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Abstract: This paper estimates the causal effect of increased ambient air

pollution on the frequency of road traffic accidents in the United Kingdom

between 2009 and 2014. An instrumental variable approach is applied,

exploiting atmospheric temperature inversions as a source of plausibly

exogenous variation in daily air pollution levels. The paper estimates the

local average treatment effect for a geographic grid cell (1o × 1o) as an

increase of 0.3 accidents per day for each additional 1µg/m3 in the daily

concentration of NO2. The effect is equivalent to an increase of 2% relative

to the average number of daily accidents. The results appear robust to multi-

ple sources of potential confounding, measurement error and co-emission bias.
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1. Introduction

Air pollution has long been suspected to be responsible for serious adverse health

effects including respiratory illness and cardiovascular disease (Dockery and Pope, 1994;

Seaton et al., 1995). Quasi-experimental methods based on observational data have

helped to solidify the evidence regarding the magnitude and causal nature of the effects

from exposure to air pollutants such as nitrogen dioxide (NO2), carbon monoxide (CO),

and small particulate matter (PM) (for recent surveys see Currie et al., 2011; Graff Zivin

and Neidell, 2013).

Recently, air pollution has also been shown to negatively affect other outcomes rele-

vant to economic productivity and wellbeing. Graff Zivin and Neidell (2012) find that

heightened levels of ozone (O3) negatively affect the labour productivity of agricultural

workers. Lay et al. (2014) find that elevated levels of small particulate matter below

2.5µm (PM2.5) and carbon monoxide (CO) impair cognitive performance and reduce

standardised test scores of high school students.

This paper contributes to this emerging literature concerned with the adverse effects

of air pollution on productivity broadly and cognitive performance in particular. Specif-

ically, we ask whether or not air pollution affects driving performance in road traffic. To

the best of our knowlegde, this paper represents the first attempt to relate air quality to

road safety. In particular, we aim to identify the causal effect of an increase in air pollu-

tion, measured as the daily average concentration of NO2, on the number of road traffic

accidents within spatial grid cells (regions) of dimension 1o × 1o in the United Kingdom

between 2009-2014. Our identification of the causal effect relies on atmospheric tem-

perature inversions as an instrument inducing plausibly exogenous variation in pollution

levels.

Our main hypothesis is that increases in air pollution result in more traffic accidents due

to impaired performance of drivers, likely by affecting cognitive ability such as attention

span or reaction time. This research question is highly relevant, as road traffic accidents

represent a significant source of premature deaths and injuries, as well as large costs in

damages, both in the United Kingdom and beyond.

This paper proceeds as follows. Section 2 discusses the existing literature. Section 3

introduces the research design. Section 4 describes the data. Section 5 presents the main

results. Section 6 discusses robustness and limitations. Section 7 concludes.
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2. Previous Literature

Air pollution refers to a variety of pollutants including carbon monoxide (CO), nitro-

gen dioxide (NO2), sulphur dioxide (SO2), small particulate matter (PM2.5 or PM10),

and ozone (O3). A large literature exists focusing on the adverse effects on health from ex-

posure to air pollution (Currie et al., 2011; Graff Zivin and Neidell, 2013). Air pollution

is likely responsible for serious adverse health effects such as increased risk of cardio-

vascular disease and respiratory illness (Seaton et al., 1995; Dockery and Pope, 1994).

These health shocks appear to disproportionally affect vulnerable populations such as

infants (Currie and Neidell, 2005), members of poorer households (Jans et al., 2014), and

those living in developing nations (Arceo et al., 2016). The improved understanding and

quantification of adverse health effects from pollution has shaped a consensus and helped

inform policies to reduce air pollution.

However, more recent work has also found adverse effects outcomes beyond cardiovas-

cular and respiratory health. Notably, it has been shown that air pollution significantly

lowers the productivity of agricultural labourers (Graff Zivin and Neidell, 2012) and, in

the case of PM2.5, even in-door workers inside a pear-packing factory (Chang et al., 2014)

and call-center (Chang et al., 2016). Lay et al. (2014) show that pollution levels inside

of classrooms negatively affects test performance among high-school students. This is

in line with recent findings in the medical literature indicative of adverse effects of air

pollution exposure on cognitive function. For example, Chen and Schwartz (2009) find a

negative association between exposure to air pollution (O3 and PM10, yearly variation)

on performance in neurobehavioural tests designed to measure reaction time, attention,

perceptual function, and short-term memory. A large portion of medical research has

thus far focused on the association between long-term exposure to air pollution and cog-

nitive as well as psychological function in both children and, more recently, adults (for a

recent survey see Tzivian et al., 2015). A number of these studies explicitly focus on the

role of traffic as the source of pollution exposure (e.g. Freire et al., 2010; Power et al.,

2011).

These findings suggest that the adverse effects from air pollution may extend well be-

yond cardiovascular and respiratory health. Indeed, if air pollution impedes productivity

in a wide array of activities, we may currently underestimate the cost of air pollution to

human well-being. This paper adds to this emerging literature by asking if air pollution
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may affect productivity in another dimension - namely the ability to be a safe participant

in road traffic. Arguably, safely steering a car and avoiding accidents is positively related

to ones mental alertness, reaction time, and a host of other dimensions of mental acuity.

Based on previous findings that pollution affects both physical and cognitive productiv-

ity, we hypothesise that exposure to air pollution may impair driving performance and

consequently increase the number of traffic accidents. In doing so, we focus on contem-

poranous effects from relatively short-term exposure (i.e. daily variations) rather than

developmental effects from long-term exposure.

The possible effect of air pollution on driving performance is highly relevant for a num-

ber of reasons. Firstly, participating in road traffic takes up a significant amount of time

for many working age adults. Consequently, traffic accidents are responsible for significant

costs in the form loss of life, bodily harm, and material damages. Secondly, road vehicles

constitute a major source for air pollutants and it is arguably while participating in road

traffic that one tends to be exposed to one of the highest concentrations of air pollution.

Knittel et al. (2016) even use variation in traffic as instrument for pollution levels in order

to better estimate the causal effect of pollution on health. However, this present paper

is to the best of our knowledge the first to analyse the possibility that pollution levels

may affect traffic and in particular the number of traffic accidents. Finally, evidence that

contemporaneous exposure to air pollution may impair driving performance may suggest

further previously undiscovered costs from air pollution during activities with high risk

or high cognitive strain, such as operating heavy machinery.
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3. Research Design

We are interested in estimating the causal effect of an increase in the level of air pollu-

tion on the number of traffic accidents. This section introduces the empirical challenges

when estimating such a causal effect and presents our identification strategy alongside

identifying assumptions. In doing so, we follow the potential outcome terminology of An-

grist et al. (1996) by defining Y as the realised outcome (number of road traffic accidents)

and D as the treatment indicator (concentration of air pollutant). We further define Y1

and Y0 as potential outcomes under treatment (heightened level of pollution) and control

respectively.

We are then interested in the causal effect of an increase in pollution on the outcome,

i.e. (Y1 − Y0). However, we face what is known as the ’fundamental problem of causal

inference’, namely that we cannot observe both potential outcomes at the same time.

The empirical challenge: Identifying the causal effect of pollution on accidents from

observed outcomes is challenging because air pollution is largely a product of human

activity and we thus cannot reasonably assume that it is randomly assigned across loca-

tions. In the context of this paper, it is likely that both the number of accidents per day

and the level of pollution in a certain region are related to unobserved confounding fac-

tors. These factors may be temporary, such as for example weather conditions affecting

both accident frequencies and pollution levels, or structural, such as population density

of regions, prevalence of road types, or speed regulations.

In addition, it is possible that there is a certain degree of reverse causation, in the sense

that accidents affect traffic flows and thus air quality. In all these cases, endogeneity of

pollution levels will result in biased estimates when applying simple regression analysis

with OLS estimators (or simply comparing the difference between realised outcomes of

treated and untreated subjects in a binary setting).

Identification strategy: In order to overcome the problem posed by potential endo-

geneity of treatment, we adopt an instrumental variable (IV) approach to estimate the

causal effect of air pollution on accident frequency. We use as an instrument the occur-

rence of atmospheric temperature inversions. We denote Z as an instrumental variable,

which takes the value 1 on inversion days and 0 otherwise.
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(a) Normal conditions: Temperature decreases
with altitude, pollutants rise and disperse

(b) Inversion episode: Warmer layer above,
pollutants remain trapped near ground

Figure 1: Temperature inversions as instrument for air pollution

While on most days, temperature decreases with altitude, inversion periods are char-

acterised by increasing temperature. During these inversion periods, the warmer air at

higher altitude prevents pollutants from rising and dispersing, but rather traps them

close to the ground (see Figure 1). We will argue that such inversion periods present

an exogenous source of variation in air pollution levels (after controlling for potentially

related weather conditions).

Our approach is most closely related to that applied by Jans et al. (2014), who use

temperature inversions as an instrumental variable to estimate the effect of PM10 concen-

trations on children’s respiratory health. Similarly, Arceo et al. (2016) use the number of

temperature inversions per week to estimate effects of PM10 and CO on child mortality

in Mexico City.

Identifying assumptions: In order for our IV approach to yield an unbiased estimate

of the suspected causal effect, certain assumptions need to be met. The identifying

assumptions in this framework are:

Assumption A1 Independence: (Y0, Y1, D0, D1) ⊥⊥ Z

Assumption A2 First Stage: 0 < P (Z = 1) < 1 and P (D1 = 1) 6= P (D0 = 1)

Assumption A3 Monotonicity: D1 ≥ D0 (no defiers)

In essence, First Stage requires that the instrument Z is informative with regard to

the treatment D. In our application, we require inversion episodes to significantly af-

fect the concentration of air pollutants (instrument relevance). Independence requires
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inversion episodes to be randomly assigned. Crucially, it implies that inversions Z only

affect accident frequency Y through their effect on pollution D (exclusion restriction).

Monotonicity rules out ’defiers’, in our case regions where inversions systematically have

the opposite effect on pollution than in general. We will discuss the plausibility of these

assumptions alongside the results presented in Section 4.

Estimators: It has been shown by Imbens and Angrist (1994) that under assumptions

(A1) − (A3) it is possible to estimate the local average treatment effect (LATE), which

identifies average treatment for ’compliers’, using the Wald estimator:

αLATE = E[Y1 − Y0|D1 > D0] =
E[Y |Z = 1]− E[Y |Z = 0]

E[D|Z = 1]− E[D|Z = 0]
=
cov(Y, Z)

cov(D,Z)
(1)

We report below the standard two-stage least squares (2SLS) estimator, which reduces

to the Wald estimator in the absence of covariates. In the presence of covariates, it has

been shown by Abadie (2003) that 2SLS estimates do not have a straightforward causal

interpretation. However, they again represent LATE under the additional assumption

that treatment effects are constant conditional on covariates X (and assumptions (1)−(3)

conditional on X). Again, results in Section 4 will be accompanied by a brief discussion

of the likely causal nature of estimated effects.

Empirical specification: The empirical specification that we implement for 2SLS es-

timation is represented by the following two equations:

Dit = τ + ρZit + δ
′
xit + ηt + θi + υit (First Stage) (2)

Yit = µ+ αD̂it + β
′
xit + µt + γi + εit (Second Stage) (3)

Here, Yit is the number of accidents in region i on day t, Dit is the average daily

concentration of an air pollutant, Zit is a binary indicator of night-time inversion, xit is

a vector of controls for weather conditions, ηt and µt are time fixed-effects, θi and γi are

region fixed-effects, τ and µ are constants, and υit and εit are error terms.
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(a) NASA AIRS readings (blue, N=32) and
corresponding grid cells (colouring accord-
ing to inversion frequency 2009-2014)

(b) AURN air quality monitors (blue, N=134)
and corresponding grid cells (colouring ac-
cording to total accidents 2009-2014)

Figure 2: Geographic coverage of observational units

4. Data

We use data from four sources to contruct a panel data set on air quality, traffic

accidents, and weather conditions in the United Kingdom between 2009 and 2014.

4.1. Data Sources

Atmospheric climate data: This paper uses data extracts from NASA’s Atmospheric

Infrared Sounder (AIRS) launched onboard the NASA satellite AQUA in 2002. With

the primary intention of improving weather forecasts, the AIRS produces bi-daily a 3-

dimensional (the third dimension are vertical pressure layers) map of atmospheric tem-

perature and water vapor. Readings are provided for an ascending phase (ca. 2pm local

time) and descending phase (2am). We use the readily available L3 data of AIRS Version

6 (AIRS Science Team/Joao Texeira, 2015), which provides readings for 24 layers at a

spatial resolution of 1o× 1o (ca. 110km× 70km). We use data on the two pressure levels

closest to the earth’s surface (1000hPa at sea level and 925hPa at ca. 600m above sea

level). Specifically, we use readings from the descending phase (ca. 2am local time) to con-

struct a binary indicator of inversion periods when the temperature at the 925hPa-level

exceeds that of the 1000hPa-level. We follow Jans et al. (2014) in focusing on nighttime
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inversions to counter concerns that daytime inversions may be perceivable for road traffic

participants (inversions during daylight can be occasionally be seen with the naked eye)

and because these inversions occur before the bulk of recorded traffic accidents on a given

day. Furthermore, inversions are more frequent at night. We complement information on

night-time inversion periods by readings on relative humidity at the surface over liquid

phase (in per cent) and cloud fraction for all pressure levels combined (between 0− 1).

Our main unit of observation are the NASA L3 grid cells and the geographic coverage

is most of the United Kingdom (spatial box 49N , 10W , 61N , 2E), observed for the 2, 191

days of the years 2009−2014. Figure 2a provides a visual representation of the geographic

coverage of grid cells used in the final analysis.

Air pollution data: Air pollution data come from the United Kingdom Automatic

Urban and Rural Network (AURN), which includes automatic air quality monitoring

stations measuring a variety of air pollutants. The data is provided by the Department

for Environment, Food and Rural Affairs (2016). The network comprises a total of

198 monitoring sites with data available at different degrees since 22 February 1973.

For the 2, 191 days in the period between 2009-2014, we obtain daily readings for 150

sites, of which 134 report nitrogen dioxide (NO2) levels (see Figure 2b) and 75 report

concentrations of small particulate matter below 10µm (PM10).

Road accident statistics: Observations for road traffic performance are obtained from

the Road Safety Data maintained by the United Kingdom Department of Transport

(Department for Transport, 2015). This publicly available data provides yearly lists of

road traffic accidents involving personal injury which have been reported to the police

and recorded using STATS19 forms. For the six years between 2009 and 2014, we have

obtained details for a total of 899, 995 individual accidents with exact timing and geo-

coordinates (longitude to 6 digits after the comma, latitude to 5 digits). Each accident

record is complemented by details about road type, vehicle make, casualty count, as well

as age and sex of drivers’ involved. For the purpose of this paper, we collapse these data

to daily counts of reported accidents within each geographic grid cell (see Figure 2b).
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Additional weather data: Finally, we complement atmospheric climate data with

ground-level observations on weather conditions from the United Kingdom Met Office

Integrated Data Archive System (MIDAS) Land and Marine Surface Stations (Met Office,

2012). We use the daily amount of rainfall over a 24 hour period in mm (usually 09:00-

09:00) and hourly readings of wind speed in knots averaged over the day (00:00-00:00).

4.2. Descriptive Statistics

The final sample used in the analysis consists of 41, 651 observations, each represent-

ing one grid cell on a given day, for which at least one non-zero accident count, NO2

concentration reading, and atmospheric temperature readings were available.

Summary statistics for key variables are presented in Table 1. The average for the

number of accidents per grid cell per day is 14.05 and the average NO2 concentration is

23.69µg/m3. Inversion periods are observed 9.6% of the time. Data availability introduces

a likely sample bias, as we expect less populated and more rural grid cells to more likely

have no reported accidents on a given day or suffer from missing values in pollution

levels. In sum, our sample accounts for 585, 076 (i.e. 65% of the total 899, 995) accidents

reported between 2009 and 2014.

Table 1: Descriptive statistics

(1) (2) (3) (4) (5)
Observations Mean Std. Deviation Minumum Maximum

# of accidents 41,651 14.05 18.67 1 157
NO2 41,651 23.69 15.34 0 147.7
PM10 28,714 19.24 10.61 0 118
Inversion (binary) 41,651 0.0959 0.294 0 1
Temperature 41,651 280.5 4.848 259.2 294.8
Humidity 39,925 85.38 7.876 40.25 100
Cloud coverage 41,651 0.505 0.263 0 1
Wind speed 37,800 8.037 3.678 0 31.42
Rainfall 41,651 1.629 3.230 0 57.19

Notes: The unit of observation is one grid cell (1o × 1o) on one day. Data sources are
the UK Department of Transport for the number of accidents; UK DEFRA / AURN for
NO2 and PM10 data (µg/m3, averaged for all available readings per grid cell per day);
NASA AIRS for Temperature (Kelvin, 1000hPa pressure layer), Cloud coverage (fraction),
Humidity (percentage, relative), and Inversions (binary indicator equal to 1 when Temperature
in 925hPa is greater than Temperature in 1000hPa layer); and UK MIDAS for Rainfall (mm,
daily total) and Wind speed (Knots, daily average of hourly readings).
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5. Results

This section presents results of the empirical model detailed in Section 2. The causal

nature and economic significance of estimates is assessed, and threats to internal validity

are discussed. Section 5 provides further robustness tests and discussess limitations.

5.1. Baseline Results

As outlined above, this paper aims to estimate the causal effect of increased concentra-

tions of air pollutants on the frequency of road traffic accidents in the United Kingdom

between 2009-2014.

Table 2: First Stage - Effect of inversions on pollution

(1) (2) (3)
OLS OLS OLS

Mean NO2 23.69 23.52 23.52
Inversion (binary) 5.011*** 1.525*** 1.126***

(0.272) (0.426) (0.246)
Effect 21.15% 6.48% 4.79%
Weather Covariates YES YES
Region FE YES
Region-Year FE YES
Weekday FE YES
Month FE YES
Observations 41,651 36,274 36,274
R-squared 0.009 0.333 0.498
F-test 339 34.99 64.76

Notes: This table provides estimates of the effect of inver-
sion episodes on the average daily NO2 concentration in a
grid cell. Robust standard errors are reported in parenthe-
ses (*** p < 0.01, ** p < 0.05, * p < 0.1). A detailed version
of this table including coefficients for weather covariates can
be found in the Appendix.

First stage estimates: Table 2 presents results from the first stage regression (equa-

tion 2) assessing the effect of inversion periods on daily NO2 pollution levels. Column

1 shows that days on which night-time inversions occur have on average a concentration

of NO2 which is 5.011µg/m3 higher than on non-inversion days. This amounts to an

increase of 21.15% relative to the sample average. However, one concern for the analy-

sis presented is that inversion episodes may be correlated with other weather conditions
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that affect pollution and accidents. For example, inversion frequency, accident count and

pollution levels may all systematically differ between regions.

Column 2 shows that when controlling for weather conditions (ground-level tempera-

ture, humidity, cloud coverage, wind speed, and rainfall) as well as region fixed effects,

the coefficient is lower at 1.525µg/m3. It is thus apparent that some of the correlation

between inversion episodes and pollution levels is related to other weather conditions and

time-invariant characteristics of grid cells. Column 3 reports results for the first stage re-

gression, when letting regional fixed effects vary by year (to account for structural breaks)

and further controlling for month fixed effects (as both inversion frequency and pollution

levels vary by season) and day of the week. An inversion episode is then estimated to

relate to an increase of 1.126µg/m3 in daily average NO2 concentrations (4.79% relative

to the average).

In all specifications, coefficients of night-time inversions are statistically significant

at the 99%-level and F-tests exceed 30 in each case. While the relationship with other

weather conditions is non-trivial, we conclude that the First Stage assumption (A2) holds

and night-time inversions represent a relevant instrument for daily NO2 concentrations.

Table 3: Main Results - Effect of pollution on accidents

(1) (2) (3) (4)
OLS LATE 2SLS 2SLS

Mean # Accidents 14.05 14.05 15.10 15.10
NO2 0.498*** 0.276*** 0.279*** 0.273***

(0.00893) (0.0589) (0.0773) (0.103)
Effect 3.55% 1.96% 1.85% 1.81%
Weather Covariates YES YES
Region FE YES
Region-Year FE YES
Weekday FE YES
Month FE YES
Observations 41,651 41,651 36,274 36,274

Notes: This table provides estimates of the effect of an increase in NO2

concentration on the number of accidents per grid cell per day. Estimates
in Column 1 are from a simple OLS estimator. Estimates in Columns 2-4
are from 2SLS estimators using the occurrence of temperature inversions
on a given day as instrumental variable for pollution. Robust standard
errors are reported in parentheses (*** p < 0.01, ** p < 0.05, * p <
0.1). A detailed version of this table including coefficients for weather
covariates can be found in Appendix D.
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Causal estimates of the effect of pollution on accidents: Table 3 reports the

main results of this paper - estimates of the causal effect of NO2 pollution on the number

of daily traffic accidents in a grid cell. Column 1 reports the result from a simple OLS

regression, which is included for comparison. As discussed in Section 2, this estimate likely

suffers from multiple sources of endogeneity bias, in particular due to reverse causation

and confounding from factors such as road network density.

To obtain a more reliable estimate of the causal effect in question, estimates from

an instrumental variable approach are reported in Columns 2-4. Column 2 reports the

2SLS estimate from an IV specification without covariates (separate second stage results

can be found in Appendix D alongside the detailed versions of Tables 2 and 3). The

interpretation of the estimate is as follows: An increase of 1µg/m3 in the daily average

concentration of NO2 in a grid cell (1o × 1o), on average causes an increase of 0.276 in

the number of reported road accidents in that cell on that day (an increase of 1.96%

relative to the mean). We interpret the significant difference to the OLS estimate as a

first indication of bias in the OLS model. Under assumptions (1)−(3), the 2SLS estimate

has a direct causal interpretation as the local average treatment effect (LATE).

Internal validity: We have already demonstrated, both in theory (Figure 1) and em-

pirically (Table 2), that the First Stage (A2) assumption likely holds. Monotonicity (A3)

is not a testable assumption. However, we would like to argue that, given the nature of

the instrument as a weather phenomenon, it is likely to hold that there are ’no defiers’ in

the sense of regions in which night-time inversions always result in lower pollution levels.

The independence assumption (A1) is crucial to the causal interpretation and unbi-

asedness of the reported estimates. While it is not testable, we discuss below our case

for independence in the given application. We argue that night-time inversions present

a source of plausibly exogenous variation in daily air pollution levels. In particular, we

require it to be true that inversions do not affect road safety, except through their effect

on pollution levels (exclusion restriction).

This might be violated if inversion episodes themselves affect the performance of traffic

participants. We are not aware of any evidence showing adverse effects of inversion

episodes on well-being or cognitive performance. It is also possible that inversions coincide

with other weather patterns that affect road safety or that inversions are more frequent in
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regions or at times with a higher number of accidents. While independence (A1) cannot

be tested for formally, results from additional model specifications presented in Table 3

further strengthen our confidence in the assumption. The are discussed below.

5.2. Alternative Specifications

Weather confounding: One possible threat to independence might be that inversion

periods are related to other weather phenomena that affect the accident frequency. In

addition, it is possible that regions systematically differ in terms of weather patterns

(including inversion frequency) as well as structural characteristics affecting accident

rates (e.g. road network density between coastal and mountainous regions). To control

as much as possible for these threats to independence, Column 3 of Table 3 reports results

from a model specification which includes additional weather controls and grid cell fixed

effects.

Indeed, comparison between Columns 1 and 2 in Table 2 indicates that the magnitude

of the correlation between inversions and pollution is reduced when controlling for weather

covariates. However, the estimated effect of NO2 on accidents (0.279) in Column 3 Table

3 is not significantly different from that without covariates.

Seasonality and time trends: Column 4 of Table 3 presents results from a specifi-

cation with added time fixed effects. These are intended to control for confounding over

time, especially by including month fixed effects to control for seasonality of inversions

(inversion frequency ranges from 2% in August/September to 23% in March/April) which

may correlate with seasonality in pollution and accidents. Further fixed effects control

for variation by weekday and for possible time trends in both accidents and inversions

(inversion frequency ranges from 6% in 2014 to 13% in 2012) by allowing for region

fixed effects per year. Again, the estimated effect of NO2 on accidents (0.273) is not

significantly different from that in Colum 2.

It is important to note that estimates in Columns 3 and 4 of Table 3 do not have a

straightforward causal interpretation due to added covariates. However, the fact that

these much more detailed specifications produce estimates which are not significantly

different from those in Column 2 strengthens our confidence that the baseline IV speci-

fication reported in Column 2 produces reliable estimates of the LATE.
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6. Robustness and Limitations

We have estimated a positive causal effect of air pollution (measured by NO2) on the

number of traffic accidents in the United Kingdom between 2009-2014. Below, we present

further robustness exercises and discuss limitations of the results.

6.1. Measurement Error

A recurring problem when estimating adverse effects from pollution is likely measure-

ment error in attributing pollution levels to units of observation, often times individuals

who may move between locations or actively avoid higher levels of pollution. We believe

this is less of a concern in this paper for the following reasons.

Firstly, the instrumental variable approach is robust to measurement error given as-

sumptions (1) − (3). Secondly, we focus on large geographic areas (1o × 1o) as the unit

of observation and our source of exogenous variation is based on large-scale weather pat-

terns. While we cannot control for all types of avoidance behaviour (such as rolling up

car windows), we believe it is reasonable to assume that there is no systematic shift of

population or traffic activity between grid cells in response to weather patterns. Finally,

attenuation bias from measurement error would result in our estimates being too low,

and thus does not threaten the significance of the results.

Table 4 in the Appendix replicates Table 3 using a different methodology of assigning

pollution levels to observations. Instead of using unweighted averages of all monitor

readings within a grid cell on a given day, we use distance-weighted averages (as proposed

by e.g. Currie and Neidell, 2005)1. Coefficient estimates appear to be robust (0.283 −

0.285) to such an alternative approach.

6.2. Heterogeneity of Treatment Effect

We have so far focused on estimating the local average treatment effect (LATE), un-

der the additional assumption that treatment effects are constant when covariates are

included. However, a concern in analyses of adverse effect of pollution is in heterogenous

and non-linear effects. It is not a priori established whether the effect of an additional

1We construct averages where monitor readings are weighted by the inverse distance from the centroid
of a given grid cell. Distances are calculated using the Haversine formula to find the great-circle distance
in kilometers between two coordinate-points.
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unit of pollution on the number of reported accidents should be stable across different

regions of the United Kingdom. We report in Table 5 in the Appendix a replication of

the results from Table 3 using different sub-samples.

Crucially, one may hypothesise that rather than a linear effect, the effect of pollution

may be proportional to a baseline number of accidents. In Column 2 we thus report 2SLS

results when the number of accidents is normalised per grid cell (with 1 equal to the long-

term average). We find a 2.12% increase in accidents per additional µg/m3 of NO2, which

is very similar to the 1.8 − 1.9% estimates in Table 3. To assess if there is evidence for

proportional effects, we report in Columns 3 and 4 separate results for two samples of

grid cells, one with low and one with high average accident counts. While there is some

divergence in estimates (0.190 vs. 0.422), we cannot conclude with statistical significance

that the coefficients are different.

Another concern are non-linear dose-response functions. It is possible that additional

units of pollution are more harmful when concentrations are already high. Columns

5 and 6 report results for separate samples, one with low average NO2 concentrations

(< 25µg/m3), one with high ones (> 25µg/m3). Again, the coefficient estimates diverge

somewhat, but we cannot conclude a significant difference in estimates. Finally, there is

a high correlation between those regions with higher accident counts and higher pollution

levels, which are both likely related to road density. More analysis of differential treatment

effects is clearly warranted, but our finding of positive causal effects seem robust across

regions.

6.3. Pollutant Co-emission

A further problem in the estimation of adverse effects from air pollution comes from

the fact that multiple air pollutants, such as NO2, CO, or PM10, are often emitted from

the same source and are highly correlated. Observed adverse effects from pollution may

then be due to any one or several of these pollutants.

Such pollutant co-emission poses a challenge to the causal interpretation of our results,

because it seems likely that inversion periods also affect concentrations of pollutants other

than NO2. Table 6 in the Appendix shows that night-time inversions do indeed also

positively affect the concentration of PM10 on a given day. Such small particulate matter

has been linked to adverse effects on health and productivity and thus poses a threat to
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the exclusion restriction (i.e. independence in the potential outcomes framework) when

estimating effects of NO2.

We believe that our findings demonstrate a causal effect of air pollution (which we

measured as NO2) on accident frequency, but we cannot separately identify which pol-

lutant is responsible for which portion of the effect. In order to disentangle effects to a

degree, we propose an approach based on the physical properties of different pollutants.

In doing so, we follow Schlenker and Walker (2011) and Knittel et al. (2011) who rely on

multiple instruments to disentangle effects of multiple pollutants with different physical

properties.

As shown in Table 6 in the Appendix, contemporaneous inversions raise levels of both

NO2 and PM10. In addition, PM10 levels are also positively affected by inversion periods

on the previous day, which is not the case for NO2. Our interpretation is that NO2,

as a gaseous substance, is less persistent and does not re-group once dispersed. Mean-

while, PM10, consisting of solid particles, can accumulate as dust on surfaces and be

re-suspended by air motion. We exploit this property in a model specification with two

endogenous variables (PM10, NO2) and two instruments (contemporaneous inversions

and previous-day inversions).

Results of this exercise are presented in Table 7 in the Appendix. Column 1 repeats the

specification from Table 3 Column 4 with a smaller sample for which PM10 readings are

available. Column 2 shows that PM10, if used as sole measure of air quality, is attributed

a positive effect on accidents. However, Column 3 shows that the effect of PM10 is

not significantly different from zero when instrumenting for both NO2 and PM10. The

effect ascribed to NO2 is similar in magnitude to estimates in Table 2, albeit at a lower

significance level of 90%. We interpret these results as indicative that the causal effect

of air pollution on road traffic accidents more likely stems from NO2 or similar gaseous

pollutants, rather than particulate matter.
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6.4. External Validity

While we believe that our results show strong evidence for a causal effect of air pollution

(measured as concentration of NO2) on road safety, external validity is limited in some

ways. Firstly, our period of observation are the six years between 2009 and 2014. Any

extrapolation to other time periods needs to take into account likely time trends in air

quality, automotive technology, road networks and traffic policies.

While we have constructed our sample starting from all reported accidents within the

United Kingdom, data availability has likely introduced a certain sampling bias away from

grid cells with missing data on air quality, weather conditions, or no reported accidents

on any given day. The observed causal effect is thus likely more representative of more

densely populated areas. Nevertheless, our sample accounts for 65% of reported accidents

between 2009-2014 in much of the United Kingdom.

Extrapolation to other countries is subject to further limitations. We believe that the

biological effects of air pollutants on humans, including their ability to drive a car, are

likely similar across the world. However, differences in road networks, traffic policies, au-

tomotive technologies, and weather conditions would likely result in different magnitudes

of effects. Furthermore, different levels of air quality, in particular in emerging economies,

might result in different causal effects if one suspects a nonlinear dose-response function

from air pollution.

In our analysis, we focus on daily variation in pollution levels, and thus estimate

relatively short-term effects. We can neither draw conclusions about long-term exposure

effects from living permanently in a polluted area, nor can we infer whether or not the

effects observed occur immediately or are of a cumulative nature, resulting from continued

exposure to pollution over the span of multiple hours.

Finally, our units of observation are large geographic grid cells (1o×1o). Extrapolation

to other units of observation, such as specific road segments or individual traffic partic-

ipants, is likely to be erroneous, as both air pollution and road safety vary significantly

within regions. For example, we would expect very different effects when comparing a

major intersection and a recreational park without accessible roads. Nevertheless, we

believe that the robust finding of an average causal effect for larger geographic areas is

highly relevant, as such areas can be subject to policies affecting both air quality and

road safety.

17



7. Conclusion

This paper assesses the link between pollution and road safety using data from multiple

sources, including atmospheric climate data from NASA. The initiating hypothesis was

that an increase in ambient air pollution levels impairs drivers’ ability to drive safely, thus

resulting in an increase in the number of accidents. In order to identify the causal effect

of pollution on accident frequency, we have adopted an instrumental variable approach,

which relies on plausibly exogenous variation in pollution levels arising from atmospheric

temperature inversions.

Our findings indicate a positive and likely causal effect of air pollution in the form

of NO2 on the number of road traffic accidents. Given the identifying assumptions, a

1µg/m3 increase in daily average concentration of NO2 is estimated to cause an increase

of 0.3 in the number of daily accidents in the average geographic grid cell (1o × 1o).

This represents a significant increase of ca. 2% relative to the mean. This estimate is

remarkably robust to different model specifications and robustness tests. To illustrate

the magnitude of this effect, we consider the conservative example of the grid cell with

the most accidents, containing a large portion of (West) Greater London (centered on

51o30′N 00o30′W ). This region has a mean level of NO2 of 48.0 and standard deviation

of 14.3. Our estimates suggest that a one standard deviation reduction in NO2 levels for

one day may prevent around 4 accidents in that area alone.

This paper adds to the literature, which has established adverse effects of air pollution

on health outcomes and, more recently, cognitive performance. To our knowledge, this

paper is the first to assess the effect of air pollution on road safety. We believe that

our analysis identifies a causal effect of pollution on road safety, but can only speculate

regarding the exact mechanisms involved. Our initial hypothesis has been that pollution

impairs drivers’ fitness, just as it has previously been shown to affect cognitive perfor-

mance in other areas. However, we cannot exclude other possible explanations, such as

pollution causing physical distractions (e.g. itching nose) or impaired visibility.

Whichever the exact mechanisms involved, the robust finding of a significant effect of

air quality on road safety is of strong relevance, given the high cost in damages, well-

being and life related to traffic accidents in the United Kingdom every day. These costs

may well represent another strong case for the benefits of reducing air pollution levels in

addition the costs to health identified by previous research.
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A. Measurement Error - Distance-weighting

Table 4: Main Results - Effect of pollution on accidents

(1) (2) (3) (4)
OLS LATE 2SLS 2SLS

Mean # Accidents 14.05 14.05 15.10 15.10
NO2 0.484*** 0.285*** 0.288*** 0.283***

(0.00901) (0.0609) (0.0799) (0.107)
Effect 3.44% 2.03% 1.91% 1.88%
Weather Covariates YES YES
Region FE YES
Region-Year FE YES
Weekday FE YES
Month FE YES
Observations 41,651 41,651 36,274 36,274

Notes: This table replicates Table 3, but where NO2 levels are con-
structed using weights according to the inverse distance of an air quality
monitor to the grid cell centroid. This table provides estimates of the
effect of the average NO2 concentration on the number of accidents per
grid cell per day. Estimates in Column 1 are from a simple OLS esti-
mator. Estimates in Columns 2-4 are from 2SLS estimators using the
occurrence of temperature inversions on a given day as instrumental vari-
able for pollution. Robust standard errors are reported in parentheses
(*** p < 0.01, ** p < 0.05, * p < 0.1).



B. Heterogenous Treatment - Sub-sample analysis

Table 5: Main Results - Effect of pollution on accidents

(1) (2) (3) (4) (5) (6)
2SLS 2SLS 2SLS 2SLS 2SLS 2SLS

Sample full normalised Y < 10 Y > 10 D < 25 D > 25

Mean # Accidents 15.10 1 (15.10) 4.99 26.38 6.45 23.60
NO2 0.273*** 0.021*** 0.190** 0.422** 0.156* 0.361**

(0.103) (0.0072) (0.0768) (0.197) (0.0854) (0.170)
Effect 1.81% 2.12% 3.81% 1.60% 2.42% 1.53%
Weather Covariates YES YES YES YES YES YES
Region-Year FE YES YES YES YES YES YES
Weekday FE YES YES YES YES YES YES
Month FE YES YES YES YES YES YES
Observations 36,274 36,274 19,135 17,139 17,986 18,288

Notes: This table replicates Table 3 with different sub-sets of the sample. Column 1 re-states
the results with the full sample. Column 2 states results with the full sample, but where
accident counts have been normalised by dividing through the average count of the grid cell
over the period 2009-2014. Column 3 reports results for those grid cells with a 2009-2014
daily average accident count below 10 (20 out of 32), while Column 4 reports results for grid
cells with more average accidents (12 out of 32). Column 5 reports results for grid cells with
a 2009-2014 daily average of NO2 below 25µg/m3 (17 out of 32), while Column 6 reports
results for those grid cells with higher average concentrations (15 out of 32). This table
provides estimates of the effect of the average NO2 concentration on the number of accidents
per grid cell per day. Estimates in Column 1 are from a simple OLS estimator. Estimates
in Columns 2-4 are from 2SLS estimators using the occurrence of temperature inversions on
a given day as instrumental variable for pollution. Robust standard errors are reported in
parentheses (*** p < 0.01, ** p < 0.05, * p < 0.1).



C. Pollutant Co-emission - Joint Estimation

Table 6: Pollutant Co-emission - Effect of inversions on NO2 and PM10

(1) (2)
OLS (NO2 only) OLS (PM10 only)

Mean NO2 26.38
Mean PM10 19.83
Inversion (binary) 1.843*** 4.814***

(0.310) (0.269)
Inversion (binary) [previous day] -0.295 2.492***

(0.250) (0.271)
Weather Covariates YES YES
Region-Year FE YES YES
Weekday FE YES YES
Month FE YES YES
Observations 20,325 20,325
R-squared 0.483 0.323
F-test 81.32 96.96

Notes: This table shows first stage results when estimating the effect of two in-
struments, contemporaneous inversions and lagged inversions (one day delayed),
on concentrations of NO2 and PM10 respectively. Robust standard errors are
reported in parentheses (*** p < 0.01, ** p < 0.05, * p < 0.1).

Table 7: Pollutant Co-emission - Joint effect of NO2 and PM10 on accidents

(1) (2) (3)
2SLS (NO2 only) 2SLS (PM10 only) 2SLS (Both)

NO2 0.306*** 0.470*
(0.114) (0.253)

PM10 0.0568** -0.0483
(0.0279) (0.0634)

Weather Covariates YES YES YES
Region-Year FE YES YES YES
Weekday FE YES YES YES
Month FE YES YES YES
Observations 20,325 20,325 20,325

Notes: This table presents results for a joint estimation of the effect of NO2 and
PM10 for a sub-sample for which readings for both pollutants are available. Columns
1-2 repeat the specifciation from Table 3 Column 4, but with a lagged binary in-
dicator of inversion episodes as second instrument and with NO2 and PM10 as
treatment variable respectively. Column 3 reports 2SLS results from joint estima-
tion with NO2 and PM10 as treatment variables and both instruments. Robust
standard errors are reported in parentheses (*** p < 0.01, ** p < 0.05, * p < 0.1).



D. Detailed Regression Tables

Table 8: First Stage - Effect of inversions on pollution

(1) (2) (3)
OLS OLS OLS

Mean NO2 23.69 23.52 23.52
Inversion (binary) 5.011*** 1.525*** 1.126***

(0.272) (0.426) (0.246)
Effect 21.15% 6.48% 4.79%
Temperature (ground) -7.124*** -10.32***

(2.555) (1.766)
Temperature squared (ground) 0.0112** 0.0185***

(0.00457) (0.00314)
Humidity -0.142*** -0.0508***

(0.0118) (0.00732)
Cloud coverage -1.571*** -0.699***

(0.290) (0.198)
Rainfall -0.173*** -0.167***

(0.0542) (0.0311)
Rainfall squared 0.00623** 0.00775***

(0.00244) (0.00157)
Wind speed -3.033*** -2.776***

(0.331) (0.137)
Wind speed squared 0.0829*** 0.0659***

(0.0130) (0.00528)
Constant 23.21*** 1,169*** 1,492***
Region FE YES
Region-Year FE YES
Weekday FE YES
Month FE YES
Observations 41,651 36,274 36,274
R-squared 0.009 0.333 0.498
F-test 339 34.99 64.76

Notes: This table provides estimates of the effect of inversion episodes on
the average daily NO2 concentration in a grid cell. Robust standard errors
are reported in parentheses (*** p < 0.01, ** p < 0.05, * p < 0.1).



Table 9: Second Stage - Effect of inversions on accidents

(1) (2) (3)
OLS OLS OLS

Mean Accident Count 14.05 15.10 15.10

Inversion (binary) 1.382*** 0.425** 0.308***
(0.318) (0.181) (0.112)

Inversion Effect 9.84% 2.82% 2.04%
Temperature (ground) 4.052** 2.452

(1.717) (1.573)
Temperature squared (ground) -0.00704** -0.00412

(0.00300) (0.00279)
Humidity 0.0183 0.0160**

(0.0132) (0.00707)
Cloud coverage -1.064*** -1.117***

(0.268) (0.158)
Rainfall 0.111*** 0.0990***

(0.0282) (0.0192)
Rainfall squared -0.00422*** -0.00359***

(0.00132) (0.000855)
Wind speed -0.170*** -0.126***

(0.0572) (0.0377)
Wind speed squared 0.00530** 0.00362**

(0.00238) (0.00159)
Constant 13.91*** -568.2** -352.5
Region FE YES
Region-Year FE YES
Weekday FE YES
Month FE YES
Observations 41,651 36,274 36,274
R-squared 0.000 0.014 0.107
F test model 18.87 7.797 8.657

Notes: This table provides estimates of the effect of inversion episodes on the
number of accidents per grid cell per day. Robust standard errors are reported
in parentheses (*** p < 0.01, ** p < 0.05, * p < 0.1).



Table 10: Main Results - Effect of pollution on accidents

(1) (2) (3) (4)
OLS LATE 2SLS 2SLS

Mean # Accidents 14.05 14.05 15.10 15.10
NO2 0.498*** 0.276*** 0.279*** 0.273***

(0.00893) (0.0589) (0.0773) (0.103)
Effect 3.55% 1.96% 1.85% 1.81%
Temperature (ground) 6.040*** 5.271***

(0.967) (1.327)
Temperature squared (ground) -0.0102*** -0.00916***

(0.00166) (0.00237)
Humidity 0.0579*** 0.0299***

(0.0119) (0.00690)
Cloud coverage -0.625*** -0.926***

(0.190) (0.151)
Rainfall 0.159*** 0.145***

(0.0252) (0.0266)
Rainfall squared -0.00596*** -0.00570***

(0.00122) (0.00132)
Wind speed 0.676*** 0.631**

(0.238) (0.288)
Wind speed squared -0.0178*** -0.0144**

(0.00661) (0.00693)
Constant 2.240*** 7.516*** -901.5*** -767.3***
Region FE YES
Region-Year FE YES
Weekday FE YES
Month FE YES
Observations 41,651 41,651 36,274 36,274

Notes: This table provides estimates of the effect of the average NO2 concentration on
the number of accidents per grid cell per day. Estimates in Column 1 are from a simple
OLS estimator. Estimates in Columns 2-4 are from 2SLS estimators using the occurrence
of temperature inversions on a given day as instrumental variable for pollution. Robust
standard errors are reported in parentheses (*** p < 0.01, ** p < 0.05, * p < 0.1).


