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Abstract   

It is commonly believed that large energy efficiency gaps exist in the energy-using durables 

markets. We develop a broad analytical framework capturing consumer purchase behavior 

and suppliers’ pricing and innovation decisions to estimate the effect of household electricity 

price variations on the refrigerator market outcomes. Using UK product-level panel data 

from 2002 to 2007, we find that the main factor limiting the full effect of rising price signals 

on curbing energy consumption of refrigerators is not consumer myopia, but changes in 

relative prices of products in favor of the less efficient models. We also find that 

manufacturers strongly respond to rising electricity prices by changing their product 
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portfolio. This suggests shifting policy attention towards suppliers’ pricing and innovation 

behaviors would be effective in achieving energy efficiency gains in the durables market. 

Keywords: Energy Efficiency; Electricity Prices; Consumer Myopia, Imperfect Competition. 

JEL Classification: D12, L68, Q41. 

1. Introduction  

In energy and environmental policy circles, the promotion of energy efficiency is viewed as a 

major objective because of its relation to energy security, environmental objectives including 

CO2 mitigation, job creation and other economic benefits. This has led to continued 

developments of policies for energy conservation, including labeling schemes, binding 

standard and price incentives. This applies particularly to the commercial and residential 

sectors where it is widely believed that significant “energy efficiency gaps” exist between the 

socially optimal and actual level of energy consumption. The International Energy Agency 

has been particularly active in disseminating this idea (see for instance, IEA, 2007, Ryan et 

al., 2011).  

Energy efficiency outcomes involve decisions where consumers first make an upfront 

investment in a durable good and then consume the energy that is required to use the 

product. Examples include water heaters, insulation in buildings, motor vehicles and 

household appliances. Efficiently functioning markets for energy-using durables is thus a key 

ingredient. The idea of the energy efficiency gap is rooted in the widespread belief that the 

markets of energy-using durables fail to properly integrate energy price signals. The policy 

discussions, as well as the academic literature, mostly focus on demand-side issues (see IEA, 

2007, Ryan et al., 2011 and the reviews by Allcott and Greenstone, 2012, and Gillinghan and 

Palmer, 2014). The key concern here is that imperfect information and other cognitive 
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constraints could lead consumers to discard privately profitable investments2. Since the 

seminal paper by Hausman (1979), it is often asserted that consumers are myopic in the 

sense that they give too high weight to the upfront cost or, expressed differently, the 

implicit discount rate used to calculate the net present value of the investment is too high. In 

contrast, much less attention has been paid to the supply side of these markets3. 

In this paper, we develop a broad analytical framework that includes both consumer and 

supplier behaviors to identify how refrigerator markets respond to energy prices. On the 

demand side, an increase in electricity price reduces consumer utility. As the reduction is 

higher for energy-inefficient products, it provides incentives to shift towards more efficient 

ones. On the supply side, the durables producers then adjust prices in response to this 

demand shock. The theory of industrial organization predicts an asymmetric response in 

differentiated good markets: the price of models with poor energy performance is expected 

to decrease, while that of energy-efficient models will decrease less or even increase if total 

demand is sufficiently inelastic. Note that this price adjustment would not occur in a 

competitive market where prices are equal to marginal production costs, because there is no 

                                                      

2
 The nature of the underlying causes of demand inefficiencies is extensively discussed by Gillingham and 

Palmer (2014). Most of these causes are related to imperfect information. The simplest mechanism is when the 
decision maker lacks information on the true benefits of energy efficiency investments. But there can also be 
principal-agent problems arising when one party makes a decision related to energy use, but another party 
pays or benefits from that decision. For example, the landlord may pay for heating, while the tenant chooses 
how much energy to use. Another potential barrier is if the investor faces credit constraints that are stronger 
than for other investments because the lender finds it difficult to evaluate the payoff from energy efficiency 
investments.  
3
 The academic literature is reviewed in the subsequent section. Supply side aspects have been studied for 

instance by Fischer (2005), Jacobsen (2013), Houde (2014a, 2014b), Goldberg (1998). In contrast with our 
paper, most of these papers do not investigate the impact of energy prices, but that of other policy instruments 
(e.g. standards and energy labelling). 
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price change if marginal costs are constant.4 Producers can also modify their product 

portfolio by launching new energy efficient models and withdrawing inefficient ones.  

We use annual product-level panel data from the U.K. refrigerator market from 2002 to 2007 

to analyze the entire sequence of adjustments and their impact on energy use of sold 

appliances. We incorporate three relevant market dimensions: consumer behavior, 

suppliers’ price setting behavior and suppliers’ product innovation behavior. Using data on 

sales, prices and the set of products sold in the market in a given year, the variation in the 

price of electricity over time and the product-specific variations in energy consumption 

levels are exploited to identify the impact of changes in electricity price on the different 

dimensions. 

In doing so, we examine the previously neglected potential role of suppliers in widening the 

“energy efficiency gap”. In particular, the potential change in relative prices between energy 

efficient and inefficient goods means that producers subsidize inefficient models in relative 

terms. The implication is that like consumer myopia, the effect of rising energy prices on 

energy efficiency is weakened as incentives to shift to efficient models are dampened. We 

also look at their role in narrowing the energy efficiency gap when they change product 

characteristics, which can boost the impact of energy price on average energy performance 

of sold appliances. A full understanding of the impact of energy prices on energy use thus 

requires taking all these decisions into account.5 

                                                      

4
 Constant marginal cost is a reasonable assumption as our scenario does modify the quantities produced 

drastically. 
5
 This point is also made with an analytical model by Fischer (2005) who stresses the importance of the supply 

side factors (including innovation) when designing policies to promote energy efficiency of household 
appliances. 
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Methodologically, we develop a simple discrete choice model with differentiated quality 

based on Berry (1994) to describe demand. We take the first-difference to eliminate time-

invariant product attributes. A nested logit framework is used to control for product 

segmentation caused by product differentiation. To address endogeneity issues arising from 

refrigerators’ prices and quantities being simultaneously determined, our instrumentation 

strategy incorporates data from product markets with different demand characteristics that 

are sold and manufactured by the same firms supplying refrigerators. Adjustments made by 

suppliers to prices and products offered are estimated using reduced-form equations, which 

impose few restrictions on how they compete on the market. To estimate how electricity 

prices influence which products are offered on the market, we use a dynamic panel-data 

probit model (Wooldridge 2005), taking advantage of the fact that for a given model, the 

dates of market entry and exit are observed. We then use our estimates to simulate the 

impact of an increase in electricity price on the average annual electricity consumption of 

sold appliances. The simulations include three stages: first, we predict the impact of 

electricity price shocks on purchasing decisions, holding the set of products available on the 

market and their prices constant. Second, we predict how an electricity price rise affects 

relative refrigerator purchase prices and adjust market shares accordingly. Third, we correct 

the market shares of commercialized products according to their probability of being 

commercialized, which we estimate with a probit model. 

What transpires from our estimates is the fact that the refrigerator market strongly responds 

to electricity price changes. On the demand side, our base specification predicts that, 

holding the supply behaviour constant, a 10% electricity price increase is associated with a 

reduction in energy use by 2.1%. This reflects limited consumer myopia as our estimate of 

the implied discount rate is 11%. Multiple robustness checks confirm this finding. 
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In the second stage where product characteristics are held constant, we find suppliers’ 

decisions to cut prices of inefficient durables drastically reduce the impact of rising 

electricity price on energy use – energy use reduction falls to 0.5%. The reason is that 

adjustments to refrigerator prices are large, compensating around 75% of the increase in 

lifetime energy costs. In the third stage, the innovation response is also drastic as 

endogenous changes in product characteristics double the size of energy use reductions – it 

increases to 1.0%. 

What policy lessons can be drawn from these figures? The potential existence of 

inefficiencies in the markets of energy-using durables has important policy implications 

(Allcott and Greenstone, 2012; Gillingham and Palmer, 2014; Jaffe and Stavins, 1994; 

Verboven, 2002, Li et al., 2009). Policies designed to improve the energy efficiency of 

durables reflect the conventional view that price instruments such as emissions trading are 

likely to have limited impacts on residential energy use, because households underestimate 

the size of future energy costs. These include investment subsidies that encourage the 

purchase of water heaters, the installation of insulation in dwellings, regulatory standards 

mandating a minimal level of energy or environmental performances of new motor vehicles 

like the EURO norms in Europe or the CAFE standards in the U.S., building energy codes and 

product energy labels. 

Our findings partly contradict this view. The problem is not the lack of consumer response to 

energy price rises in their durables consumption behavior per se. Rather, the major source of 

inefficiency results from a very strong response by suppliers in adjusting product prices, 

specifically by reducing the relative price of energy inefficient models. Thus focusing solely 

on the demand side issues is unlikely to lead to a comprehensive set of policies to tackle the 

energy efficiency gap. For example, energy labelling can constitute a partial solution to 
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demand-side failures, but it does not mitigate the pricing problem. It can even be 

counterproductive and exacerbate the problem by providing producers with more incentive 

to subsidize inefficient models if consumers respond to labeling. Our finding that the 

innovation response to energy prices is relatively large, also contradicts a popular idea in 

policy circles that energy performance standards are the preferred tool to force inefficient 

models to exit the market. To sum, supply-side issues should be at the core of the policy 

discussions on energy efficiency. 

The rest of this paper is structured as follows. In the following section, we briefly review the 

literature and justify why refrigerators constitute a suitable case study to investigate the 

functioning of durable goods markets. Section 3 develops a conceptual framework and 

address identification issues. Section 4 presents the data. Sections 5 outlines our empirical 

strategy and estimated results are presented in Section 6. In Section 7, we run simulations to 

predict the impacts of a 10% increase of the price of electricity. Section 8 summarizes our 

findings and formulates policy implications. 

2. Related literature 

The empirical literature on the impact of energy prices on energy efficiency is well 

developed. However, to the best of our knowledge, there exists no work which studies the 

impact of energy price changes on the entire sequence of demand and supply responses 

(quantity, price, and innovation). 

As explained above, the large majority of existing papers focus on demand and consumer 

myopia. Following the work of Hausman (1979) on room air conditioners, earlier research 

found implicit discount rates that are substantially larger than real financial discount rates. In 

the case of electric appliances, rates reported for refrigerators range from 39% to 300% 
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(Revelt and Train, 1998; Hwang et al., 1994; McRae, 1985; Meier and Whittier, 1983; Gately, 

1980; Cole and Fuller, 1980); between 19% to 77% for air conditioners (Matsumoto, 2012; 

Train and Atherton, 1995; Hausman, 1979; Kooreman, 1995); and between 67% and 84% for 

water heaters (Hwang et al., 1994; Goett and McFadden, 1982). More recent studies have 

suggested lower rates. For refrigerators, Tsvetanov and Segerson (2014) find discount rates 

in the range 13-22% in a paper that looks at the impact on consumer surplus of energy 

labeling. The same pattern is found in recent papers dealing with gasoline prices and fuel 

efficiency. Allcott and Wozny (2014), whose methodological approach is similar to ours, find 

a discount rate of 16%. Busse et al. (2013) produce several estimates under different 

assumptions, none of which exceed 20% and many of which are close to zero. The same 

pattern is found by Goldberg (1998). 

There are several reasons which explain why recent works, including ours, find low discount 

rates compared to previous work, the most important one being the use of panel data that 

allows unobserved product characteristics to be better controlled for. Indeed, using a 

hedonic pricing model on a cross section of products as done by Hausman (1979), we find a 

discount rate of 210% (see Annex A5). Another reason may also be related to the fact that 

consumers are better informed. For example, energy labelling is mandatory in the European 

Union for many appliances, including refrigerators, since 1995. In the US and in Canada, the 

label “Energy Star” is also increasingly used.  

A few papers look both at price and quantity adjustments. Many of them investigate the 

impact of other policy variables, in particular energy or fuel efficiency standards (Goldberg, 

1998; Jacobsen, 2013), feebates (e.g., d’Hautfeuille et al., 2013) and energy labelling (Houde, 

2014a, 2014b). Two contributions deal with energy prices. Busse’s et al. (2013) work on the 

car market examines both the level of the discount rate and the price response of car 
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suppliers (manufacturers and retailers) to gasoline price changes. Interestingly, they show 

that the price adjustment is much higher in the used car market than in the market for new 

cars. Verboven (2002) is primarily concerned with the pricing behavior of car manufacturers. 

Finally, there is a literature focusing on the impact of energy prices on innovation. Examples 

include the work by Newell et al. (1999) on energy-using consumer durables and by Popp 

(2002) on a larger set of 22 energy-related technologies. 

Why is it then useful to combine the study of all adjustments as we do in this paper? The 

answer is very simple: it allows the assessment of the relative importance of all the issues 

that have been identified in the theoretical literature as relevant. Our results show that the 

norm of focusing on demand and consumer myopia is too restrictive to get a full 

understanding on how energy prices influence energy use and the policy solutions that can 

be introduced to complement energy taxation.  

Refrigerators constitute a suitable case to explore these questions for reasons that can be 

better explained by a comparison with motor vehicles, where the impact of gasoline prices 

have been studied in several recent studies (e.g., Allcott and Wozny, 2014; Busse et al., 

2013, Anderson et al., 2013). To start with, and in contrast to car owners who vary their 

usage intensity, refrigerator owners cannot adjust energy consumption after purchase.6 As a 

result, future energy consumption is exogenously determined by the characteristics of the 

product. This suppresses an important source of biases and of measurement errors. A 

second advantage is that there is no market for used cold appliances. This is obviously not 

the case for cars and empirical analysis therefore needs to develop complex solutions and/or 

                                                      

6
 A consequence is that there is no “rebound effect”, unless consumers keep their old refrigerator as a second 

appliance. This is unlikely in British dwellings where space is limited. The work by Sallee, West, and Fan (2009) 
is an example of effective efforts to circumvent that problem with controls for odometer readings. 
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make several assumptions to deal with this issue. See for instance Jacobsen (2013), Li et al. 

(2009), or Allcott and Wozny (2014) who only examine the impact of gasoline prices on the 

second-hand market. Third, the product is simple compared to cars and less influenced by 

subjective feelings. This is a major benefit as dealing with taste shocks and unobserved 

product characteristics, that tend to be correlated with energy performance, is a major 

methodological obstacle, particularly when using market level data as is done in this paper 

and many others. Recall also that energy labelling is mandatory since 1995 for all 

refrigerators sold in the European Union, meaning that information asymmetry on energy 

performance is to a large extent mitigated.  

3. Conceptual framework 

We begin by developing a simple discrete choice demand model of the refrigerator market 

based on Berry (1994). There are T markets, each representing the UK refrigerator market 

during year t (with t = 1,…,T). For each market, we observe aggregate quantities sold, 

average prices, and product characteristics for J models of refrigerators.  

Consumers choose the product that maximizes utility. The indirect utility function of 

consumer i purchasing a new refrigerator j in year t is equal to  𝑈𝑖𝑗𝑡 = 𝑉𝑗𝑡 + 𝜖𝑖𝑗𝑡 where 𝑉𝑗𝑡 is 

the average utility and 𝜖𝑖𝑗𝑡 is consumer i’s unobserved heterogeneity that captures deviation 

from the average. The average utility is:7 

𝑉𝑗𝑡 = 𝑢𝑗𝑡 − 𝛼(𝑝𝑗𝑡 + γ𝐶𝑗𝑡)  

                                                      

7
 This form of the indirect utility can be derived from a quasi-linear utility function, which is free of wealth 

effects. This is a reasonable assumption for refrigerators, which usually represents a tiny share of individual 
income.  
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In this expression, 𝑢𝑗𝑡 captures the value of usage of the refrigerator j over its lifetime which 

depends on product characteristics such as size, whether the refrigerator is built-in or 

freestanding. 𝑝𝑗𝑡 is the purchase price and 𝐶𝑗𝑡 is the discounted electricity cost. 𝐶𝑗𝑡 has a 

negative impact on 𝑉𝑗𝑡 which is proportional to 𝛼, the marginal utility of money, and a 

parameter γ, which captures consumers’ perceptions about energy costs. If consumers are 

perfectly rational, we have γ = 1. If they are myopic, it is expected that they underestimate 

the disutility from energy costs so that γ < 1. Estimating this parameter is a central objective 

of the paper.8 

Next we decompose the value of usage in two additively separable terms: 𝑢𝑗𝑡 = 𝑢𝑗 + 𝜉𝑗𝑡 

where 𝜉𝑗𝑡   captures the time-varying component of the valuation of observed and 

unobserved product characteristics. Hence, we have: 

                                                       𝑉𝑗𝑡 = 𝑢𝑗 − 𝛼(𝑝𝑗𝑡 + γ𝐶𝑗𝑡) + 𝜉𝑗𝑡                                                           

Berry (1994) generalises McFadden’s (1973) discrete-choice demand model by transforming 

the logit model into a linear model that can be estimated with aggregated market data. In 

Berry’s framework, the probability that good j is purchased asymptotically corresponds to its 

market share at time t. Hence: 

𝑠𝑗𝑡 ≡
𝑒

𝑉𝑗𝑡

∑ 𝑒𝑉𝑘𝑡𝑘
, 

where 𝑠𝑗𝑡 denotes product j’s market share in year t. A consumer can also choose the 

outside option, indexed 0, which represents the decision not to purchase any refrigerator. 

Normalizing the utility of the outside option 𝑉𝑖0𝑡 to zero, the market share of product j at 

                                                      

8
 Here, the modeling strategy is to adopt the standard rational choice model, except that we include the 

parameter γ. An alternative approach would be to adopt a behavioral economics framework, which is used by 
Segerson and Tsvetanov (2014). But this will prevent the measurement of the energy efficiency gap, which is 
precisely the gap between actual behavior and perfect rationality. 
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time t can be compared with the market share of the outside good so that 𝑠𝑗𝑡/𝑠0𝑡 = 𝑒𝑉𝑗𝑡 . In 

logs, this simplifies to ln(𝑠𝑗𝑡) − ln(𝑠0𝑡) = 𝑉𝑗𝑡. This expression rests on the assumption of 

irrelevance of independent alternatives (IIA) that leads to biased estimates in 

heterogeneous, segmented product markets.  

To relax this assumption, we adopt a nested logit framework in which consumers’ 

idiosyncratic preferences are correlated across refrigerators within the same “nest” 

(𝐶𝑜𝑟𝑟(𝜖𝑖𝑗𝑡, 𝜖𝑖𝑘𝑡) ≠ 0), and zero otherwise.9 In this situation, Berry shows that: 

ln(𝑠𝑗𝑡) = 𝑢𝑗 − 𝛼(𝑝𝑗𝑡 + γ𝐶𝑗𝑡) + 𝜎 ln(𝑠𝑗(𝑔)𝑡) + ln(𝑠0𝑡) + 𝜉𝑗𝑡                             (1) 

where  𝑠𝑗(𝑔)𝑡 is the market share of product 𝑗 as a fraction of the total sales within group g 

that includes product j and 𝜎 ∈ [0,1]  is a scalar that parameterizes the within-nest 

correlations. Note that the model collapses to the standard logit when 𝜎 = 0. 

In our base specification, we construct the product groups based on three dimensions that 

create product segmentation in the refrigerator market: a capacity indicator that takes the 

value 1 when the capacity is above the sample median capacity; an indicator that takes the 

value 1 when the appliance is a combined refrigerator-freezer rather than a standard 

refrigerator; and an indicator that distinguishes freestanding appliances from built-in ones. 

This choice is based on our belief that these three characteristics naturally divide the 

products in different segments. A consumer purchasing a combined refrigerator-freezer has 

a fundamentally different need than a consumer purchasing a standard refrigerator. 

Similarly, the choice of the size is strongly influenced by family characteristics (size, food 

                                                      

9
 Goldberg (1995) and Allcott and Wozny (2014) are other examples where the nested logit model is used. A 

popular alternative is the random coefficient models. In this situation, the nested logit model is suitable since it 
allows us to eliminate unobserved quality and cost characteristics and the outside option through first-
differencing. A random coefficient approach requires us to quantify the outside option, which is uncertain and 
subject to measurement errors.  
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consumption habits, etc.) and dwelling characteristics, whereas built-in refrigerators are 

more likely to be chosen by consumers that refurbish their kitchen at the same time. In 

Appendix A1, we give results with alternative nest structures which were not qualitatively 

affected by different nests.  

We now turn to the specification of the discounted lifetime electricity cost 𝐶𝑗𝑡, which is our 

variable of interest. The parameter γ is inserted in Eq. (1) to capture potential behavioral 

failures. As a consequence,  𝐶𝑗𝑡 should not be viewed as the electricity cost perceived by 

real-world consumers, but rather the cost they would consider if they were fully informed 

and rational. They would then calculate the net present value of the electricity cost with the 

standard formula: 

                                                     𝐶𝑗𝑡 = Г𝑗 × ∑
𝑞𝑡+𝑠

𝑓

(1 + 𝑟)𝑠

𝐿𝑗

𝑠=1

                                                                   (2) 

In this equation, 𝐿𝑗 is product j’s lifetime, Г𝑗  is the level of energy consumption per time 

period, 𝑞𝑡+𝑠
𝑓

 is the electricity price at time 𝑡 + 𝑠 that is forecasted at the time of purchase 𝑡 

and 𝑟 is the discount rate. As we consider the behavior of a representative consumer, 𝑞𝑡+𝑠
𝑓

 

which is a national average although actual prices can vary across locations. As a result, the 

variation in the data comes from the interaction between model-specific and time-invariant 

characteristics (i.e. lifetime and annual energy consumption) and time-varying electricity 

prices. Note also that forecasted electricity prices are unobserved as the data only include 

actual prices. They are estimated with an ARIMA model that is described more fully in 

Section 4. We come back to these issues in detail below. 

Price. In contrast to the demand equation, we rely on a reduced form equation to describe 

refrigerator price adjustments induced by electricity price changes. Developing a structural 

approach to describe the supply would require taking into account both pricing and product 
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innovation behaviour of multiproduct firms. We would thus need to introduce multiple 

assumptions on how competition works. Reduced form equations impose much less 

restrictions. Recall that our interest is in the influence of electricity costs. Accordingly, our 

price equation is:10  

                                           𝑝𝑗,𝑡 = 𝛽 − 𝜂𝐶𝑗𝑡 + 𝜇𝑗 + 𝜆𝑏(𝑗)𝑡 + 𝜖𝑗𝑡                                                     (3) 

𝜇𝑗 is a product fixed effect, 𝜆𝑏(𝑗)𝑡  is a by brand by year fixed effects where 𝑏(𝑗) indicates the 

brand of product j. Therefore, 𝜆𝑏(𝑗)𝑡  captures average shifts in the price of products from 

the same brand. We come back to this in Section 5 when dealing with identification issues. 

Our objective here is to estimate 𝜂. Importantly, this parameter measures neither the 

demand nor the supply curve characteristics. Instead it estimates the impact of electricity 

costs on the equilibrium refrigerator price, once demand and supply responses are both 

taken into account, holding product availability constant. Thus, this estimate allows us to 

derive a mid-term elasticity after quantity and price adjustments. 

Product availability. Turning next to changes in product portfolio, we take advantage of the 

fact that data describes products sold in the market in year t on the product code level. 

Thus, we observe when specific products have been launched and when they have been 

withdrawn.11 Again we expect that an increase in electricity price would induce the launch of 

more energy-efficient models and the withdrawal of less efficient ones. 

                                                      

10
 In a variant, we include both the electricity cost and its squared value to test for the existence of a non-

monotonic relationship between product price and electricity costs. It is possible that energy price increases 
will decrease the price of the products consuming more energy while the price of energy-efficient models could 
increase if total demand is inelastic. We find no support for this hypothesis; results are presented in Appendix 
A6. 
11

 The dataset also includes products that are observed every year. That is, products that have been launched 
before 2002 and not been withdrawn during the sample period.  
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Let 𝑑𝑗𝑡
∗  denote a binary variable indicating the availability of product j at time t. More 

specifically, 𝑑𝑗𝑡
∗ = 1 if the product is in the market and zero otherwise. In addition, we define 

𝑑𝑗,𝑡 as the probability that product j is available at time t. We then use a dynamic probit 

equation which relates this probability to a set of explanatory variables: 

                                      𝑑𝑗𝑡 = Ф(𝑘𝑑𝑑𝑗𝑡−1
∗ + 𝑘𝑝𝑝𝑗𝑡 + 𝑘𝑐𝐶𝑗𝑡 + τ𝑡 + 𝜇𝑗)                                           (4) 

Ф(. ) is a cumulative normal function with zero mean and a variance equal to one and  𝑘𝑑, 

𝑘𝑝 and 𝑘𝑐 are parameters. The two crucial variables are the purchase price 𝑝𝑗𝑡 and the 

operating cost 𝐶𝑗𝑡, which are both expected to decrease the dependent variable (𝑘𝑝, 𝑘𝑐 <

0). We adopt a dynamic specification with 𝑑𝑗𝑡−1
∗  as an independent variable in order to 

control for path dependency: launching a product in the market is more costly than 

withdrawing it.  τ𝑡 and 𝜇𝑗 are time dummies and product fixed effects, respectively.  

4. Data 

We use market data from the refrigerator market in the UK on the product level from 2002 

to 2007 collected by the market research company GfK Retail and Technology (received by 

the Department for Environment, Food and Rural Affairs). When investigating the influence 

of energy prices, a potential difficulty is that other policies such as energy labelling, feebates 

and energy standards may also have an impact on energy efficiency. Our study period has 

seen neither change in the design of the labelling scheme, nor in the strictness of regulatory 

standards.  

However, the Energy Efficiency Commitment (EEC) scheme was enforced during the study 

period, offering the possibility for eligible households to get financial support for the 

purchase of energy efficient cold appliances, among other types of energy efficiency 

investments. In practice though, support provided through EEC focused on energy efficient 
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light bulbs and on home insulation. Lees (2008) report that subsidized fridge-freezers by EEC 

may have represented 0.43% of the market between 2005 and 2008. If we also include 

subsidies from local authorities and the Warm Front, subsidized appliances may have 

represented around 1.5% of all cold appliances sold between 2005 and 2008. Therefore, 

such policies alone are unlikely to explain either consumer behavior or suppliers’ reactions in 

general. 

The data includes detailed annual information on refrigerators and combined refrigerators-

freezers sold in the U.K. We identify products by brand name and series numbers. If not 

available, we rely on available information on product features (width, height, total capacity, 

energy consumption, energy efficiency rating, freestanding / built-in feature, availability of 

no-frost system and of freezer).12 

Each observation is a product j in year t with measures including number of units sold, 

average consumer price, and annual electricity consumption. We also observe a set of 

product features such as size, whether it is a standard refrigerator or a combined 

refrigerator-freezer and indication of whether it has a separate freezing compartment that 

can store food at -18°C. We do not have information on product-specific lifetimes. Instead, 

we use the information provided by the Association of Manufacturers of Domestic 

Appliances that estimates the lifetime to 12.8 years for refrigerators and to 17.5 years for 

combined refrigerators-freezers (AMDEA, 2008). 

                                                      

12
 Brand name and series numbers were not available for retailers’ own brands. For these products, 

identification is based on product features alone. This means that, with this method, two models from different 
retailers’ brand but with exactly the same product features cannot be properly distinguished. Therefore, 
observations for retailers’ brand appliances are dropped each time the same product features corresponds to 
various models of appliances for the same year. 
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We drop observations with low sales. More specifically, we drop each model of which annual 

sales never exceeds 100 units over the study period. This ensures that the models in the 

sample were actually commercialized at a large scale (not only in a few local markets) during 

at least one year over the period. We also drop every observation (product x year) with less 

than 10 units sold to avoid having models with sales near zero that would make the 

estimation of the discrete choice model unstable. Outliers are also dropped: we identify the 

2.5% products with either largest or smallest price, capacity or energy consumption, in 

addition to the 2.5% of products with highest sales levels. Any product following within at 

least one of these categories is dropped from the sample.13 

Summary statistics on product characteristics are displayed in Table 1. The data set used in 

the regressions includes 3,519 observations of which 2,265 are used to construct the first 

differences for the econometric estimation. The total number of differences used in the 

econometric estimation is 1,365. Descriptive statistics are based on the 2,265 observations 

used to construct the differences of the estimation sample of the market share and price 

equations. 

Although the data is not used in our estimation, we also know the product’s classification 

according to the EU energy label. Energy labeling is mandatory since 1995 for all 

refrigerators sold in the European Union. In our data, each product is assigned to a class 

from A++ (the most energy-efficient) to G (the least energy efficient). This rating does not 

capture the absolute energy consumption of the appliance, but its relative consumption 

                                                      

13
 For the dynamic panel data probit model, we do not drop the 2.5% of products with highest or lowest price, 

since this would affect the normality of the price variable, and therefore undermines the multiple imputation 
process. 
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across different classes. Table 2 provides an overview of the distribution of prices and 

market shares across energy efficiency classes. 

Table 1: Summary statistics on product characteristics 

Variable Unit Mean Std deviation 

Annual sales, used for the log of market shares ln(𝑠𝑗,𝑡) # of units 1371.5 2251.6 

Purchase price, 𝑝𝑗,𝑡 real £ 394 246.7 

Appliance lifetime, 𝐿𝑗 years 15.2  

Energy consumption, Гj kWh/year 306.3 136.5 

Height cm 139.8 42.8 

Width cm 59.3 9 

Capacity litres 246.9 106.5 

Energy efficiency ratinga  2.4 0.8 

Share of combined refrigerators-freezers  0.51  

Share of built-in appliances  0.74  

Share of appliances with no-frost system  0.23  

Notes. Source: GfK, provided by Defra. Survey years: 2002-2007. 2,265 observations. a To obtain a 
numeric value for the energy efficiency rating (from “G” to “A++”), ratings were recoded with “A++” 
set equal to 0, “A+”=1, “A”=2 and so on up to “E”=6. The data used in the regression does not 
comprise “F” and “G” labelled products. 
 
 
 

Table 2: Sales-weighted price and market share of appliances, breakdowns by energy 
efficiency class 

Energy efficiency rating Sales-weighted average price Market share 

A++ 392.3 0.03% 

A+ 294 3.38% 

A 324.7 57.87% 

B 267.3 25.82% 

C 237.2 12.43% 

D 313.6 0.48% 

E 257 0.01% 

Notes. Source: GfK, made available by Defra. Survey years: 2002-2007. 2,265 observations. 
No observation with energy efficiency rating of “F” or “G”. 
 
 

We now explain how we derive the electricity cost variable from this data. Recall that: 
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                                                             𝐶𝑗𝑡 = Г𝑗 × ∑
𝑞𝑡+𝑠

𝑓

(1 + 𝑟)𝑠

𝐿𝑗

𝑠=1

                                                                    

As indicated earlier, 𝐶𝑗𝑡 should be viewed as the valuation of cost by a sophisticated and 

informed decision maker. This hypothetical consumer knows the annual energy 

consumption of each model (Г𝑗) and its lifetime (𝐿𝑗), which are available in the market. He 

considers the opportunity cost of capital when determining the appropriate discount rate. 

Assuming that consumers do not purchase refrigerators on credit (the average purchase 

price in our sample is £ 394), the opportunity cost is related to the return that could be 

realized on savings. Accordingly, we set the discount rate 𝑟 to the real average bond deposit 

rate of U.K. households (2.83% according to the Bank of England for the period 2002-

2007).14 This is a conservative assumption as the benchmark rate will be higher for 

consumers buying on credit. 

Measuring the forecasted electricity price 𝑞𝑡+𝑠
𝑓

 is more problematic as we only observe real 

electricity prices. We consider that a perfectly rational consumer calculates future electricity 

prices based on the entire series of past prices. We approximate this calculation process by 

an autoregressive integrated moving-average model (ARIMA) on monthly data on real 

electricity prices. This technique allows us to recreate the entire flow of future expected 

electricity prices that enter Eq. (2). The best fit with our data is obtained with an ARIMA 

process with one lag for the autoregressive term and one lag for the moving-average term: 

𝑞𝑡 = 𝑎 + 𝑏𝑞𝑡−1 + 𝑐𝜗𝑡−1 + 𝜗𝑡 

                                                      

14
 The nominal rate was 4.61% and the Bank of England code for the statistics is IUMWTFA. We subtracted the 

average inflation rate of 1.78% between 2002 and 2007. 
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where 𝑎, 𝑏 and 𝑐 are parameters and 𝜗𝑡 is the error term at time t. The model is used 

recurrently to make forecasts, using predictions of the previous periods to calculate new 

predictions. We re-estimate this model for each year to allow decision-makers to use all data 

that is observed at each time period. This implies that the model is updated in each year 

based on previous market data; e.g. the price expectations for consumers in 2003 are based 

on prices up until Dec. 2002). We then calculate the forecasted prices as: 

                                                         𝑞𝑡+𝑠
𝑓

= �̂�𝑡 + �̂�𝑡𝑞𝑡+𝑠−1
𝑓

                                                                    (5) 

where �̂�𝑡 and �̂�𝑡 are estimates of 𝑎 and 𝑏  using all the data available on electricity prices up 

to time t. The detailed results of the ARIMA models are in Appendix (A7).  

In Appendix A8, we develop an alternative approach in which forecasts are derived from the 

futures prices in the wholesale electricity market. The intuition for this approach is that the 

futures market aggregate information on future prices initially owned by sophisticated 

market participants. These results are similar to the ones we get when using the ARIMA 

model. Another alternative would be to proxy the forecasted electricity price by its current 

price. In a recent paper, Anderson et al. (2013) show that US consumers tend to believe that 

gasoline prices follow a random walk, so that the current price is a martingale. However, this 

approach is not consistent with the assumption we make since we do not want 𝐶𝑗𝑡 to 

capture real-world expectations, but to describe cost valuation by a sophisticated decision 

maker so that the parameter γ  only captures the size of the deviation from this 

benchmark.15  

                                                      

15
 We do, however, provide the results in Appendix A8 under this alternative assumption as a test of 

robustness. This leads to an increase of the size of γ (and thus to reduce myopia). 
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Figure 1 presents the real monthly electricity price data which is calculated using data on 

retail electricity prices from the Department of Energy and Climate Change (DECC, 2013a). 

Note also that the study period 2002-2007 is marked by a dramatic rise in the electricity 

price driven by increasing gas prices (about 8% per year) after a period of decreases during 

the pre-2002 period. Consequently, forecasts are consistently below actual prices during the 

period, i.e. an error that decreases the size of γ).  

Figure 1: Average monthly electricity prices in the UK, 1996-2014 

 

 

Note: Prices in pence with CPI=1 in 2005. The study period is between the two vertical lines. 

 

5. Estimation 

In this section, we specify the different equations and discuss identification issues. 

Sales. To derive an econometric specification for sales, we add year dummies 𝜆𝑡 to Eq. (1) 

and then take the first-differences in order to eliminate the share of the outside option, the 

value of usage and any shift in the overall market share level. This leads to: 
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                                ∆ln(𝑠𝑗𝑡) = −𝛼(∆𝑝𝑗𝑡 + γ∆𝐶𝑗𝑡) + 𝜎 ∆ln(𝑠𝑗(𝑔)𝑡) + ∆𝜆𝑡 + ∆𝜉𝑗𝑡                      (6) 

where ∆ is the first-difference operator and 𝜉𝑗𝑡 is the econometric error term capturing 

unobserved time- and product-varying heterogeneity. 

A concern with eq. (6) is that the purchase price 𝑝𝑗𝑡 is endogenous since quantities and 

prices are simultaneously determined in market equilibrium. The origin of this problem is 

that unobserved time-varying product characteristics affect both consumers’ product 

valuation and prices, i.e. 𝐸[𝑝𝜉] ≠ 0. The log of the within-nest market share ln(𝑠𝑗(𝑔)𝑡) is also 

endogenous. A higher value of 𝜉 increases the sales of refrigerator 𝑗 and because this 

product belongs to nest 𝑔, an increase in 𝑠𝑗𝑡 mechanically increases 𝑠𝑗(𝑔)𝑡.  

The problem might not be too severe, since first-differencing already controls for the 

correlation between prices and the linear component of product-specific unobserved quality 

that do not vary over time. The source of bias is further limited by the fact that there are a 

large number of product-by-year combinations in each nest. An instrumental variable 

approach is nevertheless adopted. Another reason for doing so is to circumvent potential 

measurement errors in the price variable since we do not observe transaction prices but a 

national average transaction price calculated by GfK.16  

To construct the instruments, the classical approach in industrial organisation has taken 

advantage of the fact that the market is imperfectly competitive. In such situations it is 

claimed that characteristics of products 𝑘 ≠ 𝑗 influence 𝑝𝑗𝑡 but not the utility 𝑉𝑗𝑡. Berry 

(1994) suggests using the nest structure of the model. His proposed instruments are the 

averages for different product features within and/or out of the nest that product j belongs 

                                                      

16
 This problem is likely to be less severe than in the auto market where list prices can widely diverge from the 

prices that are actually paid after commercial negotiations.   
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to. This approach is extended in Berry et al. (1995).17 A weakness of these strategies is that 

taste shocks that affect the other products can also influence utility of product 𝑗. For 

instance, marketing efforts by a firm can induce a taste shock that affects all its products, or 

a given characteristics that concern several models might become popular among 

consumers. In this respect, the fact that refrigerators are quite standardized products, 

except in the dimensions we base the nests on, is not necessarily advantageous. It means 

that unobserved product characteristics are going to be correlated across nests and 

manufacturers. The underlying general problem is that we would ideally like to use variables 

that shift cost but that are uncorrelated with the demand shock, but quality variables affect 

both utility and production costs. 

Our solution is to use instruments based on the price of products sold in two outside 

markets: the upright freezer market (i.e. excluding the chest freezer market) and the 

washing machine market. Freezer and washing machines present two useful characteristics. 

First, they are sold outside the refrigerator market, and thus to different consumers. One 

can thus assume that taste shocks are less likely to be correlated. Second they share some 

technical similarities with refrigerators as they are all large household appliances. Finally, 

and importantly, some shocks affecting production costs – e.g., an increase in steel price – 

are likely to be correlated across these markets.  

We do not use the price of freezers and washing machines directly as instruments. Doing so 

would produce instruments that are insufficiently correlated with prices of refrigerators. 

                                                      

17
 They use the observed product characteristics (excluding price and other potentially endogenous variables), 

the sums of the values of the same characteristics of other products offered by that firm (if the firm produces 
more than one product), and the sums of the values of the same characteristics of products offered by other 
firms. 
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Instead, we use the implicit price of two characteristics that also differentiate refrigerators: 

capacity and whether the appliance is built-in or freestanding. These implicit prices are 

estimated using a hedonic pricing model on product-level data for the UK freezer and 

washing machine markets between 2002 and 2007 obtained from GfK. Importantly, we 

include brand-specific time trends in this model that allow us to control for changes in 

brand-specific marketing strategies and image. This ensures that the by-year-by-category of 

appliance (large/small and built-in/freestanding) fixed effects are not capturing changes in 

brand image, which could be correlated with the sales of all types of appliances, including 

refrigerators. To ensure that our estimation is not biased by changes in the retail sector, 

trade brand products have been withdrawn from the sample used to estimate the implicit 

price of the two attributes. All the details of how these instruments are constructed are 

included in Appendix A2. 

As previously evoked, another potential concern is that, as data on refrigerators are only 

available at the national level, we use the national average electricity price to compute 𝐶𝑗𝑡. 

This potentially creates a measurement problem as the price of electricity may be different 

from one region to the other. These differences are likely to be modest, however. In 2013, 

statistics show that regional differences are within ±5% of the national average, except for 

Northern Ireland where less than 3% of the UK population reside. In Appendix A9, we give 

results with a specification where the operating cost is instrumented with its lagged values 

to mitigate this potential measurement problem and find little differences. 

A final issue is that we only have access to the average U.K. electricity prices whereas 

perfectly rational consumers should not care about average prices, but only consider 

marginal prices. The results of our base model are not biased provided that the level of the 

fixed part of the tariff has not changed between 2002 and 2007, which is plausible as the 
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increase was driven by gas price increases which raised the (variable) cost of electricity 

generation. However, in Appendix A8 we run a robustness check where we assume that the 

share (not the level) of the fixed part remains stable. This slightly inflates the size of γ.   

The price equation. We also express Eq. (5) in first differences: 

                                                   ∆𝑝𝑗𝑡 = −𝜂∆𝐶𝑗𝑡 + ∆𝜆𝑏(𝑗)𝑡   + ∆𝜖𝑗,𝑡                                                 (7) 

In order to properly identify the parameter 𝜂, we need to control for supply and demand 

factors, except the electricity cost, that vary over time and across products. On the demand 

side, this is the utility component 𝜉 that we have discussed extensively above. On the supply 

side, the main omitted variable is the time-varying component of product 𝑗’ production cost. 

The price is also influenced through competition by other product characteristics. The 

problem is that the controls that are available, in particular the product characteristics of 

similar products, are likely to be endogenous, and the instruments are not strong enough to 

include those. To mitigate this problem, we have included by brand by year fixed effects. Our 

view here is that most shocks on taste and production cost are likely to be brand-specific as 

products from the same brand are produced and marketed by the same firm. Nevertheless 

we provide the results using average characteristics from similar appliances as control 

variables in Appendix A6.  

The product availability equation. For convenience, we rewrite the equation here:  

                                  𝑑𝑗𝑡 = Ф(𝑘𝑑𝑑𝑗𝑡−1
∗ + 𝑘𝑝𝑝𝑗𝑡 +  𝑘𝑐𝐶𝑗𝑡 + 𝜆𝑡 + 𝜃𝑗)                                              (8) 

We use the method suggested by Wooldridge (2005) to estimate this dynamic probit model. 

The correlation between the random effect 𝜃𝑗  and the initial value 𝑑𝑗,0
∗  is made explicit. In 

our case, this gives: 

                                                 𝜃𝑗 = 𝑘0 + 𝑘1𝑑𝑗0
∗ + 𝑘𝑧𝑍𝑗 + 𝜇𝑗 .                                                             (9) 
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𝑍𝑗 is the row vector of all non-redundant explanatory variables in all time periods. It includes 

time-constant product features (e.g., size or energy efficiency rating) but also the purchase 

price of products at each time period (i.e., the price in 2002, in 2003...). To avoid 

multicollinearity, we exclude year dummies and only include the running cost for one year 

because they are calculated from Г𝑗 , which does not vary over time.  𝑘0  and 𝑘1  are 

parameters, 𝑘𝑧 is a vector of parameters and 𝜇𝑗 is a random effect such that 𝜇𝑗|(𝑑𝑗0
∗ , 𝑍𝑗) 

follows a normal distribution.  

Substituting Eq. (8) into Eq. (9) leads to a random-effect probit model except that 𝑑𝑗0
∗  and 𝑍𝑗 

are included as explanatory variables: 

                 𝑑𝑗,𝑡 = Ф(𝑘𝑑𝑑𝑗𝑡−1
∗ + 𝑘𝑝𝑝𝑗𝑡 +  𝑘𝑐𝐶𝑗𝑡 + 𝑘0 + 𝑘1𝑑𝑗0

∗ + 𝑘𝑧𝑍𝑗 + 𝜇𝑗 + 𝜆𝑡)                     (10) 

The estimation of Eq. (10) poses two problems. The first is that the information on 𝑝𝑗𝑡 is 

missing in the data for all the periods when product j is not available on the market (𝑑𝑗𝑡
∗ =

0). We thus need to make an assumption about the purchase price of this product in the 

years when it is unavailable on the market. For all the products that are not commercialized 

at time t, one could perform a regression on observed purchase prices (when 𝑑𝑗𝑡
∗ = 1) and 

produce out-of-sample predictions for 𝑝𝑗𝑡 when 𝑑𝑗𝑡
∗ = 0. However, this would underestimate 

the standard error of the estimated coefficients as we would be using imputed values for 𝑝𝑗𝑡 

as if they were observed values. The second problem is that the purchase price of appliances 

and the probability 𝑑𝑗𝑡 are simultaneously determined, implying that 𝑝𝑗𝑡 is endogenous. 

To solve these problems, we perform multiple imputations for each missing 𝑝𝑗𝑡, a technique 

which allows calculating unbiased standard errors for the estimated parameters (Rubin, 

1987). The procedure is as follows. First, we look at the distribution of purchase prices 𝑝𝑗𝑡 
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and perform a transformation on 𝑝𝑗𝑡 so that the transformed purchase prices follow a 

normal distribution.18 The transformation that we use is: 

                                                    𝑝𝑗𝑡 = ln([𝑝𝑗𝑡]
𝑛0

− 𝑛1)                                                                (11) 

𝑝𝑗𝑡 are transformed prices, 𝑛0 and 𝑛1 are parameters that ensure that the skewness of the 

distribution is close to 0 and its kurtosis around 3, which are two properties of normal 

distributions. In our case, we set 𝑛0 = 2 and 𝑛1 =  1736. 19 Then, we run a fixed effect linear 

regression on transformed prices: 

𝑝𝑗𝑡 = ℎ𝑗 + ℎ𝑐𝐶𝑗𝑡 + ℎ𝑊𝑊𝑗𝑡 + 𝜆𝑡 + 𝑥𝑗𝑡 

ℎ𝑗  is the product specific fixed effect, 𝜆𝑡 the time fixed effect, ℎ𝑐  is a parameter and 𝑥𝑗𝑡 is the 

random error term. Importantly, 𝑊𝑗𝑡 corresponds to the vector of instruments that have 

been used to control for the sales-price endogeneity and ℎ𝑊 is a vector of parameters. Using 

these instruments in the imputation process allows us to control for the endogeneity on 

imputed purchase prices. We denote �̂�𝑗𝑡 the predictions obtained from this regression. 

Based on the results of the linear regression, we create ten imputed prices for each missing 

value of 𝑝𝑗𝑡. Let m denote the imputation number, then each imputed transformed price of 

product j at time t is given by: 

𝑝𝑗𝑡
𝑚 = �̂�𝑗𝑡 + 𝑥𝑗𝑡

𝑚, 

where 𝑥𝑗𝑡
𝑚 is a randomly assigned and normally distributed error term corresponding to 

imputation m for product j at time t. Next, we use Eq. (11) the other way round to calculate 

the value of the imputed prices 𝑝𝑗𝑡
𝑚 from their transformations  𝑝𝑗𝑡

𝑚. This step allows us to 

                                                      

18
 The multiple imputation method is known to be biased if applied to non-normally distributed variables. 

19
 We have performed the Skewness and Kurtosis test on 𝑝𝑗,𝑡. The p-values of this test is  0.35. It therefore does 

not reject the hypothesis of normality of 𝑝𝑗𝑡. 
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obtain imputed values 𝑝𝑗,𝑡
𝑚  with a distribution that is close to the distribution of observed 

prices. Once the 𝑝𝑗𝑡
𝑚 values have been obtained, we estimate Eq. (10) as many times as there 

are imputations and then compute coefficient values and standard errors that take the 

uncertainty surrounding the value of 𝑝𝑗𝑡 when 𝑑𝑗𝑡
∗ = 0, into account. 

The technique described above also solves the second problem as it allows us to obtain 

consistent imputations that take the endogeneity of purchase prices into account. To control 

for the endogeneity of observed purchase prices, we run a linear regression similar to what 

was described earlier and extract predicted values that we use later in the dynamic probit 

model instead of using observed prices. 

6. Results  

Sales. Table 3 reports estimation results of Eq. (6). As there is an interaction between 𝛼 and 

γ, we use a GMM estimator to parameter values and standard errors.20 The value of 𝜎 (0.89 

and significant at 1% level) indicates that the within-nest correlation is substantial. 

Additionally, the coefficient for the valuation of money has the expected sign and is 

significantly different from 0.  

The main result in Table 3 is that 𝛾 ≈ 0.57, which implies that consumers underestimate 

energy costs by 40%. They still take a large share (57%) of future discounted operating costs 

into consideration when purchasing a refrigerator. Importantly, the 95% confidence interval 

for 𝛾 is 0.31 – 0.82. Hence the estimate of the attention parameter is both statistically 

different from 0 and 1. Another way of presenting this result is to compute the “implicit” 

                                                      

20
 The standard empirical approach is to separately estimate the coefficients for the price and the energy costs 

in a linear setting, and deduce from it the values of α and γ. We include the results obtained with the standard 
linear approach as a test of robustness in Appendix A3. 
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discount rate which would rationalize consumer behavior. That is, the value of r necessary to 

obtain a value of 𝛾 equal to one. We show in Appendix A4 that the implicit discount rate is 

11%. Therefore, consumers behave as if they used a discount rate of 11% to compute the 

net present value of electricity cost, which is arguably at moderate distance to the average 

real bond deposit rate during the study period (2.83%). 

 

Table 3: First difference IV-GMM estimation results of the sales equation 

Dependent variable Logarithm of market share of product j 

Importance of total electricity costs (γ) 0.5671*** 

(4.32) 

Utility for money (α) 0.0052*** 

(3.51) 

Within-group correlation of error term 

(σ) for the demand equation 

0.889*** 

(16.14) 

Year dummies Yes 

Observations 1,365 

Notes. Two instruments are used. They correspond to the fixed effects capturing year-by-year 
changes in the price of upright freezers and washing machines. The nests on which σ is calculated 
distinguish refrigerators from combined refrigerators-freezers, built-in from freestanding appliances, 
and appliances by capacity (over and below the sample median). t-statistics in brackets. Standard 
errors are robust to heteroskedasticity and clustered on products. Results marked with *, ** and *** 
are statistically significant at 10%, 5% and 1%, respectively. 

 

This implicit discount rate is clearly low when compared with the earlier literature on 

refrigerators, which have found implicit discount rates above 30% (with the only exception 

being Tsvetanov and Segerson, 2014). As outlined above, there are two likely explanations. 

The first is that previous estimations use older data. Since then, investment inefficiencies 

may have reduced because consumers are better informed: energy labeling is mandatory for 

refrigerators since 1995 in the European Union. This is in line with the views expressed by 

many observers who consider that the EU Energy Label has been very successful in reducing 

the information gap about energy efficiency (see for example Atkins and ECN, 2006). The 
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second explanation is methodological. We use panel data techniques that better control for 

unobserved product differences. In this respect, when we use a hedonic pricing model on a 

cross section of models, i.e. the approach popularized by Hausman (1979), we find a 

discount rate of 210% (detailed results provided in Appendix A5). As argued in Section 2, 

recent studies that rely on panel data tend to find rates of similar magnitude.21 

The average effect obtained with this base specification is robust to changes in the 

parameters used to calibrate the GMM model: the sensitivity analysis with different values 

of product lifetimes, electricity prices and nest structures presented in appendices (A1 and 

A8) show little differences in the magnitude of the implicit discount rate.  

 

Price. Estimation results are shown in Table 4. We simply use first differences and cluster-

robust standard errors to estimate this equation with ordinary least squares. As expected, 

producers adapt retail prices to the electricity costs: an increase by £1 in future electricity 

costs reduces the sales price of an appliance by £0.44. Three quarters of the perceived 

increase in future operating costs are therefore compensated for by a decrease in the 

purchase price of appliances.  

 

Table 4: Estimation results of the price equation 

Dependent variables Price of product j 

Discounted electricity costs, η1 -0.444*** 

(-2.9) 

Year x brand dummies Yes 

First differences Yes 

                                                      

21
 Tsvetanov and Segerson (2014) find slightly higher rates for refrigerators (13-22%), but they use a cross 

section of US households. 
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Dependent variables Price of product j 

Observations 1,365 

Notes. t-statistics in brackets. Standard errors are robust to heteroskedasticity and clustered on 
products. Results marked with *, ** and *** are statistically significant at 10%, 5% and 1%, 
respectively. 
 

Product availability. Results for the dynamic probit model are reported in Table 5. They 

confirm the assumption that an increase in the electricity costs reduces the probability that 

the product is commercialized. Thus, highly energy-consuming products – energy-inefficient 

products and large refrigerators – are more likely to exit the market when electricity prices 

increase. 

The other estimated parameters have the expected signs. For example, there is high 

probability that a product is commercialized if it was on the market the year before: the 

coefficient is both high and highly statistically significant. Conversely, a product available in 

2002 is more likely to be obsolete in the future years and therefore to disappear during the 

sample period. Likewise, products with a price that is relatively high tend not to be 

commercialized. This result is statistically significant at 1%. Conversely, any reduction in the 

purchase price of an appliance increases its probability of being kept on the market. This is 

important because we have previously found that suppliers reduce the price of energy 

inefficient appliances when electricity prices increase. Such reductions in the purchase price 

may therefore preserve inefficient products on the market when electricity prices go up. 
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Table 5: Dynamic panel data probit estimation of product availability based on Wooldridge 
(2005) 

Dependent variables Availability of product j: 𝑑𝑗𝑡
∗  

The product was commercialized the 

year before (𝑘𝑑) 

0.9013*** 

(30.25) 

Imputed appliance price (𝑘𝑝) -0.0017*** 

(-11.72) 

Expected and discounted running costs 

(𝑘𝑐) 

-0.0016** 

(-2.24) 

The product was commercialized in 

2002 (𝑘1) 

-0.3578*** 

(-10.36) 

Non-redundant explanatory variables 

covering all time periods and including 

time-constant product features (𝑘𝑧) 

Yes 

Year dummies Yes 

Observations 10,280 

Number of imputations for appliance 

prices 

10 

Notes. t-statistics in brackets. Standard errors are robust to heteroskedasticity, clustered on 
products, and take into account uncertainty regarding the imputed values of appliance prices. Results 
marked with *, ** and *** are statistically significant at 10%, 5% and 1%, respectively. 
 
 

7. A simulation of electricity price increase 

If further energy efficiency improvements in domestic appliances are to form part of overall 

energy or CO2 reduction strategies – and there are many reasons to believe that it should 

be22 – the above results offer useful insights. Specifically, it enables quantifying how energy 

use from durable goods responds to energy price changes, taking both consumer and 

producer responses into account. In this section, we simulate the effect of a 10% increase in 

                                                      

22
 One reason is that, for 2020, the European Union has a target of 20% savings in its primary energy 

consumption compared to projections. Energy efficiency is one of the means to achieve this objective. In 2011, 
the European Commission estimated that the EU was on course to achieve only half of the objective (European 
Commission, 2011a). 
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the price of electricity. Recall that the above results describe three adjustments: consumers 

adjust their purchase behavior; suppliers modify prices and revise their product portfolio. 

Likewise, our simulation builds up on these three impacts. 

To assess the short run impact of an electricity price shock on market shares, we use the 

estimates of the sales equation to predict product j’s market shares 𝑠𝑗𝑡. Based on the values 

obtained for each product j at time t, we calculate the market averages for the purchase 

price, the electricity costs, the capacity and the energy consumption (in kWh/year) of sold 

appliances in both a baseline scenario (with historical prices) and a scenario with a 10% 

increase in the electricity price. To evaluate the medium term impact associated with retail 

price adjustments, we use the purchase price equation to predict the impact of the 

electricity price increase on 𝑝𝑗𝑡. We then recalculate market shares with the new prices. 

Finally, we introduce changes in the product availability by using the results of the dynamic 

probit model for product availability. More precisely, we compute the predicted 

probabilities that each product j in our sample is available on the market at the baseline 

price and then at the 10% higher electricity price. We denote these probabilities �̂�𝑗𝑡 and 

�̂�𝑗𝑡
10%, respectively, then calculate their ratio (�̂�𝑗,𝑡

10%/�̂�𝑗,𝑡), which we use to weight the market 

shares of each product j in the scenario with a 10% electricity price increase.23 

We need to make three additional assumptions. First, we assume that the increase in the 

price of electricity does not have any impact on the total amount of sold appliances.24 This is 

                                                      

23
 In the simulations, we only use the observations for which we have predictions for market shares and prices. 

Furthermore, �̂�𝑗,𝑡
10% is inclusive of the impact of the electricity price shock on both running costs and purchase 

price adjustments. However, it is not computed in a dynamic fashion: we do not take into account the fact that 

�̂�𝑗,𝑡
10% has an influence on �̂�𝑗,𝑡+1

10% , �̂�𝑗,𝑡+2
10% , etc. 

24
 Our model cannot predict the evolution of the outside goods market share as it is absorbed by the time 

dummies. Therefore, it is not possible to determine how the total amount of sold appliances would evolve. 
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not unrealistic since purchases of refrigerators are mostly replacements and households are 

unlikely not to purchase any refrigerator because of an increase in the price of electricity. 

However, increases in the price of electricity could temporarily trigger additional purchases 

by consumers who possess relatively energy-inefficient products and therefore want to 

replace them: this transitional effect is not taken into account in these simulations. Second, 

our specification uses expected rather than real electricity prices. In order to calculate the 

impact of a price increase, we assume that expected electricity prices would rise 

proportionally with real electricity prices (i.e. by 10%). Third, we neglect the impact of 

changes in the size of nests on the market shares of individual products since this effect is 

likely to be very small. 

Simulation results are displayed in Table 6. The long-run elasticity of energy consumption to 

electricity price is rather low: -0.1 after accounting for both demand and supply adjustments. 

Consumer myopia marginally explains this pattern. Recall that the attention parameter is 

about 0.57, meaning that a 10% increase in electricity cost corresponds to a 5.7% increase if 

consumers were fully rational. This explains why, in the short run, the energy consumption 

of sold appliances decreases by 2.1%. See column (i) in Table 6. 

But the differences between short-, medium-, and long-term elasticities also show the 

importance of supplier behavior. In particular, price revisions by suppliers drastically reduce 

the impact on energy use: the elasticity after price adjustment falls to -0.5. On the other 

hand, product innovation reduces energy consumption as the products available in the 

market use less energy on average after changes in product availability. The impact is high as 

innovation doubles the elasticity. 
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Table 6: Simulated impacts on average annual energy consumption of a 10% increase of 
the electricity price 

Sales-weighted 

averages 
Electricity price 10% higher 

 Short term impact 

on market shares 

(i) 

After price 

adjustments 

(ii) 

After price adjustments and 

change in product availability 

(iii) 

Variation in levels -6.6 kWh/year -1.5 kWh/year -3.0 kWh/year 

Variation in %  -2.1% -0.5% -1.0% 

 

As explained above, the negative impact of price adjustments on energy use is driven by the 

fact that energy-intensive products experience larger cuts than energy efficient products. In 

this way, suppliers compensate for more of the increase in discounted electricity costs for 

low-efficient appliances. This is visible in Table 7 that displays the long run simulation results 

with a breakdown by energy efficiency class. Demand only shifts from low- to high-efficiency 

appliances to a limited extent. As explained above, this supply-driven rebound effect is made 

possible by the fact that the market is imperfectly competitive due to product 

differentiation. In a competitive market where the price equals the marginal cost of 

production, producers would have less latitude in their pricing strategies.  

Table 7: Simulated impacts of a 10% increase of electricity price by energy efficiency class 

Energy efficiency rating Relative change in prices Relative change in sales 

A++ -2.0% 3.5% 

A+ -4.0% 1.9% 

A -5.6% 0.1% 

B -7.0% -0.2% 

C -8.2% -0.9% 

D -6.4% 1.3% 

E -14.0% -6.2% 

Notes: The relative change in sales is based on the total market share of each energy efficiency class, 
the relative change in prices on the sales-weighted average price within each energy efficiency class. 
For example, sales of “A+” appliances increase by 1.9% with a 10% electricity price increase, and their 
average price decrease by about 4.0%. 
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The analysis thus highlights how imperfect competition dampens energy price signals in the 

refrigerator market, leaving suppliers ample room for maneuver to undertake asymmetric 

price adjustments. This is done in order to cushion the effect that higher electricity price 

would otherwise have, on their low energy-efficient products. It is then worth calculating 

how high the price elasticity of energy demand would have been, had these inefficiencies 

not be present. Results are displayed in Table 8 where our results are compared with a 

hypothetical scenario where consumers are perfectly rational (𝛾 = 1) and suppliers do not 

change prices. The long-term elasticity would be 5.5 times greater if these inefficiencies 

were to be removed (from -0.1 to -0.55). The table also illustrates how the inefficiency 

related to imperfect competition is larger than the impact of consumer myopia: the long-

term elasticity is -0.17 with imperfect competition and perfect rationality and -0.31 when 

consumers become myopic under perfect competition. 

 

Table 8: Impact of a 10% electricity price increase on energy consumption depending on 
the types of market failure and market competition 

Relative impact on energy 

consumption 

Myopic behavior 

(only 57% of energy costs are 

perceived) 

Rational behavior 

(all energy costs are 

perceived) 

Imperfect competition  

(suppliers adjust appliance 

prices) 

-1.0% -1.7% 

Perfect competition  

(no ability to adjust appliance 

prices) 

-3.1% -5.4% 

 

These simulations convey two important messages. First, imperfect competition appears to 

be a more serious problem than myopic behavior for the social planner attempting to 

increase energy efficiency of domestic appliances. Even if consumers value the future cost of 
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energy consumption correctly when they purchase appliances, taxing energy would still have 

an attenuated impact in this market because suppliers are able to cushion the impact of 

electricity price shocks on the sales and obsolescence of the most energy consuming 

appliances. It should be noted that the two inefficiencies are partly “substitutes” in the 

sense than an increase in the size of one reduces the importance of the other. So, if 

consumers are less myopic, the suppliers’ incentives to reduce the price of inefficient models 

are higher, and vice-versa. 

Second, the impact of electricity price shocks on product innovation can be relatively 

important. In our case, omitting the innovation stage would lead to an underestimation of 

the elasticity of energy consumption to electricity prices by about 50%. This implies that the 

two identified sources of market inefficiencies not only have short-run impacts on the sales 

of energy efficient durable goods, but also long-lasting effects on product availability and 

hence the suppliers’ incentives to innovate.. 

8. Conclusion 

While the empirical literature on the impact of energy prices on energy efficiency in the 

residential sector has primarily focused on consumer behavior, this paper develops a 

comprehensive view of both demand-side and supply-side adjustments that occur in the UK 

refrigerator market in response to electricity price changes.  

We obtain results which tend to moderate the importance of consumer myopia as a barrier 

to energy efficiency investments, which has dominated the debate thus far. We find that 

consumers undervalue future energy costs by 43%, which is equivalent to applying an 

implicit discount rate of 11% to the stream of future electricity costs when calculating the 

net present value. This result is robust to many factors, in particular the average lifetime of 
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appliances and expected energy prices. The use of panel data is probably the main reason 

why the rate why our implicit discount rate is lower compared to what has been reported 

previously which ranged from 39% to 300% (see Section 2). When specifying a hedonic 

pricing model on a cross section of models and using the approach adopted by Hausman 

(1979), we instead find a discount rate of 210%. 

Our results bring light to the importance of another market failure: as competition in the 

refrigerator market is imperfect, manufacturers and retailers are able to partly absorb 

electricity price shocks, by lowering the relative purchase price of the least energy-efficient 

appliances. We estimate that price cuts compensate for more than one half of the electricity 

price increase. As a result, while in the short run – holding supply factors constant – a 10% 

electricity price rise induces a 2.1% decrease of energy consumption, the impact falls to 0.5% 

after product price adjustments. At the same time, we also find evidence that the innovation 

response by manufacturers is strong in that a rise in electricity price significantly affects the 

probabilities of inefficient models to exit the market and of new efficient products to be 

launched. This innovation effect leads to a 1.0% decrease of energy use in the long run. 

What policy implications can be drawn from these results? The first is obvious: inefficiencies 

are sizable and they justify the need to complement energy taxation with other instruments 

to promote energy efficiency investments; these complementary policies should cope with 

both demand- and supply-side issues. Evaluating the welfare properties of the different 

policy options is then clearly beyond the scope of this paper, in particular because we use 

reduced-form supply equations, but several remarks can be made nonetheless. 

To start with, our findings suggest that the EU energy label policy has been able to partly 

mitigate investment inefficiencies as consumer myopia is shown to be limited. Yet, our 

analysis shows that labeling policies alone is unlikely to address the energy efficiency gap. 
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Specifically, it fails to account for an important source of inefficiency identified in this paper 

i.e. the asymmetric price responses by suppliers. Labeling may even exacerbate the problem 

as suppliers are incentivized to subsidize low energy efficiency-performing models. A tax on 

inefficient models combined with a subsidy for efficient ones (e.g. feebates or bonus/malus 

schemes) would correct this problem. Efficiency performance standards where the influence 

on price is more indirect are less likely to be effective. Another argument against the use of 

direct regulation is that while the impact on product renewal is often viewed as a strength of 

the regulatory approach, we find that energy prices are able to significantly induce product 

innovation.  

Finally, we are aware of the risks of transferring these results to other products, regions and 

periods. We do, however, think that the mechanisms highlighted in the present work 

operate in many markets of energy-using durables where product differentiation is 

pervasive.  
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Appendix 

A1. Alternative choices for the nests 

A weakness of the nested logit approach is the fact that the nest structure is arbitrarily 

chosen by the econometrician. To check the robustness of our results to the choice of nests, 

we run the estimations of the sales equation with alternative nests and report the results in 

Table 9. The estimate of  γ varies across specifications, but remains below 1. 

 

Table 9: First difference GMM estimation results of sales with alternative nests 

 Dependent variable: log. market share of product j 

 Nests based on:  

refrigerators vs. refrigerators-freezers No Yes Yes No 

Over/below median capacity No Yes No Yes 

Built-in/freestanding No No Yes Yes 

Importance of total electricity costs (γ) 0.6288** 

(2.26) 

0.5595*** 

(4.1) 

0.2319 

(1.24) 

0.5966*** 

(4.47) 

Utility for money (α) 0.0083 

(1.63) 

0.0045*** 

(3.41) 

0.0023*** 

(2.89) 

0.0046*** 

(3.48) 

Within-group correlation of error term (σ) 

for the demand equation 

n/a 0.8588*** 

(17.82) 

1.075*** 

(25.33) 

0.8933*** 

(16.72) 

Year dummies Yes Yes Yes Yes 

First difference Yes Yes Yes Yes 

Observations 1,365 1,365 1,365 1,365 

Notes. Two instruments are used. They correspond to the fixed effects capturing year-on-year 
changes in the price of upright freezers and washing machines. t-statistics in brackets. Standard 
errors are robust to heteroskedasticity and clustered on products. Results marked with *, ** and *** 
are statistically significant at 10%, 5% and 1%, respectively. 
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A2. Construction of the instruments for the sales equation 

To calculate the implicit price of the two attributes (capacity and built-in vs free-standing), a 

hedonic pricing model is used (see the results in Table 10). We run two regressions, one for 

freezers, and one for washing machines, to capture the evolution of the price of each 

subcategory of refrigeration appliance. This is done by including year-‘category of appliance’ 

(large/small and built-in/freestanding) specific fixed effects.  

In addition, we include product specific fixed effects that control for all time-invariant 

product features and therefore for any difference in the sample of appliances that we 

observe from one year to the other, and could be susceptible to bias the estimation of the 

evolution of the average price of the various subcategories of appliances. As explained 

previously, we also include brand-specific time trends that control for the general 

development of brand-specific marketing strategies. 

We assign weights to each product j in our regressions. We do so to ensure that the 

regression results are representative of the market and to reduce the risk of measurement 

error on the average price of each model. The weights are identical for all the observations 

of product j between 2002 and 2007, and correspond to the average of all the sales 

registered by product j between 2002 and 2007. 

Finally, we trim outliers in the final sample used for the regressions: we identify the 2.5% 

products with either largest or smallest price, capacity or energy consumption, in addition to 

the 2.5% of products with highest sales levels. Any product that falls within at least one of 

these categories is dropped. 

 



48 
 

Table 10:  Hedonic regressions to construct the instruments (freezers and washing 
machines) 

Dependent variable 
Price of washing 

machines 
Price of freezers 

By year, by category of appliance 
fixed effects 

  

Small, 2002 (built-in for freezers) 0 0 

Small, 2003 (built-in for freezers) 
-42.5061*** 

(-3.11) 
-2.5749 
(-0.12) 

Small, 2004 (built-in for freezers) 
-75.2039*** 

(-2.85) 
-11.508 
(-0.31) 

Small, 2005 (built-in for freezers) 
-125.6751*** 

(-3.18) 
-16.0016 

(-0.29) 

Small, 2006 (built-in for freezers) 
-159.7466*** 

(-3.05) 
-43.4277 

(-0.6) 

Small, 2007 (built-in for freezers) 
-205.2927*** 

(-3.13) 
-38.6044 

(-0.45) 

Large, 2002 (built-in for freezers) 
37.824 
(1.45) 

10.3909 
(0.24) 

Large, 2003 (built-in for freezers) 
-3.9397 
(-0.12) 

1.2222 
(0.03) 

Large, 2004 (built-in for freezers) 
-57.4207 
(-1.59) 

13.543 
(0.31) 

Large, 2005 (built-in for freezers) 
-128.0074*** 

(-2.94) 
4.5595 
(0.08) 

Large, 2006 (built-in for freezers) 
-174.3192*** 

(-3.18) 
12.0702 
(0.17) 

Large, 2007 (built-in for freezers) 
-218.5002*** 

(-3.24) 
-14.9726 

(-0.18) 

Small, 2002 (freestanding, freezers 
only)  

-18.8481 
(-0.46) 

Small, 2003 (freestanding, freezers 
only)  

-18.4543 
(-0.42) 

Small, 2004 (freestanding, freezers 
only)  

-5.8397 
(-0.11) 

Small, 2005 (freestanding, freezers 
only)  

-7.9437 
(-0.13) 

Small, 2006 (freestanding, freezers 
only)  

15.2585 
(0.2) 

Small, 2007 (freestanding, freezers 
only)  

19.0729 
(0.21) 

Large, 2002 (freestanding, freezers 
only)  

8.3791 
(0.28) 

Large, 2003 (freestanding, freezers 
only)  

-2.8049 
(-0.08) 
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Large, 2004 (freestanding, freezers 
only)  

9.7592 
(0.21) 

Large, 2005 (freestanding, freezers 
only)  

17.6663 
(0.3) 

Large, 2006 (freestanding, freezers 
only)  

27.5309 
(0.38) 

Large, 2007 (freestanding, freezers 
only)  

29.2075 
(0.33) 

Fixed effects Yes Yes 

Brand-specific time trends Yes Yes 

R2 0.31 0.28 

Number of observations 1,637 851 
Notes. t-statistics in brackets. Standard errors are robust to heteroskedasticity and clustered on 
products. Results marked with *, ** and *** are statistically significant at 10%, 5% and 1%, 
respectively. ‘Small’ means below sample median, ‘Large’ is above. Regression is weighted for each 
observation of product j by the total sales of product j over 2002-2007. 
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A3. Linear specification for the sales equation 

A standard approach in existing literature is to use a 2SLS estimations of the sales equation. 

Using the 2SLS with our data can have two objectives: 1) check the robustness of our results 

based on the non-linear specification and 2) perform standardized tests to control that the 

instruments are valid and strong.   

Results are presented in Table 11 for three different approaches. The left column is the first-

difference estimation with our two main instruments. The middle includes a third 

instrument which is the squared value of the freezer-based instrument. The right column is 

the fixed-effect estimation with the two main instruments. We assess the strength of the 

instruments used with the two regressions with two instruments using an under-

identification test and a weak identification test. We also test for over-identification, using 

the regression with three instruments,  

In the linear cases, the coefficients for the purchase price and electricity costs are negative 

and statistically significant at the 1% level. This implies that a representative consumer 

would underestimate energy costs by 31-43%. These values are in line with the 43% that we 

had estimated in the base specification. In addition, results show that the instruments 

exhibit the necessary properties as they pass all three tests (for under-identification, weak 

identification and over-identification).25  

                                                      

25
 Note that there exists no reference values for the weak identification test under heteroskedasticity. In fact, 

the Stock-Yogo (2005) critical values only apply to homoskedasticity. They can only be used as a general 
reference. Therefore, we are confident that the estimation is not weakly identified considering that the 
Kleibergen-Paap rk Walf F statistic, that takes heteroskedasticity into account, provides a result above the 
critical value for 5% maximal IV relative bias. Furthermore, the IV regression was run assuming 
homoskedasticity. 
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Table 11: Linear IV regressions for the sales equation, using either first differences or fixed 
effects 

Dependent variable: First 

differences;      

2 instruments 

First 

differences;      

3 instruments 

Fixed effects;      

2 instruments 

Price (instrumented) (A) -0.0052*** 

(-3.51) 

-0.0055*** 

(-3.71) 

-0.0031*** 

(-4) 

Log. within-group market share (σ) 

(instrumented) 

0.889*** 

(16.14) 

0.9043*** 

(17.58) 

1.0628*** 

(22.48) 

Lifetime electricity costs (B) -0.003*** 

(-2.9) 

-0.0031*** 

(-2.91) 

-0.0021*** 

(-3.11) 

Year dummies Yes Yes Yes 

Product level fixed effects/First differences First 

differences 

First 

differences Fixed effects 

Importance of total electricity costs, γ (A/B) 0.5671*** 

(4.32) 

0.5578*** 

(4.3) 

0.6857*** 

(3.42) 

Underidentification test (p-value) <0.01 <0.01 <0.01 

Kleibergen-Paap rk LM statistic 15.42 15.06 27.33 

Overidentification test (p-value) n/a 0.56 n/a 

Hansen J statistic  0.35  

Weak identification test (Max. IV size bias) <10% >25% <10% 

Kleibergen-Paap rk Wald F statistic 7.85 4.97 17.39 

Observations 1,365 1,365 2,449 

Notes. The nests on which σ is calculated distinguish refrigerators from combined refrigerators-
freezers, built-in from freestanding appliances, and appliances by capacity (over and below the 
sample median). t-statistics in brackets. Standard errors are robust to heteroskedasticity and 
clustered on products. Results marked with *, ** and *** are statistically significant at 10%, 5% and 
1%, respectively. 
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A4. Implied discount rate  

Table 12 gives the results of the sales equation where the discount rate has been chosen to 

induce an estimate of gamma equal to 1. The corresponding real discount rate is 11.0%. 

 

Table 12: First difference GMM IV estimation results with the implied discount rate 
inducing 𝛄 =1 

Dependent variable: log. market share of product j 

Electricity prices  

Discount rate 11.0% 

Importance of total electricity costs (γ) 1.0077*** 

(4.32) 

Utility for money (α) 0.0052*** 

(3.51) 

Within-group correlation of error term (σ) for 

the demand equation 

0.8887*** 

(16.12) 

Year dummies Yes 

First difference Yes 

Observations 1,365 

Notes. Two instruments are used. They correspond to the fixed effects capturing year-on-year 
changes in the price of upright freezers and washing machines. The nests on which σ is calculated 
distinguish refrigerators from combined refrigerator-freezers, built-in from freestanding appliances, 
and appliances by capacity (over and below the sample median). t-statistics in brackets. Standard 
errors are robust to heteroskedasticity and clustered on products. Results marked with *, ** and *** 
are statistically significant at 10%, 5% and 1%, respectively. 
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A5. Results mimicking the standard hedonic pricing method 

We run a between-effect regression on panel data using the price of appliances as the 

dependent variable. The between-effect estimator uses only the cross-sectional information 

of the data and therefore mimics a hedonic pricing approach while allowing the use of the 

full sample rather than rely only on a one-year cross section. With this method, we obtain 

𝛾 ≈ 0.07, which is far below the estimates obtained using the discrete choice model. The 

implies a discount rate of 210%.  

 

Table 13: Between effect linear regression on appliance price 

Discount rate  2.83% 210% 

Independent variables    

Lifetime electricity costs (γ) -0.0669 

(-1.47) 

-0.9995 

(-1.42) 

Height  1.7157*** 

(5.41) 

1.7228*** 

(5.43) 

Width 8.0065*** 

(9.84) 

8.013*** 

(9.85) 

Capacity -0.0742 

(-0.24) 

-0.0751 

(-0.24) 

Squared capacity 0.0012*** 

(2.88) 

0.0012*** 

(2.87) 

Appliance is a refrigerator-freezer -1.7401 

(-0.1) 

-6.8736 

(-0.46) 

Appliance is built-in -184.0576*** 

(-20.72) 

-184.0183*** 

(-20.72) 

Appliance has a no-frost system 21.5512** 

(2.08) 

21.1803** 

(2.05) 

Time dummies Yes Yes 

R2 0.61 0.61 

Number of observations 2,583 2,583 

Notes. t-statistics in brackets. Results marked with one to three stars are statistically significant at 
10%, 5% and 1% respectively. 
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Alternatively, when running the same specification as above but separately for each year of 

our data, we find the largest value of 𝛾 for year 2002, which corresponds to an implicit 

discount rate of 40%.  

 

Table 14: Summary results on the value of 𝛄 from cross-sectional hedonic regressions by 
year 

Year of the panel used 2002 2003 2004 2005 2006 2007 

Lifetime electricity costs (γ) 

-

0.2213*** 

(-2.96) 

-

0.2187** 

(-2.58) 

-

0.2049** 

(-2.43) 

-0.0667 

(-0.75) 

-0.0282 

(-0.32) 

0.0048 

(0.06) 

Notes. The coefficients above come from different regressions.  
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A6. Alternative specifications for the price equation  

If the total demand for refrigerators is inelastic, theory predicts that the price of energy-

efficient goods can increase. A specification which allows us to test this assumption is as 

follows: 

                               ∆𝑝𝑗𝑡 = 𝛽 + 𝜂1∆𝐶𝑗𝑡 + 𝜂2∆(𝐶𝑗𝑡)
2

+ ∆𝜆𝑏(𝑗)𝑡 + 𝜖𝑗,𝑡                                           

where 𝜂1 is expected to be positive while 𝜂2 is expected to be negative. The table below 

gives the results obtained using this specification. The results do not confirm the hypothesis.  

 

Table 15: First difference estimation results of the price equation assuming a non-
monotonic relationship between the product price and the electricity cost 

Independent variables  

Discounted electricity costs, η1 0.4295 

(0.65) 

Squared discounted electricity costs, η2 -0.0006 

(-1.17) 

Year x brand dummies Yes 

Observations 1,365 

Notes. t-statistics in brackets. Standard errors are robust to heteroskedasticity and clustered on 
products. Results marked with *, ** and *** are statistically significant at 10%, 5% and 1%, 
respectively. 
 
On the other hand, our base specification for the price equation does not control for the fact 

that prices are also influenced by other product characteristics through imperfect 

competition. In the specification below, we include the average of two characteristics of the 

products sold by other brands within the same nest as control variables. These two product 

characteristics are height and presence/absence of no-frost systems as this feature proves to 

have the highest correlation with the price of product 𝑗. Unfortunately, these additional 

control variables are likely to be endogenous and we do not possess instruments strong 

enough to deal with this problem.  
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Table 16: First difference estimation results of the price equation with the characteristics 
of the products from other models (but within the same nest) as control variables 

Independent variables  

Discounted electricity costs, η -0.312 

(-1.57) 

Average height of products of other firms within 

the same nest 

-181.3349* 

(-1.96) 

Share of products with no frost system from 

other firms within the same nest 

-2.9681 

(-1.4) 

Year x brand dummies Yes 

Observations 1,365 

Notes. t-statistics in brackets. Standard errors are robust to heteroskedasticity and clustered on 
products. Results marked with *, ** and *** are statistically significant at 10%, 5% and 1%, 

respectively.  
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A7. Estimation of electricity price forecasts with the ARIMA model 

1. Testing for different ARIMA specifications 

The ARIMA models can handle lags in the autoregressive (AR) term and in the moving 

average (MA) term. Moreover, they can be expressed in levels or in difference. We have 

tested for different combinations and found that the best fit was provided by an ARIMA 

model with a one lag AR-term and one lag for the MA-term. These results are evident from 

Table 17, which corresponds to the fit of various ARIMA specifications for the price 

expectations in 2007.26 

 

Table 17: Results for different ARIMA specifications 

Independent variables 
Base 

model 
(a) (b) (c) (d) (e) 

Lag of autocorrelated term 0.9968*** 
(197.51) 

0.9976*** 
(227.27) 

  0.7134*** 
(17.41) 

 

Lag of moving average 
term 

0.5887*** 
(12.09) 

 0.9588*** 
(39.71) 

  0.5848*** 
(11.78) 

Constant 1.1748*** 
(4.47) 

1.180*** 
(4.44) 

0.9772*** 
(72.70) 

0.0015 
(1.52) 

0.016 
(0.78) 

0.015 
(1.37) 

Standard deviation of the 
white-noise disturbance 

0.0077*** 
(25.40) 

0.0099*** 
(27.44) 

0.0536*** 
(14.53) 

0.0098*** 
(25.38) 

0.0069*** 
(25.10) 

0.0077*** 
(25.21) 

Equation in first difference No No No Yes Yes Yes 

Number of observations 133 133 133 132 132 132 

Notes. t-statistics in brackets. Standard errors are robust to heteroskedasticity with clustering of 
products. Results marked with one to three stars are statistically significant at 10%, 5% and 1% 
respectively. The models are run on the price index of electricity corrected by the consumer price 
index (2005 = 1). 

                                                      

26
 ARIMA models in table 18 only include lags at t – 1. We have tested for the inclusion of more lags but, these 

models do not fit the data as well as this specification. Whether one of the coefficients of the model was no 
longer statistically significant, as in (c), (d) and (e) or the models were not converging for all the years for which 
expectations need to be modeled. 
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2. Results of ARIMA model for the different years for which expectations are 

modeled 

Expectations for a given year are modeled with the data available from 1996 up to the last 

month of the previous year. For example, expectations in 2003 are assumed to be based on 

electricity price information available from January 1996 to December 2002. Table 18 

presents the results of each ARIMA model used to produce price expectations for purchases 

that takes place in 2002, 2003, 2004, 2005, 2006 and 2007. 

 

Table 18: Results of ARIMA models used to produce rational price expectations 

Year when the forecasts are 
to be made 

2002 2003 2004 2005 2006 2007 

Independent variables       

Lag of AR-term 0.9964*** 
(58.85) 

0.9971*** 
(69.98) 

0.9972*** 
(83.93) 

0.9950*** 
(93.06) 

0.9945*** 
(78.12) 

0.9968*** 
(197.51) 

Lag of MA-term 0.3931*** 
(4.29) 

0.3842*** 
(4.64) 

0.3732*** 
(4.85) 

0.4271*** 
(6.13) 

0.4632*** 
(7.12) 

0.5887*** 
(12.09) 

Constant 1.0001*** 
(10.17) 

0.9964*** 
(9.67) 

0.9994*** 
(10.27) 

1.029*** 
(13.02) 

1.057*** 
(6.84) 

1.1748*** 
(4.47) 

Standard deviation of the 
white-noise disturbance 

0.0064*** 
(21.45) 

0.0060*** 
(24.08) 

0.0058*** 
(26.74) 

0.0059*** 
(26.54) 

0.0062*** 
(25.76) 

0.0077*** 
(25.40) 

Equation in first difference No No No No No No 

Number of observations 73 85 97 109 121 133 

Notes. t-statistics in brackets. Standard errors are robust to heteroskedasticity with clustering of 
products. Results marked with one to three stars are statistically significant at 10%, 5% and 1% 
respectively. The models are run on the price index of electricity corrected by the consumer price 
index (2005 = 1). 
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A8. Alternative assumptions for calculating operating costs 

1. Different appliance lifetimes 

The calculation of the operating costs in the base model is based on AMDEA (2008) 

information about appliance lifetimes (12.8 years for refrigerators and 17.5 years for 

combined refrigerators-freezers). Table 19 presents the results where the lifetimes for the 

two kinds of appliances are assumed to 20% higher and lower. It shows that changes in our 

assumption have limited impact on the results. This is mostly because operating costs are 

discounted: electricity consumption in 10-15 years is given a low weight in any case. 

Table 19: First difference IV-GMM estimation results of the sales equation, with different 
appliance lifetimes 

Dependent variable: log. market share of product j 

Assumptions on lifetime 

(years) 

Base specification -20% +20% 

Refrigerators 12.8 10.24 15.36 

Combined refrigerators-

freezers 

17.5 14 21 

Independent variables    

Importance of total 

electricity costs (γ) 

0.5671*** 

(4.32) 

0.6587*** 

(4.33) 

0.5059*** 

(4.31) 

Utility for money (α) 0.0052*** 

(3.51) 

0.0052*** 

(3.51) 

0.0052*** 

(3.52) 

Within-group correlation of 

error term (σ) for the 

demand equation 

0.889*** 

(16.14) 

0.8891*** 

(16.13) 

0.889*** 

(16.15) 

Year dummies Yes Yes Yes 

Number of observations 1,365 1,365 1,365 

Notes. Two instruments are used. They correspond to the fixed effects capturing year-on-year 
changes in the price of upright freezers and washing machines. The nests on which σ is calculated 
distinguish refrigerators from combined refrigerator-freezers, built-in from freestanding appliances, 
and appliances by capacity (over and below the sample median). t-statistics in brackets. Standard 
errors are robust to heteroskedasticity and clustered on products. Results marked with *, ** and *** 
are statistically significant at 10%, 5% and 1%, respectively. 
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2. Alternative assumptions for expected electricity prices 

Current prices  

Table 20 presents the results of the sales equation with a forecasting model based on the 

assumption that electricity prices follow a random walk so that the forecasted price at any 

date t + s is equal to current price at date t. Under this assumption, the underestimation of 

the operating cost is smaller (10%). It is not surprising as the price of electricity was 

increasing over most of the study period, implying that ARIMA results underestimate the 

actual price. 

 

Table 20: First difference IV-GMM estimation results of the sales equation, with 
contemporaneous electricity price 

Dependent variable: log. market share of product j 

Electricity prices ARIMA model Current prices 

Independent variables   

Importance of total electricity costs (γ) 0.5671*** 

(4.32) 

0.7879*** 

(3.95) 

Utility for money (α) 0.0052*** 

(3.51) 

0.0057*** 

(3.25) 

Within-group correlation of error term (σ) 

for the demand equation 

0.889*** 

(16.14) 

0.863*** 

(14.04) 

Year dummies Yes Yes 

First difference Yes Yes 

Observations 1,365 1,365 

Notes. Two instruments are used. They correspond to the fixed effects capturing year-on-year 
changes in the price of upright freezers and washing machines. The nests on which σ is calculated 
distinguish refrigerators from combined refrigerator-freezers, built-in from freestanding appliances, 
and appliances by capacity (over and below the sample median). t-statistics in brackets. Standard 
errors are robust to heteroskedasticity and clustered on products. Results marked with *, ** and *** 
are statistically significant at 10%, 5% and 1%, respectively. 
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Futures prices 

We now compute retail price forecasts using wholesale prices on the UK futures market as a 

benchmark. 

In principle, a rational consumer is likely to form his/her expectations on retail electricity 

prices in a fashion similar to professional energy traders in the wholesale market. This is 

because the expectations made by professionals on the wholesale market should 

approximate a well-informed, rational process of making expectations on the price of 

electricity. By definition, wholesale electricity futures reflect expectations of professionals 

about the price of wholesale electricity in the future. Therefore, we exploit this available 

piece of information on professionals’ expectations regarding future prices on the wholesale 

market to frame the expectations of a rational consumer on the wholesale market. 

First, we assume that professionals’ expectations are mostly driven by current and previous 

wholesale electricity prices. This assumption can be confirmed in a model where wholesale 

electricity futures at time t are a function of wholesale spot prices at time t, t-1, t-2 and so 

on: 

𝐹𝑡 = 𝐹𝑚 + ∑ 𝛾𝑠𝑆𝑠

𝑡

𝑠=𝑡−𝑥

+ 𝜀𝑡 

𝐹𝑡 is the futures price at time t, 𝑆𝑠 the spot price at time s, 𝐹𝑚 is a month-specific constant 

for month m which controls for seasonality, 𝛾𝑠 are coefficients to be estimated and 𝜀𝑡 is an 

error term. The parameter x corresponds to the number of lagged spot prices included in the 

regression.  Empirically, we choose x so that all the coefficients 𝛾𝑠 are statistically significant. 

Likewise, we consider that a rational consumer would form his expectations about future 

retail electricity prices based on past prices as his main source of information: 
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𝑞𝑡
𝑓

= 𝑞𝑚 + ∑ 𝜑𝑠𝑞𝑠

𝑡

𝑠=𝑡−𝑥

+ 𝑢𝑡 

𝑞𝑡
𝑓

 is the forecasted price of electricity for the next periods, 𝑞𝑚 a month-specific constant for 

month m which controls for seasonality, 𝜑𝑠 are coefficients relating current and past prices 

to price expectations and 𝑢𝑡 is an error term.  

If rational consumers indeed shape their expectations in strictly the same way as 

professionals do on wholesale markets, then 𝜑𝑠 = 𝛾𝑠. We impose this assumption such that 

we can use the relationship between future and spot wholesale prices to compute retail 

electricity price expectations with previous and past retail electricity prices. This is because 

estimating 𝐹𝑡 as a function of 𝑆𝑠 provides estimates for 𝛾𝑠, and therefore for 𝜑𝑠. These 

estimates are sufficient to derive values for 𝑞𝑡
𝑓

 based on 𝑞𝑠. 

We have collected data on UK wholesale electricity futures from the Bloomberg futures 

database. More precisely, we use the price of Gregorian baseload forwards from the 1st to 

the 4th following winter/summer seasons, as registered during OTC operations and gathered 

by GFI Group Limited. These prices are available on a monthly basis from 2002 to 2007. We 

calculate an average of the futures prices for the next four seasons and assume that the 

average corresponds to professionals’ expectations (at a specific date) regarding the average 

price of wholesale electricity during the lifetime of appliances. The data for spot prices of UK 

Power has been extracted from the reference and settlement data of Bloomberg. Spot prices 

are used as an independent variable to predict futures. The results of the regression on 

futures are given in Table 21.  
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Table 21: Linear regression used to predict monthly futures prices from monthly wholesale 
electricity prices on the spot market 

Dependent variable: UK wholesale electricity futures (2005 pence/kWh) 

Independent variables  

Real wholesale electricity prices on spot 

market (2005 pence/kWh) 

 

This month 0.3722** 

(2.44) 

One month ago 0.3744** 

(2.22) 

Two months ago 0.4574** 

(2.68) 

Three months ago 0.3553** 

(2.29) 

By month fixed effects Yes 

Constant Yes 

Observations 69 

Adjusted R2 0.79 

Notes. Results marked with *, ** and *** are statistically significant at 10%, 5% and 1%, respectively. 

 

The coefficients from the regression above (corresponding to 𝛾𝑠) are used with observed 

retail electricity prices to produce estimates of expected retail electricity prices. In 

mathematical terms, we assume 𝜑𝑠 = 𝛾𝑠 and 𝑞𝑚 = 0 to derive 𝑞𝑡
𝑓

 from 𝑞𝑠. 

Once we have computed estimates for 𝑞𝑡
𝑓

 with this method, we use them to recalculate 

total actualized and discounted electricity costs and run an alternative GMM regression for 

the market share equation. The results of the latter regression are provided in Table 22. 

They show relatively little difference in using expectations based on the futures data with 

respect to the expected prices obtained with the ARIMA model.  
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Table 22: First difference IV-GMM estimation results of the sales equation, with expected 
electricity prices based on UK Power futures 

Independent variables  

Importance of total electricity costs (γ) 0.4989*** 

(4.22) 

Utility for money (α) 0.0061*** 

(3.07) 

Within-group correlation of error term 

(σ) for the demand equation 

0.8553*** 

(12.94) 

Year dummies Yes 

Observations 1,365 

Notes. Two instruments are used. They correspond to the fixed effects capturing year-on-year 
changes in the price of upright freezers and washing machines. The nests on which σ is calculated 
distinguish refrigerators from combined refrigerators-freezers, built-in from freestanding appliances, 
and appliances by capacity (over and below the sample median). t-statistics in brackets. Standard 
errors are robust to heteroskedasticity and clustered on products. Results marked with *, ** and *** 

are statistically significant at 10%, 5% and 1%, respectively. 

 

Marginal vs average prices 

In the base specification, we use the average electricity price to compute forecasts but this 

conflicts with the assumption of perfectly rational consumers, who would in theory use 

marginal price information to form expectations. Unfortunately, data on marginal prices for 

the study period was not available. As argued in the paper, the results are unbiased if the 

fixed non-metered component remained constant over the sample period, and biased if not 

constant. In Table 23, we give results for the sales equation in which a time-varying estimate 

of the marginal price is used to calculate operating costs. 

The marginal price is estimated as follows. According to DECC (2013b), the fixed component 

corresponds to around 11% of UK electricity bills. We assume that, during the study period, 

the share remained fixed at 11%.. Under this assumption, Table 23 shows consumer myopia 

would be smaller, as consumers would underestimate energy costs by 37%. 
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Table 23: First difference IV-GMM estimation results of the sales equation, where 
expected electricity prices are estimated using time-varying marginal prices  

Independent variables  

Importance of total electricity costs (γ) 0.6371*** 

(4.32) 

Utility for money (α) 0.0052*** 

(3.51) 

Within-group correlation of error term (σ) for the 

demand equation 

0.889*** 

(16.14) 

Year dummies Yes 

First difference Yes 

Observations 1,365 

Notes. Two instruments are used. They correspond to the fixed effects capturing year-on-year 
changes in the price of upright freezers and washing machines. The nests on which σ is calculated 
distinguish refrigerators from combined refrigerators-freezers, built-in from freestanding appliances, 
and appliances by capacity (over and below the sample median). t-statistics in brackets. Standard 
errors are robust to heteroskedasticity and clustered on products. Results marked with *, ** and *** 
are statistically significant at 10%, 5% and 1%, respectively. 
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A9. Instrumentation of the operating costs to mitigate measurement 

errors 

Several reasons why the operating cost values use in this analysis may be affected by 

measurement errors have been discussed. Here, we check how such errors potentially 

impact our results by running a model in which the operating cost is instrumented. We use 

the lagged electricity prices to compute the operating costs of appliances as if they were 

functioning during the previous year. Operating costs from the previous year are then used 

to instrument expected and actualized operating costs. The assumption is that past 

operating costs are likely to be correlated with expected operating costs, but they should not 

be correlated with the demand for appliances. This assumption seems reasonable 

considering that electricity costs have varied significantly over the study period.  

Results are given for the sales and price equations. They show little differences with the 

results obtained in the base specifications. 

Table 24: First difference IV-GMM estimation results of the sales equation, with 
instrumentation of the operating costs 

Independent variables  

Importance of total electricity costs (γ) 0.5245*** 

(3.76) 

Utility for money (α) 0.0052*** 

(3.46) 

Within-group correlation of error term 

(σ) for the demand equation 

0.8889*** 

(16.28) 

Year dummies Yes 

Observations 1,365 

Notes. Three instruments are used. The first two correspond to the fixed effects capturing year-on-
year changes in the price of upright freezers and washing machines. The third instrument 
corresponds to electricity costs as calculated with one-year lagged electricity prices, since expected 
electricity costs are endogenous in this setting. The nests on which σ is calculated distinguish 
refrigerators from combined refrigerator-freezers, built-in from freestanding appliances, and 
appliances by capacity (over and below the sample median). t-statistics in brackets. Standard errors 
are robust to heteroskedasticity and clustered on products. Results marked with *, ** and *** are 
statistically significant at 10%, 5% and 1%, respectively. 
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Table 25: First difference IV estimation results of the price equation, with instrumentation 
of the operating costs 

Independent variables  

Discounted electricity costs, η -0.4294*** 

(-2.79) 

Year x brand dummies Yes 

Observations 1,365 

Notes. The instrument corresponds to electricity costs as calculated with one-year lagged electricity 
prices, whereas expected electricity costs are endogenous in this setting. t-statistics in brackets. 
Standard errors are robust to heteroskedasticity and clustered on products. Results marked with *, 
** and *** are statistically significant at 10%, 5% and 1%, respectively. 
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