

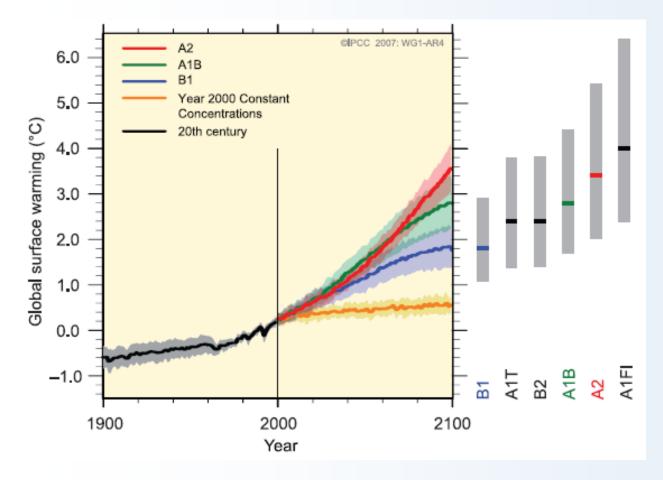
QUALITY. INDEPENDENCE. IMPACT.

Economic Policy and Climate Change: A Reference Price for Carbon

Presentation at the Grantham Research Institute on Climate Change and the Environment, LSE, and Global Green Growth Institute's conference on the Economics of Green Growth

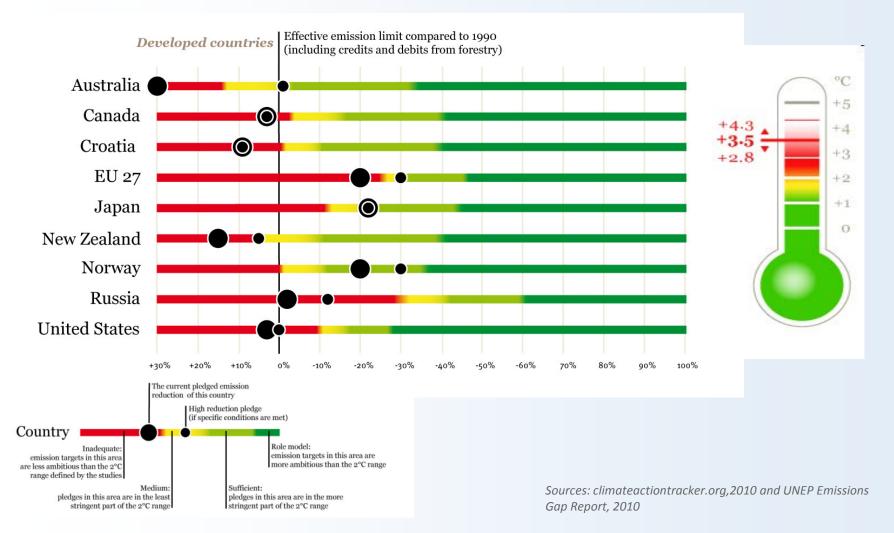
October 1st, 2013

Claire Langley Global Economy and Development at the Brookings Institution


The proposal

Establishing and continuously updating a global reference price for carbon that producers and consumers can observe worldwide to help overcome the barriers to climate change policy reform.

Contents


- The current context of worsening science and the policy debate
- The causes of complacency
- The proposal: a reference price for carbon
- Existing analysis
- The contribution of a reference price for carbon

Model projections of global warming with IPCC SRES emissions scenarios

- IPCC predicted in 2007 that past GHG emissions already in the atmosphere will result in 1.6°C warming by 2100.
- Business as usual will result in a rise of between 2.5°C and 6.5°C by 2100.
- Current emissions are at the top end of these predictions.

Copenhagen Accord pledges amount to a more than 3°C temperature increase by 2100

There are a range of potential climate and resource scarcity impacts associated with temperature scenarios between 1.5 - 4°C

High level Trends	2010		2030	2050	2100
Approx. Temp Increase (IPCC A1B)		~1.5°C Increase		~2°C Increase	~4°C Increase
Potential climate impacts (selected from a range of sources)		2020: Agricultural 2030: Global peak oil yields fall by 20% likely to occur by		2040-2105: Arctic sea ice free in summer	
		in some regions	this time	2050: Crop yields fall by 30% in Central and South	2080: 1.1bn-3.2bn face water
	2025: 2/3 ^{rds} world's population facing water stress			Asia; but rise 20% in East and S.E. Asia	shortages
		income countries	2050: 1/ World plant and	2085: Dengue	
			2050: ¼ World plant and animal species may face	Fever increases to affect 3.5bn	
			2030: 18% of worlds corral reefs lost	extinction	people
			2030: temperate glaciers in equatorial Africa disappear	2050: 150m-200m people displaced by climate impacts	2100: sea levels rise 0.8-2.0 m
			asappear	2050: land subject to increasing water stress double that of decreasing water stress	

Climate change as a stress multiplier may be felt faster and more profoundly than predicted

- Climate science is improving and has demonstrated change is happening faster than previously understood:
 - » IPCC First Assessment Report (1990) predicted rises in global temperatures of 0.3°C per decade in the 21st century under a BAU scenario.
 - » IPCC Fourth Assessment Report (2007) updated its prediction and issued a range of models showing global temperatures rising by between 1.1 and 6.4°C during the 21st century.
 - » The tipping points are not adequately understood by the scientific and policy community.
 - » AR5?
- The direction of the science is clear, but uncertainty still remains regarding the exact nature of the forecasts and how natural and human systems will respond.

The climate change debate: ebbs and floods of concern

- Climate change gained prominence with policymakers and the public between 2005 and 2009, with the release of several influential reports and international conferences:
 - » Publications: UN Millennium Ecosystem Assessment, 2005; Stern Review, 2006; IPCC AR4, 2007; etc.
 - International conferences: G-8 Gleneagles, 2005; UNFCCC COP13, Bali, 2007; Major Economies Forum, 2009; UNFCCC COP15, Copenhagen, 2009; etc.
- Since 2009 and the financial crisis in Europe and the U.S., climate dropped off the global agenda.
- Climate is again the focus of international concern with renewed U.S. attention and a clear pathway toward a global deal in 2015 in the UNFCCC.

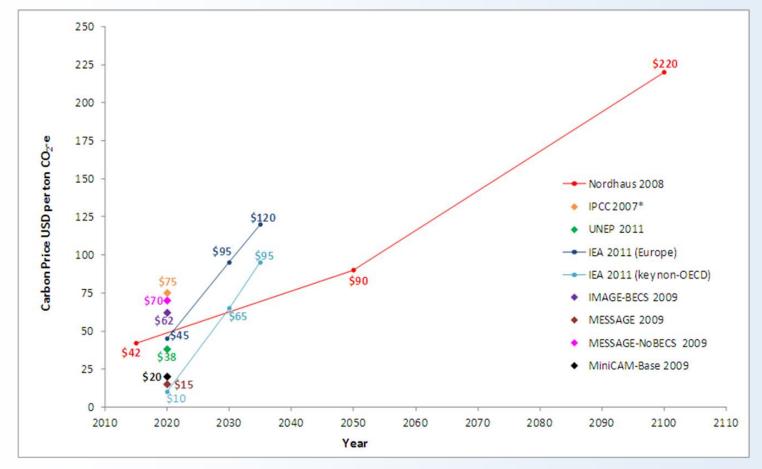
The risks and costs highlight the urgency

- The science is strengthening, showing more severe consequences e.g. the acceleration of Arctic ice decline and increased frequency of extreme weather events.
- Long lag and lead times for climate technology promotion and energy policy.
- Economic impact will be severe, and will worsen as mitigation actions are delayed. The IMF estimates GDP losses for the following scenarios:
 - » Stabilizing at 650ppm (3.6°C) by 2100 will result in GDP losses between \$0 and \$24 trillion.
 - » Stabilizing at 550ppm (below 3°C) by 2100 = losses between \$4 and \$65 trillion.
 - » Stabilizing at 450ppm (2°C) by 2100 = losses between \$12 and \$125 trillion.
- 3°C is technically unfeasible if action is delayed to after 2030, while 2°C would require the development and wide-scale deployment of still unproven lowcarbon technologies.

The causes of complacency

- The distribution of costs and benefits:
 - » The global public good nature of the problem is an obstacle to timely action and a challenge to existing weak governance structures.
- The high level of uncertainty:
 - » Climate science: Although the science on climate change existence and cause is clear, models predict a wide range of probabilities in terms of impacts, timing, and feedback mechanisms.
 - » Economic impacts: Climate impacts are likely to affect multiple segments of society, with high costs potentially altering the growth path and relative prices characterizing it.
 - » Low-carbon technology: Wide-scale viability of breakthrough technologies depends on various factors such as progress on mitigation measures, improvements in climate science, and government R&D spending.

A way forward: a reference price for carbon


Establishing and continuously updating a global reference price for carbon that producers and consumers can observe worldwide to help overcome the barriers to climate change policy reform.

- A global reference price on carbon could be an effective tool to inform globally coordinated action on climate change.
- Carbon pricing is the best way to mitigate climate change:
 - » More efficient abatement policies.
 - » Overcome barriers to policy reform.
 - » Provides confidence for long-term investments.

Determining the reference price

- To simplify the argument conceptually, we view the world as a whole growing along an optimal growth path with associated carbon emissions.
- The path of carbon emissions is intrinsically linked to the optimal growth path, and becomes the carbon constraint, or carbon budget. From this we can derive a shadow price for carbon which once set in global policy, becomes the reference price.
- The reference price would be estimated for the present and projected into the future, with a tendency to rise over time as the carbon constraint becomes increasingly binding.
- The price could fall if a technological breakthrough is achieved, making renewable or low carbon technologies much cheaper.

Carbon price trajectories under selected scenarios for GHG stabilization at 450 ppm CO₂-e

*IPCC data shows a range of prices of 50 to 100 USD between 2010 and 2030

Sources: Nordhaus, 2008; IPCC, 2007; UNEP, 2011; IEA WEO, 2011; selected scenarios discussed in Clarke et al., 2009.

The contribution of a reference price for carbon

- Provide clarity on the true cost of carbon and the scale of the problem.
- Guidance for long-term decisions by:
 - » Policymakers: progress on international and intersectoral agreements where actors could commit themselves to a gradual reduction between the actual and the reference price.
 - » Investors: gain a clearer picture on the direction of policy and build confidence on investments in low carbon technologies.
- Inform the debate on climate change and support evidence-based arguments.

Addressing the challenges

- Current carbon pricing models are limited and the following issues need to be addressed toward next steps in implementing a global reference price for carbon:
 - » Create coherent standards for measurement.
 - » Take into account distribution issues.
 - » Include the full costs of climate change impacts on the global economy.
- Reaching consensus on mutual action at the international level would help to overcome political barriers.
- An authoritative institution, or institutions, would need support by the global community to provide regular updates on a reference price for carbon.