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Declining discount rates and the Fisher E¤ect: In�ated past, discounted

future?

Mark C. Freeman, Ben Groom, Ekaterini Panopoulou and Theologos Pantelidis�

May 8, 2013

Abstract

Uncertain, yet persistent, real rates of return to capital underpin one argument for using
a declining schedule of social discount rates. Yet persistency is only present in approximately
the �rst three-quarters of the time-series of US Treasury bond yields used by Newell and
Pizer [37] to estimate the term structure for the US Environmental Protection Agency. This
coincides with the period in which the series re�ects nominal, rather than real, interest rates.
To overcome this disconnect the �Fisher E¤ect�is estimated using a cointegrated model of
in�ation and nominal interest rate data. The real interest rate series is then simulated
and the certainty equivalent discount rate calculated without the need for extensive data
transformations, such as smoothing out negative real interest rates. An arguably more
credible schedule of declining discount rates is then estimated. International guidelines on
Cost-Bene�t Analysis should be updated to re�ect this methodological advance.
JEL: Q48, C13, C53, E43
Keywords: Declining Discount Rates, Fisher E¤ect, Real and Nominal Interest Rates,

Social Cost of Carbon.

1 Introduction

Despite some puzzles along the way, the burgeoning theoretical literature on discounting distant
time horizons points more or less unanimously towards the use of a declining term structure of
social discount rates (DDRs) [17, 18, 49, 52, 54].1 This conclusion is robust to an individual�s
position in relation to the normative-positivist debate, which characterised the heated aftermath
of the Stern Review, provided that the primals of the discounting problem are assumed to exhibit
persistence over time [3, 12, 17].2

Consensus in an area of theory as potentially fraught as social discounting is a rare thing.
Perhaps for this reason the literature on DDRs has been highly in�uential. The UK, French
and Norwegian governments now recommend DDRs for intergenerational Cost-Bene�t Analysis
(CBA) [27, 31, 34]. The literature on DDRs also motivates the US Environmental Protection
Agency�s (USEPA) recommendation that a lower discount rate with a �at term structure should
be applied to intergenerational projects for sensitivity analysis [50]. The US Interagency Work-
ing Group on the Social Cost of Carbon recommends similar practices [28]. Furthermore, DDRs
are currently being considered by the USEPA and the O¢ ce of Management of Budgets (OMB)
after a recent consultation of experts.3

�Mark Freeman, School of Business and Economics, Loughborough University, United Kingdom. E-mail:
M.C.Freeman@Lboro.ac.uk. Ben Groom, Department of Geography and Environment, London School of
Economics, United Kingdom. E-mail: B.Groom@lse.ac.uk. Ekaterini Panopoulou, Department of Statistics and
Insurance Science, University of Piraeus, Greece. E-mail: Apano@Unipi.gr. Theologos Pantelidis, Department
of Economics, University of Macedonia, Greece. E-mail: Pantelidis@Uom.gr. Author for correspondence: Ben
Groom.

1This is for risk-free discounting of certainty-equivalent future costs and bene�ts. See [19] for a discussion
about project and systematic risk in discounting.

2Strictly speaking, there are also additional conditions required on the nature of the inter-temporal social
welfare function (e.g. [17]).

3For the out come of the RFF expert panel meeting see Arrow et al. (2012).
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Yet in the process of policy debate, it has become clear that there is no clear consensus on how
to operationalise a schedule of DDRs for use in CBA. One need only look at the heterogeneous
and occasionally ad hoc motivations for the current policies as evidence for this (e.g. [27]). This
lack of consensus turns out to be important since the outcomes of intergenerational valuations
are sensitive to the empirical choice of discount rates. Indeed, the range of policy prescriptions
arising from di¤erent empirical approaches to estimating the DDR schedule is comparable to
that emanating from the distinct positions taken in the thorny normative-positive debate (e.g.
[12, 23, 40]).

In this paper we explore the empirical sensitivities associated with the declining certainty
equivalent discount rate proposed by Martin Weitzman [52] when uncertainty is characterised
using historical interest rate data. Newell and Pizer [36, 37] (henceforth N&P) showed that
US bond yields have exhibited su¢ cient persistence in the past two centuries for the empirical
schedule of DDRs to exhibit a rapid decline, raising the US$ (2000) social cost of carbon from
$5.7/tC to between $6.5/tC and $10.4/tC in the process [37]. This latter result was shown to be
highly sensitive to the time-series model used to characterise interest rate uncertainty. Subse-
quent work by Groom, Koundouri, Panopoulou and Pantelidis [23] (henceforth GKPP) showed
that once a wider range of time-series models is considered, and a process of model selection
undertaken, there are good theoretical and empirical reasons to prefer models which allow for
more �exible characterisation of uncertainty in the interest rate data generating process. Their
preferred model and associated schedule of DDRs raised the social cost of carbon yet further to
$14.4/tC. More global approaches to estimating the DDR using international bond yields have
been undertaken by [20] and [26].

The idea that uncertainty about future interest rates leads to DDRs has strongly in�uenced
the current UK, US and Norwegian governments�guidance on long-term discounting ([27, p98.]
[28, p 24.] [34, Ch 5, p79.] [50, Ch 6, p23.]).4 It also has prominence in the current consultation
taking place in the US (e.g. [3]) and is expected to serve as an input into the 2013 �refresh�
of the UK Treasury Green Book. Taken together, the prominence of this approach and the
sensitivity of policy decisions to the empirical methods employed motivates further investigation
into the robustness or otherwise of the results in the literature.

To this end, in this paper we focus on the time-series of bond yields used by N&P. This
data set has been particularly important as it was also used by GKPP in the other main US-
focussed study in this area. N&P use annual market yields for long-term government bonds for
the period 1798 to 1999. Starting in 1950, nominal interest rates are converted to real ones by
subtracting a ten-year moving average of the expected in�ation rate of the CPI as measured by
the Livingston Survey of professional economists. This ex-ante measure of in�ation does not
exist prior to 1950, and so expected in�ation is assumed to equal zero for the �rst three-quarters
of the series. [20] also assume that nominal and real interest rates are equivalent before 1950 in
their international study. This paper focusses on testing the robustness of empirical schedules
of the DDR to this assumption.

It has been well documented that, prior to 1950, the United States went through periods
of both highly positive and highly negative in�ation (see, for example, [13] and [5]). A priori,
therefore, it seems highly likely that the time-series of real and nominal interest rates would
have signi�cantly di¤ered during the �rst three-quarters of N&P�s sample period; this is a
conjecture that we con�rm later in the paper. This is potentially of great importance since the
persistence which underpins the decline in the DDRs is more prominent in the nominal interest
rate series used from 1798 to 1950. The remaining real interest rate series up to 1999 is arguably
mean reverting. Furthermore, the volatility of real and nominal interest rates is typically very
di¤erent. These observations suggest that the shapes of the term structure reported in earlier
studies may potentially be non-robust to di¤erent assumptions about the in�ation process.

4For instance, the Norwegian Guidelines conclude: �Beyond 40 years, it is reasonable to assume that one will
be unable to secure a long-term rate in the market, and the discount rate should accordingly be determined on
the basis of a declining certainty-equivalent rate as the interest rate risk is supposed to increase with the time
horizon. A rate of 3 percent is recommended for the years from 40 to 75 years into the future. A discount rate
of 2 percent is recommended for subsequent years.�
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Indeed, if real interest rates have been mean-reverting through the entire sample period, then
the resulting schedule of social discount rates will be e¤ectively �at.

To investigate the sensitivity of current policy recommendations to assumptions about in-
�ation we propose a method which removes the disconnect between nominal and real interest
rates that occurs in 1950. In this paper, the real interest rate series is determined by empirically
characterising the theoretical relationship between nominal interest rates and in�ation known as
the �Fisher E¤ect�[10]. Modelling real interest rates in this way then results in a term structure
of certainty equivalent discount rates that are in�ation-adjusted for the whole sample period.

The techniques that we use have other methodological advantages over those originally
employed by N&P and GKPP. Historically there have been repeated periods (including the
time of writing) of negative real interest rates, yet N&P remove this possibility by transforming
the data to a three year moving average. Furthermore, a logarithmic model is used which
then removes the possibility of a negative certainty equivalent discount rate.5 Neither of these
adjustments are necessary within this paper.

What is perhaps surprising, but heartening, about our results is that previous schedules of
the DDR appear to be largely robust to more rigorous treatment of in�ation. The schedules
that we describe generally decline more sharply at long horizons than either N&P or GKPP.
However, at the short end, social discount rates are higher than those described by GKPP. As
a consequence, the estimated Social Cost of Carbon lies between the estimates of N&P and
GKPP, but closer to the latter than the former.

2 A Theory of Declining Discount Rates

When using market bond yields to inform the discount rate, policy makers are taking a positivist
approach to social discounting. A project with a consumption certainty equivalent future bene�t
Vt at future time t and zero at all other times is then, from a valuation perspective, economically
equivalent to a zero-coupon default risk-free bond with maturity t. The appropriate positivist
valuation approaches can therefore be taken directly from the asset pricing literature.

A well-known result from �nancial economics (see, for example, [2, Equation 16]) is that the
present value of the project under consideration at some earlier time h is given by:

Ph = Eh

 
Vt exp

 
�
t�1X
�=h

r�

!!
(1)

where r� is de�ned as the logarithmic expected single-period return for holding a claim on Vt
over the interval [� ; � + 1]: exp (r� ) = E� [P�+1=P� ]. The derivation of equation 1 emerges
simply from repeated iteration of the single-period Net Present Value equation.

De�ne the variable r (t) by P0 = E0 [Vt] exp (�tr (t)). If Vt is non-stochastic, or at least
uncorrelated with

Pt�1
�=h r� (something that [53] calls a �pragmatic-decomposition�assumption),

then:
r (t) = �1

t
ln (E0 (exp (�trt))) (2)

where rt = t�1
Pt�1
�=0 r� is the average value of r� over the horizon of the project. Follow-

ing Weitzman [52] we call r (t) the certainty equivalent discount rate, and the corresponding
certainty-equivalent forward rate, ert, for discounting between adjacent periods at time t is:

ert = E(Pt)

E(Pt+1)
� 1 (3)

This is commonly referred to as the Expected Net Present Value (ENPV) approach. Crucially,
exponential functions are convex and so, by Jensen�s inequality, r (t) < E0 (rt). The magnitude

5N&P argue that short-term �uctuations are not strictly relevant to the time horizons that are the focus of
their paper. Furthermore, negative real rates do not appear in their data, the argument being that these are
transitory phenomena [36, p 10].
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of this inequality is driven by two parameters; the value of t and the uncertainty over rt. That the
inequality gets greater with larger t causes the term structure of social discount rates to decline
with the horizon of the project. That the inequality also gets greater with more uncertainty
over rt means that understanding the volatility of average future costs of capital is the critical
empirical task facing those who wish to operationalise the ENPV approach.

When parameterising equation 2, N&P and others estimate the statistical properties of
rt from a historic time-series of yields on a long-term bond. However, it is not immediately
obvious that single period expected returns on long bonds, with horizons of a few decades, and
a many-century t�period default risk-free �xed income security should be the same. In general,
empirical estimates of the Treasury yield curve are upward sloping, suggesting that rt is likely
to be higher than an average long-term bond yield. However, the literature on social discount
rates generally ignores these yield curve issues by assuming that the liquidity premium on bonds
of all horizons is zero. We retain this assumption here, the motivation for which is two-fold.

Within environmental economics, it has been common to justify the ENPV approach through
the original thought experiment of [52]. He assumes that future interest rates are currently
unknown but that, in one instant, all uncertainty will be removed. The true value of r0 will be
revealed and r� = r0 with certainty for all future � . In this case, the ENPV approach with r�
proxied by a short-term risk-free rate has been justi�ed through the literature on the so-called
�Weitzman-Gollier puzzle�. This starts with [15] and thus far culminates with [21] and [49] via
[25], [7] and [11]. In �xed income pricing, the use of the ENPV equation in the absence of
liquidity premia is given by [8] in continuous time and [14] in discrete time. Here equation 2
is referred to as the Local Expectations Hypothesis. In this case, rather than all uncertainty
being removed in one instant, a less restrictive �local certainty�equivalent is required. By having
consumption at time � + 1 fully known at time � , all assets have a zero consumption beta and
therefore all risk and liquidity premia are also zero. Consistent with the �Weitzman-Gollier�
puzzle literature (excluding [11], who uses a pure exchange economy), logarithmic utility for
the social planner is a critical condition to justify local certainty of consumption.

The social planner�s current uncertainty over the far-horizon average future Treasury long-
bond yield will depend on two things; the volatility of r� itself and the persistency of shocks to
this series. Even if interest rates are highly volatile, provided that these shocks are transitory
then the long-term average of r� will be relatively stable, leading to a slowly declining schedule
of social discount rates. However, if shocks are persistent, then these will remain important into
the distant future. N&P use their data to estimate an AR(3) model and compare this to a fully
persistent Random Walk speci�cation. The uncertainty in the discount rate is then simulated
using multiple forecasts. In both cases persistence is found to be su¢ cient to cause a rapidly
declining term structure. N&P could not distinguish between the two models on statistical
grounds. For this reason, the USEPA guidelines on discounting take an average between these
two model to inform their lower 2.5% rate for intergenerational projects (e.g. [50]).

Subsequent work showed that the empirical schedule of DDRs based on N&P�s data is not
robust to di¤erent empirical models, making model selection crucial for informing policy (e.g.
[23]). In particular, in the US and UK cases, rigorous model selection leads to a preference for
models that can deal with more �exible and complex characterisations of the mean and variance
of the interest rate process (e.g. [22]).

While N&P and GKPP have concentrated on the robustness of the N&P approach to model
selection, [20] and [26] concentrated instead on the choice of data. Their contributions lie
in internationalising the debate. If the social planner is interested in the global social cost
of carbon, then this cannot be estimated using US bond yields alone. The analysis in this
paper is also primarily focussed on data-related issues, although we also make methodological
improvements to previous studies. Rather than internationalising the data, we remain within a
US context but handle in�ation more rigorously than either N&P or GKPP. As discussed above,
the empirical term structure of the certainty equivalent discount rates is extremely sensitive to
the estimated persistence and volatility present in the data. Indeed, closer scrutiny of the time-
series used in the previous literature exposes several transformations of the data to which the
empirical schedule of DDRs is almost certainly going to be sensitive, and we explore these issues
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below.

3 Data on Interest Rates

N&P base their analysis on nominal long-bond Treasury yields for the period 1798 to 1999.
Starting in 1950, the Livingston Survey of professional economists is used to construct a mea-
sure of expected in�ation, which is then used to create real interest rates. No adjustment to
nominal yields is made before 1950. The interest rates are then converted to their continuously
compounded equivalents and estimations are made using a three-year moving average of this
series. Finally, N&P used logarithms of the series which preclude negative rates and makes
interest rate volatility more sensitive to the level of interest rates. A trend correction is also
required [36].

N&P have an extremely thorough description of their methods and the treatment of their
data, as well as a convincing justi�cation for the steps taken (see also [36]). Nevertheless,
there are certain features of their 200 year series and the transformations undertaken which
are worthy of further investigation given the sensitivity of the schedule of DDRs to di¤erent
empirical treatments. Appendix A shows some descriptive statistics and statistical tests on the
N&P series, while Appendix B compares the N&P series to series on nominal and real interest
rates sourced from Global Financial Data (GFD) for the duration over which there is overlap
with the N&P data: 1820-1999. Both serve to motivate our closer scrutiny of the N&P data
and our subsequent alternative methodological approach.

First, in Appendix A, Figures A1-A4 show the result of a rolling estimates of the AR(3)
model of interest rates that forms the central model of N&P, together with the associated p-
value of the Augmented Dickey Fuller (ADF) test for a unit root.6 Figures A1 and A2 use
unsmoothed data, while Figures A3 and A4 use the three year moving average data used by
N&P. Figure A1 uses a 50 year window for the rolling estimation and shows that there are only
two periods when the null hypothesis of a unit root is rejected. The �rst is the set of 50 year
windows with starting points between 1810 and 1830. The second is the set of 50 year windows
with starting points from 1945 until 1950. The latter set of windows are made up predominatly
of the real data series. The pattern becomes more clear in Figure A2 in which a 100 year
window is used for the rolling estimation. By this measure, it becomes clear that persistence is
a pre-1950 phenomenon associated with the nominal but not the real interest rate data.

Figure A3 and A4 show the results of a similar exercise for the smoothed data used by N&P,
for 50 and 100 year windows respectively. Qualitatively speaking, Figures A3 and A4 show that
the extent of persistence again declines towards the more recent windows of data containing a
greater proportion of the post-1949 real interest rate series. More importantly, when the data is
smoothed there is no 50 or 100 year window in which the null hypothesis of a unit root can be
rejected.7 A comparison of Figures A1 and A2 with Figures A3 and A4 shows that, whatever
the theoretical logic, smoothing the data inevitably increases persistence in the series.

Additional evidence for the existence of a unit root in the nominal interest rate data, but
not the real interest rate data, can be found in Table A1. Here an ADF test is undertaken on
the pre-1950 nominal data and the post-1949 real data, unsmoothed and smoothed. The unit
root hypothesis is rejected for the smoothed real (post-1949) data. This underpins the rejection
of the null when the entire smoothed series is tested.

Finally, Appendix B illustrates how the unsmoothed N&P series compares with the GFD
data on real and nominal interest rates since 1820. The �rst thing to notice is that the N&P
series has smoothed away three periods during which real interest rates were negative: the early
1900s, the late 1930s to early 1940s and the late 1960s to early 1970s. Second, the GFD real
interest rate data is much more volatile than the N&P data, particularly pre-1950 when the
N&P data is nominal. Table B1 indicates that the correlation of the N&P data with the GFD
data is much weaker pre-1950 for both real and nominal GFD series. Furthermore, the N&P

6The ADF test contains the lagged di¤erence terms appropriate for the AR(3) model.
7The rolling ADF test is undertaken without a trend component, although similar results arise when the trend

is included.
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series is more strongly correlated with the nominal GFD data than the real. Lastly, Table B2
shows that the autocorrelation coe¢ cients for each data source: N&P, GFD nominal and GFD
real, are quite di¤erent.

Much of this analysis is merely descriptive of course. However, from a theoretical and
empirical perspective it seems clear that some of the assumptions underpinning the series used
by N&P and GKPP are not completely satisfactory. Smoothing, the removal of negative real
interest rates and, in particular, the disconnect between nominal and real interest rates before
1950 appear to be driving some of the time-series properties of the data that are important
from the perspective of DDRs. There may also be some conceptual problems with the use of
the Livingston Survey of Professionals data on the CPI since the interest rate data is for a
long-bond, while the survey is typically concerned with one-year in�ation estimates. It is also
worth noting that a fairly dim view of the Livingston survey is taken in some quarters.8 In the
following section we propose an alternative empirical and theoretical approach for estimating
the DDR schedule which addresses these problems.

4 A Bivariate Model for Calculating the Declining Discount
Rates

The key problem highlighted in the previous section is the disconnect between nominal and real
interest rates in the N&P data. The reasons for this approach were reasonable in the sense that
data on expectations of in�ation were not available prior to 1950 when the Livingston survey
of economists started collecting such data. We propose a solution to this problem which allows
expected in�ation to be modelled using data on observed in�ation, and hence real interest rates
to be derived using data on nominal interest rates and in�ation. As we explain, this generates
a real interest rate series for 200 years.

4.1 A model of nominal interest rates and in�ation: The �Fisher e¤ect�

We are interested in estimating the long-run behaviour of ex ante real interest rates using data
on nominal interest rates and in�ation. This relationship is often analysed in the context of the
�Fisher� relationship [10]. Speci�cally, if we let yt(m) denote the m�period nominal interest
rate at time t, xet (m) to be the expected rate of in�ation from time t to t+m; and ret (m) stand
for the ex-ante m�period real interest rate, we can express the �Fisher e¤ect�as follows:9

yt(m) = x
e
t (m) + r

e
t (m) (4)

The additional assumption of rational expectations (see, e.g. [33]) allows us to link realised
in�ation to expected in�ation, xt(m) = xet (m)+�t, where �t is a white noise process, orthogonal
to xet (m): Finally, if we further assume that the real interest rate is a white noise process with
a mean value r; we end up with the following equation:

yt(m) = r + �xt(m) + u1t (5)

In the literature, there are alternative theories about the magnitude of the � parameter in
the above equation. The traditional Fisher hypothesis suggests that � = 1. However, there
are di¤erent approaches that suggest a � that is either greater than unity (e.g. [9]) or less
than unity (e.g. [35]). On an empirical basis, the �ndings are also mixed. Mishkin was one
of the �rst researchers who pinpointed the problem of spurious regression when examining the
relationship between nominal interest rates and in�ation due to the non-stationarity of the
series [33]. Therefore, he suggested that cointegration techniques are necessary to investigate
the Fisher e¤ect. However, even when someone applies appropriate cointegration methods, the

8 It has been described as being �poorly designed throughout most of its history, having been intended more
for journalistic than scienti�c purposes..� [48, p.127]

9This is an approximate Fisher model. The exact relationship being: (1 + yt(m)) = (1 + xet (m)) (1 + r
e
t (m)).

The approximation works well when xt(m)ret (m) is small.
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small sample properties of the cointegrating estimators play an important role introducing a
signi�cant level of uncertainty in the estimated value of the � parameter. In our empirical
analysis, we choose not to impose any restrictions on the value of � and organize our simulation
in a framework that takes into account the uncertainty surrounding the value of �.10

Next, we describe a Data Generating Process (DGP) for the relationship between interest
rates and in�ation rates. The DGP, put forward by Phillips [44, 45], develops a general frame-
work for the dynamics of the variables under scrutiny and it is often used in the literature to
examine the �nite sample properties of cointegrating estimators (see, [41, 47]).

4.2 The triangular data generating process

We consider the triangular DGP for the I(1) vector zt = [yt; xt]> given in equation 5, and:11

�xt = u2t (6)

The cointegrating error, u1t, and the error that drives the regressor, u2t, compose an I(0) process,
ut = [u1t; u2t]

>, described by the following VAR(1) model:

ut = Aut�1 + et (7)

where A is a 2 � 2 parameter matrix and et is a white noise process. More speci�cally, ut is
given by: �

u1t
u2t

�
=

�
�11 �12
�21 �22

��
u1t�1
u2t�1

�
+

�
e1t
e2t

�
(8)

and �
e1t
e2t

�
� NIID

��
0
0

�
;�e =

�
�11 �12
�12 �22

��
(9)

Note that this DGP suggests that the cointegration parameter � is time-invariant. We test and
provide evidence that supports this assumption in the empirical part of our study.

4.3 Implications of the triangular model

Before proceeding to more detailed empirical estimations, N&P present a simple AR(1) rep-
resentation of their model to show the role that persistency, volatility and maturity play in
determining the DDR schedule. Here, we undertake a similar task for our DGP under the as-
sumption that � = 1. In this case, the real interest rate rt = yt�xt = r+u1t. If r is currently
unknown, but is believed to be distributed according to N

�
r; �2r

�
, then, from equation 1,

P0 = E (exp(�rt))E
 
exp

 
�

tX
�=1

u1�

!!
(10)

= exp(�rt+ 0:5t�2r)E
 
exp

 
�

tX
�=1

u1�

!!

The structure of the summation term term in (10) depends on the value of the parameters in A
and �e. If a12 = 0, our DGP for the real interest rate becomes a simple mean-reverting process.
This coincides with that of N&P and thus it is persistence, measured by a11, and uncertainty,
measured by �2r and �11, that determine the speed of decline in the social discount rate. On
the other hand, when a12 6= 0, the dynamics become more complicated.
10Our focus on the cointegrating relationship between nominal interest rates and in�ation means that we are

not interested in modelling the real interest rate directly, and hence we do not follow the procedures associated
with previous models of the certainty equivalent discount rate found in GKPP.
11For expository purposes, we drop m.
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We next calculate the expected value of exp(�
Pt
�=1 u1� ) based on the following in�nite

Moving Average (MA) representation of u1t

u1t =
1X
i=0

�iet�i (11)

where �0 = I2 is a 2 � 2 identity matrix, and �i = Ai, i = 1; 2; :::. Given the Cholesky
decomposition of �e = BB>, we obtain the following representation

u1t =

1X
i=0

�iwt�i (12)

where �i = �iB and wt = B�1et � IIDN(0; I2) [32].
In an attempt to avoid unnecessary complications, let us assume that a21 = 0. In this case,

the eigenvalues of A, denoted as �1 and �2, are equal to a11 and a22 respectively. Then, given
that the generation mechanism starts at time t = 1, we end up with the following result:

E[exp(�
tX

�=1

u1� )] = expf0:5(1 +R1 +R2)g; where (13)

R1 =

t�1X
�=1

[1 + (

p
�11�1
1� �1

+
a12�12�1p

�11(�1 � �2)(1� �1)
)(1� ��1)�

a12�12�2p
�11(�1 � �2)(1� �2)

(1� ��2)]2

R2 =
t�1X
�=1

[

q
�22 � �212

�11
a12�1

(�1 � �2)(1� �1)
(1� ��1)�

q
�22 � �212

�11
a12�2

(�1 � �2)(1� �2)
(1� ��2)]2

Substituting equation 13 into equation 10, we obtain an expression for the expected value of the
discount factor and then the instantaneous discount rate at time t in the future is calculated
based on the continuous-time equivalent of the certainty equivalent forward rate in equation 3.
This expression is algebraically lengthy, and not reported for brevity, but allows us to conclude
that, similarly to the case of the AR(1) model of N&P, it is persistence, measured by �1 and �2,
and uncertainty, measured by �2r and the elements of �e, that determine the speed of decline
in the discount rates. As expected, the discount rate is a decreasing function of t. Figure 1
illustrates the path of the DDR for two di¤erent levels of persistence which is controlled by
the value of �1 while keeping the remaining parameters �xed. It is clear that the discount rate
declines faster reaching much lower levels as �1 increases. The same picture arises from Figure
2 that plots the DDRs for values of �1 in the interval [0:6; 0:95], while keeping the remaining
parameters of the process �xed.

5 Empirical Results and Simulation

We now turn to empirical estimates of the cointegrating relationship between in�ation and
nominal interest rates. A number of models are deployed to allow for �exible estimation of
the Fisher parameter, �, and to check for the robustness of the certainty equivalent discount
rate to di¤erent speci�cations of the cointegrating relationship. Expected in�ation is proxied
by the 10-year average realised in�ation rate as calculated from the CPI de�ator (CPI data to
2009). This matches the in�ation horizon with the bond horizon. The real interest rate series
is not modelled directly, but is derived from predictions from the cointegration estimators. Our
results con�rm the widely held view that interest rates and in�ation rates are I(1) processes
and cointegrated.12 As a result, the �rst condition for the Fisher hypothesis, i.e. the condition
that yt(m) and xt(m) are cointegrated processes is satis�ed. Next, we outline the alternative
cointegration estimators we employ.

12Detailed tables of unit root tests and cointegration tests are available from the authors upon request.
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Figure 1: Certainty-Equivalent Discount Rate

Figure 2: Certainty-Equivalent Discount Rate
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5.1 Estimation of the cointegrating parameters

We consider both parametric and semi-parametric cointegration estimators, the majority of
which are asymptotically e¢ cient provided that the conditions of the Functional Central Limit
Theorem (FCLT) are satis�ed. Next, we provide a brief description of these estimators:

Dynamic OLS (DOLS(p,t)): This estimator has been suggested by several papers [45, 46,
47]. It provides a direct way to estimate the cointegrating relationship and asymptotically leads
to valid test statistics. It utilises the static equation 5, augmented by lags and leads of the �rst
di¤erence of the regressor, i.e.:

yt = �xt +

p�1X
i=1

i�xt�i +
t�1X
j=1

dj�xt+j + vt (14)

Existence of serial correlation of vt does not raise any serious problems in the estimation of �
and can be dealt with by consistently estimating the long-run variance of vt as proposed by
Newey and West [38].

Fully Modi�ed Least Squares (FMLS): The FMLS estimation method, proposed by
Phillips and Hansen [44], employs semi-parametric corrections for the long run correlation and
endogeneity e¤ects, which fully modify the OLS estimator and its attendant standard error.
This estimator is based on consistent estimation of the long-run covariance matrices, which
requires the selection of a kernel and the determination of the bandwidth. We employ the
Quadratic Spectral kernel and select the bandwidth parameter by applying the Newey-West
procedure [39]. Moreover, we consider the �prewhitened� version of FMLS which �lters the
error vector but prior to estimating the long-run covariance matrices.13
Canonical Cointegrating Regression (CCR): Park�s Canonical Cointegrating Regression
(CCR) is closely related to FMLS, but instead employs stationary transformations of the data
to obtain least squares estimates and remove the long run dependence between the cointegrating
error and the error that drive the regressors [42]. As in FMLS, consistent estimates of the long-
run covariance matrices are required. To this end, we consider the �prewhitened� version of
CCR and employ the Quadratic Spectral kernel with the bandwidth selected by the Newey-West
procedure.

Johansen�s Maximum Likelihood (JOH): This is the well-known system-based maximum
likelihood estimator of �; suggested by Johansen [29, 30]. The order of the JOH estimator
corresponds to the lag-order of the Vector Autoregressive model on which this estimator is
based. An important di¤erence between this estimator and the other cointegration estimators
considered in this study is that it has been developed and proved to be asymptotically optimal
in the context of a Gaussian Vector Autoregression which accommodates a rather narrow class
of DGPs.

Augmented Autoregressive Distributed Lag (AADL(q,r,s)): This estimator is based
on the following AADL(q,r,s) model [43]:

yt = �xt +

q�1X
i=1

ai�xt�i +
r�1X
j=1

bj�yt�j +
s�1X
h=1

ah�xt+h + �t

The parameter of interest is equal to the long-run multiplier of yt with respect to xt. A direct
estimate of the parameter of interest � along with its standard error may be obtained by

13 [41] perform Monte Carlo simulations for a variety of DGPs and show that signi�cant gains can emerge when
the �pre-whitened version�of the FMLS estimator is employed.
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transforming the AADL model into the Bewley form (see [6, 51, 4]). Estimates of the coe¢ cients
and their standard errors can be obtained by using the Instrumental Variables (IV) estimator,
with the original matrix of regressors being the instrumental variables [51].

5.2 Stability and estimates of the cointegration vector

Before proceeding to the estimation of the cointegrating regression (5), we �rst test its stability
over the two centuries of data that we employ. Speci�cally, we employ three tests, namely the
Lc, MeanF and SupF tests, each with the null hypothesis that the cointegrating vector is time-
invariant [24]. Each can be derived as Langrange multiplier (LM) tests in correctly speci�ed
likelihood problems, which di¤er in their alternative hypotheses. Speci�cally, the null hypothesis
in each case is that the cointegrating vector is constant, while the alternative is that parameters
either follow a martingale process (Lc, MeanF) or exhibit a single structural break at unknown
time t (SupF).14 Each test tends to have power in similar directions and can detect whether
the proposed model captures a stable relationship. The asymptotic distribution of the test
statistics is non-standard and depends on the nature of trends in the cointegrating regression.
[24] provides both tabulated critical values and function p-values that map the observed test
statistic into the appropriate value in the range of p 2 [0; 1] and more speci�cally into the
range of interest: p 2 [0; 0:20] : Table 1 presents the stability tests for the parameters in the
cointegrating regression. Test statistics are calculated on the basis of a fully modi�ed estimation
with the covariance parameters estimated using the Quadratic Spectral kernel and prewhitened
residuals with a VAR(1) model. The bandwidth is selected by means of the Andrews (1991)
procedure [1].15 P -values are calculated by the function p-value methodology (see [24]). A
p-value of 0:20 suggests signi�cance at > 0:20 level.

Table 1. Parameter stability tests
Test Lc (p-val) MeanF (p-val) SupF (p-val)
United States 0.151 (0.20) 1.099 (0.20) 2.130 (0.20)

Overall, our �ndings suggest that the cointegrating relationship between the US in�ation
and the nominal interest rate is stable. To this end, we proceed with the estimation of the
parameters in the Fisher equation. Speci�cally, we employ the �ve estimators described in
Section 5.1 along with the Akaike Information Criterion (AIC) to choose the lag and lead
speci�cation for DOLS and AADL as well as the lag speci�cation for JOH. AIC is also used to
determine the optimal lag speci�cation for the estimation of the long-run covariance matrix in
the context of FMLS and CCR. Table 2 presents the estimated values of r and �, together with
the standard errors of the estimates for all the estimators under consideration.

Table 2. Cointegrating Regression Parameter Estimates
DOLS FMLS CCR JOH AADL
Estimate s:e. Estimate s:e. Estimate s:e. Estimate s:e. Estimate s:e.

r 3.652 0.421 3.995 0.889 4.301 0.805 0.087 2.062 3.173 1.336
� 0.541 0.221 0.434 0.260 0.287 0.187 2.259 0.608 0.815 0.485

Our �ndings suggest that estimates are quite heterogeneous across estimators. Speci�cally,
estimates of � range from as low as 0.287 (CCR) to 2.259 (JOH) associated with a high level of
uncertainty as depicted in the standard errors. Similar �ndings pertain to the r estimate with
estimates ranging from 0.087 (JOH) to 4.301 (CCR).

14The tests are built in the context of fully modi�ed estimation of the cointegrated regression. To save space,
we do not give details on the formulation of the tests. The interested reader is referred to [24].
15Alternative speci�cations with respect to the choice of kernel, bandwidth and prewhitening

yielded qualitatively similar results. We thank Prof. Hansen for making the codes available at
http://www.ssc.wisc.edu/~bhansen/progs/progs.htm.
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Figure 3: Term Structures of the Social Discount Rate- Cointegration Estimators

5.3 Calculation of certainty-equivalent discount rates

To characterise the uncertainty of future real interest rates, we �rst simulate multiple future
paths of real interest rates and then calculate the certainty equivalent rate following the simu-
lation approach proposed by N&P adjusted for the DGP proposed above. The estimates (and
the corresponding standard errors) of r and � given in Table 2 are employed to estimate the
residual series u1t and u2t. Once the residual series are obtained, we �t a VAR(1) model and get
estimates for the elements of the A and �e matrices. The variance-covariance matrix �A of the
estimated vecA is also obtained. 300,000 future paths (of 400 years length) are simulated for
the nominal interest rate and the in�ation rate taking into account: i) the stochastic dynamics
of the DGP; ii) the uncertainty surrounding the estimated parameters; and, (iii) the in-sample
properties of the US real interest rate. Appendix C provides a detailed account of the steps
taken in the simulation.

Figure 3 shows the term structure of the social discount rate resulting from the simula-
tions and calculation of the certainty equivalent discount rate for each of the �ve cointegration
estimators.

Strikingly, the term structures arising from our proposed methods appear quite similar
irrespective of the choice of the estimator. For each estimator the resulting term structure
at t = 0 is set equal to 4.4 percent and falls below 3 percent after 25 years.16 The fastest
decline appears when we employ JOH and CCR which reach 2 percent after 54 and 73 years
respectively. The respective values for AADL, DOLS and FMLS are 108, 170 and 128 years
respectively. Finally, the discount rate approaches zero in the very long-run, ranging from 0.42
percent to 0.67 percent after 400 periods for FMLS and JOH, respectively. Ultimately, there is
su¢ cient persistence in the cointegrated series to cause a signi�cant decline in the term structure
over a policy relevant time horizon.

For comparative purposes in Figure 4 we plot the term structure from the AADL model
with the preferred term structures of the previous empirical work in this area, alongside the UK
Treasury Green Book term structure. The AADL model is chosen since each of the empirical
models is theoretically equivalent, but the AADL model is widely regarded to have better
empirical qualities.

These results are an important robustness check on previous work and indicate that if a
government is to take this positive approach to social discounting long-term time horizons, care
is needed not only in model selection, as discussed in GKPP [22, 23], but �rst and foremost

16The starting point for the term structure is in each case the value of the last data point in the series: 1999.
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Figure 4: Empirical Term Structures for the Social Discount Rate

in the treatment of the interest rate data. It is clear that the term structure emerging from
modelling the Fisher E¤ect are broadly consistent with, but clearly distinct from, those that
make more arbitrary assumptions concerning the data. The policy implications of this �nding
are likely to be important for intergenerational projects. We now make this claim explicit by
evaluating a typical intergenerational question: the Social Cost of Carbon.

6 Application: The Social Cost of Carbon (SCC)

Following N&P and GKPP we used the Social Cost of Carbon to illustrate the policy implica-
tions of the di¤erent discounting approaches. The marginal damages of an additional tonne of
carbon are estimated using the DICE model (See Figure ??1 in Appendix D). The SCC is the
present value of this pro�le of carbon damages which remain positive for a 400 year horizon
at least. Table 3 shows the implications of the alternative discounting approaches for the SCC
in dollars per tonne of carbon. The N&P approach provides the lowest SCC and the other
approaches are compared in percentage terms to that. The current approach is at the top end
of the estimates, being 102% higher than N&P and 12% smaller than GKPP [23].

Table 3. The Social Cost of Carbon ($US 2000)
Discounting Approach SCC % di¤erence to N&P (MR)

Flat 4% 5.7 -11%
N&P [37] (Mean Reverting) 6.4 0%
N&P [37] (Random Walk) 10.4 62%
Green Book [27] 12.5 95%
Fisher E¤ect (AADL) 12.9 102%
GKPP [23] 14.4 125%
USEPA (Flat 2.5%) [50] 16.6 159%

7 Conclusion

The empirical estimation of Weitzman�s [52] declining term structure of the Social Discount
Rate using historical interest rate data undertaken by Newell and Pizer [37] (N&P) and Groom,
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Koundouri, Panopoulou and Pantelidis [23] (GKPP) has directly in�uenced governmental guid-
ance in the US, and indirectly in�uenced policy in a number of other countries [27, 34, 28, 50].
Yet the US interest rate data series used by N&P and GKPP re�ects nominal interest rates
pre-1950 and real interest rates thereafter. Furthermore negative real interest rates are removed
and smoothing takes place. A cursory analysis of this series and comparisons to historic real
interest rates shows that the time-series properties of the nominal and real data series di¤er
markedly. These properties, such as persistence, volatility, and the lower bound are important
determinants of the term structure of certainty equivalent discount rates.

By modelling the relationship between in�ation and nominal interest rates in the US we are
able to proceed in calculating the certainty equivalent on real interest rate data alone, without
the need for the removal of negative real interest rates or smoothing. In essence we use an
empirically testable theoretical structure to remove the disconnect between nominal and real
interest rates present in the N&P data. The conclusions are qualitatively similar to N&P in
that a declining term structure emerges. Yet the decline is closer to that of GKPP [23] which
is more rapid. This results in a social cost of carbon which, at $12.9/tC, is over 100% higher
than N&P�s mean reverting value.

These results are an important robustness check on previous work and indicate that if a
government is to take this positive approach to the social discounting of long-term time horizons,
care is needed not only in model selection, but �rst and foremost in the treatment of the interest
rate data. The ongoing discussions on discounting in the US and the upcoming �refresh�of the
UK Treasury Green book should take heed.
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A Autocorrelation and Unit Root Tests of the Newell and Pizer
Series, [36, 37]
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Figure A1. Rolling Estimation of Autocorrelation Coe¢ cient (AR(3)) and Augmented
Dickey-Fuller Test p-value (50 year window, unsmoothed data)
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Figure A2. Rolling Estimation of Autocorrelation Coe¢ cient (AR(3)) and Augmented
Dickey-Fuller Test p-value (100 year window, unsmoothed data)
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Figure A3. Rolling Estimation of Autocorrelation Coe¢ cient (AR(3)) and Augmented
Dickey-Fuller Test p-value (50 year window, smoothed data)

.0
5

.1
.1

5
.2

.2
5

.3
.3

5
.4

.4
5

.5
.5

5

.9
86

.9
88

.9
9

.9
92

.9
94

Au
to

co
rre

la
tio

n

1800 1820 1840 1860 1880 1900
Year

Autocorrelation DF pvalue
5% sig. lev.

Figure A4. Rolling Estimation of Autocorrelation Coe¢ cient (AR(3)) and Augmented
Dickey-Fuller Test p-value (100 year window, smoothed data)

Table A1. Augmented Dickey Fuller Tests (AR(3))
Smoothed (3yr M.A.) Unsmoothed

Test All Pre 1950 Post 1949 All Pre 1950 Post 1949
ADF -2.46 -1.51 -2.43 -3.29** -1.68 -3.15**

ADF (trend) -3.15* -2.80 -2.24 -3.97** -3.24 -3.10*

Signi�cance levels: *** = 1%, ** = 5% and * = 10%
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B Interest Rate Data 1820 - 1999

Figure B1. Real and nominal interest rates: 10 year bonds and 10 year in�ation expectations

Table B1. Correlations (10 year In�ation)
Years N&P, GFD real N&P, GFD nominal

1820 -1949 0.665 0.905
1950 -1999 0.355 0.677

Table B2. Auto-correlation (10 year in�ation)
Order N&P GFD Nominal GFD real
1 0.905 0.946 0.947
5 0.601 0.797 0.609
10 0.574 0.616 0.138
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C Simulation

The following steps are taken to simulate possible future paths of real interest rates and calculate
the certainty equivalent discount rate:

1. We generate random values for et = [e1t; e2t]
> from the bivariate Normal distribution

N(0;c�e) based on the estimated variance-covariance matrix c�e.
2. We obtain random values for the elements of A from the multivariate Normal distribution
N(vec bA; c�A) and generate random values for ut = [u1t; u2t]> from equation 7.

3. We generate random values for r and � from N(br; se(br)) and N(b�; se(b�)) respectively.
4. We use equations 5-6 to generate a random path for both the nominal interest rate, yt,
and the in�ation rate, xt. In this way, we calculate a future path for the real interest rate,
yt � xt.

5. We check whether the estimated real interest rate �uctuates between the minimum and
maximum values of the observed real interest rate of our sample for the US. If this con-
dition is not satis�ed, the simulated sample is discarded. Speci�cally, the min/max �lter
discards the entire simulated series if it exceeds 10% or is less than -4.15%, yet without
direct restrictions on the underlying series of cointegrated nominal interest rates and in�a-
tion. This approach is undertaken in order to purge the simulation of explosive processes
and is typical in many simulation exercises.17

6. Steps 1-4 are repeated as many times as needed to generate 300,000 simulated samples.

7. Finally, we calculate the certainty-equivalent discount factor and the certainty equivalent
forward rate based on equations 1 and 3 respectively.

D Simulated DICE Damages

Figure D1. Marginal Carbon Damages (US$ 2000)

17N&P do something similar by discarding all simulated paths when the randomly drawn parameters lead to
explosive processes.
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