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Abstract

How does climate-change mitigation affect the aggregate consumption risk
borne by future generations? In other words, what is the ‘climate beta’? In
this paper we argue using a combination of theory and integrated assessment
modelling that the climate beta is positive and close to unity for maturities of
up to about one hundred years. This is because the positive effect on the climate
beta of uncertainty about exogenous, emissions-neutral technological progress
overwhelms the negative effect on the climate beta of uncertainty about the
carbon-climate-response, particularly the climate sensitivity, and the damage
intensity of warming. Mitigating climate change therefore has no insurance
value to hedge the aggregate consumption risk borne by future generations.
On the contrary, it increases that risk, which justifies a relatively high discount
rate on the expected benefits of emissions reductions. However, the stream of
undiscounted expected benefits is also increasing in the climate beta, and this
dominates the discounting effect so that overall the net present value of carbon
emissions abatement is increasing in the climate beta.
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1 Introduction
Because most of the benefits of mitigating climate change arise in the distant future,
the choice of the rate at which these benefits should be discounted is a crucial de-
terminant of our collective willingness to reduce emissions of greenhouse gases. The
discount-rate controversy that has emerged in economics over the last two decades
shows that there is still substantial disagreement about the choice of this parameter
for cost-benefit analysis. One source of controversy comes from the intrinsically un-
certain nature of these benefits. It is a tradition in economic theory and finance to
adapt the discount rate to the risk profile of the flow of net benefits generated by the
policy under scrutiny. The underlying intuition is simple. If a policy tends to raise
the collective risk borne by the community of risk-averse stakeholders, this policy
should be penalised by increasing the discount rate by a risk premium specific to
the policy. On the contrary, if a policy tends to hedge collective risk, this insurance
benefit should be acknowledged by reducing the rate at which expected net benefits
are discounted, i.e. by adding a negative risk premium to the discount rate.

This simple idea can easily be implemented through the Consumption-based
Capital Asset Pricing Model (CCAPM) of Lucas (1978). An investment raises in-
tertemporal social welfare if and only if its Net Present Value (NPV) is positive,
where the NPV is obtained by discounting the expected cash flow of the investment
at a risk-adjusted rate. This investment-specific discount rate is written as

r = rf + βπ,

where rf is the risk-free rate, π is the systematic risk premium and β is the CCAPM
beta of the specific investment under scrutiny. It is defined as the elasticity of the
net benefit of the investment with respect to a change in aggregate consumption.
This means that a marginal project, whose net benefit is risky but uncorrelated with
aggregate consumption, should be discounted at rf , because implementing such a
project has no effect at the margin on the risk borne by the risk-averse representative
agent. A project with a positive β raises collective risk and should be penalised by
discounting its flow of net benefits at a higher rate, and vice versa for a project with
a negative β.

The objective of this paper is not to offer a new contribution to the debate about
the choice of the risk-free rate, or of the systematic risk premium: there have been
many of these in the recent past (see Kolstad et al., 2014, for a recent summary).
Rather, the aim of this paper is to discuss the CCAPM β that should be used to
value climate-mitigation projects. This ‘climate β’ should play an important role
in the determination of the social cost of carbon (i.e. the present social value of
damages from incremental carbon emissions), just as an asset β is known to be
the main determinant of the asset price. Indeed, in the United States over the
last 150 years, financial markets have exhibited a real risk-free rate of around 1.6%
and a systematic risk premium of around 4.8 percentage points. Thus assets whose
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CCAPM betas are respectively 0 and 2 should be discounted at very different rates
of 1.6% and 11.2% respectively.1

Howarth (2003) was one of the first to examine this question. He pointed out that
the net benefits of climate-mitigation projects should be discounted at rf , provided
those net benefits are certainty equivalents (thereby containing a risk premium).
He went on to suggest that the climate β is negative, but did not offer detailed
analysis to back up the suggestion.2 Weitzman’s (2007a) Review of the Stern Review
also emphasised that the appropriate discount rate for climate-mitigation projects
depends on the correlation between mitigation benefits and consumption, although
he did not offer detailed analysis of this correlation either. He was contributing to
a debate about discounting in the wake of the Stern Review (Stern, 2007), in which
some scholars’ views of what is an appropriate rate at which to discount mitigation
benefits were in effect anchored against rf , while others were anchored against r
for standard investments, such as a diversified portfolio of equities. As Weitzman
pointed out, there is no guarantee the features of climate mitigation match either
of these cases.

Sandsmark and Vennemo (2007) provided the first explicit investigation of the
climate β. They constructed a simplified climate-economy model, in which the only
stochastic parameter represents the intensity of damages – the loss of GDP – as-
sociated with a particular increase in global mean temperature. Given this set-up,
large damages are simultaneously associated with low aggregate consumption and
a large benefit from mitigating climate change. Hence this model yields a negative
climate β. Weitzman (2013) extended the idea that emissions abatement is a hedg-
ing strategy against macro-economic risk, invoking potential catastrophic climate
change and its avoidance, while Daniel et al. (2015) also find a negative climate β
in the more general context of Epstein-Zin preferences, since their estimation of the
social cost of carbon is increasing in the degree of risk aversion of the representative
agent.3

On the other hand, an alternative channel driving the climate β may exist. Nord-
haus (2011) concludes from simulations with the RICE-2011 integrated assessment
model (IAM) that “those states in which the global temperature increase is partic-
ularly high are also ones in which we are on average richer in the future.” This
conclusion implicitly signs the climate β and is compatible with the following sce-
nario. Suppose that the only source of uncertainty is exogenous, emissions-neutral
technological progress, which determines economic growth. In this context, as long
as growth is in some measure carbon-intensive, rapid technological progress yields
at the same time more consumption, more emissions, more warming and, under

1See Shiller’s dataset: http://www.econ.yale.edu/~shiller/data.htm.
2Aalbers (2009) situated the climate β within a broader set of theoretical conditions, according

to which climate-mitigation investments might be discounted at a lower rate than other investments.
3Our paper sits within a large literature on uncertainty and climate policy (see Heal and Millner,

2014, for a review). Recent papers relevant to our analysis include Bansal et al. (2015) and Lemoine
(2015).
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most circumstances, a larger marginal benefit from reducing emissions. This would
yield a positive correlation between consumption and the benefits of mitigation,
i.e. a positive climate β. This channel is present in neither Sandsmark and Ven-
nemo (2007) nor Daniel et al. (2015), because they assume a sure growth rate of
pre-climate-damage production and consumption.

In this paper, we provide an overarching analysis of the sign and size of the cli-
mate β, which encompasses the aforementioned two stories, as well as other drivers.
Our analysis is in two complementary parts. First, we explore analytical properties
of the climate β in a simplified model. As well as serving to develop intuition, the
model allows us to explore the role of the structure of climate damages, in partic-
ular whether they are multiplicative, as standardly assumed, or additive. We then
estimate the climate β numerically using a dynamic IAM with investment effects
on future consumption. We perform Monte Carlo simulations of the DICE model,
introducing ten key sources of uncertainty about the benefits of climate mitigation
and future consumption. We use these simulations to estimate the climate β for
different maturities of our immediate efforts to reduce emissions. We find that in
our version of DICE the positive effect on β of uncertain technological progress
dominates the negative effect on β of uncertain climate sensitivity and damages.
Put another way, emissions reductions actually increase the aggregate consumption
risk borne by future generations. This is in line with Nordhaus (2011), but our
analysis advances the literature by quantifying the climate β explicitly. We also
extend Nordhaus’ analysis in several ways: we treat TFP growth as a first-order
autoregressive process, consistent with historical data; we treat the income elastic-
ity of damages as uncertain, so damages are not necessarily multiplicative; and we
include the possibility of catastrophic damages.

In the next section we review β in the context of Lucas’ CCAPM and clarify
how it relates to the NPV of a project. Section 3 describes our analytical model and
its results. Section 4 describes how we set up and run the DICE model in order to
estimate the climate β. Section 5 sets out the results from our DICE simulations.
Section 6 provides a discussion and Section 7 concludes.

2 The CCAPM beta
In this section, we derive the standard CCAPM valuation principles as in Lucas
(1978) and obtain an important result, which means that the relationship between
the climate β and the NPV of climate mitigation is very likely to be positive, the
opposite of what one might have expected.

Consider a Lucas-tree economy with a von Neumann-Morgenstern representative
agent, whose utility function u is increasing and concave and whose rate of pure
preference for the present is δ. Her intertemporal welfare at date 0 is

W0 =
∑
t=0

e−δtE [u(ct)] , (1)
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where ct measures her consumption at date t. Because ct is uncertain from date
0, it is a random variable. We contemplate an action at date 0, which has the
consequence of changing the flow of future consumption to ct + εBt, t = 0, 1, ...,
where Bt is potentially random and potentially statistically related to ct. For small
ε, the change in intertemporal welfare generated by this action is equivalent to
an immediate increase in consumption by εNPV, where NPV can be measured as
follows:

NPV =
∑
t=0

e−δtEBt
u′(ct)
u′(c0) =

∑
t=0

e−rttEBt, (2)

with
rt = δ − 1

t
ln EBtu′(ct)
u′(c0)EBt

. (3)

The right-hand side of equation (2) can be interpreted as the NPV of the action,
where, for each maturity t, the expected net benefit EBt is discounted at a risk-
adjusted rate rt, which is in turn defined by equation (3). In order to simplify
equation (3), we make three additional assumptions, which are in line with the
classical calibration of the CCAPM model:

1. For all states of nature, the elasticity of the net conditional benefit at date t
with respect to a change in consumption at t is constant, so that there exists
βt ∈ R such that E [Bt |ct ] = cβt

t .

2. Consumption follows a geometric brownian motion with drift µ and volatility
σ, so that xt = ln ct/c0 ∼ N(µt, σ2t).

3. The representative agent has constant relative risk aversion γ, so that u′(ct) =
c−γt .

This allows us to rewrite equation (3) as follows:

rt = δ − 1
t

ln
E
[
e(βt−γ)xt

]
E [eβtxt ] . (4)

We now use the well-known property that if x ∼ N(a, b2), then for all k ∈ R,
E [exp(kx)] = exp

(
ka+ 0.5k2b2). Applying this result twice in the above equation

implies that

rt = δ +
(
βtµ+ 0.5β2

t σ
2
)
−
[
(βt − γ)µ+ 0.5(βt − γ)2σ2

]
= rf + βtπ, (5)

where the risk-free rate rf equals

rf = δ + γµ− 0.5γ2σ2, (6)

and the systematic risk premium equals

π = γσ2. (7)
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Observe that both the risk-free rate rf and the systematic risk premium π have
a flat term structure in this framework. However, the risk-adjusted discount rate
rt may have a non-constant term structure, which is homothetic in the term struc-
ture of βt. Therefore later in the paper we shall be interested in estimating the
term structure (β1, β2, ...) of the climate β. This can be done by observing that if
E [Bt |ct ] = cβt

t , then βt is nothing other than the regressor of lnBt with respect to
ln ct :

lnBt = βt ln ct + ξt, (8)

where ct and ξt are independent random variables. We take 50,000 draws from a
Monte-Carlo simulation of the DICE model to generate, for each maturity t, a series
(lnBit, ln cit), i = 1, 2, ..., 50, 000, from which the OLS estimate of lnBt on ln ct gives
us the climate β associated with that maturity.

Before turning to the modelling proper, we show an important result. Although
a larger β implies a higher discount rate on project benefits, a larger β also raises
the expected benefit EBt to be discounted. Given the assumptions just set out,

EBt = cβt
0 Eeβtxt = cβt

0 e
(βtµ+0.5β2

t σ
2)t. (9)

With constant β, EBt is exponentially increasing in t when trend growth µ is posi-
tive. Moreover, the larger is βt, the larger is the growth rate of the expected benefit.
The intuition is as follows. The elasticity of benefits with respect to changes in con-
sumption has two reinforcing effects on EBt. First, if trend growth is rapid, highly
elastic investments will benefit more from economic growth. Second, the benefit is
a convex function of the growth rate xt of consumption. By Jensen’s inequality,
the uncertainty affecting economic growth raises the expected benefit. Because this
convexity is increasing in the elasticity βt, this effect is increasing in βt. The combi-
nation of these two effects may dominate the discounting effect. Indeed, combining
equations (5) and (9) implies that

NPV =
∑
t=0

cβt
0 exp

[
(−rf + βt

(
µ− γσ2

)
+ 0.5β2

t σ
2)t
]
.

This is increasing in βt if βt is larger than γ − (µ/σ2). This result is summarised in
the following proposition:

Proposition 1. Consider an asset with maturity-specific constant betas, i.e., an
asset whose future benefit Bt|t≥0 is related to future aggregate consumption ct|t≥0 in
such a way that for all t there exists βt ∈ R such that E [Bt |ct ] = cβt

t . Under the
standard assumptions of the CCAPM, the value of this asset is locally increasing in
βt if it is larger than the difference between relative risk aversion and the ratio of
the mean by the variance of the growth rate of consumption.

In the United States over the last century, we observed µ ≈ 2% and σ ≈ 4%. If we
take γ = 2, this implies that γ− (µ/σ2) ≈ −10.5. Alternatively, to acknowledge the
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equity premium puzzle, we might take γ = 10, so that we obtain γ− (µ/σ2) ≈ −2.5.
Because most actions yield βt larger than either of these two numbers, we conclude
that the NPV of most investment projects is increasing in their CCAPM β. The
intuition is that the mean growth rate of consumption has been so much larger than
its volatility in the past that the effect of a larger β on the expected benefit is much
larger than its effect on the discount rate, thereby generating a positive effect on
NPV.

3 A simple analytical model of the climate beta
In this section we derive the climate β from a simple analytical model. As well
as helping to formalize notions of what determines the climate β, we also use the
model to make an important point about the role of the structure of climate damages,
specifically what difference it makes to the climate β that damages are multiplicative
in most models such as standard DICE, as opposed to additive.

Let us consider any specific future date t, and let Y represent global economic
output within the period [0, t] in the absence of climate damages. Over timescales
from a decade to centuries, important recent papers in climate science have shown
that (a) the increase in the global mean temperature T is approximately linearly
proportional to cumulative carbon dioxide emissions (Allen et al., 2009; Matthews
et al., 2009; Zickfeld et al., 2009; Goodwin et al., 2015) and (b) the warming response
to an emission of carbon dioxide is virtually instantaneous, and then constant as a
function of time (Matthews and Caldeira, 2008; Shine et al., 2005; Solomon et al.,
2009; Eby et al., 2009; Held et al., 2010; Ricke and Caldeira, 2014). This enables us
to write

T = ω1E, (10)

where E stands for cumulative industrial CO2 emissions from 0 to t and ω1 is a
parameter called the carbon-climate response (CCR)4, combining the response of
the carbon cycle to emissions and the temperature response to atmospheric carbon.
More complex models like DICE deal with these components separately. Emissions
of CO2 are themselves proportional to pre-damage production, so that

E = ω2Y − I0, (11)

where ω2 ∈ [0, 1] parameterises the carbon intensity of production, and I0 is an
investment to reduce emissions at the margin.

We assume the damage index D is proportional to increased temperature T at
some power k:

D = αT k, (12)
4The Intergovernmental Panel on Climate Change has also called it the Transient Climate Re-

sponse to Cumulative Carbon Emissions or TCRE (Collins et al., 2013).
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where α calibrates the damage function. Parameter k turns out to play an important
role in the determination of the climate β in this model. It is widely believed that
there is a convex relationship between climate damages and warming, i.e. k > 1.

At this stage, let us remain quite general about the way to model the interaction
between the damage index D and the index of economic development Y :

Q = q(Y,D), (13)

where Q is post-damage aggregate output and q is a bivariate function, which is
increasing in Y and decreasing in D, with Q(Y, 0) = Y for all Y . If c ∈ (0, 1] is
the propensity to consume output in period t, then the model yields the following
reduced form:

C(I0) = cq
[
Y, αωk1 (ω2Y − I0)k

]
. (14)

We consider the β of a marginal emissions reduction project. The benefit or cash
flow of the project is

B ≡ ∂C

∂I0

∣∣∣∣
I0=0

= −cω−1
2 hY k−1qD(Y, hY k), (15)

with h = αωk1ω
k
2 . To sum up, our model characterises the statistical relationship

between future consumption C = C(0) and future benefits B as a function of a set
of uncertain parameters, such as Y and ω1. This system is given by the following
two equations:

lnB = ln
(
cω−1

2 h
)

+ (k − 1) lnY + ln
[
−qD(Y, hY k)

]
,

lnC = ln c+ ln q
(
Y, hY k

)
.

(16)

How does β respond to the various uncertainties in this model? We proceed one
by one through each of the key sources of uncertainty.5

3.1 The climate β when the main source of uncertainty is related
to exogenous economic growth

Suppose the only source of uncertainty is exogenous, emissions-neutral technological
progress, captured in this simplified model by pre-damage production Y . Then a

5It can be seen that, in fact, the CCAPM climate β is not constant in this model. In other
words, log climate damages are not linear in log consumption, plus white noise (8). Therefore
the risk-adjusted discount rate r = rf + βπ holds only as an approximation. In reality, the true
climate β is stochastic and correlated with economic growth. Recent developments in the finance
literature initiated by Jagannathan and Wang (1996) have focused on the impact of stochastic betas
on equilibrium asset prices, however the literature is yet to reach the stage where such an extension
could be implemented here. In our numerical modelling with DICE, we allow the climate β to be
sensitive to maturity, and we are also able to show that at a given date t the relationship between
log benefits and log consumption in DICE is linear (data available from the authors on request).
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local estimation of β can be obtained by differentiating the system (16) with respect
to Y :

β ≈ d lnB/dY
d lnC/dY = q

qD

(k − 1)qD + Y qY D +DqDD
Y qY + kDqD

, (17)

where q and its partial derivatives appearing in this equation are evaluated at(
Y, hY k

)
. The approximation is exact when the uncertainty affecting Y is small.

We calibrate this equation by considering two alternative damage models. In
IAMs like standard DICE, damages are assumed to be multiplicative – proportional
to Y – which implies that for instance doubling income also doubles absolute climate
damages, all else being equal. We can represent this class of model with the function

q(Y,D) = Y (1−D),

where D is expressed in percentage points of aggregate income. In this context, (17)
simplifies to

β ≈ k(1−D)
1− (k + 1)D. (18)

In Table 1, we compute the climate β derived from this formula for reasonable values
of k and D. It is uniformly positive. Moreover, observe that for damage of less than
5% of GDP,6 the climate β can be approximated by k. In other words, when the
main source of uncertainty is emissions-neutral technological progress, the climate
β is approximately equal to the elasticity of climate damage with respect to the
increase in global mean temperature. The consensus in the damages literature is
that k > 1, which implies that the climate β > 1, based on this source of uncertainty.
What is the intuition behind this result? It is simply that faster technological
progress serves as a positive shock to output and consumption, which in turn leads
to higher emissions (assuming ω2 > 0, i.e. provided production is not carbon-free),
higher total damages from climate change and higher marginal damages, thus higher
benefits from emissions abatement. Future climate benefits of mitigation and future
consumption are positively correlated.

Obviously, the fact that damages are assumed to be proportional to pre-damage
aggregate income Y plays an important role in this calibration. It is a built-in
mechanism towards a positive β. Let us therefore consider an alternative, additive
damage structure with

q(Y,D) = Y −D,

where D measures the absolute level of damages expressed in consumption units.7
In other words, for given warming, doubling pre-damage income has no effect on
absolute climate damage. However, the above intuition still applies: increasing

6The literature on the total economic cost of climate change indicates that it might be at most
5% of GDP when T = 3degC (Tol, 2009; IPCC, 2014).

7The damage function (12) parameter α would need to be recalibrated in order to yield the same
absolute damages as in the multiplicative case, for given warming.
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Table 1: Calibration of the climate β using Eq. (18) when the source of uncertainty
is exogenous emissions-neutral technological progress. If instead Eq. (20) is used,
subtract one from all cells.

k = 0.5 k = 1 k = 2 k = 3
D = 1% 0.50 1.01 2.04 3.09
D = 3% 0.51 1.03 2.13 3.31
D = 5% 0.51 1.06 2.24 3.56
D = 10% 0.53 1.13 2.57 4.50
D = 20% 0.57 1.33 4.00 12.00

income/production results in an increase in emissions as long as ω2 > 0, which in
turn increases temperature and marginal climate damages, if the damage function
(12) is convex. So the benefit of mitigation is increased accordingly. What difference
then does the additive structure make? When the only source of uncertainty is Y ,

β ≈ (k − 1)(Y −D)
Y − kD

. (19)

It is interesting to compare Equations (18) and (19), i.e. our estimates of β under
multiplicative and additive damages respectively. These two equations are not im-
mediately comparable in fact, because D is expressed in percentage points in the
former and in consumption units in the latter. If we express the damage in Eq. (19)
in percentage points, D% = D/Y , it can be rewritten as

β ≈ (k − 1)(1−D%)
1− kD% . (20)

Eq. (20) is now directly comparable with Eq. (18) and it is clear that the difference
lies in replacing k in (18) with k − 1 in (20). Thus, the numbers in Table 1 also
apply in the additive case, except that all betas appearing in this table should be
reduced by 1. This means that β < 0 when k = 0.5. We summarise these results in
the following proposition:

Proposition 2. Suppose that the main source of uncertainty is emissions-neutral
technological progress, and that climate damages are small (D ≤ 5%). Then in (a)
the multiplicative case, the climate β can be approximated by k, the elasticity of
climate damages with respect to warming. In (b) the additive model, the climate β
can be approximated by k − 1.

Conversely when climate damages are large, there is no short-cut to using Equa-
tions (18) and (20) in the multiplicative and additive cases respectively to estimate
the climate β. Either way, our analysis shows the classical multiplicative model of
climate damages has a built-in mechanism towards producing a positive climate β,
which is dampened in the additive model. In fact, our analysis shows that there are
two independent channels that generate a positive β in the multiplicative case:
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• (convexity effect) An increase in Y results in higher cumulative emissions E.
This in turn increases marginal climate damage – thus the marginal benefit of
mitigation – if the damage function (12) is convex, i.e. if k > 1;

• (proportionality effect) An increase in Y raises damages directly if damages
are proportional to Y .

We believe that these two explanations for a positive β in this context have their
own merit. The bottom line is that the climate β is positive in this context.

3.2 The climate β when the main source of uncertainty is related
to the carbon-climate-response and/or the damage intensity of
warming

By contrast, let us now suppose that the only source(s) of uncertainty are the CCR
parameter ω1 and/or the damage intensity of warming α. Differentiating the system
(16) with respect to ω1 we obtain

β ≈ d lnB/dω1
d lnC/dω1

= d lnB/dα
d lnC/dα = q

qD

qD +DqDD
DqD

, (21)

where q and its partial derivatives appearing in this equation are again evaluated
at (Y, hY k). The approximation is exact when the uncertainty affecting ω1 is small.
Exactly the same expression for β is obtained when assuming that α rather than
ω1 is uncertain, as examined by Sandsmark and Vennemo (2007) and Daniel et al.
(2015). Therefore Equation (21) shows how uncertainty about the CCR and the
damage intensity of warming affect the climate β.

Observe that in both the multiplicative and additive models, qDD = 0, so that
this equation simplifies to

β ≈ q

DqD
, (22)

which is unambiguously negative. The intuition for this result is that a higher
CCR results in more warming for given cumulative carbon emissions, which in turn
yields at the same time higher marginal damage and lower aggregate consumption.
Therefore the uncertainty affecting the CCR results in a negative correlation between
B and C, and a negative climate β. Similarly, a higher damage intensity of warming
results in greater damages for given emissions, and so on.

Proposition 3. The climate β is unambiguously negative when the main sources of
uncertainty are the carbon-climate response and/or the damage intensity of warm-
ing.

This result is independent of whether climate damages are additive or multi-
plicative in relation to aggregate consumption. For example, in the multiplicative
case q = Y (1−D), the climate β is approximately equal to −(1−D)/D. The same
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approximation holds in the additive case.8 If we expect climate damage of around
5% of GDP, we should use a climate β of around -19. There is also an explanation
for why the climate β is so large in absolute value in this context. Take the limiting
case ω1 = 0 as a benchmark, and examine the impact of a marginal increase in
its value. This will have a marginal (negative) effect on log consumption, but an
unbounded effect on the marginal log benefit, since the initial benefit is zero. In
other words, fluctuations in ω1 yield limited relative fluctuations in consumption,
but wild relative fluctuations in marginal benefits. This yields a large β in absolute
value.

Overall, this analysis illustrates that uncertainty about technological progress
on the one hand and about the carbon-climate response and damage intensity of
warming on the other hand most likely have contrasting effects on the climate β, the
former positive, the latter two negative. This explains the contradictory conclusions
that can be found in the literature. Sandsmark and Vennemo (2007) and Daniel
et al. (2015) propose models, in which there is no macro-economic uncertainty inde-
pendent of climate change. Sandsmark and Vennemo (2007) concluded that fighting
climate change has a negative CCAPM β. Daniel et al. (2015) corroborate the re-
sult of Sandsmark and Vennemo (2007), by showing that the social cost of carbon
is increasing in risk aversion in their model. But Nordhaus (2011) contradicts these
conclusions by modelling benefits of mitigation that are positively correlated with
aggregate consumption. We propose that this contradiction rests in the fact that the
Monte-Carlo simulations in Nordhaus (2011) include a source of uncertainty about
emissions-neutral technological progress, and it can also be attributed in part to the
fact that DICE/RICE deploys a multiplicative damage structure.

4 Estimating beta with DICE
We now develop estimates of the β of CO2 emissions abatement using a modified
version of William Nordhaus’ well-known DICE model. The advantages of using
an IAM include: we can obtain more empirically grounded estimates of the climate
β, albeit the empirical basis of IAMs has been criticised (e.g. Stern, 2013; Pindyck,
2013); we can obtain estimates of the term structure of β; and DICE can incorporate
a broader range of uncertainties than our analytical model. Another advantage is
that DICE is a dynamic model, in which future consumption depends in part on
current output through current savings and investment. This introduces a new set
of effects on the β, which we describe below. We can also generalise the form of the
damage function, so that we can consider the pure multiplicative and additive cases,
as well as cases between and beyond these. Naturally the disadvantage of using an
IAM is that the workings of the model are less transparent.

8Indeed, assuming q = Y − D, equation (21) yields β ≈ −(Y − D)/D. This is equal to −(1 −
D%)/D%, where D% = D/Y is the damage expressed as a fraction of Y .
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DICE couples a neoclassical growth model to a simple climate model. Output
of a composite good is produced using aggregate capital and labour inputs, given
exogenous total factor productivity (TFP). However, production also leads to CO2
emissions, which are an input to the climate model, resulting in an increase in
the atmospheric concentration of CO2, radiative forcing of the atmosphere and an
increase in global mean temperature. The climate model is coupled back to the
economy via a damage function, which is a reduced-form polynomial equation as-
sociating an increase in temperature with a loss in utility, expressed in terms of
equivalent output.

Our analysis is based on the 2013 version of the model (Nordhaus and Sztorc,
2013). We randomise ten parameters to estimate the climate β (details in Table 2).
These parameters represent key uncertainties at all stages in the (circular) chain
of cause and effect that links baseline economic and population growth with CO2
emissions, the climate response to emissions, damages and the costs of emissions
abatement. Our parameter selection is informed by, but extends, past studies with
DICE, which provide evidence on the most important uncertainties (Nordhaus, 2008;
Dietz and Asheim, 2012; Anderson et al., 2014).

We implement a CO2 emissions reduction project by removing one unit of in-
dustrial emissions in 2015.9 For reasons of computational tractability, we assume
that the marginal propensity to save is exogenous and we use Nordhaus’ (2013) time
series of values, whereby the savings rate is always c. 0.23− 0.24. Previous research
(e.g. Golosov et al., 2014; Jensen and Traeger, 2014), as well as our results below,
indicate that endogenous savings decisions would not have a major effect on the
results. We take a large Latin Hypercube Sample of the parameter space, which has
the advantage of sampling evenly from the domain of each probability distribution,
with 50,000 draws. The parameter distributions are assumed independent.

Most of the technical details of the parameter scheme are relegated to the Ap-
pendix. However, we make two changes to the structure of standard DICE that are
worth detailing here.

TFP growth As a neoclassical growth model, DICE allocates to TFP the portion
of output that cannot be explained by capital and labour inputs at their assumed
elasticities (0.3 and 0.7 respectively). It follows that TFP growth plays a very
significant role in determining GDP growth and therefore future consumption and
CO2 emissions (Kelly and Kolstad, 2001). As discussed in Section 3, the effect on
β of variation in TFP growth should be positive.

In DICE, the equation of motion for TFP is

At+1 = At(1 + gAt )
9This amounts to one gigatonne of CO2 (GtCO2). Since the atmospheric concentration of CO2 in

2015 is estimated by DICE to be c. 3167GtCO2, it may indeed be regarded as a marginal reduction,
consistent with the definition of β given above.
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Table 2: Uncertain parameters for simulation of modified DICE-2013R.
Parameter Functional Mean Standard Source Effect on β

form deviation (likely)
Initial trend growth rate Normal 0.016 0.009 Maddison project +
of TFP (per year) gA0 and other sources

(see text)
TFP shock Normal 0 0.06 Maddison project +
(per five years) ε and other sources

(see text)
Asymptotic global Normal 10854 1368 United Nations -
population (millions) (2013)
Initial rate of Normal -0.0102 0.0064 IEA (+)
decarbonisation (per year) (2013)
Price of back-stop Log-normal 260 51 Edenhofer et al. +
technology in 2050 (2010)
US$/tCO2(2010 prices)
Uptake of atmospheric Normal* 0.06835 0.0202 Ciais et al. (-)
carbon by the upper ocean (2013)
and biosphere (per five years)
Climate sensitivity Log- 2.9 1.4 IPCC (-)
◦C per doubling logistic** (2013)
of atmospheric CO2

Damage function Normal 0.0025 0.0006 Tol*** (-)
coefficient α2 (% GDP) (2009)
Damage function Normal 0.082 0.028 Dietz and Asheim (-)
coefficient α3 (% GDP) (2012)
Income elasticity Normal 1 0.33 Anthoff and Tol (+)
of damages ξ (2012)
*Truncated from above at 0.1419. ***Truncated from below at 0.75. ***Including corrigenda published in 2014.
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where A is TFP and gA is the growth rate of TFP.
We depart from standard DICE, however, in how we specify the evolution of gAt ,

so that we can distinguish two sources of TFP uncertainty. In particular, we assume
that gAt evolves according to a transformed first-order autoregressive process with
an uncertain trend:

gAt =
[
(1− ψ) gA0 + ψgAt−1 + εt

] (
1 + δA

)−t
, (23)

where gA0 is the uncertain trend growth rate, ε is an independent and identically
distributed (i.i.d.) normal shock and ψ is the coefficient of persistence of shocks,
which is assumed certain/fixed. This AR(1) process is multiplied by the factor(
1 + δA

)−t
, which is a feature of standard DICE. The parameter δA is an assumed

rate of decline of TFP growth. It is several times smaller than the expected value
of gA0 .10

We estimate gA0 , ψ and ε using data on historical TFP growth. Since we are
forecasting more than two centuries into the future, we want a very long-run series
of historical TFP growth, so we use data from the US and UK over the period
1820-2010, compiled from multiple sources.11 The coefficient of persistence in this
time series is ψ = 0.42. The estimates of gA0 and ε can be found in Table 2.12

Damage function Damages are one of the most contestable elements of IAMs.
By virtue of its accessibility and simplicity in this regard, DICE has become the
common means to give expression to competing views. Much of the debate stems
from the inability to constrain a reduced-form damage function at warming of more
than 3degC, due to the lack of underlying studies. Antipodes in the literature are
given by the traditional quadratic form of Nordhaus (2008; 2013) and the damage
function proposed by Weitzman (2012), in which damages are much more convex
with respect to warming. However, the curvature of the damage function is not the
only issue. As Section 3 showed, the climate β also depends on the income elasticity
of damages.

10Standard DICE simply assumes that gA
t = gA

0
(
1 + δA

)−t. Nordhaus (2008) and Dietz and
Asheim (2012) randomised gA

0 in this structure, meaning that all the uncertainty about future TFP
stems from the initial trend and that this uncertainty is very large.

11Bolt and van Zanden (2013); US Census Bureau; US Bureau of Economic Analysis; Feinstein
and Pollard (1988); Matthews et al. (1982). We would like to acknowledge the help of Tom Mc-
Dermott and Antony Millner in collecting these data, although the resulting estimates are our
responsibility.

12In terms of whether the historical time series conforms with an AR(1) process, we fail to
reject the null hypothesis that there is no serial correlation in εt, using both Durbin’s alternative
test and the Breusch-Godfrey test. Based on the Ljung-Box portmanteau test, we reject the null
hypothesis that εt is white noise, however further inspection of the time-series of εt indicates that
the heteroskedasticity is caused by noisy data around World War II, rather than a secular trend.
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Our damage function takes the following flexible form:

Dt = Yt

[
1− 1

1 + α1Tt + α2T 2
t + (α3Tt)7

](
Yt
Y0

)ξ−1
,

where D is damages as a percentage of GDP, Y is pre-damage output, αi, i ∈
{1, 2, 3}, are coefficients and ξ is the income elasticity of damages (following the
specification in van den Bijgaart et al., 2016). If ξ = 1 then the damage function is
multiplicative like standard DICE, whereas if ξ = 0 it is additive.

We specify both α2 and α3 as random parameters (α1 = 0 as usual). The former
coefficient enables us to capture uncertainty about damages that is represented by
the spread of existing estimates at warming of 2-3degC (summarised in Tol, 2009).13

The coefficient α3 may be calibrated so as to capture the difference in subjective
beliefs of modellers about how substantial damages may be at higher temperatures
(given there are virtually no existing estimates). We follow Dietz and Asheim (2012)
in specifying a normal distribution for α3 that spans existing suggestions: at three
standard deviations above the mean total damages approximate Weitzman (2012),
while at three standard deviations below the mean they approximately reduce to
standard quadratic damages.

Empirical evidence to directly inform ξ is limited to a study by Anthoff and
Tol (2012), which used the FUND IAM to estimate ξ disaggregated by region and
impact type. Other IAMs like standard DICE cannot be used to estimate ξ, because
of course they assume a multiplicative structure. The estimates in Anthoff and Tol
(2012) suggest that ξ is normally distributed and centred around the multiplicative
case (ξ = 1).

Since α2 and α3 determine the damage intensity of warming, the main effect of
an increase in one or both will be a decrease in β, for a given path of output (cf.
Proposition 3). However, unlike the simple model of Section 3, the path of output is
not given in a dynamic economy like that of DICE. Instead, when higher damages
at time t reduce output at t, there is a knock-on, negative effect on investment at
t, which reduces pre-damage output at future times.14 All else being equal, this
negative effect on future pre-damage output will reduce future emissions, damages
and the benefits of mitigation. Therefore the direction of the overall main effect of
an increase in α2 and α3 on β cannot be determined a priori. Nonetheless, we might
suppose the direct negative effect on β dominates. In addition to the main effect of
α2 and α3 on β, they likely interact with other uncertainties. In particular, Section 3
showed that the effect of uncertainty about emissions-neutral technological progress
on β is more positive, the higher is the curvature of the damage function.

The main effect on β of variation in ξ is similar. For a given output path, an
increase in ξ results in an increase in damages, hence a decrease in consumption and

13α2 is also equivalent to the stochastic parameter in the model proposed by Sandsmark and
Vennemo (2007).

14We can be sure of this, since the marginal propensity to save is exogenous.

16



an increase in the benefits of mitigation. This decreases β, but again the output
path is not given. Section 3 showed that ξ has an important interaction effect too:
we would expect the positive effect of TFP uncertainty on β to be larger, the higher
is ξ.

Effect on β of remaining uncertainties In addition to our treatment of TFP
growth and damages, here is a brief summary of how each of the other uncertain
parameters in Table 2 is expected to affect the climate β.

• Since DICE has a neoclassical (Cobb-Douglas) production function, an in-
crease in population growth reduces capital intensity and hence pre-damage
output per capita. But although β depends on consumption and benefits mea-
sured on a per-capita basis (see Section 2), the effect of population growth on
the aggregate scale of the economy also matters. A faster-growing population
means a bigger economy on aggregate, higher emissions and higher total and
marginal damages. This reduces post-damage consumption per capita and
raises the benefits of mitigation. Therefore population growth should have a
negative effect on β.

• While growth in CO2 emissions is proportional to growth in GDP in IAMs like
DICE, the proportion is usually assumed to decrease over time due to struc-
tural change away from carbon-intensive production sectors and decreases in
emissions intensity in a given sector. These are baseline trends, i.e. achieved
without the imposition by a planner of a price/quantity constraint on emis-
sions. A priori, variation in the rate of decarbonisation has an ambiguous
effect on β. For a given path of output, an increase in the rate of decar-
bonisation reduces the benefits of mitigation, because it lowers emissions and
hence total and marginal climate damages. But lower damages increase cur-
rent income and hence they increase capital investment, future consumption,
emissions and damages. So while there is no doubt that an increase in the
rate of decarbonisation increases consumption, what happens to the benefits
of mitigation depends in principle on the balance between the negative effect
on marginal damages of a reduction in emissions intensity and the positive
effect on marginal damages of an expansion in production.

• While β is a measure of the correlation of the marginal benefits of emissions
abatement with consumption, and therefore abatement costs do not play a
direct role in its calculation, they nonetheless play an indirect role, since the
emissions scenario on which the mitigation project is undertaken may involve
abatement. Variation in abatement costs increases β: an increase in abatement
costs, for a given quantity of abatement, decreases income/consumption, but
by decreasing income it also decreases industrial emissions in the long run,
through the investment channel. This reduces the benefits of mitigation.
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• There are numerous uncertainties, many of them large, about the behaviour of
the climate system in response to carbon emissions (e.g. IPCC, 2013). In the
structure of DICE’s simple climate model, these can be grouped into two types.
The first type is uncertainties about the carbon cycle, which render estimates
of the atmospheric stock of CO2 for a given emissions scenario imprecise. We
focus on variation in the uptake of atmospheric carbon by the upper
ocean and biosphere, which also has an ambiguous a priori effect on β.
Consider a decrease in this uptake, which means that more CO2 emissions
remain in the atmosphere. Under these circumstances, if the path of pre-
damage output is taken as given, then more atmospheric CO2 means increased
total damages, hence consumption is reduced and the marginal benefits of
mitigation are increased. This reduces β. However, to reiterate, the investment
effect means that the path of pre-damage output is not given; reduced income
at a particular date due to greater damages results in lower investment, which
depresses future output. This reduces future consumption too, but because it
reduces future CO2 emissions there is a countervailing, negative effect on the
benefits of mitigation. Again, we might expect the direct effect to dominate,
so variation in the uptake of atmospheric carbon should reduce β.

• The second type of uncertainty about the climate system is about the relation-
ship between the stock of atmospheric CO2 and global mean temperature.15

Studies that deploy stochastic versions of DICE have overwhelmingly fixed
on the climate sensitivity parameter as a means of rendering uncertain the
temperature response to atmospheric CO2. Climate sensitivity is the increase
in global mean temperature, in equilibrium, that results from a doubling in
the atmospheric stock of CO2 from the pre-industrial level. In simple climate
models, it is indeed critical in determining how fast and how far the planet
is forecast to warm in response to emissions. Variation in climate sensitivity
has an ambiguous – but likely negative – effect on β, with the causal mecha-
nisms being very similar to those at play in the carbon cycle. Higher climate
sensitivity means higher damages, lower consumption and higher benefits of
mitigation for given output, but with lower income comes lower investment,
lower future output and therefore a counter-balancing negative effect on future
emissions that tends to reduce the benefits of mitigation.

5 Results
Using the 50,000 draws of the Monte Carlo simulation as the source of variation, we
can calculate the instantaneous consumption β of CO2 emissions abatement. As a
function of time, we can then plot its term structure.

15Note that together these two types of uncertainty make up the carbon-climate response in
Section 3.
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Define the benefits of emissions abatement as its avoided damages, in particular
as the difference in consumption per capita with and without removing 1GtCO2.
The benefits of abatement B are then given by

Bt = ct − cREFt

Bt = (1− st) (1−Dt) yt − (1− st)
(
1−DREF

t

)
yREFt

where c is consumption per capita, y is pre-damage output per capita, REF denotes
reference outcomes before 1GtCO2 is removed and s is the savings rate. Note that
output here is net of abatement costs.

βt is then the covariance between ln cREFt and lnBt, divided by the variance of
ln cREFt :

βt =
cov

[
ln cREFt , lnBt

]
var

[
ln cREFt

] (24)

The discussion above gives us reason to suppose that, in a dynamic model, the β of
CO2 emissions abatement might depend on the path of growth and emissions. Many
of the parameter choices we have already described will impact on this, for instance
the various determinants of TFP growth, and the initial rate of decarbonisation.
But one set of exogenous variables that we must still choose is the emissions reduc-
tions imposed by the planner. Therefore in Figure 1 we plot the term structure of β
for two different emissions control scenarios. The first scenario corresponds to the
baseline in DICE-2013R, which is a representation of ‘business as usual’. According
to this scenario, emissions reductions rise gradually from 4% of uncontrolled indus-
trial emissions in 2015 to 14% in 2100 and 54% in 2200. Hence emissions abatement
is non-trivial even in the baseline.16 The second scenario is an example of a path
in which emissions reductions are deep: it is the so-called ‘Lim2T’ scenario from
DICE-2013R, in which the planner seeks to limit global warming to no more than
2degC. In Lim2T, emissions reductions are already 33% in 2015 and they hit the
maximum 100% in 2060.17

The headline result is that on both emissions scenarios β is positive. Overall,
given the various uncertainties we specify, there is a positive correlation between
consumption and the benefits of emissions abatement. Indeed, over the remainder
of this century, the magnitude of β is quite similar on what are two very different
emissions paths; it is between 0.9 and 1. However, the term structure of β on the
two emissions paths is different and this difference starts to matter after 2100. In
the baseline scenario, β falls monotonically to 0.48 in 2230. In the Lim2T scenario,
β remains between 0.9 and 1 throughout.

16Which illustrates why abatement costs might affect β even in the baseline scenario.
17While the changes we have made to DICE-2013R in this study mean that Lim2T is no longer

guaranteed to deliver warming equal to 2degC, for the purpose of estimating β it is a perfectly good
example of a stringent mitigation scenario.
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Figure 1: The term structure of βt for two contrasting emissions scenarios.
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Table 3: Estimates of βt on the baseline scenario in selected years, for different
subsets of uncertain parameters.

Uncertain parameters 2025 2065 2115 2165 2215
TFP shocks 1.02 1.06 1.06 1.05 1.05

TFP shocks + initial trend 1.02 1.06 1.06 1.05 1.05
growth rate of TFP

TFP shocks + asymptotic 1.02 1.06 1.06 1.05 1.05
global population

TFP shocks + initial 1.02 1.06 1.06 1.05 1.05
rate of decarbonisation
TFP shocks + price of 1.02 1.06 1.06 1.05 1.05

back-stop technology in 2050
TFP shocks + uptake of atmospheric 1.02 1.05 1.05 1.04 1.04

carbon by the upper ocean
and biosphere (per five years)

TFP shocks + 1.00 1.01 0.93 0.85 0.78
climate sensitivity

TFP shocks + damage 0.95 1.04 1.04 1.03 1.03
function coefficient α2

TFP shocks + damage 1.02 1.06 1.09 1.10 1.10
function coefficient α3

TFP shocks + income 1.01 1.05 1.03 1.01 1.00
elasticity of damages

TFP shocks + 0.95 0.98 0.86 0.67 0.55
climate sensitivity +
α2 + α3 + income
elasticity of damages

All 0.95 0.97 0.85 0.63 0.49

What is behind these results? To answer this question, we perform repeated
Monte Carlo simulations of the baseline scenario with subsets of the uncertain pa-
rameters and re-estimate the term structure of β. The results can be found in Table
3 for selected years. Where a parameter is treated as certain, it is fixed at its mean
value. First, we treat all the model parameters as certain, except for the TFP shocks
εt. Then we run through the remaining uncertain parameters, one at a time, and
combine each with the TFP shocks.

What emerges clearly from Table 3 is that the driver of positive β is uncertainty
about TFP growth. Moreover it is specifically the transitory shocks to TFP, allied
with their moderate persistence, that do it, rather than uncertainty about trend TFP
growth. If we run the model just with TFP shocks, β = 1.02 in 2025, 1.06 in 2115
and 1.05 in 2215. Most of the remaining uncertainties make no discernible difference
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to β when combined individually with TFP shocks: trend TFP growth; population
growth; the rate of decarbonisation; abatement costs; and uptake of atmospheric
CO2. Including uncertainty about the damage function coefficient α2 or the income
elasticity of damages reduces β very slightly, while including uncertainty about the
damage function coefficient α3 increases it very slightly.18

The one source of uncertainty that does have a significant effect on the β obtained
with TFP shocks alone is the climate sensitivity. The effect is negative. However,
this negative effect is not enough to pull β much below unity this century, so the
effect of TFP shocks dominates. When the model is run with TFP shocks and
uncertain climate sensitivity, β = 0.93 in 2115 and 0.78 in 2215.

At the foot of the table we reproduce the simulation in which all parameters
are uncertain. In this simulation, β does fall to 0.63 in 2165 and eventually 0.49 in
2215. The penultimate simulation in the table shows that this is mostly accounted
for by combining just five uncertainties: TFP shocks; climate sensitivity; α2; α3;
and the income elasticity of damages. These analyses also help us explain why
β has a different term structure on the Lim2T emissions scenario than it has on
the baseline. On Lim2T the atmospheric concentration of CO2 is much lower than
on the baseline, so the negative effects on β of the climate sensitivity and damage
parameters are lower. Consequently β does not decline after the beginning of the
next century.

6 Discussion
In this paper we have studied the sign and size of the climate β, using both a simple
analytical model and an empirically grounded Monte Carlo simulation of the DICE
model. Using the DICE model also enabled us to take into account the effects on the
climate β of investment, as well as generalising the form of the damage function. Our
results strongly suggest that the climate β is positive. In particular, our numerical
modelling with DICE suggests it is positive and close to unity for maturities of up
to about one hundred years. Beyond that, the climate β depends more strongly on
the emissions path. On business as usual it falls to about 0.5 for maturities of two
hundred years or more, while it remains close to unity on a path of deep emissions
cuts that aims to limit warming to 2degC. One might think that reality will turn
out to be somewhere between these two extreme cases (e.g. UNEP, 2015), hence the
climate β for very long maturities is somewhere between 0.5 and 1.

The overwhelming driver of these results is uncertainty about exogenous, emissions-
neutral technological progress in the shape of transitory but moderately persistent
shocks to TFP. Positive TFP shocks are simultaneously associated with higher
marginal benefits of emissions reductions and higher consumption. Uncertainty

18This implies that when the only sources of uncertainty are TFP shocks and α3, the positive
interaction between α3 and the TFP shocks dominates the main, negative effect of α3 on β.
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about climate sensitivity and the damage intensity of warming provide a counter-
vailing effect that tends to reduce β, but it is outweighed by the effect of TFP
shocks. It is important to remember that we allow for fat-tailed climate sensitivity
and large convexity of the damage function, two of the principal sources of risk of
catastrophic climate damages, which have been claimed to give rise to a negative β.

Naturally the validity of our numerical estimates is affected by the well-known
weaknesses shared by all IAMs (e.g. Pindyck, 2013; Stern, 2013). In addition, we
face the particular issue of whether and to what extent damages are proportional to
output. The basic assumption embodied in a multiplicative damage structure is that
damages are a constant fraction of output, for given warming and damage intensity.
By contrast, in an additive structure the share of damages in output decreases as
output increases, and vice versa. Therefore it is related to the so-called ‘Schelling
conjecture’ that developing countries “best defense against climate change may be
their own continued development” (Schelling, 1992, p6). Section 3 made clear that if
climate damages are better represented by an additive structure, then the conditions
required for a positive climate β are stricter. However, the empirical evidence we
used to calibrate the income elasticity of damages in DICE does not support this
(Anthoff and Tol, 2012). Rather, it suggests that the income elasticity of damages in
most regions at most times is greater than zero and often greater than one, without
strong support for a central value other than one. The worry is that the empirical
evidence is currently very thin, and more research is clearly required on this issue.

Understanding the implications of our findings for climate mitigation requires
understanding the dual role played by β in determining the NPV of mitigation.
It is most straightforward to observe that positive β implies the future benefits of
emissions abatement should be discounted at a relatively higher rate. How much
higher?

Two approaches can be followed to answer this question, with radically different
conclusions. Both approaches use the CCAPM rule r = rf +βπ. The first approach
consists in using the systematic risk premium π that has been observed in markets,
for instance in the United States over the last century, where it has been around
5% (see Gollier (2012), chapter 12). For a project with a unit β, this means the
efficient discount rate for that project should be five percentage points higher than
the risk-free rate. The second approach is model-based rather than market-based;
one uses the CCAPM formula π = γσ2 to estimate the risk premium, where σ2 is the
volatility of consumption growth estimated in DICE. According to our simulations,
σ2 = 0.1% with respect to average growth over the period 2015-2230, so we obtain
a risk premium of only 0.2 percentage points if we accept a coefficient of relative
risk aversion γ = 2, which much of the existing literature would suggest (Kolstad
et al., 2014). This leads to a much smaller impact of the positive climate β on the
risk-adjusted climate discount rate.

The large discrepancy between these two recommendations may be seen as a
manifestation of the well-known “equity premium puzzle”. Three decades of research
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on this financial puzzle suggests that the model-based CCAPM approach fails to
capture many dimensions of the real world, in particular the existence of structural
uncertainties and fat tails (Weitzman, 2007b). Although including these dimensions
in our model is beyond the reach of this paper – a new concept of β will need to be
developed to accommodate these features – we are inclined to accept this position.
We then conclude that a large positive climate β is important for discounting the
future benefits of mitigating climate change.

But this is not the end of the story. Section 2 showed that the NPV of climate
mitigation is increasing in β if β is larger than γ −

(
µ/σ2), which is at most of the

order of -2.5. Since our estimates are clearly larger than that, it can be concluded
that the NPV of climate mitigation is indeed increasing in β. More broadly, this
shows that the implications of our work do not just concern the discount rate.
It would be wrong to discount the future benefits of emissions abatement at a
risk-adjusted rate with unit β, unless the undiscounted future benefits have been
calculated in a way that properly factors in, implicitly or explicitly, how they scale
with economic growth.

7 Conclusion
Because a large fraction of the climate damages generated by greenhouse gases
emitted today will not materialise until the distant future, the choice of the rate
at which these future damages should be discounted plays a critical role in the
determination of the social cost of carbon. Most of the recent literature on climate
discounting implicitly assumes that these damages are uncorrelated with aggregate
consumption, so that they should be discounted at the risk-free rate. This justifies
using either the Ramsey rule or the observed interest rate to estimate the climate
discount rate. However, we show in this paper that the climate β, i.e. the elasticity
of climate damages with respect to a change in aggregate consumption, is close to
one, at least for maturities of up to one hundred years. This is mainly due to the
role of exogenous, emissions-neutral technological progress in raising consumption,
emissions, atmospheric carbon and marginal damages. This implies that mitigating
climate change raises the risk borne by future generations, which justifies using a
climate discount rate that is larger than the risk-free rate. How much larger depends
on our evaluation of the equity premium puzzle in finance. That the climate β is
relatively large should induce climate economists to change the focus of long-term
discounting from safe to risky claims.

A large climate β not only implies a large climate discount rate. Indeed, the
climate β measures the sensitivity of monetized climate damages to a change in
consumption of other goods and services in the economy. In a growing economy, a
large climate β also implies large expected damage in the long run. We have shown
that an increase in the climate β increases expected damages more than it reduces
the discount factor, so that in fact the social cost of carbon is increasing in the
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climate β.
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Appendix. Further details of random parameters in DICE
Asymptotic global population In DICE population grows according to the
following equation of motion:

Lt+1 = Lt

(
L∞
Lt

)gN

,

where L is the population, which converges to the asymptotic global population L∞
according to the growth rate gN .

We use the global population projections of the United Nations (2013) to cali-
brate a probability distribution over L∞. According to these projections, the world
population will be at an approximate steady state of 10.85 billion in 2100 on the
medium (fertility) variant, within a range of 6.75 billion on the low variant to 16.64
billion on the high variant. This is a non-probabilistic range, which can be set
against an emerging – though not uncontested (Lutz et al., 2014) – field of prob-
abilistic population forecasting based on Bayesian methods (Raftery et al., 2012).
According to these forecasts, the UN’s low and high variants are very unlikely to
eventuate (i.e. they are suggested to be well outside the 95% confidence interval:
Gerland et al., 2014), because they assume fertility is systematically different to
the medium scenario in all countries. Taking this perspective into account, we fit a
normal distribution to the UN population projections, such that the low variant is
three standard deviations away from the mean, with the result that the high variant
is even further from the mean.

Initial rate of decarbonisation In DICE, autonomous decarbonisation is achieved
by virtue of a variable representing the ratio of emissions/output, which decreases
over time as a function of a rate-of-decarbonisation parameter:

EINDt = σt(1− µt)Yt, (1)

where EIND represents industrial CO2 emissions, µ is the control rate of emissions
set by the planner, Y is pre-damage output and σ is the ratio of uncontrolled
emissions to output, given by

σt+1 = σt(1 + gσt ),

where gσ < 0 is the rate of decline of emissions to output, given by

gσt = gσ0 (1 + δσ) t,

with the initial rate of decline of emissions to output being gσ0 , subject itself to a
rate of decline of δσ < 0. Similar to TFP, δσ is around an order of magnitude
smaller than gσ0 , so the latter is key in driving long-run uncertainty about declining
emissions intensity.
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To calibrate a distribution over gσ0 we use data from the International Energy
Agency (IEA, 2013), which provides the ratio of global CO2 emissions from fossil
fuels to real global GDP for the period 1971-2011, a period in which planned emis-
sions reductions (i.e. through µ) were trivially small at the global level. We partly
smooth annual fluctuations by taking a five-year rolling average. The resulting data
are fit best by a normal distribution with mean and standard deviation as reported
in Table 2.

Price of the backstop technology In DICE the total cost of abatement as a
percentage of annual GDP, Λ, is determined by

Λt = θ1,tµ
θ2
t ,

where θ1 and θ2 are coefficients. The time-path of θ1 is set so that the marginal cost
of abatement at µt = 1 is equal to the backstop price at t. Hence randomising the
backstop price is a way to introduce uncertainty into abatement costs.

We use the findings of an inter-model comparison study by Edenhofer et al.
(2010) to update and characterise uncertainty over the backstop price. Edenhofer
et al. (2010) assess the cost of limiting warming to below 2degC in five global
energy models. A scenario that stabilises the atmospheric stock of CO2 at 400ppm
requires zero emissions by around 2050, so we can use the models’ estimates of
marginal abatement costs in 2050 as a measure of the backstop price at that time.
Marginal costs range from $150/tCO2 to $500, with an average of $260, all at today’s
prices. Since the distribution of cost estimates is asymmetric, we use a log-normal
distribution. We set the mean to $260 and posit that the probability of the lowest
and highest estimates is 1/1000. We use a comparable emissions scenario in DICE
to retrieve, for each value of the backstop price in 2050, the value of the backstop
price in 2010, the initial period.

Uptake of atmospheric carbon by the upper ocean and biosphere The
atmospheric stock of carbon in DICE is driven by the sum of industrial emissions
from (1) and exogenous emissions from land-use. A system of three equations repre-
sents the cycling of carbon between three reservoirs, the atmosphereMAT , a quickly
mixing reservoir comprising the upper ocean and parts of the biosphere MUP , and
the lower ocean MLO:

MAT
t+1 = Et+1 + φ11M

AT
t + φ21M

UP
t ,

MUP
t+1 = φ12M

AT
t + φ22M

UP
t + φ32M

LO
t ,

MLO
t+1 = φ23M

UP
t + φ33M

LO
t ,
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where total emissions of CO2 to the atmosphere are E, and the cycling of CO2
between the reservoirs is determined by a set of coefficients φjk that govern the
rate of transport from reservoir j to k per unit of time. We follow Nordhaus’
(2008) uncertainty analysis by randomising φ12, the coefficient for the transfer of
carbon from MAT to MUP . However, we make use of the latest scientific findings
from the IPCC’s Fifth Assessment Report (Ciais et al., 2013) to calibrate φ12. In
particular, φ12 may be calibrated by inspecting evidence on the percentage of a
pulse of CO2 emissions that remains in the atmosphere after 100 years. According
to the standard parameterisation of DICE-2013R, this would be c. 36%, but the
evidence from multiple climate models collected by Ciais et al. (2013) suggests a
mean of 41%, with 54% at +2 standard deviations and 28% at -2 standard deviations.
We calibrate φ12 accordingly, however to ensure the DICE carbon cycle maintains
physically consistent behaviour at all values of φ12, we must set the lower bound at
31% removed. Table 2 provides details.

Climate sensitivity The equation of motion of temperature in DICE is given by:

Tt+1 = Tt + κ1

[
Ft+1 −

F2×CO2

S
(Tt)− κ2

(
Tt − TLOt

)]
,

where Ft+1 is radiative forcing, which depends on the atmospheric stock of CO2,
F2×CO2 is the radiative forcing resulting from a doubling in the atmospheric stock
of CO2 from the pre-industrial level, S is climate sensitivity, TLO is the temperature
of the lower ocean, κ1 is a parameter determining speed of adjustment and κ2 is
the coefficient of heat loss from the atmosphere to the oceans. Calel et al. (2015)
contains a detailed explanation of the physics behind this equation.

The latest IPCC report (IPCC, 2013) provides a subjective probability distribu-
tion for the climate sensitivity, which is the consensus of the panel’s many experts.
According to this distribution, S is ‘likely’ to be between 1.5 and 4.5degC, where
likely corresponds to a subjective probability of anywhere between 0.66 and 1. It
is ‘extremely unlikely’ to be less than 1degC, where extremely unlikely indicates a
probability of ≤ 0.05, while it is ‘very unlikely’ to exceed 6degC, where this denotes
a probability of ≤ 0.1. Dietz and Stern (2015) find that a log-logistic function has
the appropriate tail shape to fit these data19 (taking the midpoints of the IPCC
ranges), and set the scale and shape parameters of the distribution such that the
mean S is 2.9degC, and the standard deviation is 1.4degC. In addition, we truncate
the distribution from below at 0.75degC in order to again ensure that the DICE
climate model exhibits physically consistent behaviour.

19That is, the log-logistic function has the lowest root-mean-square error of any distribution
fitted.
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