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Abstract
Economic evaluation of climate policy has become mired in a debate

about appropriate time and risk preferences, since reducing greenhouse
gas emissions today has a highly uncertain pay-off, far into the future.
Rather than occupy a position in this debate, we take a non-parametric
approach here, based on the concept of Time-Stochastic Dominance. Us-
ing an integrated assessment model, we apply Time-Stochastic Dominance
analysis to climate change, asking; are there global emissions abatement
targets that everyone who shares a broad class of time and risk prefer-
ences would agree to prefer? Overall we find that even tough emissions
targets would be chosen by almost everyone, barring those with arguably
‘extreme’ preferences.
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1 Introduction
For over three decades, economists have been evaluating the abatement of global
greenhouse gas emissions, to mitigate climate change. From this work it is ev-
ident that the value of emissions abatement depends sensitively on the social
planner’s time and risk preferences. This makes sense, because emissions abate-
ment is a fine example of an investment that pays off mainly in the very long
run and whose pay-offs are subject to significant uncertainty. Unfortunately
there is much debate about appropriate time and risk preferences, hence there
is much debate about optimal climate mitigation.

By now the debate is perhaps familiar to readers, so a very short summary
might suffice here. Most studies – certainly most empirical studies – have been
based on a model in which social welfare is the discounted sum of individual
utilities. In such a model, over a long time horizon of many decades, even small
differences in the utility discount rate – call it δ(t) – can have a large effect on
the valuation of future utility. Utility itself is typically a concave function of
per-capita consumption of an aggregate good, net of the effect of climate change.
The curvature of the utility function drives preferences to smooth consumption
over time and, in models where consumption is uncertain, to avoid risk,1 making
it a second important consideration.

Within this framework, there has since the outset been a vigorous debate
about time and risk preferences. The pioneering studies of Cline (1992) and
Nordhaus (1991; 1994) staked out debating positions on time preference that
still hold today – Cline set δ(t) = 0, ∀t based on so-called ‘prescriptive’ ethical
reasoning (like e.g. Ramsey, Pigou and even Koopmans before him), while
Nordhaus set δ(t) = 3%, ∀t based on a more conventional ‘descriptive’ analysis
of market rates of investment returns.2 More recently, the Stern Review on
the Economics of Climate Change (Stern, 2007) revived and updated ‘Cline
vs. Nordhaus’, by setting δ(t) = 0.1%, ∀t and advocating aggressive emissions
abatement, with the former assumption seemingly causing the latter result.3
However, in making tentative steps towards simulating catastrophic climate
damage (Dietz et al., 2007), the Stern Review also prompted debate about
risk preferences (e.g. Pindyck, 2011; Weitzman, 2007, 2009). Questions have
included the appropriate degree of risk aversion in an iso-elastic utility function
(e.g. Dasgupta, 2007; Gollier, 2006; Stern, 2008), and the appropriate function
itself (Ikefuji et al., 2012; Pindyck, 2011).

Rather than attempting to settle the debate, in this paper we embrace it.
Our starting point is the supposition that debate about time and risk pref-
erences in climate economics legitimately exists. Given the ingredients of the
debate and the current state of knowledge, “reasonable minds may differ” (Hep-
burn and Beckerman, 2007). Moreover, we take it as given that it always will,

1In models that have spatial disaggregation, it also drives preferences to avoid inequalities
in consumption between places.

2See Arrow et al. (1996) for a classic comparison of these two points of view, from where
the labels descriptive and prescriptive hail.

3See Nordhaus (2007; 2008) for critique of the Stern Review.
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or at the very least it will persist long enough to cloud a sequence of important
choices about global emissions faced in reality. Why is the debate difficult to
resolve? It contains normative and positive elements. There is a clear sense in
which normative differences may never be completely eliminated. Positive ‘un-
certainties’ could in principle be eliminated by collecting more empirical data
from, for instance, market behaviour, questionnaire surveys or laboratory ex-
periments, but in reality it is likely that they will persist. Witness longstanding
difficulties with, and ongoing differences in approach to, puzzles in the economics
of risk such as the equity premium / risk-free rate.

Therefore the question we ask in this paper is; can we make choices on emis-
sions abatement, without having to agree on how precisely to structure and
parameterise time and risk preferences in economic models of climate mitiga-
tion? Are there combinations of whole classes of discount and utility functions,
for which it is possible to say that some abatement policies are preferred to
others? These classes admit different functional forms, and, for given func-
tional forms, often wide ranges of parameter values, so the approach we take
is non-parametric. Where preference orderings over abatement policies can be
constructed for certain combinations of discount and utility function, we say
there is a space for agreement. Hence a space for agreement is a partial ordering
in two dimensions, time and risk.

The theoretical machinery for analysing spaces for agreement builds on the
concepts of Stochastic Dominance and Time Dominance, long-established frame-
works for ordering risky prospects and cashflows over time, respectively. These
are briefly introduced in Section 2. However, until now Stochastic Dominance
and Time Dominance have been limited in their applicability to climate pol-
icy by the fact that the former does not admit pure time discounting, while
the latter cannot be applied to uncertain future cashflows except under very
strong assumptions. The one’s strength is the other’s weakness in this regard.
Therefore, in a companion paper we unify Stochastic Dominance and Time
Dominance to produce a theory of Time-Stochastic Dominance, which is able
to handle choices between investments that are both inter-temporal and risky
(Dietz and Matei, 2013). We present this theory in Section 4, but we cross-refer
to the companion paper for proofs and further details.

We make an empirical application by analysing a set of trajectories for global
greenhouse gas emissions – a set of ‘policies’ – using a stochastic version of
Nordhaus’ DICE model. DICE provides a theoretically coherent representation
of the coupled climate-economy system and is well understood, being openly
available and relatively simple. Section 5 describes how the model is set up, as
well as the policies to be compared. Our version of the model was developed by
Dietz and Asheim (2012) and, unlike standard DICE, incorporates uncertainty
via a set of random parameters that are inputs to Monte Carlo simulation. The
policies to be evaluated differ in the maximum atmospheric concentration of
carbon dioxide that is permitted, i.e. each is an emissions path that maximises
social welfare subject to a constraint on atmospheric CO2.

Section 6 presents our results. It indicates that, although the profile of
net benefits from climate mitigation is such that ‘standard’ Time-Stochastic
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Dominance cannot be established, we can use the less restrictive concept of
Almost Time-Stochastic Dominance to show that the space for agreement on
climate change is indeed large. Section 7 completes the paper by providing a
discussion.

2 Preliminaries
Stochastic Dominance and ‘Almost’ Stochastic Dominance
Stochastic Dominance (hereafter SD) determines the order of preference of an
expected-utility maximiser between risky prospects, while requiring minimal
knowledge of her utility function. Take any two risky prospects F and G,
and denote their cumulative distributions F 1 and G1 respectively. Assuming
the cumulative distributions have finite support on [a, b], F is said to first-
order stochastic dominate G if and only if F 1(x) ≤ G1(x), ∀x ∈ [a, b] and
there is a strict inequality for at least one x, where x is a realisation from the
distribution of pay-offs possible from a prospect. Moreover it can be shown that
any expected-utility maximiser with a utility function belonging to the set of
non-decreasing utility functions U1 = {u : u′(x) ≥ 0} would prefer F .

First-order SD does not exist if the cumulative distributions cross, which
means that, while it is a powerful result in the theory of choice under uncertainty,
the practical usefulness of the theorem is limited. By contrast, where F 2(x) =´ x
a
F 1(s)ds and G2(x) =

´ x
a
G1(s)ds, F second-order stochastic dominates G if

and only if F 2(x) ≤ G2(x), ∀x ∈ [a, b] and there is a strict inequality for at
least one x. It can be shown that any expected-utility maximiser with a utility
function belonging to the set of all non-decreasing and (weakly) concave utility
functions U2 = {u : u ∈ U1 and u′′(x) ≤ 0} would prefer F , i.e. any such
(weakly) risk-averse decision-maker. Hence second-order SD can rank inter alia
prospects with the same mean but different variances.

Nonetheless the practical usefulness of second-order SD is still limited. Con-
sider the following example (Levy, 2009). Let us try to use SD criteria to
rank two prospects; F pays out $0.5 with a probability of 0.01 and $1 million
with a probability of 0.99, while G pays out $1 for sure. While it would seem
that virtually any investor would prefer F , second-order SD does not exist as
G2(x) − F 2(x) < 0, x ∈ [0.5, 1). Intuitively, the reason for the violation of
second-order SD is that the broad class of preferences admitted in U2 includes
risk aversion so extreme that the decision-maker effectively only cares about the
0.01 probability of sacrificing $0.5 by taking the gamble.

One could place an additional restriction on the decision-maker’s preferences,
defining the set U3 = {u : u ∈ U2 and u′′′(x) ≥ 0} and looking for third-
order SD. Decision-makers exhibiting decreasing absolute risk aversion have
preferences represented by utility functions in U3 and such decision-makers will
also exhibit ‘prudence’ in inter-temporal savings decisions (Kimball, 1990). F
third-order stochastic dominates G if and only if F 3(x) ≤ G3(x), ∀x ∈ [a, b] and
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EF (x) ≥ EG(x), and there is at least one strict inequality.4 However, it can
easily be verified that G3(x)−F 3(x) < 0, x ∈ [0.5, 1), yet EF (x) >> EG(x), so
third-order SD does not exist. Moreover SD cannot be established to any order
in this example, because the first non-zero values of G1(x)−F 1(x) are negative
as x increases from its lower bound, yet EF (x) > EG(x). Successive rounds of
integration will not make this go away.

A more fruitful route is the theory of ‘Almost Stochastic Dominance’ (ASD)
set out by Leshno and Levy (2002) and recently further developed by Tzeng
et al. (2012). ASD places restrictions on the derivatives of the utility function
with the purpose of excluding the extreme preferences that prevent standard SD
from being established. Dominance relations are then characterised for ‘almost’
all decision-makers.

For every 0 < εk < 0.5, where k = 1, 2 corresponds to first- and second-order
SD respectively, define subsets of Uk:

U1(ε1) =
{
u ∈ U1 : u′(x) ≤ inf[u′(x)]

[
1
ε1
− 1
]
, ∀x

}
and (1)

U2(ε2) =
{
u ∈ U2 : −u′′(x) ≤ inf[−u′′(x)]

[
1
ε2
− 1
]
, ∀x

}
.

U1(ε1) is the set of non-decreasing utility functions with the added restriction
that the ratio between maximum and minimum marginal utility is bounded by
1
ε1
− 1. In the limit as ε1 approaches 0.5, the only function in U1(ε1) is linear

utility. Conversely as ε1 approaches zero, U1(ε1) coincides with U1. U2(ε2) is
the set of non-decreasing, weakly concave utility functions with an analogous
restriction on the ratio between the maximum and minimum values of u′′(x). In
the limit as ε2 approaches 0.5, U2(ε2) contains only linear and quadratic utility
functions, while as ε2 approaches zero, it coincides with U2.

Defining the set of realisations over which standard first-order SD is violated
as

S1(F,G) =
{
x ∈ [a, b] : G1(x) < F 1(x)

}
,

F is said to first-order almost stochastic dominate G if and only if
ˆ
S1

[
F 1(x)−G1(x)

]
dx ≤ ε1 ·

ˆ b

a

∣∣[F 1(x)−G1(x)
]∣∣ dx.

Moreover, in a similar vein to standard SD, it can be shown that any expected-
utility maximiser with a utility function belonging to U1(ε1) would prefer F .

Defining the set of realisations over which standard second-order SD is vio-
lated as

S2(F,G) =
{
x ∈ [a, b] : G2(s) < F 2(s)

}
,

F second-order almost stochastic dominates G if and only if
ˆ
S2

[
F 2(x)−G2(x)

]
dx ≤ ε2 ·

ˆ b

a

∣∣[F 2(x)−G2(x)
]∣∣ dx and

4Where F 3(x) =
´ x

a F 2(s)ds and G3(x) =
´ x

a G2(s)ds.
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EF (x) ≥ EG(x).
Any expected-utility maximiser with a utility function belonging to U2(ε2)
would prefer F . From these definitions of first- and second-order ASD one
can see that εk intuitively represents the proportion of the total area between
F k and Gk in which the condition for standard SD of the kth order is violated.
The smaller is εk, the smaller is the relative violation.

One could say that ASD fudges the issue somewhat, insofar as the clarity
that standard SD brings to the ordering of prospects is partly lost. However,
that is to overlook the value empirically of scrutinising the area of violation of
standard SD, i.e. with ASD the focus turns to analysing the size of εk. Another
obvious difficulty is in determining just how large εk can be before it can no
longer be said that one prospect almost stochastic dominates another, i.e. what
is an ‘extreme’ preference? This is clearly subjective, but Levy et al. (2010) offer
an illustration of how to define it using laboratory data on participant choices
when faced with binary lotteries. Extreme risk preferences are marked out by
establishing gambles that all participants are prepared to take. By making the
conservative assumption that no participant has extreme risk preferences, the
set of non-extreme preferences is at least as large as that marked out by the
least and most risk-averse participants. Preferences outside these limits can be
considered extreme.

Time Dominance
The theory of Time Dominance (TD) builds on the SD approach to choice
problems under uncertainty, and transfers it to problems of intertemporal choice
(Bøhren and Hansen, 1980; Ekern, 1981). Denoting the cumulative cashflows
of any two investments X1 and Y1,5 X is said to first-order time dominate Y if
and only if X1(t) ≥ Y1(t), ∀t ∈ [0, T ] and there is a strict inequality for some
t, where T is the terminal period of the most long-lived project. Moreover it
can be shown that any decision-maker with a discount function belonging to
the set of all decreasing consumption discount functions V̂1 = {v̂ : v̂′(t) < 0}
would prefer X. Thus if the decision-maker prefers a dollar today to a dollar
tomorrow, she will prefer X if it first-order time dominates Y .

Just like SD, first-order TD has limited practical purchase, because the set
of undominated investments remains large, i.e. the criterion X1(t) ≥ Y1(t), ∀t
is restrictive.6 Therefore, proceeding again by analogy to SD, X second-order
time dominates Y if and only if

X1(T ) ≥ Y1(T ) and

X2(t) ≥ Y2(t), ∀t ∈ [0, T ],
5X1(t) =

´ t
0 x(τ)dτ and Y1(t) =

´ t
0 y(τ)dτ .

6Indeed, in the domain of deterministic cashflows over multiple time-periods, the require-
ment that X1(0) ≥ Y 1(0) means that one investment cannot dominate another by a first,
second or higher order, if the initial cost is higher, no matter what the later benefits are.
This makes it difficult to compare investments of different sizes. However, this can be worked
around by normalising the cashflows to the size of the investment (Bøhren and Hansen, 1980).

6



where X2(t) =
´ t

0 X1(τ)dτ and Y2(t) =
´ t

0 Y1(τ)dτ , and there is at least one
strict inequality. Any decision-maker with a discount function belonging to
the set of all decreasing, convex consumption discount functions V̂2 = {v̂ : v̂ ∈
V̂1and v̂′′(t) > 0} would prefer X. This set includes exponential discounting (i.e.
with a constant discount rate, the discount factor falls over time at a decreasing
rate). Noting how the conditions for second-order TD are obtained from their
counterparts for first-order TD by integration, TD can be defined to the nth
order (see Ekern, 1981).

Notice that TD applies to deterministic cashflows. It would be possible to
apply the method to uncertain cashflows, if X and Y were expected cashflows
and if a corresponding risk adjustment were made to {v̂}. However, since any
two cashflows X and Y would then be discounted using the same set of risk-
adjusted rates, it would be necessary to assume that the cashflows belong to
the same risk class (Bøhren and Hansen, 1980), for example under the capi-
tal asset pricing model they would have to share the same covariance with the
market portfolio. This significantly limits the reach of the method to uncertain
investments. It would also be necessary to assume that any investments being
compared are small (i.e. marginal), since the domain of {v̂} is cashflows and
therefore depends on a common assumed growth rate. Neither of these assump-
tions is likely to hold in the case of climate change (see Weitzman, 2007, for
a discussion of the covariance between climate mitigation and market returns,
and Dietz and Hepburn, 2013, for a discussion of whether climate mitigation is
non-marginal).

This sets the scene for a theory that unifies the capacity of SD to order risky
prospects with the capacity of TD to order intertemporal cashflows. The re-
sulting theory of Time-Stochastic Dominance has the additional advantage that
time and risk preferences can be disentangled and each scrutinised explicitly
(whereas in applying TD, even if the assumptions just discussed would hold, as-
sumptions about risk preferences would be buried in the concept of risk-adjusted
discount functions).

3 Time-Stochastic Dominance and Almost Time-

Stochastic Dominance
The Time-Stochastic Dominance (TSD) approach is developed formally in Di-
etz and Matei (2013). Here we will summarise the key concepts, referring the
interested reader to the companion paper for more details, including proofs.

Take two prospects X and Y , both of which yield random cashflows over
time. The underlying purpose is to compare the expected discounted utilities
of the prospects at t = 0, i.e. for prospect X one would compute

NPVv,u(X) =
ˆ T

0
v(t) · EFu(x, t)dt =

ˆ T

0
v(t) ·

ˆ b

a

u(x) · F 1(x, t)dxdt (2)
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where it is important to note that v is a utility or pure time discount function,
rather than a consumption discount function as in the case of TD. Nonetheless
we otherwise borrow the terminology developed above by analysing combina-
tions of classes of discount and utility functions, such that Vi × Uj denotes the
combination of the ith class of pure time discount function with the jth class
of utility function. For example, a natural first point of reference would be
V1 × U1, the set of all combinations of decreasing pure time discount function
and non-decreasing utility function. These combinations are the basis for our
notion of a space for agreement. In other words, we will be looking for the least
restricted combination Vi ×Uj such that one prospect – one climate mitigation
policy – dominates another.

Where f(x, t) represents the probability density function for prospect X at
time t,

F 1
1 (x, t) =

ˆ x

a

F1(s, t)ds =
ˆ t

0
F 1(x, τ)dτ =

ˆ t

0

ˆ x

a

f(s, τ)dsdτ.

Defining d(z, t) = g(y, t)− f(x, t), we set

Dj
i (z, t) = Gji (y, t)− F

j
i (x, t)

for all x, y, z ∈ [a, b] and all t ∈ [0, T ]. Given information on the first n and
m derivatives of the discount and utility functions respectively, we recursively
define:

Dn(z, t) =
´ t

0 Dn−1(z, τ)dτ
Dm(z, t) =

´ z
a
Dm−1(s, t)ds

Dm
n (z, t) =

´ t
0 D

m
n−1(z, τ)dτ =

´ z
a
Dm−1
n (s, t)ds =

´ t
0
´ z
a
Dm−1
n−1 (s, τ)dsdτ,

where i ∈ {1, 2, . . . , n} is the order of pure TD (i.e. the number of integra-
tions with respect to time) and j ∈ {1, 2, . . . ,m} is the order of SD (i.e. the
number of integrations with respect to the consequence space).

Definition 1 (Time-Stochastic Dominance of order i, j). For any two
risky, intertemporal prospects X and Y

X >iT jS Y if and only if ∆ ≡ NPVv,u(X)−NPVv,u(Y ) ≥ 0,

for all (v, u) ∈ Vi × Uj .

In this definition, the ordering >iT jS denotes pure TD of the ith order,
combined with SD of the jth order. For example, >1T1S , which we can shorten
to >1TS , denotes Time and Stochastic Dominance of the First order.

Proposition 1 (First-order Time-Stochastic Dominance). X >1TS Y
if and only if

D1
1(z, t) ≥ 0, ∀z ∈ [a, b] and ∀t ∈ [0, T ],

and there is a strict inequality for some (z, t).
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Proposition 1 tells us that X First-order Time-Stochastic Dominates Y pro-
vided the integral over time of the cdf of Y is at least as large as the integral
over time of the cdf of X, for all wealth levels and all time-periods. It maps
out a space for agreement, as we can say that all decision-makers with prefer-
ences that can be represented by V1×U1 will rank X higher than Y , no matter
what precisely is their discount function or utility function, not to mention how
precisely they are parameterised.

Having established First-order TSD, we can proceed from here either by
placing an additional restriction on the discount function, or on the utility
function, or on both. A particularly compelling case is (v, u) ∈ V1 × U2 – since
few would be uncomfortable with the notion of excluding risk-seeking behaviour
a priori, especially in the public sector.

Proposition 2 (First-order Time and Second-order Stochastic Domi-
nance). X >1T2S Y if and only if

D2
1(z, t) ≥ 0 ∀z ∈ [a, b] and ∀t ∈ [0, T ],

with at least one strict inequality.

Proposition 2 delineates a space for agreement for all decision-makers who
are at the same time impatient and (weakly) risk averse, a subset of the set of
decision-makers in Proposition 1.

It is evident from Proposition 2 that restricting the utility function by one
degree corresponds to integratingD1

1(z, t) once more over the consequence space.
If we want to pursue the further case of (v, u) ∈ V2 × U2, representing an
impatient, weakly risk-averse planner with a non-increasing rate of impatience,
then we would integrate D2

1(z, t) once more with respect to time (see Dietz and
Matei, 2013). Taking this to its logical conclusion, we can generalise TSD to
the nth order with respect to time and the mth order with respect to risk.

Proposition 3 (nth-order Time and mth-order Stochastic Dominance).
X nth-order time and mth-order stochastic dominates Y if

i)Dj+1
i+1 (b, T ) ≥ 0

ii)Dj+1
n (b, t) ≥ 0, ∀t ∈ [0, T ]

iii)Dm
i+1(z, T ) ≥ 0,∀z ∈ [a, b]

iv)Dm
n (z, t) ≥ 0,∀z ∈ [a, b],∀t ∈ [0, T ]

with (iv) holding as a strong inequality over some sub interval and where i =
{0, . . . , n− 1} and j = {0, . . . ,m− 1}.

Dominance criteria have strong appeal, because they offer non-parametric
rankings for entire preference classes. However, as discussed above in relation
to SD, it is in the nature of their characterisation that they can fail to establish
superiority of one investment over another, even if the violation of standard
dominance is very small and the order of preference would seem to be common
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sense. Standard TSD evidently shares this weakness. To counter it, we establish
theorems for Almost TSD, extending the framework of Leshno and Levy (2002)
and Tzeng et al. (2012) into our bi-dimensional time-risk set-up. In particular,
we will characterise almost first-order TSD and almost first-order time and
second-order stochastic dominance.

Consider the following combinations of preferences:

(V1 × U1)(γ1) = {v ∈ V1, u ∈ U1 : sup[−v′(t)u′(z) ≤

inf [−v′(t)u′(z)]
[

1
γ1
− 1
]
, ∀z ∈ [a, b], ∀t ∈ [0, T ]} (3)

(V1 × U2)(γ1,2) = {v ∈ V1, u ∈ U2 : sup[v′(t)u′′(z) ≤

inf [v′(t)u′′(z)]
[

1
γ2
− 1
]
, ∀z ∈ [a, b], ∀t ∈ [0, T ]} (4)

In words, (V1×U1)(γ1) is the set of all combinations of decreasing pure time
discount function and non-decreasing utility function, with the added restriction
that the ratio between the maximum and minimum products of [−v′(t) · u′(z)] is
bounded by 1

γ1
−1. The supremum (infimum) of [−v′(t) · u′(z)] is attained when

v′(t) < 0 is the infimum (supremum) of its set and u′(z) ≥ 0 is the supremum
(infimum) of its. (V1 × U2)(γ1,2) is similarly defined, except that we are now
focused on the products of [v′(t) · u′′(z)] with respect to 1

γ2
− 1. The supremum

(infimum) of [v′(t) · u′′(z)] is attained when v′(t) < 0 and u′′(z) ≤ 0 are the
suprema (infima) of their respective sets.

Conceptually, bounding the ratio of v′(t) amounts to restricting v′′(t), such
that preferences exhibiting a very large change in impatience over time are
excluded, for example preferences exhibiting a very rapid decrease in impatience.
Similarly, bounding the ratio of u′(z) or u′′(z) amounts to restricting u′′(z) or
u′′′(z) respectively, such that extreme concavity (risk aversion) or convexity
(risk seeking) of u(z) is ruled out, as are large changes in prudence with respect
to z. Dietz and Matei (2013) formalise this story.

Now divide the interval [a, b] into two sets, for all t ∈ [0, T ]. The first subset
S1

1 includes only realisations whereD1
1 < 0, i.e. where the condition for standard

first-order TSD is violated:

S1
1(D1

1) =
{
z ∈ [a, b], ∀t ∈ [0, T ] : D1

1(z, t) < 0
}
.

As before, consider also decision-makers who simultaneously exhibit impa-
tience and risk aversion/neutrality, i.e. (v, u) ∈ V1 × U2. In this case we parcel
out the subset of realisations S2

1 where D2
1 < 0:

S2
1(D2

1) =
{
z ∈ [a, b], ∀t ∈ [0, T ] : D2

1(z, t) < 0
}
.
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Definition 2 (Almost First-order Time-Stochastic Dominance).
X almost First-order Time-Stochastic Dominates Y , denoted X >A1TS Y ,

if and only if

i)
´ ´

S1
1
−D1

1(z, t)dzdt ≤ γ1
´ T

0
´ b
a
| D1

1(z, t) | dzdt and
ii)
´
S1,T
−D1

1(z, T )dz ≤ ε1T
´ b
a
| D1

1(z, T ) | dz.

The left-hand side of the first inequality constitutes the violation γ1 of stan-
dard First-order TSD across all time-periods. In addition, as the second in-
equality shows, the definition also requires the violation of standard First-order
TSD to be no larger than ε1T in the final time-period, where ε1T is defined as
in (1) but is now measured with respect to D1

1(z, T ).

Proposition 4 (A1TSD). X >A1TS Y if and only if, for all (v, u) ∈ (V1 ×
U1)(γ1) and u ∈ U1(ε1T ),

NPVv,u(X) ≥ NPVv,u(Y ) and there is at least one strict inequality.

In defining Almost First-order Time and Second-order Stochastic Dominance
it is necessary to measure three violations. In addition to the violation γ1,2
that prevents us from obtaining standard First-order Time and Second-order
Stochastic Dominance with respect to the whole consequence space [a, b] and
time-horizon [0, T ], and the violation in the final time-period ε2T , we need to
measure a further violation of the non-negativity condition on the integral with
respect to time of D2

1(b, t). To do this we divide the time horizon [0, T ] into two
sets, when z = b. The first subset includes only realisations where D2

1(b, t) < 0:

S1,b(D2
1) =

{
z = b, t ∈ [0, T ] : D2

1(t) < 0
}
.

Definition 3 (Almost First-order Time and Second-order Stochastic
Dominance).

X Almost First-order Time and Second-order Stochastic Dominates Y , de-
noted X >A1T2S Y if and only if

i)
´ ´

S2
1
−D2

1(z, t)dzdt ≤ γ1,2
´ T

0
´ b
a
| D2

1(z, t) | dzdt and
ii)
´
S2 −D2

1(z, T )dz ≤ ε2T
´ b
a
| D2

1(z, T ) | dz, and
iii)
´
S1
D2

1(b, t)dt ≤ λ1b
´ T

0 | D
2
1(b, t) | dt, and

iv)D2
1(b, T ) ≥ 0.

The restriction
´
S1

[
D2

1(b, t)
]
dt /
´ T

0 |
[
D2

1(b, t)
]
| dt ≤ λ1b implies restricting

time preferences as follows:

V1(λ1b) =
{
v ∈ V1 : −v′(t) ≤ inf [−v′(t)]

[
1
λ1b
− 1
]
, z = b, ∀t ∈ [0, T ]

}
There is finally also a specific requirement that D2

1(b, T ) ≥ 0.
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Proposition 5 (A1T2SD). X >A1T2S Y if and only if, for all (v, u) ∈ (V1 ×
U2)(γ1,2), v ∈ V1(λ1b), and u ∈ U2(ε2T ),

NPVv,u(X) ≥ NPVv,u(Y ) and there is at least one strict inequality.

4 Modelling approach
A stochastic version of DICE
Standard versions of DICE are deterministic, with fixed parameters. This is a
poor fit to the problem of evaluating climate policy, however, because risk is
a central element. Therefore we use a stochastic version of DICE, developed
by Dietz and Asheim (2012). This version randomises eight parameters in the
model so that Monte Carlo simulation can be undertaken. Table 1 lists the
eight parameters, and the form and parameterisation of the probability density
functions assigned to them. The equations of the model can be found in the
Appendix to Nordhaus (2008). Unless otherwise stated here, no changes are
made to original model.

The eight random parameters were originally selected by Nordhaus (2008),
based on his broader assessment of which of all the model’s parameters had the
largest impact on the value of policies. The first four parameters in Table 1 play
a role in determining CO2 emissions. In one-sector growth models like DICE,
CO2 emissions are directly proportional to output, which is in turn determined
in significant measure by productivity (i) and the stock of labour (ii). However,
while CO2 emissions are proportional to output, the proportion is usually as-
sumed to decrease over time due to autonomous structural and technical change
(iii). A further check on industrial CO2 emissions is provided in the long run
by the finite total remaining stock of fossil fuels (iv).

The fifth uncertain parameter is the price of a CO2-abatement backstop
technology, capable of completely eliminating CO2 emissions. The initial back-
stop price (v) is very high (mean = US$1170/tC ), but it declines over time. In
DICE, the coefficient of the abatement cost function is a function of the back-
stop price, hence we obtain abatement cost uncertainty as a result of backstop
price uncertainty.

The sixth and seventh parameters in Table 1 capture important uncertainties
in climate science. Parameter (vi) captures uncertainty about the carbon cycle
via the proportion of CO2 in the atmosphere in a particular time-period, which
dissolves into the upper ocean in the next period. Uncertainty about the rela-
tionship between a given stock of atmospheric CO2 and temperature is captured
by specifying a random climate-sensitivity parameter (vii). The climate sensi-
tivity is the increase in global mean temperature, in equilibrium, that results
from a doubling of the atmospheric stock of CO2. In simple climate models like
DICE’s, it is critical in determining how fast and how far the planet is forecast
to warm in response to emissions. There is by now much evidence, derived from
a variety of approaches (see Meehl et al., 2007, and Roe and Baker, 2007), that
the probability density function for the climate sensitivity has a positive skew.
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Table 1: Uncertain parameters for simulation of DICE.
Parameter Units Functional Mean Standard

form deviation
(i) Initial growth Per Normal 0.0092 0.004
rate of TFP year
(ii) Asymptotic Millions Normal 8600 1892
global population
(iii) Rate of Per Normal -0.007 0.002
decarbonisation year
(iv) Total resources Billion tons Normal 6000 1200
of fossil fuels of carbon
(v) Price of back- US$ per ton of Normal 1170 468
stop technology carbon replaced
(vi) Transfer coefficient Per Normal 0.189 0.017
in carbon cycle decade
(vii) Climate ◦C per doubling of Log- 1.099* 0.3912*
sensitivity atmospheric CO2 normal
(viii) Damage function Fraction of Normal 0.082 0.028
coefficient α3 global output
*In natural logarithm space.

The eighth and final uncertain parameter is one element of the damage
function linking temperature and utility-equivalent losses in output. In Dietz
and Asheim’s (2012) version of DICE, the damage function has the following
form:

Ω(t) = 1
1 + α1Υ(t) + α2Υ(t)2 + [α̃3Υ(t)] 7 , (5)

where Ω is the proportion of output lost, Υ is the increase in global mean
temperature over the pre-industrial level, and αi, i ∈ {1, 2, 3} are coefficients.
α̃3 is a normally distributed random coefficient (viii), so the higher-order term
[α̃3Υ(t)] 7 captures the uncertain prospect that significant warming of the planet
could be accompanied by a very steep increase in damages. That such a pos-
sibility exists has been the subject of recent controversy, with the approaches
of Nordhaus (2008) and Weitzman (2012) marking out opposing stances. The
controversy exists, because there is essentially no empirical evidence to sup-
port calibration of the damage function at high temperatures (Dietz, 2011; Tol,
2012); instead there are simply beliefs. In standard DICE, α3 = 0, thus there
is no higher-order effect and 5◦C warming, as a benchmark for a large temper-
ature increase, results in a loss of 6% of output. By contrast Weitzman (2012)
suggests a functional form which can be approximated by α3 = 0.166. Here
α̃3 is calibrated such that the Nordhaus and Weitzman positions represent mi-
nus/plus three standard deviations respectively, and at the mean 5◦C warming
results in a loss of utility equivalent to around 7% of output. Thus the mean
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value of function (5) remains fairly conservative.
Random parameters (i)-(viii), alongside the model’s remaining non-random

parameters and initial conditions (as per Nordhaus, 2008), are inputs to a Monte
Carlo simulation. In particular, a Latin Hypercube sample of 1000 runs of the
model is taken. Each run solves the model for a particular policy, which as
described below is a schedule of values for the rate of control of CO2 emissions.
From this is produced a schedule of distributions of consumption per capita
(where consumption per capita is equivalent to a cashflow in our theory), which
is the focus of the Time-Stochastic Dominance analysis.

Policies to be evaluated
We evaluate a set of five, representative policies governing the rate of control
of CO2 emissions, plus a sixth path representing a forecast of emissions in the
absence of policy-driven controls, i.e. ‘business as usual’. These policies are
exogenous, since it makes no sense to optimise within the framework of Time-
Stochastic Dominance, the whole point of which is to construct partial orderings
given disagreement over the precise form and parameterisation of the discount
and utility functions.

Each of the five policies limits the atmospheric stock of CO2 to a pre-specified
level. This approach is very similar to many real policy discussions, which aim
for a ‘stabilisation’ level of atmospheric CO2 in the very long run. In order to
try, as far as possible, to render the policies consistent with the assumptions we
make, we use the stochastic version of DICE itself to generate the five policy
paths. The sixth path, ‘business-as-usual’ or BAU, is the baseline scenario from
Nordhaus (2008).

The control variable is the percentage reduction in industrial CO2 emissions.
Each policy path is generated by solving a stochastic optimisation problem,
whereby the schedule of emissions cuts is chosen to minimise abatement costs7

subject to the constraint that the mean atmospheric stock of CO2, MAT (t) ≤
MAT , where MAT ∈ {450, 500, 550, 600, 650} and where the units are parts
per million volume. This is done under uncertainty about parameters (i)-(vi),
since these affect the cost of abatement and its impact on atmospheric CO2.

In an integrated assessment model such as DICE, and especially in running
Monte Carlo simulation, solving this cost-minimisation problem is a non-trivial
computational challenge. We solve it using a genetic algorithm (Riskoptimizer)
and with two modifications to the basic optimisation problem.8 In addition, we

7Of course, what is cost-effective depends on the social objective, so for this part of the
analysis we cannot avoid pre-specifying and parameterising the social welfare and utility func-
tions. For this purpose, we make representative choices, namely that δ(t) = 1.5%, ∀t, and the
coefficient of relative risk aversion is two.

8First, we only solve for the emissions control rate from 2015 to 2245 inclusive, rather than
all the way out to 2395. This considerably reduces the scope of the optimisation problem, in
return for making little difference to the results, since, in the standard version of DICE, the
optimal emissions control rate is 100% when t > 2245, as the backstop abatement technology
becomes the lowest cost energy technology. Our first period of emissions control is 2015,
since 2005, the first period of the model, is in the past. Second, we guide the optimisation
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limit the Latin Hypercube Sample to 250 draws.9

Figure 1: Abatement policies in terms of the emissions control rate.
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Time-Stochastic Dominance with quantiles
The DICE model output, for any policy setting, is in the form of N = 1000
discrete time series of consumption per capita, each with a discrete value in
every time period. Each time series has an equal probability of 1/N .

The TD algorithm simply involves repeated summation of cashflows. For
each additional restriction on the curvature of the discount function, a new
round of repeated summation is performed. Therefore, when v ∈ V1, X1(t) =∑t
τ=0 x(τ) , while recursively Xn(t) =

∑t
τ=0 Xn−1(τ) .

The SD algorithm is based on comparing, for first- and second-order SD,
the quantile functions of the distributions considered, a methodology developed
by Levy and Hanoch (1970) and Levy and Kroll (1979) for uniform discrete
distributions. Take X to be an integrable random variable with, for each t ∈
[0, T ], a cdf F 1(x, t) and an r-quantile function F−1,r(p, t), the latter of which
is recursively defined as
by imposing the soft constraint that the emissions control rate is non-decreasing everywhere
(via an exponential penalty function when the control rate decreases between any two time-
periods). We were able to verify that the algorithm’s best solution satisfied the property
of non-decreasingness in the emissions control rate, and that no solution was found which
returned lower costs, where the control rate was decreasing at any point.

9In order to ensure comparability with the results of the Time-Stochastic Dominance anal-
ysis, the smaller sample is calibrated on the sample statistics of the larger sample.
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F−1,1(p, t) := inf{x : F 1(x, t) ≥ p(t)},∀t ∈ [0, T ]
F−1,r(p, t) :=

´ p
0 F

−1,1(y, t)dy, ∀p ∈ [0, 1] , ∀t and r ≥ 2

Proposition 6 (1TSD for quantile distributions). X >1TS Y if and only
if

H−1,1
1 (p, t) = F−1,1

1 (p, t)−G−1,1
1 (p, t) ≥ 0, ∀p ∈ [0, 1] and t ∈ [0, T ]

and there is a strict inequality for some (p, t).

Proposition 6 characterises First-order Time-Stochastic Dominance for quan-
tile distributions. Notice that since the quantile distribution function is just the
inverse of the cumulative distribution function, 1TSD requires F−1,1

1 (p, t) −
G−1,1

1 (p, t) ≥ 0, i.e. the inverse of the requirement for 1TSD in terms of cumu-
lative distributions.

Proposition 7 (1T2SD for quantile distributions). X >1T2S Y if and
only if

H−1,2
2 (p, t) ≥ 0, ∀p ∈ [0, 1] and t ∈ [0, T ]

and there is a strict inequality for some (p, t).

It is straightforward to show that Propositions 6 and 7 apply to discrete as
well as continous data (Dietz and Matei, 2013). These quantile functions are
also the basis of calculating the violations necessary to evaluate Almost TSD.

5 Results
Time-Stochastic Dominance analysis
We carry out the TSD analysis in two parts. In the first part we examine
whether any of the abatement policies Time-Stochastic Dominates BAU. That
is to ask, can we use the analysis to establish that there is a space for agreement
on acting to reduce greenhouse gas emissions by some non-trivial amount? This
would already be of considerable help in understanding the scope of the debate
about climate mitigation. In the second part we use the framework to compare
the emissions reductions policies themselves – can we further use the framework
to discriminate between the set of policies, so that we end up with a relatively
clear idea of the policy that would be preferred?

Recall from Propositions 1 and 6 that First-order TSD requiresH−1,1
1 (p, t) ≥

0, ∀z, t, with at least one strict inequality. Figure 2 plots H−1,1
1 (p, t) when

MAT ∈ {450, 500, 550, 600, 650} is compared with BAU. With the red shaded
areas indicating a violation of the non-negativity condition on H−1,1

1 (p, t), vi-
sual inspection is sufficient to establish that no abatement policy First-order
Time-Stochastic Dominates BAU, not even the most accommodating 650ppm
concentration limit.
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Figure 2: H−1,1
1 (p, t) for MAT ∈ {450, 500, 550, 600, 650}.
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Table 2: Violations of standard First-order TSD and standard First-order Time
and Second-order Stochastic Dominance.

CO2 limit (ppm) γ1 ε1T γ1,2 ε2T λ1b

650 0.00009 0.00003 0.00002 8E-07 0
600 0.00045 0.00003 0.00045 2E-06 6.01E-08
550 0.00092 0.00003 0.00231 2E-06 0.00014
500 0.00188 0.00004 0.00605 3E-06 0.00086
450 0.00388 0.00004 0.01363 4E-06 0.00245

Although First-order TSD cannot be established between abatement and
BAU, it could still be that one or more of the policies is preferred to BAU
according to First-order Time and Second-order Stochastic Dominance. Propo-
sitions 2 and 7 showed that this requires H−1,2

1 (p, t) ≥ 0, ∀z, t, with at least one
strict inequality. Figure 3 plots H−1,2

1 when each abatement policy is compared
with BAU. Again, it is straightforward to see that the condition for standard
First-order Time and Second-order Stochastic Dominance is not satisfied for
any of the policies. This is because, for all policies, there exists a time-period in
which the lowest level of consumption per capita is realised under the mitigation
policy rather than BAU.

Unable to establish standard TSD of abatement over BAU, we now turn to
analysing Almost TSD. In particular, we look at both Almost First-order TSD as
set out in Definition 2 and Almost First-order Time and Second-order Stochastic
Dominance as set out in Definition 3. Recall that γk denotes the overall volume
of violation of standard TSD relative to the total volume enclosed between Gji
and F ji . εkT is the violation of standard TSD in the final time-period only, while
λ1b is the violation of standard First-order Time and Second-order Stochastic
Dominance with respect to realisation b. As γk, εkT , λ1b → 0.5, the volume/area
of violation accounts for half of the entire volume/area between the cumulative
distributions being compared, while as γk, εkT , λ1b → 0 there is no violation.

What is striking about the results of analysing Almost TSD in Table 2 is how
small the violations are. For all of the policies, in particular it is the violation of
standard First-order TSD that is tiny relative to the total volume/area betwen
the distributions. Therefore we have a formal result showing that everyone
would prefer any of the abatement policies to BAU, as long as their time and
risk preferences can be represented by functions in the sets (V1 × U1)(γ1) and
U1(ε1T ). Moreover we can say that those who do not prefer the abatement
policies have an extreme combination of time and risk preferences. Violation of
First-order Time and Second-order Stochastic Dominance is also on the whole
very small, and note that the condition onD2

1(b, T ) in Definition 3 – equivalently
H−1,2

1 (p, T ) ≥ 0 – is met by all policies. The overall violation increases with the
stringency of the policy.

Let us now use TSD analysis to compare the various abatement policies
with each other. We know from the analysis above that standard TSD will not
exist either to a first order or to a second order with respect to SD. Therefore
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Figure 3: H−1,2
1 (p, t) for MAT ∈ {450, 500, 550, 600, 650}.
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Table 3: First-order TSD analysis of abatement policies against each other.
CO2 limit (ppm) 650 600 550 500

γ1 ε1T γ1 ε1T γ1 ε1T γ1 ε1T
600 0.00255 0.00012
550 0.00351 0.00011 0.01054 0.00034
500 0.00517 0.00011 0.01260 0.00032 0.01764 0.00050
450 0.00859 0.00013 0.01870 0.00036 0.02480 0.00052 0.03701 0.00107

we can proceed directly to analysing violations. In doing so we confine our
attention to the least restrictive first-order TSD, given the wealth of pairwise
comparisons that could potentially be made. Table 3 presents the results, in
terms of violations of standard First-order TSD. The table should be read such
that F 1

1 is the CO2 limit in the first column and G1
1 is the limit in the top row.

So, for example, γ1 = 0.00859 is the violation of standard First-order TSD for
MAT = 450 over MAT = 650.

Although we might have expected the violations to be in the main large,
since the abatement policy controls are much more similar to each other than
they are to BAU – and they do tend to be higher than in the comparison with
BAU – in fact they are all relatively small in absolute terms, such that for any
pair of policies the lower CO2 limit in the pair is almost dominant. Therefore we
can go further and say that there exists a broad space for agreement, represented
by everyone whose preferences are in the set (V1 ×U1)(γ1), for tough emissions
reduction targets, as tough as MAT = 450.

How DICE yields these results
The topography of the panels in Figure 2 tells us much about the effect of
emissions abatement on consumption per capita in DICE, how this effect is
related to time and the nature of the uncertainty about it. In this century
we can see it is often the case that H−1,1

1 < 0, but the surface appears flat
as there is little difference between the cumulative distributions. In the next
century, however, the surface rises to a peak at high quantiles, revealing that the
mitigation policies can yield much higher consumption per capita than BAU,
albeit there is much uncertainty about whether this will eventuate and there is
only a low probability associated with it. Comparing the policies, we can see
that it is more likely that H−1,1

1 < 0, the more stringent is the limit on the
atmospheric stock of CO2. However, what 2 does not show, due to truncating
the vertical axes in order to obtain a better resolution on the boundary between
H−1,1

1 < 0 and H−1,1
1 ≥ 0, is that conversely the peak difference in consumption

per capita is higher, the more stringent is the concentration limit.
What lies behind these patterns? In fact, Figure 2 can be seen as a new

expression of a well known story about the economics of climate mitigation. In
early years, the climate is close to its initial, relatively benign conditions, yet
significant investment is required in emissions abatement. This makes it rather
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likely that consumption per capita will initially be lower under a mitigation
policy than under BAU. How much lower depends in the main on uncertainty
about the cost of mitigation, and this in turn depends in the main on backstop-
price uncertainty in our version of DICE. However, in later years the BAU
atmospheric stock of CO2 is high, so the possibility opens up that emissions
abatement will deliver higher consumption per capita. How much higher de-
pends in the main on how much damage is caused by high atmospheric CO2
and therefore how much damage can be avoided by emissions abatement. In
our version of DICE this is highly uncertain – much more so than the cost of
emissions abatement – and depends principally on the climate sensitivity and
the damage function coefficient α̃3 in (5). It is here that the driving force can
be found behind the tiny violations of standard TSD in Table 2, namely the
small possibility, in the second half of the modelling horizon, that the mitiga-
tion policies will deliver much higher consumption per capita than business as
usual. This is consistent with the observation in previous, related research that
the tails of the distribution are critical in determining the benefits of emissions
abatement (e.g. Dietz, 2011; Weitzman, 2009).

In addition, productivity growth is a large source of uncertainty throughout,
which affects BAU consumption per capita and all that depends on it. When
productivity grows quickly, consumption per capita does likewise, as do CO2
emissions, all else being equal. This increases the share of output that must be
diverted to meeting a given limit on atmospheric CO2, but at the same time
it increases the global mean temperature, climate damage and the benefits of
emissions abatement, again all else being equal. In our version of DICE, low
productivity and output is associated with the lowest realisations of consump-
tion per capita. Since in these states of nature there is little benefit to emissions
reductions, it is low productivity that is pivotal in generating the violation of
standard TSD in the first place.

6 Conclusions
In this paper we ask, is there space for agreement on climate change, in the
specific sense of asking, are there climate policies that everyone who shares
a broad class of time and risk preferences would prefer, first to business as
usual and second to other policies? To find out we applied a new theory of
Time-Stochastic Dominance, which enables time and risk preferences to be dis-
entangled and dominance relations to be tested amongst options based only on
partial information about the decision-maker or social planner’s preferences on
both dimensions. Our application was based on a stochastic version of the DICE
model, in which eight key model parameters were randomised and Monte Carlo
simulation was undertaken.

We were unable to establish standard TSD in the data, even when mov-
ing to Second-order Stochastic Dominance (with First-order Time Dominance).
However, when we analyse the related theory of Almost TSD we find that the
volume/area of violation of standard TSD is generally very small indeed, so
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that we can say that almost all decision-makers would indeed favour any of our
mitigation policies over BAU, and moreover that they would favour tougher
mitigation policies over slacker alternatives. So the space for agreement is large
in this regard.

Clearly our empirical results depend on the structure of the DICE model
and how we have parameterised it. Of particular note are the key roles played
by uncertainty about climate sensitivity, the curvature of the damage function,
and productivity growth. Our parameterisation of the former two is key in
producing a small violation of standard TSD, because when a high climate sen-
sitivity combines with a high curvature on the damage function, the difference
in the relevant cumulative pay-off distributions becomes very large. Our param-
eterisation of initial TFP growth, specifically our assumption via an unbounded
normal distribution that it could be very low or even negative over long periods,
is conversely key in producing a violation in the first place.

Our interpretation of γk, εkT and γ1b in the application of Almost TSD is also
open to debate, given the nature of the concept. Research on almost dominance
relations is still at a relatively early stage, so we lack data on the basis of which
we can say with high confidence that some preferences are extreme, while others
are not. Nonetheless our violations are for the most part so small that we are
somewhat immune to this criticism.
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