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Abstract

The decomposition of changes in a country’s carbon emissions into contributions from changes
in the sector-level carbon intensity, value-added share of sectors and level of GDP illustrates
their relative importance for observed emissions. Using data from 34 sectors in 39 countries
covering 1995-2009, I find that shifting composition of output towards low-carbon sectors and
improvements in sector-level carbon intensity were instrumental in constraining emissions
in most countries. In contrast, increases in economic activity pushed emissions up in all
countries. These observations suggest structural change can be as important as cleaning up
carbon intensive sectors and motivate a closer look at high (HCI) and low (LCI) carbon
intensity sectors. I document the large cross-country variation in the average carbon intensity
of HCI and LCI sets and of individual HCI and LCI sectors. HCI sectors tend to (i)
account for a smaller share of employment; (ii) be more capital intensive; and (iii) employ
a workforce with a lower average skill level. In the full sample, and in subsamples by level
of development, employment declined in HCI sectors and increased in LCI sectors with its
composition shifting towards high-skilled workers in both. Capital intensity growth was faster
but multifactor productivity growth was slower in HCI sectors. Moreover, the pace of change
was typically greater in the LCI sectors of the developing country subsample.
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1 Overview

Reductions in carbon emissions are essential for an effective response to the challenges posed
by climate change. In an economy consisting of many sectors which differ in the amount of
carbon emitted per unit of value generated, i.e. carbon intensity, these reductions can come from
improvements in sectors’ carbon intensity or from a reallocation of production away from relatively
carbon intensive sectors. In this paper, I use data from 34 sectors in 39 countries over 1995-2009 to
provide empirical evidence on the historical importance of these two channels and on the economic
characteristics of the sectors which are at the tails of the carbon intensity distribution. The results
of this analysis are summarized in five stylized facts.

I find that without the observed improvements in carbon intensity and the favorable changes in
the composition of output cumulative emissions would have been substantially higher (fact 1). In
most countries, including the USA, both intensity and structure channels contribute to constraining
emissions. However, there are examples, most prominent among them China and Russia, where
they operate in opposite directions. In particular, emissions in China would have been lower absent
changes in the composition of GDP, but higher absent changes in the carbon intensity of sectors.
In the case of Russia, the opposite result obtains, namely changes in the structure of the economy
restrained emissions while changes in the carbon intensity of sectors increased them.

A novel contribution of the current paper is to systematically evaluate the contribution of changes
in carbon intensity and composition of GDP to changes in cumulative emissions for a large group
of countries. The dataset also allows a closer look at those sectors the tails of the of the carbon
intensity distribution. I propose a rule to construct country-specific HCI and LCI sets, populate
them and document the cross-country heterogeneity that exists in carbon intensity (fact 2). I find
that HCI sectors tend to account for a smaller share of employment, be more capital intensive and
employ a smaller share of high-skilled workers than LCI sectors. In order to capture the broad
differences in the level of development, I divide the sample into two groups by the observed level
of output per worker in 2009. I find that in advanced countries HCI sectors also employ a greater
share of low-skilled workers (fact 3).

These observations are cross-sectional in essence and vary little across the different years in the
sample. Adopting a longer term perspective, I show that employment declined in HCI sectors and
increased in LCI sectors with its composition shifting towards high-skilled workers in both. Capital
intensity growth was faster but multifactor productivity growth was slower in HCI sectors (fact 4).
Using the developing and advanced country subsamples, I show that the preceding observations
regarding long term changes are valid in both subsamples. Moreover, I find that the pace of
change was typically greater in the developing country subsample, especially in the LCI sectors.
Put differently, the LCI sectors, particularly in developing countries, are among the most dynamic
and can provide a cushion for low-skilled workers becoming unemployed in HCI sectors (fact 5).
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Voigt et al (2014) and Schymura and Voigt (2014) are two recent studies which use the same
dataset and a similar analytical approach. The focus of Voigt et al (2014) is energy intensity
changes across countries and sectors using multiplicative index decomposition analysis (IDA). The
authors identify substantial heterogeneity across sectors within a country and across countries
within a sector, and show that the latter is greater. This is consistent with fact 2 of the current
paper. Using an approach that relies on energy use, rather than cumulative emissions which is
behind the current paper’s fact 1, Voigt et al also find that changes in the composition of GDP
and the energy intensity of sectors have been crucial factors driving aggregate intensity changes.

Schymura and Voigt (2014) use a more detailed decomposition which accounts for changes in
emissions factors and fuel mix in addition to changes in structure, intensity and activity to extend
the analysis of Voigt et al (2014) to carbon intensity. They confirm the that the main conclusions
of Voigt et al (2014) remain valid. However, neither paper investigates the economic characteristics
of high and low intensity sectors, which is a key contribution here.

IDA is a simple, flexible and popular tool often used to describe the relative contribution of changes
in the components of an aggregate variable to that variable’s evolution over time. In recent years,
the aggregate variable of choice has often been greenhouse gas emissions. The survey by Xu
and Ang (2013) provides a rich overview of the studies using this method which focus on carbon
emissions.1 In arriving at fact 1, the current paper uses additive log-mean divisia index described
in detail in Ang (2005) and its desirable properties are established in Ang (2004).

The data for the current paper’s empirical analysis are from the recently compiled WIOD database.
By providing consistent sector-level data on several key economic variables as well as emissions and
energy use for the world’s largest advanced and developing countries over 1995-2009, the database
permits empirical analyses which until recently would have been infeasible.2 In addition to the
studies cited above, Xu and Dietzenbacher (2014) and Ferrarini and de Vries (2015) apply structural
decomposition analysis to shed light on the effect of international trade as a driver of carbon
emissions. In their econometric analysis of the effect of imports of investment and intermediate
goods on energy intensity, Hübler and Glas (2014) find that international trade contributes to
reducing the North-South gap in energy intensity. Using a different dataset, Douglas and Nishioka
(2012) analyse the relationship between carbon intensity and international trade from the opposite
direction, i.e. they investigate whether differences in carbon intensities determine the patterns of
trade. They find that while carbon intensities differ systematically across countries, they are not
a significant source of comparative advantage driving trade flows.

Delivering on the ambitious promises of the Paris Agreement (2015) needs significant policy action
in the decades to come. As a matter of accounting identity, it will require the cleaning-up of

1Hoekstra and van der Bergh (2003) compares the pros and cons of IDA relative to its main alternative, namely
structural decomposition analysis.

2See http://www.wiod.org/new_site/published.htm for an overview of the emerging literature which uses WIOD
database.
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dirty sectors, and the relocation economic activity and productive inputs to cleaner sectors of the
economy. The evidence provided in this paper suggests that in most, but not all, countries over
the 1995-2009 period there was already much action on both fronts, even without stringent policy
intervention. In a sense this is good news because policymakers will need enhance, rather than
reverse, pre-existing trends.

The same evidence also provides a cautionary note. With such pre-existing trends, it is difficult
to attribute the recent encouraging developments in carbon intensity and composition of GDP to
policy action alone. In this context, it is important to note that the period under consideration
precedes the introduction of stringent climate change policies in most countries, particularly in the
USA and China.

In formulating climate change policies it is important to get the policy stringency right and to find
the appropriate balance between policy instruments targeting reductions in carbon intensity on
the one hand and those that aim to guide labor and capital to cleaner sectors on the other. In light
of this paper’s evidence this balance need not be the same in advanced and developing countries.
It is also essential to account for the interaction between policy in different areas. Specifically,
policies affecting the pace and direction of structural change, which often differ at different stages
of development process, are likely to have implications for the operation of climate change polices.

The rest of the paper is organized as follows. The dataset is described in more detail in the next
section. Section 3 presents empirical evidence on the contribution of changes in carbon intensity
and the composition of GDP to a country’s aggregate emissions. In section 4, I introduce the rule
for defining HCI and LCI sectors, and explore their key characteristics. Sections 5 concludes and
provides a brief discussion of these findings for climate change policy. All tables and figures can
be found at the end.

2 Data

I rely on the Socio-Economic and Environmental accounts of the WIOD database which are de-
scribed in Gouma et al (2014), Erumban et al (2012) and Genty et al (2012). Data are available
for 35 sectors described in Table 1. The four columns in the table provide the intuitive sector
code this paper uses, the code that is in underlying WIOD data, the description of sectors and
their corresponding NACE codes. For example, the sector AGR+ corresponds to AtB in WIOD
which combines data from sectors with NACE codes 01, 02 and 05, namely Agriculture, Hunting,
Forestry and Fishing. The sector TOT is the sum for all 35 sectors, i.e. the entire economy. It
includes the sector “Private Households with Employed Persons”, but this sector is excluded from
the analysis below.3

3This sector “includes the activities of private households employing all kinds of domestic personnel such as
maids, cooks, waiters, valets, butlers, laundresses, gardeners, gatekeepers, stablehands, chauffeurs, caretakers, gov-
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Table 2 lists the countries and variables included in the dataset. The 39 countries include all
members of the EU, the remaining OECD countries and key emerging markets are in the dataset.4

In what follows I refer to a country by its name or three letter code which can be found in Table
2. In Socio-Economic Accounts gross output (GO) and all its components (II,VA, COMP, etc.)
are typically available for all sectors and cover 1995-2009. Labour input to production is provided
in number of workers as well as hours. Moreover, hours worked are subdivided into hours worked
by high-, medium- and low-skilled workers based on the education of level workers as described in
Erumban et al (2012). Real fixed capital stock (K_GFCF) data for 2008-9 are missing for several
countries including the UK.

All values are expressed in nominal national currency units (ncu) in the underlying data files. To
allow comparison over time, the analysis in section 3 uses sector-specific price indexes to convert
data expressed in nominal ncu to constant ncu. Similarly, to allow comparison across countries,
section 4 converts all variables in constant ncu units to constant 1995 US dollars (us$). The
exchange rates used are the same ones that WIOD database uses in constructing its world input-
output tables. The key data from Environmental Accounts are the total carbon emissions (CO2).

In the analysis below it is sometimes useful to distinguish between advanced and developing coun-
tries. For the purposes of this paper, the ‘developing’ country subsample includes those countries
whose economy-wide output per worker in 2009 is less than the median across all countries in the
same year. Based on this criterion, the 20 developing countries in the sample are country BGR,
BRA, CHN, CYP, CZE, EST, HUN, IDN, IND, LTU, LVA, MEX, MLT, POL, PRT, ROU, RUS,
SVK, SVN and TUR.

3 Sector-level carbon intensity and composition of GDP

Carbon intensity of production is defined as

cicit =
ecit
vacit

where ecit is carbon emissions measured in kilotons and vacit is value-added measured in constant
national currency units in country c, sector i and year t. Given this definition a country’s aggregate
emissions can be written as

erness, baby-sitters and tutors, secretaries, etc.” In the case of UK it is tiny. It is excluded because data is not
consistently available in all countries.

4Luxembourg is dropped from the sample because data are patchy, especially in sectors with high carbon
intensity.
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Ect =
∑
i

[
cicit ×

vacit
Yct
× Yct

]
=
∑
i

[cicit × scit × Yct]

where Yct =
∑

i vacit is the sum of value-added across sectors (i.e. the country’s GDP) and scit is
sector i’s share in Yct. I use index decomposition analysis (IDA) to compute the contribution of
changes in each component to changes in observed aggregate emissions ∆Ect = Ect − Ect−1.

Dropping the country subscript for brevity, this results in

∆Et = ∆Eint,t + ∆Estr,t + ∆Eact,t

where subscripts int, str and act identify the contribution of intensity, structure and activity
changes. I use the additive log-mean divisia index (LMDI) method to calculate each component.
This decomposition method has desirable properties as described in Ang (2004), and its imple-
mentation is straightforward so I omit the formulas here and refer the reader to Ang (2005) for a
clear exposition.

The output of the LMDI in the current sample is {∆Eint,t,∆Estr,t,∆Eact,t} for each country over
1996-2009 and can be used to construct counterfactual emissions scenarios using different assump-
tions about the evolution of the components. This section evaluates how different a country’s
emissions would look under these scenarios.

In particular, I close one of these channels at a time to isolate its effect. For example, in the no
intensity change (NIC) scenario, the intensity channel is shut down by setting ∆Eint,t = 0 in each
t but allowing the changes in the structure of the economy (i.e. structure channel) and in the
level of economic activity (i.e. activity channel) to contribute to ENIC

t as observed in the data.
The following table provides the formulas for calculating aggregate emissions under alternative
scenarios.

Counterfactual Scenario Formula for computing emissions

No Intensity Change (NIC) ENIC
t = E0 +

∑t
s=1 [∆Estr,s + ∆Eact,s]

No Structure Change (NSC) ENSC
t = E0 +

∑t
s=1 [∆Eint,s + ∆Eact,s]

No Activity Change (NAC) ENAC
t = E0 +

∑t
s=1 [∆Eint,s + ∆Estr,s]

Take the experiences of the top two emitters in the sample, USA and China, as examples. The
two panels of Figure 1 show the observed and counterfactual emissions profiles under the scenarios
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described above. Also note that while observed emissions in the USA have been broadly constant
over this period, Chinese emissions more than doubled.

As a general rule, the further a given counterfactual emissions series is from observed emissions, the
more important is the channel which is closed by assumption in its construction. Focusing on the
USA first, the deviation of NAC from observed emissions is the largest. Moreover, NAC emissions
are everywhere below the observed emissions. This suggests absent changes in the level of economic
activity American emissions would have been much lower. Conversely, NSC emissions are greater
than observed emissions implying that the structure channel worked to restrain emissions.

The multiple crossings between observed and NIC emissions in the first half of the sample make
similarly unambiguous statements impossible regarding the contribution of the intensity channel.
Over this period the NIC series deviated relatively little from observed emissions. However, after
the early 2000s NIC emissions are progressively greater than those observed so similar to the
structure channel, the intensity channel tended to restrain American emissions more recently.5

For China, changes in the level of the economic activity also constituted the dominant channel
for the observed increases in emissions. However, the evolution of NIC and NSC series are quite
different from the USA. The structure of the economy unambiguously shifted towards relatively
carbon intensive sectors. Without such changes emissions would have been lower as indicated by
the NSC series. Conversely, the intensity channel constrained emissions in China. In 2009 Chinese
emissions would have been about 30% higher if the intensity channel did not operate.

The USA and China are two important emitters so the detailed discussion of their individual
experiences is justified. Yet there are 37 other countries in the sample and developing a graphical
analysis country by country is cumbersome. Moreover, as the crossings between NIC and observed
series in the American case illustrate, the net contribution of a given component may change
qualitatively from one year to another. Against this background, another metric for comparing
the contribution of intensity, structure and activity channels would be useful.

In the climate change context such a metric, namely cumulative emissions, is readily available
because carbon dioxide is extremely persistent in the atmosphere. In other words, if a particular
channel adds a million tonne of carbon emissions in a given year and reduces them by the same
amount in the following year, its climate change impact over the two years is approximately nil.
Put more starkly, it is the the cumulative emissions of carbon that determine the climate change
impact.6

5Based on direct econometric estimates of the size of structure and intensity effects, albeit for six non-CO2
pollutants, Levinson (2015) finds the former accounted for most of the decline in aggregate emissions from the US
manufacturing sector.

6See, for example, Allen (2016).
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To operationalize this idea in the current context, I define the relative cumulative emissions asso-
ciated with scenario S ∈ {NIC,NSC,NAC} as

rceS =

∑
tE

S
t∑

tEt

− 1.

If rceS > 0, then the cumulative emissions under S are greater than those observed, implying their
climate change impact would have been greater as well. Note also that it is possible to interpret the
magnitude of rceSc across scnearios. Using the USA as an example once again, rceNAC

USA = −0.258

meaning cumulative emissions would have been almost 26% lower under NAC scenario. The shift
towards less carbon intensive sectors implied that rceNSC

USA = 0.148, i.e. shutting down the structure
channel would have implied 15% higher cumulative emissions. Similarly, rceNIC

USA = 0.054 so that
the intensity channel also constrained cumulative emissions over the sample period.

For China, rceNAC
CHN = −0.534, rceNSC

CHN = −0.101 and rceNIC
CHN = 0.338 which can be compared to

the USA. Specifically, in China the activity channel was about twice as important in determining
cumulative emissions. In contrast to the USA, the composition of the Chinese economy’s output
shifted towards more carbon intensive sectors. Finally, the contribution of the intensity channel
was much larger than in the USA. From a global perspective it is important to note that over the
sample period the cumulative American emissions were about 20% greater than in China so the
overall climate change impact of the various components need to be adjusted for this difference.

Table 3 provides the rceSc for all countries, indicating developing countries with an asterisk. Average
values for rceSc under each scenario are given at the bottom of the table for the full sample and
the subsamples by level of development. The table ranks countries in increasing order of rceNIC

c

and highlights rceSc < 0 in each case. There are two important patterns in the table.

First, rceNAC
c is negative for every country in the sample. That is, if the activity channel were closed

emissions would have been lower. Moreover, the activity activity channel was quantitatively the
most important driver of carbon emissions in a large majority of countries with notable exceptions
in Taiwan and Germany as well as in a number of Eastern European countries which experienced
economic upheaval following the collapse of the Soviet Union.

Second, in 25 of the 39 countries both the intensity and structure channels constrained the emissions
increases implied by the activity channel. This pattern is apparent in Figure 2 which provides a
visual summary of the information in the first two columns of Table 3 by plotting rceNIC

c versus
rceNSC

c . Not surprisingly, several Eastern European countries feature the largest rceNIC
c > 0 and/or

rceNSC
c > 0. The positive quadrant of Figure 2 also contains most of the advanced countries in

the sample.

Among these, Ireland, Finland and Sweden, are the only three advanced countries which simulta-
neously have rceNIC

c , rceNSC
c and |rceNAC

c | greater than the respective averages for these statistics
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in the advanced country subsample. That is, the intensity and structure channels constrained
emissions in these economies more than the average advanced country. At the same time, these
countries experienced strong growth which pushed emissions up through the activity channel. It
is interesting to note, but not read too much into, the fact that Finland and Sweden are the first
two countries to introduce an explicit carbon tax.

There are some important exceptions to the broad pattern of positive rceNIC
c and rceNSC

c . For
example in Figure 2, the pattern rceNIC

c < 0 and rceNSC
c > 0 is observed in seven countries

including Russia, and the opposite pattern rceNIC
c > 0 and rceNSC

c < 0 prevailed in five countries,
which includes, most prominently, China. Finally, both cumulative emissions statistics are negative
in Indonesia and Brazil themselves large emitting developing countries. In these two countries,
changes in the carbon intensities of sectors and composition of GDP complemented the activity
channel in increasing cumulative emissions.

The figure also highlights advanced (blue) and developing (red) countries in the sample.7 The
observation from Taiwan notwithstanding, developing countries tend to be overrepresented in both
tails of the distributions of rceNIC

c and rceNSC
c . This suggests structural and technological changes

were larger in developing countries and have not always contributed towards emissions reductions.
The preceding observations are summarized in the first stylized fact of this paper.

Fact 1. Intensity and structure channels both constrained emissions in most countries. In contrast,
the activity channel increased emissions for all countries in the sample. Developing countries were
overrepresented in the tails of the cross-country distributions for the cumulative effects of intensity
and structure channels.

In passing, observe that in Figure 2 there appears to be a negative, albeit noisy, relationship
between rceNIC

c and rceNSC
c suggesting a trade-off between the two channels. The correlation

coefficient, based on the full sample, is -0.479 and has a p-vlaue of 0.002. However, with only
39 observations and in the presence of some large outliers this can statistic can be misleading.
Excluding the countries with the largest |rceNIC

c | and |rceNSC
c |, i.e. Bulgaria, Estonia and Taiwan,

the correlation coefficient is -0.174 but no longer significant with a p-value of 0.318.

Two aspects of Fact 1 are novel. First, it introduces rceS as a new metric to compare the contribu-
tion of changes in intensity, structure and activity levels. Second, based on this metric, it identifies
economically interesting regularities in the sign, magnitude and distribution of the intensity and
structure channels in the cross-country panel. This motivates a closer look at the sectors which
have particularly high and low carbon intensity and is provided in the next section.

7Recall that the ‘developing’ country definition used in this paper is non-standard and described in Section 2.
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4 Tales from the tails: High and low carbon intensity sectors

I start by proposing a flexible rule to identify the HCI and LCI sectors

1. Order sectors in decreasing order of cicit in each country and year, so the sector with the
highest carbon intensity is ranked first, the sector with second highest is ranked second etc.

2. Calculate the average rank of each sector over all years and order sectors in increasing order
of average rank for each country.

3. Define the set containing the top (bottom) five sectors as the HCIc (LCIc) set.

A number of points are worth highlighting. First, the sets HCIc and LCIc are country-specific but
always contain five sectors because the rule relies on within-country ordering of carbon-intensity.
By implication, the remaining twenty-four sectors have intermediate carbon intensity. Below I
show that these intermediate sectors typically employ most of a country’s productive inputs and
generate most of its value-added. Second, HCIc and LCIc are time-invariant themselves even
though the rule uses information from all years in populating them. Third, it is possible to create
global HCIG and LCIG sets which include sectors that are members of HCIc and LCIc in at least
k countries. In other words, as k becomes larger, HCIG and LCIG shrink.

Table 4 lists the sectors in HCIc and LCIc for a select group of countries: two advanced European,
two advanced non-European and two large developing countries. The average carbon intensity
levels in 2009 are also provided. Finally, the table lists the members of HCIG and LCIG sectors
for k = 5. For each sector in the global lists, the figures in the parenthesis indicate the number of
countries in which the sector is in HCIc and LCIc. For example, even though CHEM is not an
HCI sector in any of the six countries in the table, it is identified as an HCI sector in nine countries
in the sample.

In the top panel of Table 4, theHCI sectors are broadly similar across countries: utilities (PWR+),
manufacture of non-metallic minerals (MINnm), refined fuels (RFUEL) and metals (MINm) as well
as domestic air (TRAair) and water transport (TRAwat). This is true for those six countries con-
sidered in detail and more generally for the 39 countries in the sample as demonstrated by the nine
HCIG sectors. In the lower panel, financial (FIN), real estate (REST), and telecommunications
services (TCOM) sectors are most frequently in the LCIG. However, their frequencies are lower
than those for the HCI sectors and there are eleven sectors in LCIG sectors. These suggest LCI
sectors are somewhat more diverse.

The average carbon intensity levels inHCIc and LCIc show much variation across countries despite
the fact that the members of these sets are similar across countries. For example, the HCI sectors
of France emit less than 20% of what the HCI sectors in China do to produce a unit of economic
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value. This is partly due to the composition of the respective HCIc. RFUEL tops the French set
while it is not even in the Chinese set. More importantly, individual sectors are heterogeneous
themselves. In France a large portion of electricity is generated in nuclear power stations whose
carbon emissions are negligible. In contrast, Chinese power generation is extremely coal, and
therefore carbon, intensive. Similar variation, albeit around much lower average carbon intensity
levels, exists across LCIc.

Table 4 is organized around the ranking of sectors by cicit. Accordingly, it does not provide
information on the magnitude of an individual sector’s carbon intensity or how it compares to
others. I explore this in Figures 3 and 4 which show the 2009 carbon intensity of production for
the three most common sectors in HCIG and LCIG, which are {PWR+, MINnm, RFUEL} and
{REST, FIN, TCOM}, respectively.

In Figure 3 the countries are sorted in decreasing order of carbon intensity in their PWR+ sector.
As in Figure 2 advanced and developing countries are identified using blue and red country names
along the horizontal axis. For example, the most carbon intensive PWR+ sector is in Estonia and
the least intensive one in Brazil, both developing countries. The ratio between the two is 162. It
is difficult to conclude whether this figure is too high. Estonia is a small country but appears to
be a large outlier since the carbon intensity level of PWR+ is almost twice as large as the runner
up country. It also relies heavily on fossil fuels, and mostly coal among them, for generating about
90% of its power. Conversely in Brazil, which has important hydroelectric potential, only about
20% of power is generated using fossil fuels with natural gas most significant in the mix. Indeed,
in Table 4 PWR+ is not even an HCI sector in Brazil.

Putting these extremes aside there remains substantial variation in the carbon intensity of PWR+
sector even among seemingly similar countries like the UK and the USA where the carbon intensity
of the latter is about three times greater that of the former. In 2009, these two advanced economies
have broadly similar fossil fuel shares in their power generation mix. Specifically, the UK’s fossil
fuel share in power generation is 72% of which 45% is natural gas, and in the USA the corresponding
statistics are 66% and 23%. That is, the UK was more reliant on fossil fuels but used less of the
more carbon intensive fossil fuel, coal. Even allowing for the fact that per unit of energy input
carbon emissions from coal are twice as much as those from natural gas, much difference remains
to be explained in the relative carbon intensities of PWR+.8

The top panel of Table 5 which provides the summary statistics for cicit shows that the carbon
intensity in these three HCI sectors have different means and exhibit large variations across coun-
tries. Based on the the unweighted mean values reported in the table PWR+ is by far the dirtiest
sector per unit of economic value generated. With different mean values, the coefficient of variation

8There may be several reasons for these differences: technology differences induced in part by fuel input quality
and price differences, power price differences, exchange rate misalignment, phase of the economic cycle, policy
differences, market structure etc. Also note that the fracking revolution in the US has significantly altered the
coal-natural gas mix. In 2013, the fossil fuel share in US power generation is 68% of which 40% is natural gas.
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is a better statistic for comparing variability. By this metric RFUEL is the most variable sector
and MINnm is the least variable one.9

Analogous information on the LCI sectors, which come from the opposite tail of the carbon
intensity distribution, are shown in Figure 4 and the lower panel of Table 5. The figure sorts the
countries in decreasing order of carbon intensity in the REST sector. An important difference
from the previous figure is the scale of the vertical axis making it difficult to interpret the levels
and ratios of variables so close to zero. For example, the ratio between the most and least carbon
intensive REST sectors in the sample, those in Russia and Austria respectively, is 680. However,
the magnitudes of both the numerator and the denominator in this ratio are negligible compared
to the carbon intensities of HCI sectors. Moreover, as discussed in more detail below, the data
from the REST sector may not be as informative or reliable as data from other sectors.

A common feature of Figures 3 and 4 is that developing countries tend to cluster in the left end
of both figures. In other words, the carbon intensity of HCI or LCI sectors are on average
higher in developing countries. This can be due to their production and emissions abatement
technologies being less efficient than in advanced countries. It could also be the result of weaker
regulation of carbon emissions, or in some cases outright subsidies supporting the use of fossil fuels
as an energy source. Whatever the underlying cause, an effective response to the climate change
challenge necessitates substantial change in developing countries especially in their HCI sectors.
Some evidence that this is already happening is presented below. The paper’s second stylized fact
summarizes these observations.

Fact 2. There is substantial cross-country variation in the average carbon intensity of HCI and
LCI sets, and of individual HCI and LCI sectors. The carbon intensity of a given HCI or LCI
sector tends to be higher in developing countries.

Such variation is to be expected due to the heterogeneity within HCIc and LCIc as well as within
sectors. However, it is not clear whether there are systematic differences along other relevant
characteristics of these sectors as carbon intensity changes. For example, do the shares of a
country’s productive inputs, namely its workers, physical and human capital, vary by carbon
intensity? If so, one is most likely to find evidence of this in the HCI and LCI sectors.

Table 6 uses the USA as an example to shed light on this question. In 2009, HCI sectors of the
US accounted for just over 1% of aggregate employment, used almost 5% of the country’s capital
stock. These figures mask much heterogeneity across HCI sectors however. PWR+ is the most
capital intensive, i.e. each worker has much more capital to produce with. Similarly, there is much
heterogeneity in labour productivity as measured by output per worker, with the RFUEL sector
workers generating the greatest value per worker.

9Estonia has a disproportionate influence in the statistics for PWR+ and RFUEL because it is a large outlier.
Excluding the observations from Estonia the mean and standard deviation in PWR+ declines to 13.939 and 13.423,
and in RFUEL the analogous figures are 9.297 and 11.242.
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The LCI sectors, on the other hand, employed more than 11% of the country’s workers and used
53% of its capital stock. The latter figure is so high because the economy’s housing capital is
included in the REST sector by accounting convention. This is clearly visible in the value of
capital per worker being extremely high in REST. REST sector is special for another reason.
Its value-added includes the imputed value of services from owner-occupied houses, making its
labour productivity appear exceptionally high. This accounting convention also makes the carbon
intensity figures hard to interpret and sensitive to imputation methods. Indeed, The sector is such
an outlier that excluding REST from LCIc average renders the group much less capital intensive
and productive.10

Table 6 shows that HCI sectors employ a smaller share of the US workers and use more capital
intensive technologies. Table 7 provides more detail on the skill composition of the workforce
employed in these sectors. Specifically, it reports the share of hours supplied by high-, medium-
and low-skilled workers for each sector in HCIUSA and LCIUSA. The most striking feature of Table
7 is the relatively small share of high-skilled workers and the relatively high of share medium-skilled
workers in the HCI sectors. The observation is valid in relation to the USA economy as a whole,
and relative to the LCI sectors regardless of whether REST is included in the averages.

Table 8 extends the analysis to the full sample of 39 advanced and developing countries. It reports
the correlation of ln(cici) and variables above using different samples in 2007. The first column
uses a sample which includes all sectors in HCIc and LCIc and reports results for advanced and
developing countries separately. In light of the influence REST sector can have on results, the
second column of the table drops REST from the sample if it happens to be an LCI sector. The
log transformation of carbon intensity is to minimize the influence of the outliers and the results
are similar, albeit more noisy, without it. Moreover, data from 2007, rather than 2009, are used to
maximize the geographic coverage of the sample because capital stock data is missing for several
countries in 2008-9. The resulting cross-section patterns reported below are not sensitive to the
choice of the year.

The table makes it clear that the negative relationship between a sector’s carbon intensity and
its share in aggregate employment is statistically significant regardless of the sample. Sectors
with high carbon intensity tend to account for a smaller share of employment in a country. The
correlation is somewhat stronger, i.e. more negative, when REST is excluded. In other words, the
exclusion of REST does have some quantitative but no qualitative implications for the correlation
coefficient between ln(cici) and empci/

∑
i empci.

Whether or not one uses the restricted samples has quantitative and qualitative implications for
the correlation statistics involving the capital stock and labor productivity. This is to be expected
given the evidence from the USA discussed above. REST is an LCI sector in a majority of countries

10Below I take account of the special status of REST by reporting statistics with and without this sector.
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and a country’s housing stock as well as the income derived from it appears in this sector.11 Once
this sector is excluded, the negative and significant correlation coefficient between sectors’ carbon
intensity and their share of capital stock weakens in advanced countries and becomes insignificant
in developing countries. In other words, a larger share of an advanced country’s non-housing
capital stock tend to be in LCI than HCI sectors, whereas a similar relationship is not observed
in developing countries.

At the same time, the relationship between carbon intensity and capital intensity is positive and
significant, and much more so when REST is excluded.12 This suggests that workers inHCI sectors
have much more capital to work with relative to their counterparts in LCI sectors. This positive
correlation may appear inconsistent with the observed relationship between labor productivity and
carbon intensity. After all, one would expect the more capital a worker has to work with the more
output s/he can generate but the insignificant and negative correlation coefficients in the advanced
and developing countries suggest otherwise.

This is due to determinants of labour productivity other than capital per worker, e.g. multifactor
productivity and human capital per worker. Calculating internationally comparable multifactor
productivity levels of sectors is beyond the scope of this paper.13 However, the dataset contains
indicators for human capital deployed in each sector, namely the number of hours supplied by skill
level.

Table 8 shows that there is a negative correlation between carbon intensity and share of hours
provided by high-skilled workers. In other words, relatively more hours are provided by high-skilled
workers in the LCI sectors in both advanced and developing countries. Conversely, a grater share
of the hours are provided by low-skilled workers in HCI sectors of advanced countries. These
patterns are consistent with the average skill level of the workforce being greater in the LCI
sectors, particularly in advanced countries. Fact 3 summarizes the preceding discussion.

Fact 3. HCI sectors in advanced and developing countries tend to (i) account for a smaller share
of employment; (ii) be more capital intensive; and (iii) employ a workforce with a lower average
skill level.

Next I focus on the long run changes in HCI and LCI sectors. Specifically, I calculate growth
rates of employment, total number of hours supplied at each skill level for each sector, capital and
capital per worker. To capture long term productivity trends, I report average growth rates of
output per worker and multifactor productivity. The latter indicator, denoted mfpcit, is computed
based on gross value-added using to the procedure outlined in OECD (2001).

11Italy has exceptionally high (low) share of the capital stock in COMMser (REST) relative to other countries
in the sample suggesting its housing stock is included in COMMser. A similar but less extreme case is Korea.
Excluding these country-sectors does not alter the results.

12The same relationship is documented by Cole and Elliott (2003) using country-level data for four pollutants
including CO2.

13Rate of change of multifactor productivity is much easier to incorporate into the analysis. See below for details.
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The growth rate of these variables are computed over several years using all available data. In
majority of the countries and sectors this corresponds to 1995-2009. Specifically, for variable

xt ∈
{
emp, hrs, hrsHS, hrsMS, hrsLS, cap,

cap

emp
,mfp,

va

emp

}
where t = 1, 2, ..., t̄ the following simple specification is estimated

log(xcit) = θci + g(xci)t+ εcit

I interpret the point estimate of g(xci) as the average growth rate per year.

Table 9 reports the unweighted mean g(xci) in HCI and LCI sectors as well as the t-test results
of the null hypothesis that the two growth rates are equal against the two-sided alternative that
they are not. The economy-wide growth rate of each variable is also provided for reference.

The table shows that on average HCI sector employment (hours) in the 39 countries of the sample
declined at 0.6% (0.8%) per year, which contrasts with the 1.7% (1.6%) growth in the LCI sectors.
The share of high-skilled workers in both HCI and LCI sectors rose over time since g(hrsHS) is
greater than g(hrsMS) and g(hrsLS) in each case. Against the backdrop of declining employment
and total hours in HCI sectors, this implies that the increase in hours supplied by high skilled
workers did not match the decline in the hours supplied by low-skilled workers.

In contrast, LCI sector hours supplied by high- and medium-skilled workers increased and those
by low-skilled workers declined. In addition, the table also shows that g(cap) was positive in both
HCI and LCI sectors and greater in the latter. Taken together, these trends imply that capital
per worker increased at a faster rate in HCI sectors and in the economy as a whole.

One might expect the faster growth in capital intensity to be reflected in higher labour productivity
growth in HCI sectors but there is no evidence for this in the sample. This is likely due to
significantly higher multifactor productivity growth in LCI sectors. As highlighted above, changes
in labour productivity can be driven by changes in the composition of the workforce, capital
intensity or multifactor productivity. In both HCI and LCI sectors the skill level of the average
worker has increased. However, in HCI sectors growth in capital intensity was high and growth in
the multifactor productivity was moderate. Conversely in LCI sectors, multifactor productivity
growth was strong but capital intensity growth was moderate. These changes are consistent with
output per worker growing at approximately the same rate in HCI and LCI sectors. Fact 6
summarizes these observations.

Fact 4. Labour supply declined in HCI sectors and increased in LCI sectors with its composition
shifting towards high-skilled workers in both. Capital intensity growth was faster in HCI sectors
but their multifactor productivity growth was lower.
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Table 10 provides a breakdown of the results in Table 9 by level of development. Note that the
table also provides t-test results for three distinct hypotheses. The results reported in column (I)
are analogous to those in Table 9. They indicate whether the difference between the growth rates
of a given variable across HCI and LCI sectors is significant in developing and advanced country
subsamples. Column (II), on the other hand, tests if the difference between the growth rates of
a variable across advanced and developing countries in the HCI sector subsample is significant.
Column (III) does the same for LCI sector subsample. The alternative hypothesis in all cases is
two sided and significance level of the test is 10%.

Table 10 conveys three messages. First, it shows that Fact 4 holds in the advanced and developing
country subsamples. The only exception is capital intensity growth rates in advanced countries
which are 3.3% in HCI sectors and 2.5% in the LCI sectors. However, this difference is not
statistically significant at 10% with a two-sided test.14

Second, for all growing, as opposed to declining variables, in Table 10, the growth rates in de-
veloping countries is greater than or equal to those in advanced countries in the statistical sense.
This observation is consistent with the notion that developing countries are catching up with, or
at least not falling behind, advanced countries along these dimensions.

Third, for the declining variables in Table 10, the difference between advanced and developing
countries is not statistically significant for g(emp), g(hrs), g(hrsMS) and g(hrsLS) suggesting they
evolved similarly over time in the two subsamples. However, it is significant for hours supplied by
low-skilled workers in LCI sectors which declined at 1.8% in advanced countries but was constant
in developing countries. Given that the HCI and aggregate hours per worker at this skill level
declined over the sample period, the LCI sectors likely acted as a cushion for low-skilled workers in
developing countries. Such cushion may be particularly valuable because upgrading worker skills
is costly and slow, and the social safety net providing for those who cannot do so is likely weak in
developing countries. These observations are summarized in Fact 5.

Fact 5. In developing countries the average growth rates of factor inputs and productivity indicators
were greater than or equal to those in advanced countries. Moreover, the hours supplied by low-
skilled workers in LCI sectors did not decline in developing countries.

14The difference is significant at 10% with a one-sided test.
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5 Conclusions and policy relevance

Emissions reductions consistent with the goals of the Paris Agreement (2015) can be achieved
through reductions in economic activity, declines in its carbon intensity or changes in its its struc-
ture. The former is not a viable option in many, especially developing, countries. In fact, continued
economic growth is essential to meet several key Sustainable Development Goals adopted by the
UN in 2015, and implies that favorable changes due to intensity and structure of activity must be
even larger.

Applying index decomposition analysis to cross-country data covering 1995-2009 and using relative
cumulative emissions as a metric, Fact 1 of this paper documents that economic growth indeed
pushed emissions up in all countries. At the same time, at least one, and often both, of the intensity
and structure channels operated so as to constrain emissions in a vast majority of countries. This
motivates the need for a better understanding of the characteristics of the sectors which are at the
tails of the sector-level carbon intensity distribution.

Fact 2 demonstrates the enormous heterogeneity in the carbon intensity of HCI and LCI sectors,
and the tendency that sector carbon intensities are higher in developing countries. This suggests
there may be lessons to learn from high achievers. Some of the heterogeneity is clearly due to
exogenous factors such as geography and resource endowments that may be beyond the reach of
policy. However, differences in technology, regulation, market structure, international trade and
industrial policies are also likely drivers of the heterogeneity and may offer insights regarding how
carbon intensity of HCI sectors can be improved in the low achievers.

Adopting a factor input perspective, Fact 3 shows that HCI sectors tend to account for a relatively
small share of employment, and are capital intensive. The skill level of an average HCI worker is
lower than her/his LCI counterpart. Over the sample period, Fact 4 documents that employment
in HCI sectors declined and the skill level of the average worker employed in this sector increased.
This contrasts with LCI sectors where both employment and the skill level of the average worker
have increased. In addition, as shown in Fact 5 LCI sectors, especially in developing countries,
are the more dynamic sectors of the economy exhibiting greater multifactor productivity growth
than both the HCI sectors and the aggregate economy.

In part, these changes are a reflection of the structural transformation away from agriculture and
manufacturing, and towards services. It is therefore not surprising that the pace of change is
greater in developing countries. Moreover, the coverage of the sample is such that climate change
policies are unlikely to have been the main driver of the patterns documented in Facts 3-5 in
all but a few northern European countries. This is good news in the sense that policy needs to
augment rather than reverse the underlying fundamental transformation. However, it does make
the attribution of any additional change to the effect of policies difficult, an issue which may prove
tricky politically and economically when evaluating the effectiveness and unintended consequences
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of climate change policies.

Disentangling the effects of climate change policies and the underlying structural transformation
will be all the more difficult as the transformation itself is often a target of government policy. As
a consequence, climate change and, say, industrial policies can be coordinated to ensure they do
not work at cross purposes. Poorly designed policies which aim to slow down or reverse deindus-
trialization may simultaneously undermine climate change policies. Conversely, improvements in
labour market flexibility and increased opportunities for (re)training workers are likely to reduce
the adverse impact of climate change policies which may be concentrated geographically and on
workers in HCI sectors.

The appropriate balance between polices targeting the intensity and structure channels is another
important consideration. Subsidies to R&D on carbon capture and storage technologies may be
considered as an example of the former. Feed-in-tariff programs for renewable energy production
or a ban on new coal-fired electricity generation aim to reduce emissions through the structure
channel, albeit within the crucial PWR+ sector. Ultimately, the right balance for the portfolio of
policies is likely to depend on a country’s specific circumstances including its level of development,
energy endowments, existing capital stock etc.

The adoption of a comprehensive carbon price is often advocated by economists as an effective
climate change policy tool. This instrument has an impact on both the intensity and structure
channels. By making it costly to emit carbon it compels emitters to find ways to substitute away
from carbon in their production processes, and thereby reduce carbon intensity. By raising the
relative price of goods and services produced by sectors with high carbon intensity, it can reduce
the share of these sectors in GDP.

In this respect, the experiences of Finland and Sweden, which implemented explicit carbon prices
prior to the period considered in this paper, are illustrative. In both countries, the structure of the
economy shifted towards low carbon sectors and the carbon intensity of sectors declined, and did
so more than the average observed in advanced countries. Simultaneously, these countries recorded
robust economic growth. Although far from conclusive, the evidence from Finland and Sweden is
encouraging.

Moreover, a carbon price is a technology-neutral instrument, and has the potential to raise revenue.
The revenue can in principle be used to (re)train workers, particularly low-skilled workers, in HCI
sectors which are likely to be disproportionately affected. Alternatively, it can fund subsidies
designed to correct innovation and learning-by-doing externalities for low carbon technologies.
That said, a few examples notwithstanding, a comprehensive and sufficiently high carbon price
has proven politically difficult to implement. In addition, Coady et al (2015) and OECD (2015)
show that many countries have a long way to go in removing fossil fuel subsidies first before
imposing a price on carbon.
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The choice of the policy instrument to achieve a given emissions reduction goal is a crucial dimen-
sion of the problem because instruments differ in their cost effectiveness. In addition, advanced
and developing countries also need to decide the stringency of their climate policy interventions.
Indeed, the ambitious goals of the Paris Agreement require that future policy is much more strin-
gent than it has so far been. To optimize their net benefits, the choice and calibration of climate
change policies should be informed by a clear understanding of the characteristics of, and the
trends in, sectors with particularly high and low carbon intensity. In particular, the impacts on
HCI sectors will be substantial because their carbon intensity and/or share in GDP must decline
with ramifications for the factor inputs deployed there. The evidence presented here suggests that
LCI sectors are more dynamic, particularly in developing countries, and have the potential to
cushion the impact on HCI sectors.
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Tables and Figures

Table 1: Sectors in WIOD database

This Paper WIOD Sectors NACE

AGR+ AtB Agriculture, Hunting, Forestry and Fishing 01, 02, 05
MIN+ C Mining and Quarrying 10-14
FD+ 15t16 Food, Beverages and Tobacco 15, 16
TEX 17t18 Textiles and Textile Products 17, 18
LEA 19 Leather, Leather and Footwear 19
WD+ 20 Wood and Products of Wood and Cork 20
PPR+ 21t22 Pulp, Paper, Paper , Printing and Publishing 21, 22
RFUEL 23 Coke, Refined Petroleum and Nuclear Fuel 23
CHEM 24 Chemicals and Chemical Products 24
PLAS 25 Rubber and Plastics 25
MINnm 26 Other Non-Metallic Mineral 26
MINm 27t28 Basic Metals and Fabricated Metal 27, 28
MCHnec 29 Machinery, Nec 29
EQPeo 30t33 Electrical and Optical Equipment 30-33
EQPtr 34t35 Transport Equipment 34, 35
MANnec 36t37 Manufacturing, Nec; Recyclin 36, 37
PWR+ E Electricity, Gas and Water Supply 40, 41
CNS F Construction 45
VEHser 50 Sale, Maintenance and Repair of Motor Vehicles and Motorcycles; Retail Sale of Fuel 50
WHL 51 Wholesale Trade and Commission Trade, Except of Motor Vehicles and Motorcycles 51
RET 52 Retail Trade, Except of Motor Vehicles and Motorcycles; Repair of Household Goods 52
HOSP H Hotels and Restaurants 55
TRAinl 60 Other Inland Transport 60
TRAwat 61 Other Water Transport 61
TRAair 62 Other Air Transport 62
TRAoth 63 Other Supporting and Auxiliary Transport Activities; Activities of Travel Agencies 63
TCOM 64 Post and Telecommunications 64
FIN J Financial Intermediation 65-67
REST 70 Real Estate Activities 70
COMMser 71t74 Renting of Machinery and Equipment and Other Business Activities 71-74
PUB L Public Admin and Defence; Compulsory Social Security 75
EDU M Education 80
HLTH+ N Health and Social Work 85
OTHser O Other Community, Social and Personal Services 90,-93
HH P Private Households with Employed Persons 95

TOT TOT Total Industries
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Table 2: Countries and variables in WIOD database

CONSOLIDATED WIOD DATA

Source: WIOD database,  February 2012 release (socio economic data) and May 2012 release (energy and emissions data)

Countries Variables

Acronym Name Values Description

AUS Australia GO Gross output by industry at current basic prices (in millions of national currency)

AUT Austria II Intermediate inputs at current purchasers' prices (in millions of national currency)

BEL Belgium VA Gross value added at current basic prices (in millions of national currency)

BRA Brazil COMP Compensation of employees (in millions of national currency)

BGR Bulgaria LAB Labour compensation (in millions of national currency)

CAN Canada CAP Capital compensation (in millions of national currency)

CHN China GFCF Nominal gross fixed capital formation (in millions of national currency)

CYP Cyprus EMP Number of persons engaged (thousands)

CZE Czech Republic EMPE Number of employees (thousands)

DNK Denmark H_EMP Total hours worked by persons engaged (millions)

EST Estonia H_EMPE Total hours worked by employees (millions)

FIN Finland

FRA France Prices

DEU Germany GO_P Price levels gross output, 1995=100

GRC Greece II_P Price levels of intermediate inputs, 1995=100

HUN Hungary VA_P Price levels of gross value added, 1995=100

IND India GFCF_P Price levels of gross fixed capital formation, 1995=100

IDN Indonesia

IRL Ireland Volumes

ITA Italy GO_QI Gross output, volume indices, 1995 = 100

JPN Japan II_QI Intermediate inputs, volume indices, 1995 = 100

KOR Korea, Republic of VA_QI Gross value added, volume indices, 1995 = 100

LVA Latvia K_GFCF Real fixed capital stock, 1995 prices

LTU Lithuania

LUX Luxembourg Additional variables

MLT Malta LABHS High-skilled labour compensation  (share in total labour compensation)

MEX Mexico LABMS Medium-skilled labour compensation  (share in total labour compensation)

NLD Netherlands LABLS Low-skilled labour compensation  (share in total labour compensation)

POL Poland H_HS Hours worked by high-skilled persons engaged (share in total hours)

PRT Portugal H_MS Hours worked by medium-skilled persons engaged (share in total hours)

ROU Romania H_LS Hours worked by low-skilled persons engaged (share in total hours)

RUS Russia

SVK Slovak Republic Energy and Emissions related variables

SVN Slovenia EM Emission relevant energy use in TJ (all fuels)

ESP Spain CO2 CO2 emissions in Gg (kt) (all fuels)

SWE Sweden

TWN Taiwan

TUR Turkey

GBR United Kingdom

USA United States

Notes

Currency unit: Local currency
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Table 3: Relative cumulative emissions under NIC, NSC and NAC scenarios

Country rceNIC
c rceNSC

c rcaeNAC
c

TWN -0.324 0.271 -0.242
IDN* -0.103 -0.061 -0.163
CZE* -0.076 0.278 -0.186
CYP* -0.062 0.043 -0.261
AUS -0.059 0.119 -0.241
RUS* -0.033 0.203 -0.168
BRA* -0.032 -0.013 -0.181
HUN* -0.021 0.341 -0.297
ITA -0.018 0.081 -0.089
JPN 0.008 0.052 -0.081
TUR* 0.030 0.022 -0.324
MEX* 0.033 0.040 -0.270
EST* 0.036 0.531 -0.475
AUT 0.037 0.007 -0.166
ESP 0.042 0.018 -0.225
GRC 0.050 0.036 -0.229
USA 0.054 0.148 -0.258
NLD 0.071 0.074 -0.203
IND* 0.071 0.056 -0.412
SVN* 0.085 0.083 -0.271
CAN 0.090 0.042 -0.233
DNK 0.092 -0.094 -0.131
ROU* 0.100 0.254 -0.105
FIN 0.104 0.071 -0.273
FRA 0.110 0.051 -0.170
BEL 0.116 0.047 -0.152
SWE 0.116 0.105 -0.263
MLT* 0.142 -0.061 -0.198
GBR 0.148 0.051 -0.207
PRT* 0.149 -0.117 -0.176
DEU 0.150 0.002 -0.117
SVK* 0.152 0.236 -0.313
KOR 0.155 0.009 -0.342
IRL 0.245 0.073 -0.439
POL* 0.293 0.106 -0.324
LTU* 0.323 0.105 -0.383
CHN* 0.338 -0.101 -0.534
LVA* 0.430 0.091 -0.383
BGR* 0.652 -0.372 -0.106

meanfull 0.095 0.072 -0.246
meanadv 0.062 0.061 -0.214
meandev 0.125 0.083 -0.277

* indicates developing countries as defined in Section 2.
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Table 4: Members of HCIc and LCIc sets in select countries and globally
GBR FRA USA JPN CHN BRA

HCI Sectors† TRAwat RFUEL PWR+ TRAwat PWR+ TRAwat
PWR+ TRAwat TRAwat MINnm MINnm MINnm
RFUEL MINnm MINnm PWR+ TRAair RFUEL
TRAair TRAair TRAair TRAair MINm MIN+
MINnm PWR+ RFUEL MIN+ TRAwat TRAinl

Average Carbon Intensity 4.252 2.587 4.642 2.686 13.732 3.294

HCIG Sectors†† PWR+ (38), MINnm (36), RFUEL (31), TRAair (25), TRAwat (23),
TRAinl (10), MINm (12), CHEM (9), MIN+ (6)

GBR FRA USA JPN CHN BRA

LCI Sectors† TRAoth COMMser VEHser VEHser EQPeo EDU
TCOM FIN FIN EQPeo WHL HLTH+
COMMser TRAoth EQPeo TCOM TCOM WHL
FIN TCOM WHL FIN REST FIN
REST REST REST REST FIN REST

Average Carbon Intensity 0.019 0.011 0.023 0.015 0.064 0.029

LCIG Sectors†† REST (31), FIN (31), TCOM(22), EQPeo (16), WHL (13), COMMser(12),
EDU (11), RET (11), PUB (8) , HLTH+ (7), HOSP (6)

† In increasing order of average rank within country.
†† For k = 5 and in decreasing order of the number of times with which the sector is in HCIc or LCIc in
the 39 country sample.

Table 5: Carbon intensity of top three sectors in HCIG and LCIG

mean std dev min max N

PWR+ 16.257 19.622 0.643 104.347 39
MINnm 4.677 3.401 0.261 16.400 39
RFUEL 12.220 20.949 0.014 117.426 37

REST 0.035 0.056 0.000 0.292 38
FIN 0.041 0.091 0.001 0.530 38
TCOM 0.061 0.068 0.003 0.295 37
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Table 6: Carbon intensity and factor inputs in HCIUSA and LCIUSA (2009)

Sector (i) cicit
empi∑
i empi

capi
capi

capi
empi

vai
empi

HCI

PWR+ 12.385 0.004 0.036 1993.729 293.615
TRAwat 2.790 0.000 0.001 619.690 301.499
MINnm 3.744 0.003 0.002 142.493 71.852
TRAair 2.576 0.003 0.005 350.421 129.968
RFUEL 1.719 0.001 0.003 880.336 926.184

HCI Average 4.643 0.002 0.009 797.334 344.624

LCI

VEHser 0.031 0.008 0.009 263.386 176.004
FIN 0.033 0.042 0.041 212.829 153.753
EQPeo 0.016 0.012 0.011 191.753 381.876
WHL 0.026 0.041 0.019 99.011 204.439
REST 0.008 0.012 0.450 7795.900 628.385

LCI Average 0.023 0.023 0.106 1712.576 308.891
(excl.REST) 0.026 0.026 0.020 191.745 229.018

USA Average 215.852 74.104

Table 7: Carbon intensity and skill composition in HCIUSA and LCIUSA (2009)

Sector (i) cicit
hrsi∑
i hrsi

hrsHS
i

hrsi

hrsMS
i

hrsi

hrsLS
i

hrsi

HCI

PWR+ 12.385 0.005 0.285 0.679 0.036
TRAwat 2.790 0.001 0.152 0.747 0.101
MINnm 3.744 0.003 0.180 0.689 0.131
TRAair 2.576 0.003 0.152 0.747 0.101
RFUEL 1.719 0.001 0.329 0.609 0.062

HCI Average 4.643 0.003 0.220 0.694 0.086

LCI

VEHser 0.031 0.008 0.323 0.605 0.072
FIN 0.033 0.043 0.511 0.478 0.011
EQPeo 0.016 0.015 0.454 0.488 0.057
WHL 0.026 0.046 0.135 0.772 0.093
REST 0.008 0.012 0.412 0.534 0.054

LCI Average 0.023 0.025 0.367 0.575 0.057
(excl.REST) 0.026 0.028 0.356 0.586 0.058

USA Average 0.345 0.569 0.085
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Table 8: Correlation between ln (ciic) and key variables (2007)

All HCI and LCI excl. REST

empic∑
i empic

adv −0.509∗∗∗ −0.591∗∗∗

dev −0.367∗∗∗ −0.419∗∗∗

capic∑
i capic

adv −0.374∗∗∗ −0.216∗∗∗

dev −0.227∗∗∗ −0.094

ln
(

capic
empic

)
adv 0.125∗ 0.513∗∗∗

dev 0.130∗ 0.335∗∗∗

ln
(

vaic
empic

)
adv −0.126∗ 0.050

dev −0.210∗∗∗ −0.125∗

hrsHS
ic

hrsic
adv −0.425∗∗∗ −0.367∗∗∗

dev −0.321∗∗∗ −0.276∗∗∗

hrsMS
ic

hrsic
adv 0.177∗∗ 0.112

dev 0.119 0.101

hrsLS
ic

hrsic
adv 0.296∗∗∗ 0.281∗∗∗

dev 0.071 0.053

Note: *, ** and *** indicate significance at 10%, 5%
and 1%, respectively.

Table 9: Mean growth rates for key variables: HCI and LCI sectors

HCI Sectors LCI Sectors ∆ significant? Aggregate

g(emp) −0.006 0.017 Y 0.010

g(hrs) −0.008 0.016 Y 0.007

g(hrsHS) 0.028 0.046 Y 0.039

g(hrsMS) −0.001 0.016 Y 0.016

g(hrsLS) −0.036 −0.009 Y −0.020

g(cap) 0.036 0.044 Y 0.036

g( cap
emp

) 0.043 0.025 Y 0.025

g(mfp) 0.033 0.052 Y 0.042

g( va
emp

) 0.029 0.029 N 0.025

Note: The t-test results reported are for the null hypothesis that the mean growth
rates of a given variable are equal in HCI and LCI sectors against the two-sided
alternative that they are not. The significance level for the test is 10%.
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Table 10: Mean growth rates for select variables: HCI and LCI sectors

HCI Sectors LCI Sectors ∆ significant? Aggregate

(I) (II) (III)

g(emp) adv −0.004 0.013 Y N Y 0.011
dev −0.009 0.022 Y 0.008

g(hrs) adv −0.007 0.012 Y N Y 0.008
dev −0.010 0.021 Y 0.007

g(hrsHS) adv 0.027 0.043 Y N N 0.038
dev 0.029 0.048 Y 0.040

g(hrsMS) adv −0.002 0.008 Y N Y 0.013
dev 0.001 0.024 Y 0.019

g(hrsLS) adv −0.037 −0.018 Y N Y −0.022
dev −0.036 0.000 Y −0.019

g(cap) adv 0.028 0.041 Y Y N 0.033
dev 0.044 0.047 N 0.038

g( cap
emp

) adv 0.033 0.025 N Y N 0.020

dev 0.054 0.025 Y 0.030

g(mfp) adv 0.025 0.046 Y Y Y 0.034
dev 0.041 0.059 Y 0.050

g( va
emp

) adv 0.021 0.026 N Y N 0.015

dev 0.035 0.031 N 0.035

Note: The t-test results reported are for the null hypothesis that the mean growth rates of a given variable
are equal across the specified groups against a two-sided alternative. The significance level for the test is
10%. In column (I), the difference between the mean growth rates of HCI and LCI sectors across advanced
and developing countries is tested. In column (II), the difference between advanced and developing country
mean growth rates in HCI sectors is tested. In the final column, the same difference in LCI sectors is tested.
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Figure 1: Observed vs Counterfactual Emissions in the USA and China
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Figure 2: Relative cumulative emissions under NSC and NIC
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