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Abstract

There are many examples in policy-making, investment and day-
to-day life where the set of contingencies the decision-maker can con-
ceive of does not resolve all uncertainty about the consequences of
actions. In such circumstances, the decision-maker may nevertheless
reason that there exist certain aspects of the ‘full’ state space of which
she is unaware. That is, she may think it is possible she is unaware
of something. We call this type of belief conscious unawareness and
claim that its presence may lead to a violation of Savage’s Sure Thing
Principle. We then specify a choice setting in which the decision-maker
has preferences over a set of actions stated naturally in English, but
where the decision-maker also has preferences on the set of derivative
actions, where a derivative action maps from the set of permutations
– the product space of the set of contingencies she can conceive of
(her subjective state space) and the set of payoff assignments to the
actions – to a space of consequences. We obtain a representation
result that makes choice in cases where conscious unawareness is a
major concern tractable by means of some of the standard analytical
tools of risk and ambiguity analysis. The representation also allows us
to characterise the decision-maker’s attitude towards perceived payoff
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uncertainty arising from factors she is unaware of, in particular we
characterise ignorance aversion. Using the same framework, we are
able to state a more general representation that allows us to capture
source preference in examples where the decision-maker is consciously
unaware.

Keywords: Unawareness, Ignorance, Conscious Unawareness, Am-
biguity, Uncertainty, Ignorance Aversion, Ambiguity Aversion, Non-
Expected Utility, Source Preference, “Small Worlds”, Climate Change

JEL Classification Numbers: D81, Q54

1 Introduction

Savage’s (1954) theory of subjective expected utility (SEU) posits a decision-
maker (DM) with ready access to a full state space, comprising all possible
“descriptions of reality, leaving no relevant feature undescribed”. The con-
tingencies that make up the full state space are so finely described that,
whatever action the DM takes, any uncertainty about what consequence
that action might lead to is resolved by the state that transpires and, fur-
thermore, the DM knows this to be the case.

There are, however, many examples in policy-making, investment and day-
to-day life where the contingencies the DM can conceive of do not resolve
all payoff uncertainty in this manner. Consider, for example, a trader spec-
ulating on the price of oil. Given the large number of factors that determine
the price of oil and the complicated manner in which they interact, it seems
highly doubtful that the trader would be able to formulate a full state space
as in Savage’s framework. Rather, it is likely that the set of contingencies the
trader can conceive of – her subjective state space – omits certain relevant
details or distinctions and thus does not resolve all of the trader’s payoff
uncertainty. Where this is so, we say the trader is unaware of the full state
space.

It is widely accepted that unawareness is a pervasive feature of decision
problems and for this reason it is also commonplace for DMs to reason about
the possibility that there exist relevant considerations of which they are
unaware. We describe a DM who believes she may be unaware of the full
state space – and hence regards her own subjective state space as offering a
possibly incomplete account of the payoff-relevant uncertainty she faces – as
consciously unaware.

Savage’s theory was evidently not designed for consciously unaware agents
and in our view such DMs may be justified in violating SEU. In particular, we
believe that allowing for conscious unawareness calls into question the Sure
Thing Principle (STP), a necessary condition for Savage’s representation.
The following example illustrates our point:
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Example 1: Suppose the oil trader has the opportunity to perform the
action a, given as “Spend $1 million on six-month oil futures contracts
at $100 per barrel”. She knows that a’s payoff will be determined by the
oil price in six months’ time, p, but can only imagine two contingencies
that might have a bearing on this. These are s1, “peace holds in the
Middle East”, or s2, “war breaks out in the Middle East”. If s1 occurs,
she thinks p could be anything between $70 and $115, while, if s2
occurs, she thinks it could be anything between $85 and $130.

She may also take herself to the races, where she will be able to gamble
on the performance of the horse “Mighty Monty” in a race. The payoffs
from these gambles depend on whether or not Mighty Monty wins and,
once again, she can think of two contingencies that could influence
this. These are s3, “Mighty Monty has fully recovered from a bout of
tendinitis” – in which case she believes he is bound to win his race
– and s4, “Mighty Monty has not fully recovered from tendinitis” – in
which case she thinks he is sure to lose. Suppose the only contingencies
she ever takes into account when evaluating different actions are S :=
{s1, s2} × {s3, s4}.
The trader recognises that S does not resolve all the payoff uncertainty
she faces. In particular, any state in S seems consistent with a return-
ing a wide range of payoffs. She is therefore consciously unaware, but
this does not affect all of her choice set equally. For, in her view, while
there is no state in S that resolves the payoff uncertainty relating to
a, every state resolves the payoff uncertainty pertaining to gambles on
Mighty Monty. We will say that she thus understands gambling on
Mighty Monty, but not purchasing oil futures.

Our theory allows this asymmetry to be reflected in preferences in a
manner that is inconsistent with SEU. To see this, suppose the trader
is presented with a choice between the following “derivative” action:

c =
If a pays out more than $1.1 million
receive $100, otherwise receive $0

and the gamble a′ given as follows:

a′ =
If Mighty Monty wins the race

receive $100, otherwise receive $0

and imagine the trader reports a strict preference for a′ over c. Where
x− b refers to a prospect that yields $100 less whatever the prospect b
pays out, suppose the trader is then asked to choose between 100 − c
and 100− a′. The payoff structures of the four prospects c, a′, 100− c
and 100−a′ are illustrated in the table below where MM refers to the
contingency “Mighty Monty wins the race”.
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Dollar payoff in case
MM MM ¬MM ¬MM
p > 110 p ≤ 110 p > 110 p ≤ 110

c 100 0 100 0
a′ 100 100 0 0

100− c 0 100 0 100
100− a′ 0 0 100 100

Given her preference for a′ ahead of c, Savage’s STP requires the trader
to prefer 100−c to 100−a′. This is typically justified along the following
lines: a′ and c offer identical payoffs in the first and fourth columns of
Table 1, so strict preference for a′ over c should imply conditional pref-
erence for a′ over c given “MM and p ≤ 110” or “¬MM and p > 110′′.
But this means that 100−c must be conditionally preferred to 100−a′
given the same information (the two prospects’ respective conditional
payoff structures are identical to those of a′ and c). And since 100− c
and 100 − a′ offer the same payoffs under any other contingency, this
conditional preference should dictate the trader’s unconditional pref-
erence for 100− c over 100− a′.
However, we wish to allow the trader to strictly prefer a′ to c and
100 − a′ to 100 − c, in violation of the STP and hence of SEU. The
trader may reason that she has a general preference for taking actions
she understands and thus that a relevant feature of the two decision
problems – overlooked by the argument above – is that she understands
a′ and 100− a′, but not c and 100− c. She might therefore reject the
claim that preferring a′ to c commits her to a conditional preference for
a′ over c given “MM and p ≤ 110” or “¬MM and p > 110′′, arguing
instead that it reflects her aversion to actions she does not understand.
This gives her grounds to reject the STP in this case and choose 100−a′
ahead of 100− c.

We propose an alternative to SEU that is consistent with cases such as this.
In our framework, the DM is endowed with a subjective state space, S, and
knows that any action she might carry out will lead to a consequence within
a given space, X. The choice set of primary interest is then a set of actions,
A, given as sentences in English describing things to do such as “Spend $1
million on six-month oil futures at $100 per barrel”.

To reveal how the DM conceives of the members of A, we suppose she has
preferences over prospects akin to the “derivative” actions described in Ex-
ample 1. These are defined by introducing, for each s ∈ S, the set Ws

consisting of all maps from A to X. Ws is interpreted as the list of every
possible profile of payoffs A might induce if the subjective state s were to
occur: it is the set of permutations under s. If the DM did not think state s
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resolved all of the payoff uncertainty pertaining to action a – what we term
not understanding action a – then she would be willing to gamble on mul-
tiple permutations in Ws that assigned different payoffs to a. We interpret
the DM’s willingness to gamble on a permutation in Ws as the same as her
regarding the payoff profile it stands for as possible if s occurs.

Our representation is obtained by applying familiar regularity conditions
over various choice sets. First, we assume that her preferences over the set
of Anscombe-Aumann acts defined on S are consistent with SEU and thus
encode a unique subjective prior on S, π, and a utility function, v, that
represents her attitude to risky gambles on X. This implies that the DM’s
choices are consistent with SEU over the set of actions she understands.
Second, we assume the DM has conditional preferences on maps from Ws to
X for every s. Imposing well-known assumptions, we can obtain a subjective
prior, µs, on each Ws and a utility function φ on X, such that we find action
a is preferred to a′ if and only if:∑

s∈S
π(s)u

(ˆ
Ws

φ(w(a))dµs

)
≥

∑
s∈S

π(s)u

(ˆ
Ws

φ(w(a′))dµs

)
(1)

where u := v ◦φ−1 and we write w(a) for the consequence action a produces
in the payoff profile w.

The form of the representation in (1) and the way we derive it from our
assumptions are familiar from Klibanoff et al.’s (KMM, 2005) smooth model
of decision under ambiguity, but the motivation and structural setting un-
derpinning our result are quite different. Our DM does not depart from
SEU because she faces ambiguity over the true probability density function
(pdf) over the state space. Rather, our DM believes that the subjective
state space she has in mind is insufficiently rich to identify every action’s
payoff and hence that there are actions in her choice set that she does not
understand. When choosing from a choice set that includes some actions
she understands and some she does not, she may wish to exercise particular
caution (or recklessness) over the actions she does not understand, and hence
violate SEU. We discuss the connection between this sort of behaviour and
ambiguity aversion below.

We hope that our representation will be particularly helpful in various policy
settings, where the fact that there is unawareness is a major concern. One
such domain is policy on climate change. Here, the state of scientific knowl-
edge about the links between emissions of greenhouse gases and changes to
physical climate variables such as temperature, precipitation and sea level is
recognised to be far from exhaustive and our understanding of the interface
between the climate and the economy is thought to be similarly, if not indeed
more, incomplete (see Heal and Millner (2014)). Under such circumstances,
some of the states we envisage – even described at the most minute level of
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detail we can conceive of – seem consistent with almost any payoff, no matter
what climate policy we pursue. This means not only that (in our view) con-
scious unawareness should be a significant consideration in climate policy,
but also that the problem is very difficult to analyse using existing decision
models (including those that can accommodate conscious unawareness). Our
theory makes choice problems such as these analytically tractable.

To illustrate, suppose that a policy-maker’s subjective state space consists
of the contingencies s and s′, where:

s =
“Global temperature depends sensitively on the atmospheric

concentration of greenhouse gases”

s′ =
“Global temperature does not depend sensitively on the

atmospheric concentration of greenhouse gases”

and that she has a choice between the following actions:

a = “Cut greenhouse gas emissions by 90% by 2050”
a′ = “Cut greenhouse gas emissions by 30% by 2050”

Consider the task of conducting an economic evaluation of these climate-
policy actions (i.e. a cost-benefit analysis), in which the set of consequences
is just a range of possible monetary outcomes. Given our degree of under-
standing of the problem, it seems reasonable to allow that both a and a′ could
pay out any amount in X under both s and s′. Some other representations of
choice under conscious unawareness (for example Mukerji (1997), Ghirardato
(2001)) do not allow the DM to hold beliefs about the relative likelihood of
either action paying any given consequence under either of the states. They
therefore require the policy-maker to regard a and a′ as equally good in
both states and, given any action, that she is indifferent between which of
the two states does transpire. Yet it seems obvious that the policy-maker
would regard state s as “bad news” under either action and that, given s, the
policy-maker would prefer to carry out a over a′. Such preferences are con-
sistent with our theory and would imply that Eµs [φ(w(a))] > Eµs [φ(w(a′))]
and Eµs′ [φ(w(a))] > Eµs [φ(w(a))].

Another advantage of allowing beliefs overWs andWs′ is that we can capture
DMs’ aversion (or predilection) towards less well-understood actions in a
familiar fashion. Consider two ways to reduce the atmospheric concentration
of greenhouse gases. The first, b, involves the replacement of fossil-fuel power
plants with renewables, such as onshore wind farms. The second, b′, involves
the use of a ‘geo-engineering’ technique, whereby iron is poured into the
oceans, in order to stimulate blooms of phytoplankton, which remove carbon
dioxide from the atmosphere. Suppose that under the policy-maker’s µs,
the expected net monetary benefits of b are equal to b′, but that the pdf
on X entailed by b′ and µs is a mean-preserving spread of that entailed

6



by b and µs. One might say that the policy-maker “better understands” b
than b′ given the occurrence of state s. Always preferring actions over less
well understood alternatives with the same expected payoff – what we call
ignorance aversion – is equivalent to the concavity of the function φ in our
framework. This mirrors exactly the characterisation of risk aversion in SEU
theory and ambiguity aversion in KMM’s approach.

The rest of this paper is organised as follows. First, we introduce the ele-
ments of the choice setting and the DM’s preferences (Section 2), before set-
ting out our assumptions and result (Section 3). Then we give behavioural
characterisations of “ignorance aversion” and “more ignorance averse”, show-
ing that these are formally equivalent to concavity properties of the function
φ (Section 4). In Section 5, we set out a somewhat generalised version of
our representation that can accommodate “source preference”, before ending
with a discussion of our assumptions and the connection between this work
and that on ambiguity (Section 6). All proofs are in the Appendix.

2 Subjective state spaces and choice

We model the DM as choosing from a set of actions composed of simple
descriptions of things to do in English such as “spend $1 on six-month oil
futures at $100 per barrel” or “Purchase a $10 bet on Mighty Monty”. Clearly
it is possible for a DM to choose from these kinds of prospects without
knowing what the payoff-relevant contingencies are.

How might a DM faced with such a choice set formulate her decision? We
offer one account here to help the reader interpret the formal setting and
restrictions of the next section. This is only intended to be suggestive and
we emphasise that alternative accounts may be applicable.

Suppose the DM knows that any consequence she might receive has some ex
ante monetary equivalent on a bounded interval, X, and she knows that, for
every action, there exists a “correct” description of it as a map from states
of the world to X (that is, as a Savage act). This correct characterisation
could be the way a hypothetical omniscient analyst would think of the action
(like in Kochov, 2018). Furthermore, the DM knows that, if only she could
describe the set of payoff-relevant contingencies in sufficient detail, she would
understand all of the actions in the choice set in this correct fashion. We can
think of this level of detail as corresponding to a set of propositions, P , that
are assigned truth or falsehood in every state and refer to the set of states
described in this way as the full state space, Ω.

Our DM only considers things at a certain level of detail. In other words,
she takes a limited set of propositions Q∗ into account when formulating her
decision. She knows this to be the case and might further suspect that the
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level of detail is less than that of the full state space (that is, she might sup-
pose that Q∗ ⊂ P ). She nonetheless thinks there are some actions she does
not understand in the following sense. She believes there is a collection of
propositions that she takes into account, Q ⊆ Q∗, and a set of contingencies
described at the level of detail of Q, SQ, such that, under their respective
truth assignments to Q and P , each member of SQ implies some subset of
Ω and each member of Ω implies precisely one member of SQ. She then
believes she understands a if, whenever a – in its “correct” rendering as a
Savage act – pays out x ∈ X in state ω ∈ Ω, she is certain that a pays out
x in sQ ∈ SQ, where sQ is implied by ω.

Let A∗ refer to the set of actions the DM understands under any Q and, for
every a ∈ A∗, write Qa for the ⊇-maximal set of propositions under which
the DM understands a. Define Q∗A as

⋃
a∈A∗ Qa and make the assumption

that the DM understands every a ∈ A∗ under Q∗A. We call SQ∗A – henceforth
denoted S – the DM’s subjective state space and say Q∗A is the set of propo-
sitions she is aware of. If the DM does not believe she understands every
action – that is, if A∗ does not encompass the full set of actions – then we
describe the DM as being consciously unaware.

It follows from this that, if the DM is consciously unaware and a is an action
she believes she does not understand, she cannot be certain what a pays out
under all members of S. That is, there must be some s ∈ S and an x ∈ X
such that she would pay money for a token entitling her to $100 in case,
conditional on s, a yielded at least x and she would pay money for a token
that paid $100 if, conditional on s, a yielded less than x. Our framework
reveals the DM’s conscious unawareness in precisely this way by considering
her preferences over a choice set made up of bets on the payoff performance
of the actions conditional on subjective states. These bets are what we call
derivative actions.

One possible objection to this story concerns its applicability to our moti-
vating example. In Example 1, the oil trader knows that the payoff of action
c is determined by the realisation of p, the oil price in six months’ time. It
might thus be countered that the DM in this case can understand c as a
Savage act – namely one that maps from the value of p to X – and that
she is therefore not consciously unaware in the sense set out in this section.
The DM, however, may reason as follows: although it is clear what payoff
c would deliver conditional on any value of p, it is not clear that every p
is possible in a logically consistent state of affairs; therefore it need not be
the case that a simple map from p to X is consistent with c’s correct char-
acterisation as a Savage act (which uses only logically consistent states of
the world). Put another way, the DM regards the statement “p = 110” as
just another way of saying “Action c pays out $1.1 million”, rather than a
description of a member of the full state space. The DM may thus harbour
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reasonable doubts over whether she does understand c and be consciously
unaware in the Example.

A second objection is more general. We state above that the DM believes
there is a set of propositions, P , with the property that awareness of them
implies the ability to understand the full action set correctly, but one may
question whether mere awareness of all relevant considerations is sufficient
for this. Could it not be the case, for example, that the DM is aware of every
member of P , but is unable to correctly process the logical connections that
hold between the members of P and the sets of actions and payoffs, and
is hence unable to understand all of the actions correctly? There are two
ways to counter this objection. First, we may insist that part of what it
is to be aware of a set of propositions (or actions or payoffs) is to perceive
correctly all logical connections between them. Thus awareness of P would
commit the DM to knowledge of what each action pays out in every state,
as this information is implied by all consistent truth assignments to P . This
is the approach adopted in much of the literature on modelling unawareness
(for example Fagin and Halpern, 1987). An alternative response is to follow
Board and Chung (2011) in allowing the DM’s ability to establish these
connections to depend on her degree of awareness; in this case our account
embeds the assumption that full awareness corresponds with a full ability to
perceive logical connections between propositions, actions and payoffs.

3 The representation

The DM chooses from a set of actions, denoted A with typical members a,
a′. Her preferences over A are represented by the binary relation �∗ on A
with asymmetric and symmetric components �∗ and ∼∗. �∗ is the prefer-
ence relation of primary interest to us, but we arrive at our representation
indirectly by placing restrictions on the DM’s preferences over different sets
to A and then requiring �∗ to be consistent with these other relations in a
particular way.

To introduce these additional preferences, first let there be a consequence
space X with generic elements x, x′, equal to some bounded interval on the
real line, and use B to denote the Borel σ-algebra of X. One way to interpret
X is as encompassing all the ex ante monetary valuations the DM might
attribute to the result of an action as in Section 2. Such an interpretation
would be consistent with investment choices, for example. Second, we assume
our DM is endowed with a finite space, S – called her subjective state space
with typical members s, s′ – that is composed of every contingency she can
conceive of. Write E for 2S , the subjective event space.

Now define G := XA with typical elements g, g′. Endowing G with the topol-
ogy of pointwise convergence, let W be the product space G × S containing
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typical members w, w′. W is interpreted as the set of permutations that
might arise: that is, it comprises every possible state combined with every
possible payoff profile over A. A permutation resolves all uncertainty over
what member of S obtains and all payoff uncertainty pertaining to A, so
w = {s, g} represents the permutation where s occurs and each action a
pays out g(a). For each s ∈ S, define Ws : s× G, the subspace of permuta-
tions in which s obtains, and let Bs be the Borel σ-algebra generated by the
relative topology on Ws.

Using this, we can introduce a further choice set, dubbed the space of deriva-
tive actions and denoted C. C is defined as the set of B-measurable functions
from W to X, with typical members of C called derivative actions and writ-
ten c, c′ etc. A derivative action is interpreted as a prospect that pays out
some amount depending on what permutation obtains: that is, it is a bet
whose payoff is determined by the realisation of the subjective state and the
payoffs of all actions. If the subjective state s occurs and the payoff pro-
file over A turns out to be g, then derivative action c pays out c(w) where
w = {s, g}. For clarity, we show how this formal structure could be used to
describe the choice setting in Example 1.

Example 1, continued. We have the subjective state space S and an in-
terval of possible monetary payoffsX. Supposing the space of actions is
just {a, a′}, W{s1,s3} is the set of permutations where {s1, s3} obtains.
For instance, “{s1, s3} is true, a pays out x, a′ pays out y”, belongs to
W{s1,s3}. Where g(a) = x and g(a′) = y, we use the compact notation
{s1, s3, g} for this permutation.

c is a derivative action. Under all permutations where a pays out
more than $1.1 million, it delivers $100; in all others it pays nothing.
Thus, where s can be any member of S, we have c(w) = $100 for
w ∈ {{s, g} : g(a) > $1, 100, 000} and c(w) = $0 for all other w.

We suppose the DM is endowed with a preference relation � over C with
asymmetric and symmetric components � and ∼ (we consider the observ-
ability of this relation later on in Section 6).

Our first restriction on � is a familiar independence condition. To state it,
we use the notation {c, s; c′} to refer to the derivative action c′′ that satisfies
c′′(w) = c(w) if w = {s, g} for any g ∈ G and c′′ = c′(w) otherwise. In words,
c′′ pays out the same as c whenever s occurs and the same as c′ under any
other subjective state. The restriction is then as follows:

Axiom 1 (Independence) For any c, c′, c′′ ∈ C, c � {c′, s; c} iff {c, s; c′′} �
{c′, s; c′′}.

Given Independence, we can define a conditional preference �s for each s ∈ S
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as c �s c′ iff {c, s; c′′} � {c′, s; c′′} for any c′′ ∈ C. We say state s is null
whenever c ∼s c′ for all c, c′ ∈ C.
We call the next restriction on � an “Assumption” rather than an “Ax-
iom”, because its behavioural content is not immediate. More primitive be-
havioural conditions that are equivalent to it have been described by Wakker
(1985).

Assumption 1 (Derivative-SEU) Every s ∈ S is either null or such that
there exists a bounded, continuous, strictly increasing function φs : X → R
and a probability measure on Bs, denoted µs, such that:

c �s c′ ⇐⇒
ˆ
Ws

φs(c(w))dµs ≥
ˆ
Ws

φs(c
′(w))dµs (2)

for all c, c′ ∈ C, and there is at least one non-null s for which there exists an
E ∈ Bs with 1 > µs(E) > 0.

The restriction that for one s there is some E ∈ Bs such that 1 > µs(E) > 0
implies that the DM does not regard the payoff of all actions as certain
conditional on all non-null states. In the narrative of Section 2, this is
the essence of conscious unawareness. It corresponds to Walker’s (2011)
characterisation of “the DM believes that if s occurs she may be unaware of
something” as her willingness to gamble on multiple mutually inconsistent
payoff profiles conditional on state s.

A striking feature of Derivative-SEU is that it requires �s to satisfy Savage’s
STP for all s. Even in conjunction with our other restrictions, this does
not imply that � satisfies the principle, something we argued against in
Example 1. One may nonetheless wonder whether similar examples may be
constructed that call Derivative-SEU into question. To allay such fears, we
note that Example 1 “works” because the DM understands a′ and 100− a′,
but not c and 100 − c. A parallel example would thus require the DM to
understand {c, E; c′′} and {c′, E; c′′′}, but not {c, E; c′′′} and {c′, E; c′′} for
some c, c′, c′′, c′′′ ∈ C and E ∈ Bs, and hence report {c, E; c′′} �s {c′, E; c′′},
but {c′, E; c′′′} �s {c, E; c′′′}. However, it is easy to verify that this can only
hold if there is an E′ ∈ Bs with µs (E′|E) = 1 such that either c(w) > c′(w)
for all w ∈ E′ or c′(w) > c(w) for all w ∈ E′: the reported preferences would
thus violate monotonicity as well as the STP.

As indicated in the Introduction, we wish to interpret each of the φs func-
tions as reflecting the DM’s inherent attitude towards actions she does not
understand. To make this more tenable, we impose a further assumption on
� that has the effect of allowing us to set φs = φs′ for every s, s′ ∈ S. Write
θs,c for the probability measure on B defined as θs,c(Z) = µs{w : c(w) ∈ Z}
(note this is well-defined, as derivative actions are B-measurable).

11



Assumption 2 (State Independence) If s, s′ are non-null, θs,c = θs′,c′ ,
and θs,c′′ = θs′,c′′′ then:

c �s c′′ ⇐⇒ c′ �s′ c′′′

It is clear that we could obtain a “state dependent” version of Theorem 1
below, if we were to drop Assumption 2. We do not pursue this project here.

We now introduce a further choice set. Denote the set of countably additive
probability measures on B using ∆ (X). The set of Anscombe-Aumann acts,
F , is then the set of all mappings from S to ∆ (X) , with typical elements
f, f ′. Any f is interpreted as a prospect that pays out a lottery with payoff
distribution f(s) in the event of any subjective state s, just as in Anscombe
and Aumann (1963), except with S taking the place of an objective state
space. We write f(s) (E) for the probability of E ∈ B under measure f(s).
The DM’s preferences over Anscombe-Aumann acts are given by the rela-
tion �AA on F with �AA and ∼AA denoting the respective asymmetric and
symmetric components of �AA as usual.

We require �AA to be consistent with the following.

Assumption 3 (AA-EU) There exists a bounded, continuous, strictly in-
creasing function v : X → R and a unique countably additive probability
measure on B, denoted π, such that:

f �AA f ′ ⇐⇒
∑
s∈S

π(s)Ef(s)[v(x)] ≥
∑
s∈S

π(s)Ef ′(s)[v(x)] (3)

for all f, f ′ ∈ F .

As with Assumption 1, AA-EU can be generated from more basic conditions
on �AA. These are described in Wakker (1985).

There is a sense in which the set of derivative actions and the set of Anscombe-
Aumann acts intersect, and the next restriction implies that �AA and � are
isomorphic over this intersection. To see this, write x for the degenerate
lottery that pays out x, and define Fδ as the set of Anscombe-Aumann acts
such that, for every s ∈ S, f(s) = x for some x. Then define Cδ as the
set of derivative actions that satisfy c({s, g}) = c({s, g′}) for all s ∈ S and
any g, g′ ∈ G. Clearly, for any c ∈ Cδ there exists some f ∈ Fδ such that
f(s) = c(s, g) for all s, and for any f ∈ Fδ there is a c ∈ Cδ with the property
c(s, g) = f(s) for all s. Where c ∈ Cδ, use fc to refer to the member of Fδ
that yields the same payoff in each state as c does.

In a similar way, we may also connect the set of actions with the space of
derivative actions. For each action a, use ca for the derivative action that
satisfies ca(s, g) = g(a) for all s and note that ca pays out x iff a turns out
to yield x under one of the members of S.
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Our final restriction connects the three preference relations as follows.

Axiom 2 (Reduction) The relations �∗, �AA, and � are mutually con-
sistent insofar as:

a. For any a, a′ ∈ A∗, a �∗ a′ if and only if ca � ca′.

b. For any c, c′ ∈ Cδ, c � c′ if and only if fc �AA fc′ .

One way of interpreting Reduction is as the requirement that the DM regards
the pairs a and ca, and c and fc, as identical prospects. This only makes
sense if the DM thinks of S as an exhaustive account of what might happen
– that is, if E ⊂ S does not occur, S \ E must – and that she knows that
all possible consequences of the actions lie within X. Since it is always
possible to imagine a catch-all contingency (“none of the above occurs”),
requiring the DM to conceive of an exhaustive subjective state space does
not seem overly demanding (it is implicit in the account of our framework
presented in Section 2). And for many economic problems such as investment
or policy decisions, it would be taken for granted that the set of consequences
is known (for example, X might be a set of monetary quantities, measured
in equivalent terms).

We are now ready to state our first representation theorem.

Theorem 1 The following two claims are equivalent:

1. �∗, �, �AA satisfy Independence, Reduction, Derivative-SEU, State
Independence, and AA-EU.

2. There exist bounded, continuous, strictly increasing real maps u and φ,
and a set of probability measures on each of {Bs}s∈S, {µs}s∈S and on
E, such that for every a, a′ ∈ A:

a �∗ a′ if and only if∑
s∈S

π(s)u

(ˆ
Ws

φ(ca(w))dµs

)
≥

∑
s∈S

π(s)u

(ˆ
Ws

φ(ca(w)dµs

)
(4)

And, furthermore, π is unique, the measures µs are unique whenever
s is non-null, φ is unique up to a positive affine transformation, and
whenever φ̃ = αφ+ β, the corresponding ũ satisfies ũ(αx+ β) = u(x)
for all x ∈ φ(X).

4 Ignorance Aversion

In Example 1, we explained the DM’s violation of SEU by appeal to a general
preference for actions she better understood over those she did not. We
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called this general tendency ignorance aversion. In this section, we provide
a formal behavioural definition of what it is for a DM to be ignorance averse
and conditions under which one DM may be said to be more ignorance averse
than another. We show that, under the representation of Theorem 1, these
have neat mathematical characterisations in terms of the convexity of the u
function.

To define ignorance aversion formally, we need to introduce some more ter-
minology. Begin by noting that, under the representation, for every f ∈ F
there is a unique f ′ ∈ Fδ such that f ′(s) = f ′(s′) for all s, s′ ∈ S and
f ′ �AA f . In other words, for any f ∈ F there is an f ′ ∈ F that yields
the same certain payoff in each state and is such that the DM is indifferent
between it and f . We refer to cf ′ (f ′ relabelled as a derivative action) as the
certainty equivalent of f and denote it ce(f).

Now define a φ-risk-free derivative action as any c ∈ C such that
´
Ws

φ (c(w)) dµs =´
Ws′

φ (c(w)) dµs′ for all non-null s, s′ ∈ S. That is, c is φ-risk-free whenever
it pays out the same – in terms of the expected value of φ – in every state.
Of course, a φ-risk-free derivative action may not be devoid of payoff uncer-
tainty, as it could be that the DM does not understand it and thus considers
multiple payoffs possible at various states.

The intuition behind our definition of ignorance aversion is as follows. Any
ignorance-averse DM confronted with a φ-risk-free derivative action c and an
Anscombe-Aumann act f , where c and f induce the same probability mea-
sure on B (given π and {µs}s∈S), would regard f as the superior alternative
and prefer ce(f) to c. This is because f ’s payoff is uncertain in a way that
the DM understands (it depends only on the realisation of the subjective
state and the outcome of a lottery), while any uncertainty over c’s payoff
derives entirely from features of the choice environment the DM does not
understand (its conditional value is the same under all subjective states).
To define ignorance aversion, we thus need to characterise the probability
measures on B induced by any f and c, given the subjective probabilities in
the representation.

To this end, for any Anscombe-Aumann act f , define ηf as the probability
measure on B satisfying:

ηf =
∑
s∈S

π(s)f(s)(E)

for any E ∈ B. Similarly, for any c ∈ C, let ηc be the probability measure on
B such that:

ηc(E) =
∑
s∈S

µs
(
c−1(E) ∩Ws

)
Observe that since derivative actions are B-measurable, ηc(E) is defined for
all E ∈ B.
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We may now define ignorance aversion as follows:

Definition 1 (Ignorance Aversion) The DM is ignorance averse iff, for
any φ-risk-free derivative action c and Anscombe-Aumann act f such that
ηf = ηc, ce(f) � c.

In Assumptions 1 and 2, we characterised the DM’s attitude to uncertainty
she does not understand using the function φ, while in Assumption 3 we
characterised the DM’s attitude to uncertainty she does understand – which
is the same as her attitude to risk – using the function v. In the proof of
Theorem 2 below, we show that the two attitudes are related by v = u ◦ φ.
It is well known that aversion to risk is equivalent to the concavity of the
function v and in the Appendix we show that aversion to unconceptualised
uncertainty is equivalent to the concavity of φ under our representation. It
should not therefore be surprising that ignorance aversion – which means
greater aversion to unconceptualised uncertainty than risk – is equivalent to
φ being a concave transform of v, that is, to u being convex. This is precisely
what our next result establishes.

Proposition 1 The DM is ignorance averse iff the function u is convex.

In light of Proposition 1, we may say that u represents the DM’s attitude
towards ignorance.

Suppose now there are two DMs, A and B, and we wish to compare their
attitudes towards ignorance. Denote A’s preferences over C by �A and B’s
by �B. If their beliefs and risk preferences are the same and A prefers
some φ-risk-free derivative action c (which she might not understand) to
the certainty equivalent of an Anscombe-Aumann act f (which she does
understand), then, if she is more ignorance averse than B, B must also prefer
c to f . This is the content of the following definition, where we use πA and
µAs to refer to A’s beliefs under the representation and vA for A’s attitude
to risk.

Definition 2 (More Ignorance Averse) DM A is more ignorance averse
than DM B iff πA = πB, µAs = µBs for all non-null s, vA = vB and, for any
φ-risk-free derivative action c and Anscombe-Aumann act f :

c �A ce(f) =⇒ c �B ce(f)

Our next result shows that A’s being more ignorance averse than B has a
mathematical characterisation that is analogous to that of her being more
risk averse in SEU or more ambiguity averse in KMM’s representation.

Proposition 2 Suppose A and B are two DMs whose preferences are rep-
resented as in Theorem 1, for whom πA = πB, µAs = µBs for all non-null s,
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and vA = vB. uA and uB represent their respective attitudes towards igno-
rance. Then A is more ignorance averse than B iff there exists some strictly
increasing convex function, ψ, such that uA = ψ ◦ uB.

As noted by KMM when stating a parallel result, Proposition 2 implies that,
if uA and uB are twice continuously differentiable, then A is more ignorance
averse than B iff:

−
u′′A(x)

u′A(x)
≥ −

u′′B(x)

u′B(x)

Thus, provided the differentiability conditions are met, one might refer to
−u′′(x)/u′(x) as the coefficient of absolute ignorance aversion.

5 Extension to Source Preference

It has been argued (for example, in Heath and Tversky (1991) and Chew
et al. (2008)) that DMs’ choices between uncertain prospects may hinge on
the source of uncertainty these prospects’ payoffs depend on, where a source
may be thought of as a distinct algebra of events. Such decision-making
may be irreconcilable with the representation of Theorem 1, as the following
example shows.

Example 2: Imagine the oil trader from Example 1 is presented with a
choice set that includes c and the action b = “Invest $1 million on the
NASDAQ index, liquidating the position in six months’ time”. For
simplicity, suppose her subjective state space is now made up of only
the states s1 and s2, which concern whether war breaks out in the
Middle East, as in Example 1. She thinks that, if s1 occurs, b might
yield anything between $700,000 and $1.3 million.

She is then offered to choose between the derivative actions cs1 , c′s1 ,
bs1 , and b′s1 below:

cs1 =
“If a pays out more than $1.1 million and s1 occurs,
receive $100, otherwise receive $0”

c′s1 = “If cs1 pays out $100, receive $0, otherwise receive $100”

bs1 =
“If b pays out more than $1.2 million and s1 occurs,
receive $100, otherwise receive $0”

b′s1 = “If bs1 pays out $100, receive $0, otherwise receive $100”

The trader reports strict preferences for cs1 over bs1 and c′s1 over b′s1 .
Supposing her preferences satisfy Independence, this implies that she
violates Derivative-SEU, because whereEc = {{s, g} : s = s1 and g(a) >
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1, 100, 000} and Eb = {{s, g} : s = s1 and g(b) > 1, 200, 000}, cs1 �s1
bs1 implies:

µs1(Ec)φ(100) + (1− µs1(Ec))φ(0)

> µs1(Eb)φ(100) + (1− µs1(Eb))φ(0)

while c′s1 �s1 b
′
s1 implies:

(1− µs1(Ec))φ(100) + µs1(Ec)φ(0)

> (1− µs1(Eb))φ(100) + µs1(Eb)φ(0)

which is impossible if µs1 is a probability.

However, the DM may rationalise her preferences as follows. She does
not understand either action and regards Ec and Eb as roughly equally
likely. But whereas the payoffs from cs1 and c′s1 depend on a “source
of uncertainty” – namely the payoffs resulting from a – about which
she, as an oil trader, considers herself an expert, those from bs1 and b′s1
depend on a source she feels less comfortable speculating on. This is
consistent with Heath and Tversky’s (1991) “competence hypothesis”.

Preferences such as those described in Example 2 may be accommodated in
a generalised version of Theorem 1.

To show this, we want to differentiate between sources of uncertainty in
terms of actions, so, for any A ⊆ A, let CA ⊆ C be the set of A-derivatives,
defined as {c : g(a) = g′(a) for all a ∈ A implies c({s, g}) = c({s, g′})}.
A-derivatives are derivative actions whose payoff depends only on the true
subjective state and the payoff-profile generated by the actions in A. Define
WA,s as the finest partition of Ws with the property that g(a) = g′(a) for all
a ∈ A implies {s, g} and {s, g′} belong to the same element of WA,s. Then
let BA,s be the Borel σ-algebra generated by the relative topology on WA,s.

Once again we assume that � satisfies Independence so that the preference
relation �s is defined for every s ∈ S. This allows us to define a source as
follows:

Definition 3 {BA,s}s∈S forms a source if and only if it satisfies:

i. For all non-null s, there exists a bounded, continuous, strictly increas-
ing function φA,s : X → R and a probability measure on BA,s, denoted
µA,s, such that for all c, c′ ∈ CA:

c �s c′ ⇐⇒
ˆ
WA,s

φA,s (c(w)) dµA,s ≥
ˆ
WA,s

φA,s
(
c′(w)

)
dµA,s(5)

and for at least one non-null s, there is a E ∈ BA,s such that 1 >
µA,s(E) > 0.
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ii. There is no A′ ⊃ A such that
{
Bs,A′

}
s∈S satisfies part (i).

Chew and Sagi (2008) give minimal conditions on which a source may be
distinguished by the DM’s preferences; Wakker (1985) then gives behavioural
axioms under which part (i) of the definition may be satisfied. Abusing
terminology, we say action a belongs to source {BA,s}s∈S whenever a ∈ A.
Our generalised version of Theorem 1 weakens Derivative-SEU to the follow-
ing.

Assumption 4 (Source Dependence) Every action in A belongs to a
source.

For any source, we wish to ensure that φA,s = φA,s′ from (5) for all s, s′ ∈ S.
As before, this will make it possible to talk of the DM’s ignorance attitude
with respect to a certain source of uncertainty. To achieve this we need to
impose a somewhat weaker form of State Independence to that in Section 3.

Assumption 5 (State Independence∗) If s, s′ are non-null, c, c′, c′′, c′′′

belong to CA for some source A, θs,c = θs′,c′ and θs,c′′ = θs′,c′′′ then:

c �s c′′ ⇐⇒ c′ �s′ c′′′

Once again, a “state dependent” rendering of Theorem 2 below would be
possible in the absence of Assumption 5.

A final behavioural condition, which is implied by Assumption 1 but not
by Assumption 4, is that the set of all A-derivatives for all any source A is
linearly ordered by �.

Axiom 3 (Ordering) Let A be the set of all sources. � is transitive and
complete on

⋃
A∈A CA.

Note that Ordering allows for substantial incompleteness of � over C. If one
thinks of the derivative actions whose payoffs depend on the full payoff profile
over A as being the “most complicated” derivative actions in C, Ordering
means that the DM only needs to form preferences over the most complicated
derivative actions in case there is a source to which every action belongs.

Given Source Dependence, we say the DM understands action a if and only
if a ∈ A and, for all non-null s, µA,s(E) = 1 where E ⊆ {{s, g} : g(a) = x}
for some x. That is, the DM understands a if she believes that S resolves
all payoff uncertainty pertaining to a.

Theorem 2 The following two claims are equivalent:
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1. �∗, �, �AA satisfy Reduction, Independence, Ordering, Source Depen-
dence, State Independence∗, and AA-EU.

2. Every action a belongs to a source A(a); there is a bounded, continuous,
strictly increasing real map u and a probability measure π on E; for each
A(a) there is a bounded, continuous, strictly increasing map φA(a) and
a set of probability measures on each of

{
BA(a),s

}
s∈S,

{
µA(a),s

}
s∈S;

and for any a, a′ ∈ A:

a �∗ a′if and only if∑
s∈S

π(s)u

(ˆ
WA(a),s

φA(a) (ca(w)) dµA(a),s

)

≥
∑
s∈S

π(s)u

(ˆ
WA(a′),s

φA(a′) (ca′(w)) dµA(a′),s

)

And, furthermore: π is unique; µA(a),s is unique for all A(a) and non-
null s; φA is unique up to an affine transformation, and if φ̃A = αφA+
β, the associated ũA is such that is such that ũA(αx+ β) = uA(x) for
x ∈ φ(X); and for all a, A(a) is unique iff the DM does not understand
a, and a ∈ A(a′) for all a′ ∈ A otherwise.

The uniqueness part of Theorem 2 implies that the set of all actions the DM
does not understand may be partitioned according to the source they belong
to. Thus, it is only possible for two actions to belong to separate sources if
the DM understands neither of them.

6 Discussion

Theorems 1 and 2 show how one can represent mathematically the behaviour
of consciously unaware DMs who violate SEU, but observe certain weaker
regularity conditions. The results therefore offer foundations for incorporat-
ing this kind of decision-making into a wide range of areas of economic theory,
including game theory, finance, and policy analysis, as well as facilitating the
empirical analysis of such DMs. The fact that these representations main-
tain much of the technical and intuitive apparatus of SEU means that (we
hope) such an integration could be achieved without departing radically from
existing analytical methods in these areas.

In this concluding section we discuss two broad issues concerning our repre-
sentations. The first of these is the observability of the preference relations
� and �AA, which bear most of the weight of our assumptions. For whereas
�∗, the DM’s preferences over actions, may be elicited straightforwardly,
it might be objected that � and �AA are defined on inherently subjective
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objects – namely, maps that are defined in terms of S – and are thus not
readily observable.

Walker (2011) shows how, in a choice setting similar to that used here, a
DM’s subjective state space may be revealed by his preferences over a set
of prospects defined in terms of the set A. In principle, one could therefore
uncover S using that approach and then test whether the DM’s preferences
over derivative actions and Anscombe-Aumann acts were consistent with our
assumptions. Though we acknowledge this testing procedure is likely to be
infeasible in most practical settings, we note that most other representations
in the literature, including SEU and KMM’s model, are guilty of the same
charge.

The second issue is the relation between the effect of conscious unawareness
and ambiguity, in particular the connection between KMM’s representation
and our own. Our explanation for why the DM in our initial example violated
SEU – that she was ignorance averse – closely parallels the explanation of
the Ellsberg paradox in terms of ambiguity aversion. Under both accounts,
the DM exhibits a tendency to choose prospects whose payoff structure (be
it the probability distribution over states, or the mapping from states to
consequences) is known to her, and this tendency is inconsistent with SEU,
because it leads to a violation of Savage’s P2, the Sure Thing Principle.

To see precisely how each violation of P2 arises, recall Ellsberg’s (1961)
“single-urn” thought experiment, where a DM may gamble on whether a ball
drawn from an urn containing 90 balls is red, green, or yellow. She knows
that there are 30 red balls and that each of the remaining 60 balls is either
green or yellow, though in unknown proportion. Writing R, G, and Y for
the respective events corresponding to “The ball drawn is red/black/yellow”,
suppose the DM is offered the choice between prospect a, which pays out
$100 in case of R and $0 otherwise, and prospect b, which pays out $100 in
case of B and $0 otherwise. Since a and b pay out the same under event Y ,
the Sure Thing Principle requires that the DM’s preference between a and
b is independent of the amount they pay under Y (provided it is the same).
Thus, if she prefers a to b, she should also prefer a′, which pays out $100 in
case of R ∪ Y and $0 otherwise, to b′, which pays out $100 if G ∪ Y and $0
otherwise. In KMM, an ambiguity averse DM – reasoning that the prospects
a and b′ are ambiguous whereas a′ and b are not – may, however, prefer a to
b and b′ to a′.

In our theory, an analogous case would be where S comprised s1 and s2 and
Ws2 could be paritioned into {E,E′} such that 1 > µs2(E) > 0. The DM
could then be offered the choice between derivative action c1, defined such
that c1(w) = 100 if w = {s1, g} for any g and c1(w) = $0 otherwise, and c2,
which satisfies c2(w) = $100 if w ∈ E and c2(w) = $0 otherwise. Under the
Sure Thing Principle, the DM prefers c1 to c2 if and only if she prefers c′1,
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which pays out $100 if c1(w) = $100 or any permutation in E′ occurs and
$0 otherwise, over c′2, which pays out $100 if s2 obtains and $0 otherwise.
However, if she is ignorance averse, the DM may reason that she understands
c1 and c′2 but not c′1 and c2, and thus report a preference for c1 over c2 and
c′2 over c′1.

Although these two cases have very similar structures, the way they are
respectively accommodated in KMM’s representation and ours is somewhat
different. In KMM’s treatment of Ellsberg’s single-urn example, the DM’s
preferences reveal that she considers various probability measures on 2{R,G,Y }

possible. All of these measures assign the same probability to R and G∪ Y ,
but not all assign the same probability to G and R∪Y . This is what explains
her preferences for a over b and b′ over a′. In our treatment of the analogous
case, the DM’s preferences reveal that she considers multiple payoff profiles
under s2 possible: under all these profiles, c1 and c′2 yield a determinate
payoff, but under different profiles c2 and c′1 pay out different amounts.
Thus, while the violation of Savage’s P2 in our theory has uncertainty over
the way actions map from states to consequences as its genesis, in KMM
the axiom fails because of uncertainty over the true probability measure on
events. To cope with examples where both these forms of uncertainty were
present, one would need a more general theory that nested both KMM’s
representation and our own.

A further distinction between the way ambiguity features in KMM and the
way conscious unawareness works here is in how the DM’s attitude towards
them relates to her appetite for risk. In KMM’s representation, the DM is
portrayed as evaluating prospects, first by computing their expected util-
ity under each possible probability measure (and thus accounting for their
riskiness under each measure), and then by calculating their expected value
given the likelihood she attaches to each measure (thereby accounting for
their ambiguity). Her attitudes towards uncertainty may thus be decom-
posed into separate attitudes towards risk and ambiguity. Here, by contrast,
the DM’s attitude towards risk is given by the function v and her attitude
to ignorance by φ, and the two are connected by the identity v = u ◦ φ. Her
ignorance attitude is thus a component of her risk attitude in our theory.

It should be stressed that this does not mean conscious unawareness could
not be used – as KMM’s approach has been – to explain phenomena that
do not seem reconcilable with SEU and standard measures of risk aversion.
An example of this is the “Equity Premium Puzzle” in financial economics,
which Collard et al. (2018) have explained in terms of ambiguity aversion.
This is simply because it need not be the case under our representation that
a �∗ a′ iff Eηca [v(x)] ≥ Eηca′ [v(x)].

Our paper belongs to the decision-theoretic literature on awareness of un-
awareness. Recent contributions include Alon (2015), Grant and Quiggin
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(2015), Karni and Vierø (2017), Kochov (2018), and Lehrer and Teper (2014).
These papers take different approaches to adapting SEU theory to account
for awareness of unawareness and its effects on choice. In Alon (2015), the
DM maximises SEU over a subjective state space that is augmented with
an additional, unforeseen state, which is assigned the worst consequence ob-
tained under each act across all other states. In Lehrer and Teper (2014), the
DM becomes aware that the state space is finer than she previously thought
(i.e. what she thought was a state is in fact an event) and considers how
to extend the preference order over the original, coarse state space. The
preferences of a ‘wary’ DM can be represented by max-min EU. Grant and
Quiggin (2015) model unawareness with respect to both the state space and
the set of consequences. They partition the set of acts into those subject
to an unfavourable surprise (a surprise is an unforeseen consequence), those
subject to a favourable surprise, and those not subject to either. The DM
ranks acts in these three categories such that she strictly prefers acts with-
out the spectre of unfavourable surprises. Thus these three papers have in
common a precautionary approach to unawareness.

Kochov (2018) models a DM whose subjective state space may be coarser
than the objective state space as viewed by an omniscient analyst. Therefore
each subjective state may be associated with a range of consequences, as in
our theory. Aware of this, the DM maximises SEU, but may err on the
side of (in)caution via her forecast of which consequence results under each
subjective state. A cautious DM may forecast that the worst consequence
obtains. Our theory differs by achieving an explicit separation of tastes
and beliefs with regard to unawareness. Karni and Vierø (2017) posit an
unforeseen consequence and partition the state space into states that are fully
describable (that do not contain the unforeseen consequence), and partially
or non-describable (that do contain the unforeseen consequence). The DM
maximises the sum of SEU over the fully describable states and the partially
or non-describable states, applying a different utility function to the latter
that can capture either aversion or attraction to, or a predilection for, the
unforeseen. Our representation is similarly flexible to the DM’s attitude to
unawareness, but models the state space and value function differently.

A Appendix

A.1 Proof of Theorem 1

Observe that Derivative-SEU implies that all actions belong to a single
source, in which case State Independence and State Independence∗ are equiv-
alent. Therefore the result follows from Theorem 2. �
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A.2 Lemma A.1

We note the following result, which is invoked in the proofs below.

Lemma A.1 If φ : X → R is a continuous function and X ⊆ R is convex,
then φ is concave (convex) iff there exists a λ ∈ (0, 1) such that for all
x, y ∈ X where x 6= y:

φ(λx+ (1− λ)y) ≥ (≤) λφ(x) + (1− λ)φ(y)

A.3 Proof of Proposition 1

Suppose ηc = ηf for some φ-risk-free c and f ∈ F . Then we have:∑
s∈S

π(s)Ef(s) (φ(x)) =

ˆ
Ws′

φ(c(w))dµs′

where s′ is non-null. Under the representation, we have:∑
s∈S

π(s)Ef(s) (u ◦ φ(x)) = u ◦ φ (ce(f)) (6)

If u is convex, then it follows from Jensen’s inequality that

∑
s∈S

π(s)Ef(s) (u ◦ φ(x)) ≥ u

(ˆ
Ws′

φ(c(w))dµs′

)

which, under the representation and given (6), implies that ce(f) � c. Hence
the DM is ignorance averse.

Working in the other direction, let s be such that there exists an E ∈ Bs
with 0 < µs(E) < 1 (by Assumption 1 there is such an s). Take any x, y ∈
φ(X) and define the derivative action c, with the property that c(w) = x if
w ∈ E, c(w) = y if w ∈ Ws \ E, and c(w) = z for all other w where z :=
φ−1 (µs(E)φ(x) + (1− µs(E))φ(y)). Now define the Anscombe-Aumann act
f such that f(s) = l where l is a lottery that assigns a probability of µs(E)
to consequence x and (1− µs(E)) to consequence y, and f(s′) = z for all
other s′ ∈ S.
Observe that c is φ-risk-free and that ηc = ηf , so if the DM is ignorance
averse it must be that ce(f) � c. Using parallel reasoning to that behind
(6), it follows that∑

s∈S
π(s)Ef(s) (u ◦ φ(x)) ≥

∑
s∈S

π(s)u

(ˆ
Ws

φ(w(s))dµs
)
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and hence by construction that

µs(E) (u ◦ φ(x))+(1− µs(E)) (u ◦ φ(y)) ≥ u (µs(E)φ(x) + (1− µs(E))φ(y)) .
(7)

And, as (7) holds for any x, y in the convex set φ(X), Lemma A.1 implies
that u is convex. �

A.4 Proof of Proposition 2

For any φ-risk-free derivative action c, write ceA(c) for φ−1
(´

Ws
φ(c(w))dµs

)
(where s is non-null). Under the representation we have:

c �A x ⇐⇒ uA (φA(ceA(c))) ≥ uA (φA(x))

which, since uA and φA are strictly increasing, holds iff ceA(c) ≥ x. Where
vA = vB, uA = ψ ◦ uB for convex ψ implies φA = χ ◦ φB for concave χ. It
then follows by Jensen’s inequality we have ceB(c) ≥ ceA(c) for any risk-free
c, from which it follows immediately that A is more ignorance averse than
B.

Suppose now that A is more ignorance averse than B and define ψ := uA◦u−1B ,
which must be strictly increasing under the representation. Take a non-null
s such that there exists an E ∈ Bs where 1 > µs(E) > 0 and any φ-risk free
c. ceB(c) ≥ ceA(c) requires:

φ−1B

(ˆ
Ws

φB(c(w))dµs

)
≥ φ−1A

(´
Ws

φA(c(w))dµs

)
The DM computes u (φ(ce(c))). Since uA = ψ◦uB, with a litte manipulation
this implies

ψ−1
(ˆ

Ws

vB ◦ u−1B (c (w)) dµs

)
≥
(ˆ

Ws

vB ◦ u−1B ◦ ψ
−1 (c (w)) dµs

)
(8)

For any x, y ∈ X with x 6= y, (8) holds for c such that c(w) = x if w ∈ E
and c(w) = y otherwise. Thus, one can invoke Lemma A.1 to establish that
ψ is convex. �

A.5 Proof of Theorem 2

The proof follows a similar path to that for KMM’s Theorem 1. We show
that the axioms imply the representation and uniqueness properties.

Under Independence and Source Dependence, for source A there is at least
one non-null state s such that there exists an E ∈ Bs with µ(E) ∈ (0, 1).
By State Independence∗, whenever c, c′ ∈ CA, c �s c′ iff Eθs,c [φA,s′(x)] ≥
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Eθs,c′ [φA,s′(x)] for all non-null s′ ∈ S. This implies that for any non-null
s′, s′′, φA,s′(x) = αφA,s′′(x) + β for some (α, β) ∈ R++ × R, and hence that
for any non-null s′ and c, c′ ∈ CA, c �s′ c′ iff

´
WA,s′

φA,s(c(w))dµA,s′ ≥´
WA,s′

φA,s(c
′(w))dµA,s′ . Now proceed setting φA = φA,s

Since φA is continuous and strictly increasing, for every c ∈ CA and every
non-null s ∈ S, there is some unique x ∈ X such that where c′ ∈ Cδ satisfies
c′({s, g}) = x for all g, {c′, s; c} ∼ c. For each c ∈ CA, let cδ be some
member of Cδ such that {cδ, s; c} ∼ c for all s. By iterated applications of
Independence, for any c, c′ ∈ CA it must be that c � c′ iff cδ � c′δ.
Reduction then requires that c � c′ iff fcδ � fc′δ , which by AA-EU is equiv-
alent to: ∑

S

π(s)v (cδ(s)) ≥
∑
S

π(s)v
(
c′δ(s)

)
Since φA and v are both strictly increasing and continuous, there exists some
strictly increasing and continuous uA such that v = uA ◦ φA. Hence c � c′

iff: ∑
S

π(s)uA(φA(cδ(s))) ≥
∑
S

π(s)uA(φA(c′δ(s))) (9)

Given Derivative-SEU we have:

{c, s; cδ} ∼s cδ ⇐⇒
ˆ
WA,s

φA(c(w))dµA,s = φA(cδ(s))

So by construction (9) implies that c � c′ iff:∑
S

π(s)uA

(ˆ
WA,s

φA(c(w))dµA,s

)
≥

∑
S

π(s)uA

(ˆ
WA,s

φA(c′(w))dµA,s

)
And then Reduction yields that for any a, a′ ∈ A, a �∗ a′ iff ca � ca′ .
Finally, consider any a, a′ ∈ A. Source Dependence implies that there exist
sources A(a) and A(a′) such that a ∈ A(a) and a′ ∈ A(a′). By Reduction,
Ordering, and the reasoning above, it must be that a � a′ iff (ca)δ � (ca′)δ
iff f(ca)δ � f(c′a)δ . The latter implies:∑

S

π(s)v ((ca)δ(s)) ≥
∑
S

π(s)v ((ca′)δ(s))

Which as we have shown is equivalent to:∑
S

π(s)uA(a)

(ˆ
WA(a),s

φA(a)(c(w))dµA(a),s

)
≥

∑
S

π(s)uA(a′)

(ˆ
WA(a′),s

φA(a′)(c
′(w))dµA(a′),s

)
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as required.

AA-EU implies that π is unique and Derivative-EU implies that µA,s is
unique for all non-null s; and it is obvious that if s is null, the representation
is valid for any arbitrary µA,s. By assumption, φA is unique up to a positive
affine transformation and v = uA◦φA, so it is immediate that if φ̃A = αφ+β
then the associated ũA satisfies ũA(αx+ β) = uA(x) for x ∈ φ(X).

Finally, suppose a ∈ A(a) ∩ A(a′) where A(a) 6= A(a′). We show that this
can only be the case where for all non-null s there is some x such that
µs ({{s, g} : g(a) = x}) = 1: that is, where the DM understands a. Clearly,
if the DM does understand a, then a belongs to all sources, so the uniqueness
claim follows from this.

Imagine that a ∈ A(a)∩A(a′) whereA(a) 6= A(a′) and that for some s there is
an x such that 1 > µs ({{s, g} : g(a) = x}) > 0. Definition 3 implies A(a) 6⊆
A(a′) and A(a) 6⊇ A(a′), so there exists an a′′ ∈ A(a)\A(a′); since a′′ /∈ A(a′),
the DM does not understand a′′. The fact that the DM does not understand
a implies that whenever c �s c′ iff

´
Wa,s

φa(c(w))dµs ≥
´
Wa,s

φ(c′(w))dµs for
c, c′ ∈ Ca, φa is unique up to a positive affine transformation. Since the same
holds for a′′, it follows that c �s c′ iff

´
Wa,s

φa(c(w))dµs ≥
´
Wa,s

φ(c′(w))dµs

for all c, c′ ∈ Ca′′ and hence (given Ordering) that whatever sources a belongs
to, a′′ also belongs to, a contradiction. �
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