

Variance 0.874 0.939 0.917 0.978 1.084 1.164 0.897 0.975 1.036 1.146
10% 0 0 0 0 0 0 0 0 0 0

p = 10 Mean 0.074 -0.186 -0.112 -0.004 -0.006 0.058 -0.085 -0.083 -0.03 -0.036
Variance 1.053 0.66 1.159 0.925 1.123 1.267 1.006 0.867 0.832 0.939

10% 0 0 0 0 0 0 0 0 0 0
p = 11 Mean 0.015 -0.146 0.107 -0.029 -0.098 0.2 0.201 0.034 0.157 -0.225

Variance 0.754 1.209 0.96 0.859 1.028 0.963 1.099 0.929 1.117 0.952
10% 0 0 0 0 0 0 0 0 0 0

Notes. The data generating process is the same as in previous sections except that we generate only 100 samples and T = 11 for
tractability. We set θ = 0.4, ρ = 0.4, and µ = −1.662. For each t, k, p we calculate the sample average P̄ktp = 1

nk

∑
i∈K ZitUip and

the sample standard deviation sktp =
√

1
nk−1

∑
i∈K(ZitUip − P̄ktp)2 where nk is the number of units treated in period k. Under

R1’, a hypothesis that holds under R1 that is the identifying assumption of the F(B)VR estimator, the statistic Tktp =
P̄ktp

sktp/
√

nk

has a Student distribution t(nk − 1).



Table 22: size of the test statistics, number of rejections out of 100 cases

t = 7 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10 k = 11
p = 1 Mean -0.102 -0.162 -0.089 0.093 -0.13 -0.061 -0.038 -0.037 0.223 -0.027

Variance 1.284 0.948 1.205 1.208 1.024 1.013 0.944 1.037 1.246 1.07
10% 0 0 0 0 0 0 0 0 0 0

p = 2 Mean 0.005 0.099 -0.174 0.032 0.062 -0.173 0.133 -0.006 0.341 -0.135
Variance 1.234 0.693 0.897 1.025 0.96 1.169 1.063 0.855 1.186 1.486

10% 0 0 0 0 0 0 0 0 0 0
p = 3 Mean 0.116 -0.017 0.041 0.063 0.022 -0.168 0.186 0.024 0.052 0.125

Variance 0.904 1.303 0.834 1.14 1.17 1.168 1.043 1.122 0.833 0.988
10% 0 0 0 0 0 0 0 0 0 0

p = 4 Mean 0.121 -0.117 0.002 0.034 -0.198 -0.24 -0.061 0.148 0.007 -0.103
Variance 0.936 1.057 0.949 1.082 1.224 1.108 0.922 1.02 0.906 1.287

10% 0 0 0 0 0 0 0 0 0 0
p = 5 Mean -0.017 -0.062 -0.08 0.016 0.038 -0.15 -0.017 -0.051 0.122 0.041

Variance 1.185 1.037 1.007 1.079 1.003 0.984 1.191 0.871 0.976 1.041
10% 0 0 0 0 0 0 0 0 0 0

p = 6 Mean 0.205 -0.061 -0.043 -0.022 0.124 -0.139 -0.019 -0.059 -0.093 -0.103
Variance 0.563 0.923 1.117 0.946 1.151 1.14 1.118 1.038 1.044 0.937

10% 0 0 0 0 0 0 0 0 0 0
p = 7 Mean 0.236 0.135 0.052 -0.021 -0.08 2.715 -0.132 0.134 -0.172 -0.213

Variance 0.962 1.217 0.928 0.921 0.907 0.913 1.063 1.267 0.955 1.129
10% 0 0 0 0 0 0 0 0 0 0

p = 8 Mean 0.066 0.045 -0.198 -0.018 -0.165 -0.062 -0.174 0.018 0.143 -0.062
Variance 0.949 1.012 1.158 1.224 0.916 1.076 1.047 1.007 1.052 1.093

10% 0 0 0 0 0 0 0 0 0 0
p = 9 Mean 0.081 -0.013 0.027 -0.147 -0.084 -0.188 0.098 -0.354 0.158 -0.026

Variance 1.148 1.22 0.782 1.267 0.727 1.16 1.057 0.991 1.178 1.015
10% 0 0 0 0 0 0 0 0 0 0

p = 10 Mean -0.084 0.016 -0.023 0.04 0.088 0 -0.1 -0.099 -0.273 0.026
Variance 1.094 0.89 1.058 0.815 0.787 0.986 1.096 1.137 0.902 0.986

10% 0 0 0 0 0 0 0 0 0 0
p = 11 Mean -0.003 -0.082 0.105 -0.036 -0.167 0.075 -0.2 0.04 0.007 -0.229

Variance 1.184 1.083 1.333 1.077 1.249 1.087 0.907 1.041 1.088 0.884
10% 0 0 0 0 0 0 0 0 0 0

Notes. The data generating process is the same as in previous sections except that we generate only 100 samples and T = 11 for
tractability. We set θ = 0.4, ρ = 0.4, and µ = −1.662. For each t, k, p we calculate the sample average P̄ktp = 1

nk

∑
i∈K ZitUip and

the sample standard deviation sktp =
√

1
nk−1

∑
i∈K(ZitUip − P̄ktp)2 where nk is the number of units treated in period k. Under

R1’, a hypothesis that holds under R1 that is the identifying assumption of the F(B)VR estimator, the statistic Tktp =
P̄ktp

sktp/
√

nk

has a Student distribution t(nk − 1).



Table 23: size of the test statistics, number of rejections out of 100 cases

t = 8 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10 k = 11
p = 1 Mean -0.154 -0.035 -0.136 -0.158 0.093 0.075 0.029 -0.118 -0.164 -0.064

Variance 0.838 0.997 0.989 1.112 1.176 1.05 1.04 0.996 1.09 0.885
10% 0 0 0 0 0 0 0 0 0 0

p = 2 Mean 0.026 -0.066 -0.026 -0.113 0.021 -0.099 -0.21 -0.142 -0.012 0.046
Variance 1.111 0.812 0.906 0.8 0.868 0.974 0.968 1.062 1.018 1.11

10% 0 0 0 0 0 0 0 0 0 0
p = 3 Mean -0.039 -0.078 -0.086 -0.001 -0.026 0.067 -0.108 0.011 -0.029 -0.071

Variance 1.401 1.087 0.964 0.918 1.055 1.097 1.18 0.895 1.116 0.906
10% 0 0 0 0 0 0 0 0 0 0

p = 4 Mean -0.089 0.076 0.058 -0.099 0.133 0.227 0.085 -0.178 -0.042 -0.055
Variance 0.888 1.034 0.922 1.318 1.089 1.469 1.115 0.833 1.123 1.047

10% 0 0 0 0 0 0 0 0 0 0
p = 5 Mean 0.29 -0.042 -0.077 0.077 -0.028 -0.124 -0.268 -0.149 0.016 -0.096

Variance 1.114 1.12 1.033 1.035 1.1 1.359 1.019 0.98 1.075 0.991
10% 0 0 0 0 0 0 0 0 0 0

p = 6 Mean -0.077 0.156 -0.028 -0.045 0.105 0.033 -0.123 0.006 -0.099 -0.001
Variance 1.1 0.856 0.955 0.945 0.844 1.096 1.144 0.877 1.312 1.18

10% 0 0 0 0 0 0 0 0 0 0
p = 7 Mean -0.09 -0.056 -0.113 -0.027 0.177 0.268 -0.09 -0.082 0.145 -0.024

Variance 1.037 1.06 1.086 1.152 1.061 1.082 1.071 1.291 1.15 0.91
10% 0 0 0 0 0 0 0 0 0 0

p = 8 Mean -0.024 0.15 -0.177 -0.02 0.133 0.253 2.559 -0.128 0.222 -0.039
Variance 1.015 0.931 0.994 0.885 1.007 1.115 1.189 0.857 0.81 0.818

10% 0 0 0 0 0 0 0 0 0 0
p = 9 Mean -0.069 -0.037 0.042 -0.004 0.016 -0.071 -0.067 -0.247 -0.057 -0.07

Variance 0.958 1.008 0.914 0.924 1.196 0.996 0.934 0.983 1.226 1.144
10% 0 0 0 0 0 0 0 0 0 0

p = 10 Mean 0.109 -0.06 0.024 -0.114 -0.017 0.022 -0.153 0.064 -0.139 0.096
Variance 0.871 0.986 0.707 1.081 0.977 1.065 0.989 0.82 0.931 1.023

10% 0 0 0 0 0 0 0 0 0 0
p = 11 Mean 0.069 -0.133 0.003 0.118 0.14 -0.099 -0.167 -0.003 -0.03 -0.177

Variance 1.016 1.022 1.147 1.235 0.956 1.184 1.213 0.944 1.657 1.209
10% 0 0 0 0 0 0 0 0 0 0

Notes. The data generating process is the same as in previous sections except that we generate only 100 samples and T = 11 for
tractability. We set θ = 0.4, ρ = 0.4, and µ = −1.662. For each t, k, p we calculate the sample average P̄ktp = 1

nk

∑
i∈K ZitUip and

the sample standard deviation sktp =
√

1
nk−1

∑
i∈K(ZitUip − P̄ktp)2 where nk is the number of units treated in period k. Under

R1’, a hypothesis that holds under R1 that is the identifying assumption of the F(B)VR estimator, the statistic Tktp =
P̄ktp

sktp/
√

nk

has a Student distribution t(nk − 1).



Table 24: size of the test statistics, number of rejections out of 100 cases

t = 9 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10 k = 11
p = 1 Mean -0.118 -0.016 0.063 0.096 0.06 -0.004 -0.027 0.085 -0.025 0.243

Variance 1.388 0.968 1.097 0.974 1.119 0.927 0.93 0.994 1.031 0.954
10% 0 0 0 0 0 0 0 0 0 0

p = 2 Mean -0.166 -0.149 0.18 0.204 0.102 0.132 -0.151 -0.212 -0.018 0.083
Variance 1.135 0.878 1.249 1.006 1.092 1.266 1.032 0.965 1.229 0.918

10% 0 0 0 0 0 0 0 0 0 0
p = 3 Mean -0.052 0.074 0.075 -0.139 0.071 0.167 0.023 -0.133 0.172 0.087

Variance 0.989 0.851 1.21 1.025 1.007 1.298 1.409 1.285 1.149 0.936
10% 0 0 0 0 0 0 0 0 0 0

p = 4 Mean -0.192 0.118 0.105 -0.059 -0.148 0.021 -0.08 -0.147 0.176 0.041
Variance 1.055 0.891 1.137 0.993 0.819 1.174 1.24 0.833 1.049 0.886

10% 0 0 0 0 0 0 0 0 0 0
p = 5 Mean -0.071 0.003 -0.015 0.085 -0.008 0.073 0.124 -0.381 0.04 -0.098

Variance 1.168 1.143 1.001 1.036 1.079 1.034 1.181 1.103 1.328 0.95
10% 0 0 0 0 0 0 0 0 0 0

p = 6 Mean -0.134 0.14 -0.029 -0.306 -0.068 -0.104 0.076 -0.256 0.019 0.048
Variance 0.959 1.156 0.883 1.007 1.059 1.367 0.801 1.169 1.307 1.005

10% 0 0 0 0 0 0 0 0 0 0
p = 7 Mean 0.084 0.091 -0.008 0.048 0.055 0.143 0.011 -0.35 0.135 0.111

Variance 1.276 1.005 0.901 0.887 1.04 0.987 1.16 1.211 0.951 0.964
10% 0 0 0 0 0 0 0 0 0 0

p = 8 Mean 0.071 -0.026 -0.064 -0.147 -0.082 0.051 -0.072 -0.075 -0.095 -0.064
Variance 1.096 1.097 1.021 1.07 1.073 1.122 1.071 1.066 0.979 1.174

10% 0 0 0 0 0 0 0 0 0 0
p = 9 Mean -0.064 0.026 0.113 0.049 -0.067 0.028 0.085 2.469 -0.122 -0.086

Variance 1.035 0.966 1.126 1.316 1.004 1.163 1.112 1.24 1.01 0.907
10% 0 0 0 0 0 0 0 0 0 0

p = 10 Mean 0.021 -0.082 0.17 0.158 0.003 -0.168 -0.004 0.137 -0.184 0.275
Variance 1.11 1.058 1.345 1.122 1.075 0.984 1.091 1.204 0.85 1.015

10% 0 0 0 0 0 0 0 0 0 0
p = 11 Mean 0.069 0.081 0.053 0.08 -0.011 0.066 -0.064 -0.02 -0.062 -0.071

Variance 1.089 0.719 1.213 1.14 0.804 1.235 1.217 1.176 1.069 0.853
10% 0 0 0 0 0 0 0 0 0 0

Notes. The data generating process is the same as in previous sections except that we generate only 100 samples and T = 11 for
tractability. We set θ = 0.4, ρ = 0.4, and µ = −1.662. For each t, k, p we calculate the sample average P̄ktp = 1
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the sample standard deviation sktp =
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∑
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R1’, a hypothesis that holds under R1 that is the identifying assumption of the F(B)VR estimator, the statistic Tktp =
P̄ktp
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has a Student distribution t(nk − 1).



Table 25: size of the test statistics, number of rejections out of 100 cases

t = 10 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10 k = 11
p = 1 Mean 0.105 0.173 0 -0.032 -0.158 0.044 -0.059 -0.074 0.148 0.024

Variance 1.395 1.108 0.998 1.186 1.061 0.988 1.173 0.783 0.873 1.296
10% 0 0 0 0 0 0 0 0 0 0

p = 2 Mean -0.173 0.009 0.144 0.063 -0.046 0.038 0.102 -0.086 -0.071 0.11
Variance 1.131 1.112 0.963 1.073 1.113 1.043 1.063 1.238 1.097 1.097

10% 0 0 0 0 0 0 0 0 0 0
p = 3 Mean 0.074 0.027 0.106 0.063 -0.09 -0.033 -0.002 -0.201 -0.008 -0.016

Variance 1.013 0.813 0.946 0.919 1.134 1.217 1.08 0.977 1.233 1.287
10% 0 0 0 0 0 0 0 0 0 0

p = 4 Mean -0.103 0.113 -0.026 -0.112 0.02 -0.133 0.146 -0.032 -0.149 0.028
Variance 1.079 1.006 1.156 0.816 0.917 0.926 0.912 1.166 1.154 1.024

10% 0 0 0 0 0 0 0 0 0 0
p = 5 Mean -0.044 -0.025 0.031 -0.056 -0.043 0.041 -0.015 -0.151 -0.237 -0.2

Variance 1.011 1.122 1.304 1.052 1.676 1.208 1.073 0.78 1.138 1.021
10% 0 0 0 0 0 0 0 0 0 0

p = 6 Mean -0.029 -0.017 0.068 -0.063 -0.034 0.019 0.013 0.021 -0.137 0.196
Variance 0.883 0.955 1.139 0.857 1.043 0.88 0.881 1.057 1.032 1.387

10% 0 0 0 0 0 0 0 0 0 0
p = 7 Mean -0.069 0.028 -0.039 -0.155 0.112 0.053 0.097 0.118 -0.151 0.174

Variance 1.403 1.163 1.128 1.242 1.226 0.923 0.732 1.05 0.87 0.972
10% 0 0 0 0 0 0 0 0 0 0

p = 8 Mean 0.084 0.055 -0.157 0.116 -0.128 -0.021 0.069 -0.083 0.034 -0.131
Variance 1.181 0.995 0.841 1.041 1.033 0.935 0.804 0.907 0.889 0.98

10% 0 0 0 0 0 0 0 0 0 0
p = 9 Mean 0.218 -0.112 -0.102 0.234 -0.1 -0.014 0.064 -0.089 0.046 0.121

Variance 1.182 0.865 0.755 1.183 1.013 0.906 1.145 0.786 0.619 1.041
10% 0 0 0 0 0 0 0 0 0 0

p = 10 Mean 0.158 0.034 -0.098 -0.079 0.161 -0.004 0.08 0.102 2.478 -0.074
Variance 1.058 1.16 1.011 1.326 1.197 1.188 1.073 1.155 0.925 0.796

10% 0 0 0 0 0 0 0 0 0 0
p = 11 Mean 0.007 0.029 0.1 -0.19 0.152 -0.233 0.09 -0.176 -0.043 -0.327

Variance 0.994 0.809 1.093 0.848 0.975 1.014 0.901 1.106 1.133 1.124
10% 0 0 0 0 0 0 0 0 0 0

Notes. The data generating process is the same as in previous sections except that we generate only 100 samples and T = 11 for
tractability. We set θ = 0.4, ρ = 0.4, and µ = −1.662. For each t, k, p we calculate the sample average P̄ktp = 1
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R1’, a hypothesis that holds under R1 that is the identifying assumption of the F(B)VR estimator, the statistic Tktp =
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has a Student distribution t(nk − 1).



Table 26: size of the test statistics, number of rejections out of 100 cases

t = 11 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10 k = 11
p = 1 Mean 0.069 -0.11 0.003 -0.087 0.047 -0.018 0.009 0.033 -0.02 0.035

Variance 1.115 1.135 1.004 1.06 0.993 0.847 1.343 0.948 0.845 0.898
10% 0 0 0 0 0 0 0 0 0 0

p = 2 Mean 0.093 0.087 0.051 0.035 -0.088 -0.02 -0.148 0.076 -0.166 -0.344
Variance 0.892 1.247 0.976 1.141 1.078 1.088 0.937 1.125 1.059 1.253

10% 0 0 0 0 0 0 0 0 0 0
p = 3 Mean -0.033 -0.082 0.104 -0.026 0.084 -0.008 0.19 0.078 0.014 -0.133

Variance 0.889 1.116 0.875 0.896 1.02 0.943 1.072 0.95 1.148 1.134
10% 0 0 0 0 0 0 0 0 0 0

p = 4 Mean 0.081 0.155 -0.104 0.024 -0.179 0.006 0.046 -0.051 0.146 -0.134
Variance 0.978 1.188 0.962 1.056 0.994 1.082 1.235 1.098 1.074 1.16

10% 0 0 0 0 0 0 0 0 0 0
p = 5 Mean 0.015 0.024 0.002 0.091 0.084 0.002 0.076 0.047 0.038 -0.204

Variance 1.143 1.189 1.249 1.206 1.053 1.054 1.209 1.118 1.093 1.134
10% 0 0 0 0 0 0 0 0 0 0

p = 6 Mean 0.113 0.04 0.008 0.045 0.087 -0.161 0.08 0.077 0.036 -0.121
Variance 1.119 1.031 0.851 1.215 1.198 0.969 1.153 0.974 1.11 0.944

10% 0 0 0 0 0 0 0 0 0 0
p = 7 Mean -0.17 -0.079 0.059 0.135 -0.043 0.047 -0.014 0.161 -0.039 -0.125

Variance 0.974 1.261 1.227 1.282 1.239 1.031 1.043 0.944 1.024 0.873
10% 0 0 0 0 0 0 0 0 0 0

p = 8 Mean -0.085 -0.127 -0.035 0.063 -0.165 -0.11 0.004 -0.088 -0.035 -0.089
Variance 0.886 0.963 1.278 1.063 0.724 1.264 1.22 0.941 1.115 1.19

10% 0 0 0 0 0 0 0 0 0 0
p = 9 Mean 0.017 0.175 -0.002 -0.139 0.109 0.107 -0.025 0.155 -0.124 -0.174

Variance 1.029 1.034 1.044 0.915 0.926 1.007 1.117 0.881 0.959 0.881
10% 0 0 0 0 0 0 0 0 0 0

p = 10 Mean 0.025 -0.093 -0.062 0.05 0.121 -0.081 0.068 -0.174 0.117 -0.052
Variance 1.098 0.96 0.978 0.978 0.857 1.09 1.14 0.881 1.161 1.28

10% 0 0 0 0 0 0 0 0 0 0
p = 11 Mean 0.203 -0.156 -0.019 -0.045 -0.032 0.008 0.086 0.023 -0.155 2.395

Variance 1.041 1.128 0.879 0.928 1.114 0.982 0.92 1.112 0.994 1.165
10% 0 0 0 0 0 0 0 0 0 0

Notes. The data generating process is the same as in previous sections except that we generate only 100 samples and
T = 11 for tractability. We set θ = 0.4, ρ = 0.4, and µ = −1.662. For each t, k, p we calculate the sample average

P̄ktp = 1
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√
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units treated in period k. Under R1’, a hypothesis that holds under R1 that is the identifying assumption of the F(B)VR

estimator, the statistic Tktp =
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nk
has a Student distribution t(nk − 1).



D Estimation with an alternative instrument

A natural test of robustness is to use an alternative instrument. In Table 27, we
replicate the estimation approaches presented in Table 11 using a dummy of a
state Republican majority as an instrumental variable. We expect this dummy
variable to influence the divestiture decision since Republican politicians are
reportedly more favourable to electricity restructuring (Joskow, 1997). This in-
strumental variable is also employed by Zhang (2007). The coefficient estimated
by TSLS-FBVR, which equals -11, is lower but not statistically different from
the coefficient obtained in our baseline estimation, which equals -7.6. How-
ever, standard TSLS and TSLS-Probit provide very different point estimates in
comparison to the results in Table 11. This further illustrates that TSLS and
TSLS-Probit are not reliable when the endogenous treatment is persistent. FVR
appears to be more sensitive to the choice of instrumental variable than FBVR.

Table 27: estimation output of model (8.1) when an indicator for state Republican
majority is used as instrument

TSLS TSLS-Probit FVR FBVR
Divest(0/1) -17.630** -7.567 -19.125*** -10.959**

(6.338) (5.380) (5.540) (4.364)
Age 0.420 0.161 0.458* 0.248

(0.277) (0.229) (0.263) (0.228)
Age2 -0.009** -0.010** -0.009** -0.010**

(0.004) (0.004) (0.004) (0.004)

Year dummies Yes Yes Yes Yes
Treatment of obs. Dummy Dummy Dummy Dummy
where UF = 100 variable variable variable variable
R2 0.40 0.44 0.39 0.43
No. obs. 1,851 1,851 1,851 1,851

Notes. The dependent variable is UF, the total number of outage hours divided by
maximum potential generation hours. For all columns except OLS, a dummy equal to 1
when the state has a Republican majority in the previous period is the unique original
instrument for the divestiture treatment. SE in brackets are robust to heteroskedasticity
and autocorrelation with a Bartlett bandwidth = 2. *p < 0.10, **p < 0.05, *** p < 0.01.



E Spillover

Results in Section 8 rely on the assumption that untreated units are completely
unaffected by the treatment of other units. In this section, we evaluate the rea-
sonableness of this assumption. Spillover effects, i.e. untreated units are affected
by treated units, can occur since information can flow across units directly as
a result of joint stakeholders, and indirectly through industry associations and
labour movements.21 If spillovers are present, we shall under-estimate the effect
of the treatment. In this section, we base our analysis on the FBVR estimator
presented in Table 11 using the share of industrial electricity consumption as an
instrument.

We present the results in Table 28. The existence of spillover effects is tested
at three different levels: (i) for nuclear reactors operated by the same operators
(column 1), (ii) for nuclear reactors with similar technological characteristics
(column 2) and (iii) for nuclear reactors located in the same state (column 3)
or in the same and neighbouring states (column 4). We add the appropriate
dummy variables to our base specification for each scenario.22

Since none of the coefficients of these dummy variables is found to be sig-
nificantly different from zero, we cannot reject the null hypothesis that there are
no spillover effects from divested to non-divested reactors. This suggests that
divestiture may lead to operational or managerial changes that are difficult to
transfer to non-divested reactors. It is worth noting that this result contrasts
with the findings of Craig and Savage (2013) who identify significant spillovers
for thermal power plants in the U.S. following restructuring. This may be ex-
plained by nuclear reactors’ complexity and specific regulations that make it
difficult to transfer experience across reactors.

21For example, the Institute for Nuclear Power Operation fosters exchange of knowledge and
experience across nuclear operators.

22We define reactor technology classes based on reactor containment type, steam system sup-
plier and design type using data for the US Nuclear Regulatory Commission Information Digest
20122013. Available at: www.nrc.gov/reading-rm/doc-collections/nuregs/staff/sr1350/appa.xls



Table 28: estimation output of model (8.1) allowing for spillovers

Operational Technical Geographic
Spillovers Spillovers Spillovers

(1) (2) (3) (4)
Divest(0/1) -7.716*** -7.189 ** -8.368 ** -9.447

(2.266) (3.280) (3.958) (6.596)
SameOperator(0/1) ×Divest(0/1) -1.275

(1.596)
SameTechnology(0/1) ×Divest(0/1) -0.720

(2.126)
SameLocation(0/1) ×Divest(0/1) -0.862 -1.834

(2.313) (4.7)
Age 0.169 0.144 0.200 0.259

(0.210) (0.344) (0.253) (0.361)
Age2 -0.009** -0.010*** -0.009** -0.009**

(0.003) (0.004) (0.004) (0.004)

Year dummies Yes Yes Yes Yes
Treatment of obs. Dummy Dummy Dummy Dummy
where UF = 100 variable variable variable variable
R2 0.44 0.44 0.40 0.43
No. obs. 1,851 1,851 1,851 1,851

Notes. Column (3) limits geographical spillovers to reactors within the same state, and Column
(4) allows divested reactors to influence reactors both within the same state and in neighboring
states. The dependent variable is UF, the total number of outage hours divided by maximum
potential generation hours. For all columns except OLS, the share of state level electricity
consumption by industrial customers in the previous period is the unique original instrument
for the divestiture treatment. SE in brackets are robust to heteroskedasticity and autocorrelation
with a Bartlett bandwidth = 2. *p < 0.10, **p < 0.05, *** p < 0.01.
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