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Abstract. 

 
Historical growth dynamics of energy technologies reveal a consistent 
relationship between the extent to which a technology’s installed capacity grows 
and the time duration of that growth. This extent – duration relationship is 
remarkably consistent across both supply-side and demand-side technologies, 
and both old and new energy technologies. Consequently, it can be used as a 
means of validating future scenarios of energy technology growth under carbon 
constraints. This validation methodology is tested on the extents and durations 
of growth for a range of low carbon technologies in scenarios generated by the 
MESSAGE energy system model which has been widely used by the IPCC. The key 
finding is that low carbon technology growth in the scenarios appears generally 
conservative relative to what has been evidenced historically. This is counter-
intuitive given the extremely rapid growth rates of certain low carbon 
technologies under tight carbon constraints. Reasons for the apparent scenario 
conservatism are explored. Parametric conservatism in the underlying energy 
system model seems the most likely explanation. 
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1 Introduction 

1.1 The discontinuous road to a low carbon future 

Scenarios of greenhouse gas constrained futures vary widely in their 
assumptions, storylines, and analytical underpinning. But all share at least one 
common feature: order of magnitude increases in the deployment of certain 
energy technologies. Some scenarios emphasize decarbonising supply-side 
technologies, such as renewables, nuclear power, bio-energy or carbon capture 
and storage. Other scenarios depict widespread diffusion of end use technologies 
that improve energy efficiency or shift the types and amounts of energy services 
demanded in buildings, transportation systems, or industrial facilities. Most 
scenarios focus on both supply-side and end use technologies, particularly under 
more stringent greenhouse gas constraints. The conclusion of the IPCC’s Fourth 
Assessment Report in 2007 remains representative of the scenario literature: 

 
“The range of stabilization levels assessed can be achieved by deployment 
of a portfolio of technologies … [whose contribution] will vary over time, 
region and stabilization level … Energy efficiency plays a key role across 
many scenarios for most regions and timescales … For lower stabilization 
levels, scenarios put more emphasis on the use of low-carbon energy 
sources ... In these scenarios improvements of carbon intensity of energy 

supply and the whole economy need to be much faster than in the past.” 
[our italics; from p25 of Summary for Policy Makers of (Metz et al. 2007)]. 

 
As well as the general need for technology deployment on both supply and 
demand-sides of the energy system, the italicised sentence at the end of the 
quotation points to a second recurring theme: discontinuity. Scenarios depict 
often substantive deviations from the current trends that extrapolate historical 
experience. The future will not – can not – resemble the past. This is simply 
captured by the use of energy and carbon intensities as indicators of change in 
the demand- and supply-side of the energy system respectively. Energy intensity 
measures energy use per unit of economic output, and is typically expressed as 
GJ per $ of GDP. Carbon intensity measures greenhouse gas emissions per unit of 
energy use, and is typically expressed as tCO2 or tCO2-equivalent per GJ.  
 
Historical trends of both carbon and energy intensities have been well 
documented and explored both nationally and globally (e.g., Grübler 1998; Smil 
2000). As a global average, energy intensity has declined at around 1.2% per 
year over the last few decades; these ‘improvements’ have been more rapid in 
industrialised countries (1.7% per year) than in developing countries (1.0% per 
year). Across a wide range of future scenarios, reducing energy intensity by 
improving the efficiency of end use technologies provides cheaper and nearer-
term alternatives to decarbonising the energy supply (Riahi et al. 2007; Ürge-
Vorsatz & Metz 2009). Declining carbon intensity has more consistently 
characterised the 20th century, but the more stringent the future carbon 
constraints, the stronger the relative contribution to energy system 
transformation of accelerated decarbonisation (van Vuuren et al. 2009). 



1.2 Validating the technology projections of energy system models 

Long range models provide the quantitative basis for the discontinuities in 
energy and carbon intensity represented in carbon constrained scenarios. These 
models vary in their level of technological specificity. ‘Top-down’ macro-
economic or econometric models tend to emphasize aggregated metrics and 
relationships between price, income and energy demand (Azar & Dowlatabadi 
1999). In contrast, ‘bottom-up’ models that simulate or optimise the energy 
system within specified constraints tend to be rich in technological detail, 
particularly on the supply-side (van Vuuren et al. 2009). Examples of these latter 
energy system models include the International Energy Agency’s World Energy 
Model used in the annual World Energy Outlook reports IEA (IEA 2009) and the 
MESSAGE model developed at IIASA (Messner & Strubegger 1995). (For 
discussion of different modelling approaches, see, e.g., Nakicenovic et al. 2000; 
Rivers & Jaccard 2005; van Vuuren et al. 2009). 
 
For the analysis presented in this paper, we used MESSAGE, a bottom-up 
systems engineering models based on a least cost optimization framework 
(Messner & Strubegger 1995). The MESSAGE model maps the global energy 
system from resource extraction, imports and exports, conversion, transport and 
distribution to end-use services over a centennial timescale. MESSAGE scenarios 
under carbon constraints have been widely used in the work of the IPCC, 
including both the Fourth Assessment Report and the earlier Special Report on 
Emissions Scenarios (Nakicenovic et al. 2000; Fisher et al. 2007). The term 
‘carbon constraints’ is used broadly in this paper, meaning any greenhouse gas-
related component of the model’s objective function, e.g., mean global 
temperature stabilisation targets, greenhouse gas concentration targets, 
emission profiles, and so on. MESSAGE scenarios under carbon, energy security 
and energy access constraints have also been used in the forthcoming Global 
Energy Assessment1. 
 
An essential feature of MESSAGE and other models is that although the objective 
function or set of constraints under which they are run may be normative (e.g., 
climate stabilisation at 2oC above pre-industrial), the model results are 
quantitatively descriptive. Given the model parameters and structure, they are 
also internally consistent and so valid. 
 
Model parameters and structure are empirically-founded and the subject of 
extensive consideration and review by the parent modelling groups.2 With 
regards technology deployment projections, key parameters include costs, 
efficiencies, performance characteristics, learning rates and resource 
availabilities. Important structural characteristics of models which influence 
technology deployment include the treatment of technological diversity, inter-

                                                        
1 For details, see www.iiasa.ac.at/Research/ENE/GEA/index.html 
2 One result is that the models are continually evolving, spawning new variants and updated 
versions. Using MESSAGE as an example, the original MESSAGE framework has seen iterations to 
model stochastic learning and returns to adoption (Gritsevskyi & Nakicenovic 2000), 
technological ‘relatedness’ and spillovers (Rao et al. 2006), integration with other sectoral 
models and macro-economic feedbacks (Riahi et al. 2007), and an exploratory agent-based 
formulation (Ma et al. 2008). 



dependence and spillovers, related infrastructures, innovation and learning, 
energy service demands, macro-economic feedbacks, and so on. Internal 
validation of model parameters and structure by the parent modelling groups is 
further supported by comparisons between different model outputs. The US-
based Energy Modelling Forum has institutionalised this process (e.g., Clarke et 
al. 2008) and similar exercises have taken place elsewhere (e.g., van Vuuren et al. 
2009), often in the context of assessment processes including the IPCC. 
 
Here, however, the concern with validation is a different one, asking not whether 
model projections make sense in relation to the model set up or to other model 
projections, but whether they make sense in relation to what we have observed 
in the dynamics of energy technology deployment over long timescales 
historically. Can model projections of technology deployment be assessed 
independently of the particular model set up? We describe this as an external 
validation problem. 
 
Focusing the question of external validity on observed decadal and even 
centennial growth dynamics emphasises two related dimensions of the model 
projections. The first is temporal: according to the models, how rapidly do 
energy technologies diffuse and for how long is diffusion sustained? This also 
concerns the form of growth, its pattern over time. The second issue is spatial or 

systemic: according to the models, how much do energy technologies diffuse and 
what share of the energy system do they come to occupy? 
 
Figure 1 shows the historical growth of nuclear power continuing on into a range 
of scenario projections from a recent application of the MESSAGE model (Riahi et 
al. 2007). The similarities and differences in scenario projections are clearly 
evident. Variable futures are a function of different scenario assumptions and 
carbon constraints. But all scenarios show a substantive expansion of nuclear 
power compared to historical experience. 
 
The approach taken here to externally validate the projections shown in Figure 1 
is to ask: are the growth dynamics of these future scenarios consistent with 
historical experience? Or, more specifically, are the rates, durations and extents 
of growth consistent with historical experience? These different characteristics 
of the overall growth dynamic can not be assessed in isolation. Clearly the extent 
or total installed capacity of nuclear power in the scenarios is not consistent with 
historical experience. But this same extent as an outcome of long, sustained and 
gradual growth may embody growth rates that are indeed consistent with what 
we know to be possible in an expanding energy system. 



 
FIGURE 1. NUCLEAR POWER: HISTORICAL DATA & FUTURE PROJECTIONS. 

 
 

2 Method & Rationale 

2.1 Overview 

In this paper, we propose and test a method for externally validating the 
projections of energy technology capacity growth in long range energy system 
models under carbon constraints. Our method has two stages. Firstly, we use 
logistic growth functions to describe the historical diffusion dynamics of a range 
of different energy technologies. Logistic functions parameterise both the rate 
and extent of growth as well as how they change over time. Use of a common 
form of growth - the logistic function - and a common unit of growth - cumulative 
total capacity - enables comparisons between technologies and time periods. 
Secondly, we fit the same functional forms to the diffusion dynamics of energy 
technologies in future scenarios. This method allows us to test the hypothesis 
that future growth is consistent with historical experience. Specifically, the null 
hypothesis is that future representations of energy technology diffusion have the 
same relationship between the duration and extent of growth as that observed 
historically. 
 
All technologies selected for analysis, both historical and future, are major 
components of the energy system. Apart from this similarity of context, we do 
not control for the myriad factors that drive the growth dynamics of energy 
technologies. Such factors include cost, efficiency and demand. Rather, these 
factors are all treated as potential explanatory variables for differences in 
observed growth dynamics. The method is more akin to a meta-analysis of 



commonalities in the duration and extents of growth across a range of energy 
technologies in both the past and future. 
 
An important implication to note at the outset is that the validation method and 
findings presented below are likely to be primarily of interest to the modelling 
community. The lack of explicit treatment of the drivers of technology diffusion 
preclude any insights into the economics of technological change or the role 
played by policy and regulation. A companion paper which explores historical 
growth dynamics in more depth may be of more interest to economists and 
policymakers (Wilson forthcoming).  

2.2 Temporal patterns in technology growth 

Technology’s temporal growth dynamics are succinctly captured as a lifecycle 
which follows sequential stages of invention, innovation, and diffusion (after, e.g., 
Schumpeter 1947; Utterback & Abernathy 1975). Over the course of this 
lifecycle, growth rates are initially slow through an often extended introduction 
phase, before reaching a take off point after which diffusion is rapid and 
accelerating. After some time, diffusion starts to slow, passing an inflection point 
and ultimately starting to saturate. This generalized S-shaped growth dynamic is 
supported by a wealth of historical evidence (Grübler 1990; Grübler 1996; 
Grübler 1998) and has also been widely observed in the specific case of energy 
technologies (Grübler et al. 1999). The senescence of a technology sees this 
growth dynamic mirrored in an S-shaped decline, as increasingly dominant 
competitors substitute for the incumbent technology (Marchetti & Nakicenovic 
1979; Marchetti 1987). 
 
This dynamic of changing growth rates over time is captured in the three 
parameter logistic function shown in Figure 2, and represented graphically in 
Figure 3 as a close fit to the observed historical growth in the global cumulative 
total capacity of nuclear power plants. Figure 2 also highlights the usefulness of 
the logistic function’s parameters in this context. The asymptote parameter, K, 
represents the saturation level of a technology and can be used as a proxy for the 
extent of growth. The rate parameter, b, describes the steepness of the curve and 
relates logarithmically to the duration of growth expressed as Δt (delta t). Δt 
represents the time period over which the technology diffuses from 10% to 90% 
of its final saturation level. This is the part of the curve described clearly by 
growth: from the initial ‘tipping point’ at which rapid growth begins, to its 
inverse slowing point after which growth starts to asymptote. 
 
The logistic function is symmetrical about t0, the inflection point at which the 
growth rate is maximal. (The symmetry of the 3-parameter logistic function also 
means that Δt is equal to the period of diffusion from 1% to 50%, and from 50% 
to 99%, of the final saturation level). Various alternative S-shaped functions have 
been proposed, most of which relax the symmetry of the logistic function around 
the inflection point. Examples include the Gompertz, Sharif-Kabir and Floyd 
functions. Despite its simplicity, however, the logistic function has been 
consistently found to be the most representative form of observed dymamics 
(Grübler 1990). 



 
There are many explanations as to why technology diffusion patterns are logistic, 
based on information transmission and contagion models, on risk reduction and 
familiarity, on the changing profile of profitability and compatibility with social 
norms (for further discussion, see Grübler 1998; Rogers 2003). However, the 
reasons for logistic growth are not immediately relevant here as the functional 
form is used only for descriptive and comparative purposes. Of specific interest 
for the meta-analysis are two parameters of the logistic function fitted to 
historical and future time series of energy technology deployment: 

• K as a measure of the extent of growth; and 
• Δt as a measure of the duration of growth (which is inversely related to 

the rate of growth). 
 
FIGURE 2. THE THREE PARAMETER LOGISTIC FUNCTION. 

y = K

1+ e
−b(t − t 0)

  (and also :  ∆t = 1

b
log 81)

with :

K =  asymptote (saturation level);

t0 =  inflection point at K/2 (maximum growth);

b =  diffusion rate (steepness);

∆t (delta t) =  time period over which y grows from 10% to 90% of K.

 

 

FIGURE 3. HISTORICAL GROWTH OF NUCLEAR POWER WITH FITTED LOGISTIC FUNCTION TO 

CUMULATIVE TOTAL  CAPACITY DATA. 

 
 



2.3 Spatial patterns in technology growth 

 
The logistic function captures changes in a technology’s growth dynamic over 
time. As noted earlier, these growth dynamics also vary spatially. In the initial 
markets or regions where a technology is first commercialized and diffusion 
begins, growth tends to be slower but more pervasive (Grübler 1996). In 
subsequent markets, growth tends to be more rapid but saturates at a lesser 
extent. Cars provide a good example of this general pattern. Diffusion rates 
increase and saturation densities (cars per capita) decrease as a log linear 
function of the introduction date or first commercial sale of the car in different 
countries (p151, Grübler 1990). Commercialization began in the US in the late 
19th century and took over 100 years to move from 10% to 90% of its estimated 
saturation density (in terms of car ownership per capita). In Japan, widespread 
commercialization took off in the 1950s and took less than 20 years to achieve 
the same growth from 10% to 90% of estimated saturation. But the 
corresponding saturation densities in Japan are also markedly lower: car 
ownership per capita in the 1990s was similar to that of the US in the 1930s. 
 
Aggregated global technology deployment data miss these spatial differences: 
growth of a longer duration (slower rate) but to a higher saturation level in 
initial markets; and growth of a shorter duration (quicker rate) but to a lower 
saturation level in subsequent markets. In this meta-analysis, therefore, logistic 
growth functions are fitted to historical and future data disaggregated into three 
spatial categories: core, rim and periphery markets. These are distinguished by 
the sequence of widespread diffusion or mass commercialization between 
countries or regions. 
 
Core, rim and periphery markets vary by technology. The US first saw the mass 
commercialization of the car; but Denmark was the core market for wind power, 
and the OECD as a whole saw the take-off of coal power. A similar logic applies to 
rim and periphery markets. Historically, the former Soviet Union countries were 
often either concurrent core markets (e.g., nuclear power), or rim markets (e.g., 
natural gas power). For more recent technologies, the south Asian economies 
have been rim markets (e.g., the compact fluorescent light bulb). Generally, 
African and Latin American countries are periphery markets, though not always. 
Table 1 shows the spatial disaggregation for each technology’s historical data 
series in the meta-analysis. 

2.4 Selecting Metrics & Technologies for the Meta-Analysis 

Within the constraints of data availability, we selected technologies for the meta-
analysis using three criteria. Firstly, we wanted to cover the full range of energy 
technologies to capture the heterogeneity within the energy system and ensure 
any results could be generalized. This included both centralised, capital intensive 
energy supply technologies and distributed, low cost end use technologies. 
Secondly, we defined a ‘technology’ as the highest level of complexity and 
operational aggregation of component parts before the inclusion of distribution 
infrastructure and market factors: hence, the coal-fired power plant rather than 
the steam turbine unit (less complex) or the electricity system (more complex); 



and the light bulb rather than the filament (less complex) or lighting system 
(more complex). Thirdly, we required that the energy capacity of each 
technology was meaningfully related to the provision of a useful service. This 
meant that end use technologies such as mobile phones or personal computers 
were excluded as energy metrics do not directly relate to the service provided. 
 
Table 1 summarises the historical time series data compiled and analysed. To the 
extent possible, data were collected from, or close to, the year of first commercial 
introduction. Supply-side technologies included were: oil refineries, coal power, 
natural gas power, nuclear power, wind power, solar photovoltaics. End use 
technologies included were: passenger jet aircraft, passenger cars, compact 
fluorescent light bulbs. For full details of the data collection including sources 
and links to online database, see: (Wilson 2009). 
 
TABLE 1. HISTORICAL ENERGY TECHNOLOGIES INCLUDED IN THE META-ANALYSIS: TIME 

SERIES, SPATIAL DISAGGREGATION, & LOGISTIC FITS. (SEE TABLE NOTES FOR DATA SOURCES). 

 Spatial Disaggregation 
Technology 

Global Core Rim Periphery 

Data Points (#) 6 8 6 3 

Logistic Fits 

Oil 
Refineries  
1940-2000 

Global OECDi, 
FSUi 

Asia (ex. China) 
MidEasti, 
L.Americai 

China, Africa Logistic fits to ‘1st phase’ 

only with asymptote in late 

1970s 

Power – 
Coal 
1908-2000 

Global OECD (1) FSU 
(2) Asiaii-a 

Africa, 
MidEast, 
L.America 

No logistic fits to 

exponential growth in rim 

markets (Asia) 

Power - 
Nuclear 
1956-2000 

Global OECD (1) FSU 
(2) Asiaii-b 

Africa, 

MidEast, 

L.Americaii-b 

Insufficient capacity (small 

n) for logistic fits in rim 

and periphery markets 

Power -  
Natural Gas 
1903-2000 

Global 
 

OECD (1) FSU 
(2) Asia 

Africa, 
MidEast, 
L. America 

Logistic fits to ‘1st phase’ 

only with asymptote in late 

1970s 

Power – 
Wind 
1977-2008 

Globalii-a Denmark (1) rest of 

OECD 

(2) E. Europe, 

Asia 

Africa, 

MidEast, 

L.America 

No logistic fits in all but 

core market (Denmark, 

onshore) Su
p

p
ly

-S
id

e 
T

ec
h

n
o

lo
gi

es
 

Power – 
Solar PV 
1975-2007 

Globalii-a USii-a (1) Japan, 

Germanyii-a 

(2) rest of 

OECDii-a 

Non-OECDii-a No logistic fits: still 

exponential growth in all 

regions 

Passenger 
Jet Aircraft 
1958-2007 

Boeing + 
Airbus 

Boeing Airbus n/a N.B. Regions based on 

manufacturers not sales; 

no (reliable) data for FSU 

Passenger 
Cars 
1900-2005 

Global US (1) W. Europe, 
Canada, Japan 
(2) FSU, minor 
OECD 

Non-OECDii-a No logistic fits to 

exponential growth in 

developing countries 

E
n

d
 U

se
 T

ec
h

n
o

lo
gi

es
 

Compact 
Fluorescent 
Light Bulbs 
1990-2003 

Globalii-a N. America, 
W. Europe 

Asiaii-a Rest of 

Worldii-a 

No logistic fits in all but 

core market (Western 

OECD) 

i OECD = Organisation of Economic Cooperation and Development corresponding to developed 
countries; FSU = former Soviet Union corresponding to economies in transition, i.e., including 
Eastern Europe; L. America = Latin America; MidEast = Middle East. 
ii Logistic function could not be fitted to data series for following reasons: ii-a insufficient time 
series to fit logistic function with reliable asymptote estimate as growth still in exponential 
phase; ii-b insufficient capacity so time series data overly volatile for logistic fit. 
Data sources: Refineries - (OGJ 1999; OGJ 2000; Enos 2002; BP 2008); Coal, nuclear, natural gas 

power - (Platts 2005); Wind power - (BTM_Consult 2002; Danish_Energy_Agency 2008); Solar 



photovoltaics – (Maycock 2002); Passenger jet aircraft - (Jane's 1998) with supplementary data 
from online sources including www.airliners.net, www.flightglobal.com, www.boeing.com, 
www.airbus.com; Passenger Cars - (AAMA 1980; AAMA 1995; AAMA 1997) with supplementary 
data from online sources including US National Highways Traffic Safety Agency 
(www.nhtsa.dot.gov) and European Automobile Manufacturers’ Association (www.acea.be); 
Compact fluorescent light bulbs – (IEA 2006). For further details on data sources, see: (Wilson 
2009). 

 
 
Comparing the growth of different energy technologies requires a common 
metric representing size or extent. We used cumulative total capacity expressed 
in MW. For the technologies analyzed, capacity data were either directly 
available or readily derivable. The capacity of power generation and electric end 
use technologies are naturally expressed in MW; refinery capacity in barrels per 
day is simply converted as is vehicle engine capacity in horsepower; and so on. 
 
Alternative metrics of size include output / production, investment cost, or 
metrics of ‘effort’ including labour requirements, R&D, material inputs, and so 
on. We selected capacity as it best captured the potential contribution of a 
technology to growth and transformation in the energy system. Using capacity 
data rather than input or production data also preserves the highest degree of 
generality. Thus, differences between technologies in terms of efficiency 
(affecting production) or capital intensiveness and labour productivity (affecting 
inputs) can be treated as potential explanatory variables for any differences 
observed. 
 
Cumulative total capacity was preferred to capacity additions for two reasons. 
(Both are shown for nuclear power in Figure 3). Firstly, cumulative totals contain 
the whole history of capacity growth. This is appropriate for a comparison of 
long-term growth dynamics between past and future. Secondly, cumulative totals 
smooth short-term growth volatility and so lend themselves more readily to 
fitting a common functional form. 
 
An important consequence is that the cumulative total capacity data used do not 
take into account capital turnover (decommissioning, retirement, substitution, 
etc.). So differences between technologies in terms of capital stock lifetime and 
turnover rates are also internalised within the meta-analysis, offering further 
potential explanations for any differences observed. 
 
Finally, it should be noted that cumulative capacity or production data are not 
commonly used in logistic function analyses of technology growth dynamics. 
More common are units of growth which capture annual changes relative to the 
size of the market, population, economy, etc., as in the car ownership per capita 
example given in Section 2.3; see also (Marchetti & Nakicenovic 1979; Grübler 
1998). In these cases, saturation describes a constant market share or a constant 
ratio between output growth and ‘system’ growth. In contrast here, the use of 
cumulative capacity as the unit of growth means that saturation describes zero 
growth, a complete cessation of capacity additions. 



2.5 Fitting the Logistic Functions 

For each technology in each of the four spatial regions (global, core, rim, 
periphery), we tested the fit of logistic growth functions on the historical data 
series of cumulative total capacity, expressed in MW. We used the “Logistic 
Substitution Model II” (LSM2) software, developed at the International Institute 
for Applied Systems Analysis and freely available online. 
 
We used two criteria to define acceptable fits of the logistic functions: 
i. goodness of fit measure (adjusted R2) > 95%; 
ii. historical data reaching > 60% of estimated asymptote (K). 
 
The strict goodness of fit criterion ensured that the fitted logistic functions 
accurately described the historical data. The second criterion required that a 
technology’s actual cumulative total capacity had to have passed its maximum 
growth rate (or inflection point, t0) and reached at least 60% of its estimated 
saturation level. This ensured reliable estimates of the asymptote parameter, K. 
 
If historical data extends only through the initial commercialisation and takeoff 
phases, it is difficult to estimate reliably if and when growth will pass an 
inflection point and slow, and in particular, the level at which it may finally 
saturate (Debecker & Modis 1994). For historical data series that not have 
reached 50% of the estimated asymptote parameter, K, it is not possible to 
distinguish logistic from exponential growth. Hence the second criterion 
prevents a high goodness of fit measure (the first criterion) for a falsely precise 
logistic function. For more details of logistic model estimation and uncertainties, 
see: (Grübler 1990; Debecker & Modis 1994). 
 
An important consequence of the second criterion is that technologies still 
experiencing exponential growth in one or more regions had to be excluded from 
the meta-analysis. These are shown in Table 1 in grey, with corresponding 
explanatory notes in the final column. Examples include: wind power (all regions 
except core); solar PV (all regions); compact fluorescent light bulbs (all regions 
except core). 
 
In general, we fitted logistic functions to the full historical data period available, 
from first commercial introduction to the present. However, for technologies 
with distinct, sequential phases of growth, we fitted logistic functions to the ‘1st 
phase’ of growth if – and only if - it evidenced a clear plateau (or 1st phase 
asymptote). This was the case for refineries and natural gas power following the 
1970s oil shocks. In the case of natural gas power, capacity growth reached a 
plateau during the late 1970s, most notably in the US where regulations 
prohibited the use of natural gas for electricity generation given its perceived 
scarcity against a backdrop of falling demand (Lee & Loftness 1987). In the case 
of refining in the major OECD & former Soviet Union markets (core region), total 
industry capacity peaked in 1979 before falling through the 1980s as demand for 
refinery output fell, utilisation rates of existing regional capacity rose, and 
capacity expansions in Asia and elsewhere gained market share with a 
concomitant rise in the international trade of oil products. 
 



So for both natural gas power and refineries, logistic functions were fitted to 
capacity data in the core markets up to the ‘1st phase’ asymptote of the early 
1980s. The same data period was then applied to the rim and periphery markets. 
The validity of these ‘1st phase’ logistic functions is not affected by the 
subsequent decline of refinery capacity in contrast to the stabilization and then 
resurgence of natural gas power. 
 
The same point about ‘1st phase’ growth applies equally to the logistic function 
shown in Figure 3 to describe the growth dynamic of nuclear power globally 
from 1956-2000. The fitted logistic function explains over 99% of the variance in 
the actual cumulative total capacity data (fit criterion 1), and is based on a time 
series reaching 98% of the estimated asymptote parameter, K (fit criterion 2). 
The use of this fitted logistic function in the meta-analysis is purely descriptively; 
it in no way precludes a potential 2nd phase of future growth spurred by 
greenhouse gas emission constraints or otherwise. 
 
In sum, any period of historical growth described accurately and reliably by a 
logistic function is included in the meta-analysis. These periods may capture a 
technology’s historical growth dynamic culminating in the present (e.g., nuclear 
power globally), culminating in the past (e.g., refineries in the OECD and former 
Soviet Union countries), or showing a distinctive logistic phase nested within a 
longer dynamic (e.g., natural gas power in the OECD). There is no a priori 
constraint that such periods have to span the time from the first introduction of a 
technology to its final saturation. 

2.6 Controlling for Growth in the Energy System 

As the energy system and final demand grows, so too will the total installed 
capacity of a technology needed to provide a given share of a particular energy 
service (notwithstanding dramatic offsetting gains in efficiency). Consequently, 
the extent of growth of a technology, measured by the logistic function’s 
asymptote parameter, K, will be positively influenced by the overall size of the 
system into which the technology diffuses. Comparing the extent of growth 
between technologies therefore needs to control for these differences in system 
size. 
 
These differences arise because the commercial energy supply has grown 16-fold 
over the course of the 20th century (Smil 2000). The historical data used in the 
meta-analysis include some long established technologies which were first 
commercialised early in the 20th century (e.g., coal power, cars), and other more 
recent technologies which began mass diffusion more recently (e.g., wind power, 
compact fluorescent light bulbs).  
 
To take changes in system size into account, we ‘normalise’ extents of growth (K) 
by dividing by the primary energy consumption (in EJ) at the inflection point (t0) 
of the fitted logistic function (see Figure 2). As the logistic function is 
symmetrical about t0, it provides a common time point for cross-technology 
comparisons. The resulting normalised extents of growth (K in MW / primary 



energy in EJ at t0) are not meaningful in absolute terms, but are useful for 
comparative purposes between technologies, i.e., should be treated as an index. 
 
Although the normalisation process is important for conceptual consistency, in 
practice it does not substantively change the relative extents of growth between 
technologies. This is because the extents of growth vary by 2-3 orders of 
magnitude (e.g., cars with K~108 MW vs. nuclear power with K~105 MW), 
whereas primary energy consumption at different t0 values varies by less than 1 
order of magnitude. 
 
Other differences in system size arise due to the spatial disaggregation into core, 
rim and periphery regions; moreover, these may vary between technologies. To 
match the normalisation process to this spatial disaggregation, primary energy 
consumption data were similarly disaggregated into 4 regions: OECD, former 
Soviet Union countries & Asia, and the rest of the world (primarily Africa and 
Latin America). These ‘primary energy regions’ were used to normalise the core, 
rim, and periphery regions respectively. 

2.7 Scenario data 

This methods section has focused thus far on the historical data. The same 
process of selecting technologies, collecting time series data, fitting logistic 
functions based on accuracy and reliability criteria, and normalising extents of 
growth for differences in system size, were also applied to technology 
projections in future scenarios under carbon constraints. 
 
The principal difference is self-evident: future data were derived from energy 
system model projections not the historical record. Data availability was 
therefore determined by model structure and technological resolution. An 
important consequence was that only supply-side power generation 
technologies could be included in the scenario data analysis as the future 
deployment of specific end use technologies is not modelled explicitly. Further 
details on the scenarios and technologies analysed are included in Section 4. 
 

3 Historical Analysis 

3.1 Relationship between Extent & Duration of Growth 

Figure 4 shows the historical data series of cumulative total industry capacity for 
the energy technologies shown in Table 1. Fitting logistic functions to these data 
controls for the changing dynamic of growth over time (and over the lifecycle of 
a technology). The K and Δt parameters of the fitted logistic functions then allow 
the extents and rates of growth to be compared for different technologies. As 
noted in Section 2.6, the extents of growth are normalised for changes in the size 
of the energy system into which the different technologies diffuse. 



 
 
FIGURE 4. CAPACITY GROWTH OF SELECTED ENERGY TECHNOLOGIES IN THE 20TH CENTURY. 

 
 
Intuitively, and in general, a technology should take longer to diffuse to a greater 
extent. Part of the explanation for the greater extents of growth for cars and 
refineries shown in Figure 4 is their longer time horizons. (The first refineries 
date back to the 1860s, but data are only available from 1945). So the extent and 
duration of growth should be positively correlated, notwithstanding the many 
factors that affect growth dynamics (Grübler et al. 1999). 
 
Figure 5 confirms this basic intuition by plotting the normalised K and Δt 
parameters of the fitted logistic functions for 8 energy technologies in their 
respective core regions. The left-hand graph shows the relationship on linear 
axes. The distorting effect of the very high relative extent of growth of cars is 
‘corrected’ in the right-hand graph which shows the same data but on a log y-
axis. The core region is used as it has the most number of data points (see 
Section 2.3 for details of the regional disaggregation). Logistic functions can be 
more reliably fitted to capacity growth which has passed its initial exponential 
growth phase; this is more likely in core regions where the growth dynamic first 
began. 



 
 
FIGURE 5. RELATIONSHIP BETWEEN EXTENT AND DURATION OF GROWTH FOR 8 ENERGY 

TECHNOLOGIES IN THEIR CORE REGIONS. (BOTH GRAPHS SHOW SAME DATA; RIGHT-HAND 

GRAPH HAS LOG Y-AXIS). 

 
 
The right-hand graph of Figure 5 confirms the intuition of a positive correlation 
between the extent and duration of growth. Surprising, however, is the 
remarkable consistency of the extent – duration relationship between both end 
use and supply-side technologies of markedly different characteristics and 
vintage. An exponential best fit line explains 85% of the variance between the 8 
data points shown (normalised K = 21.4Δt0.16). 

3.2 Regional Analysis of Extent – Duration Relationship 

The extent - duration relationship in the core region also holds for other regions 
although the number of data points become sparser. Figure 6 plots normalised K 
against ∆t for all the data points available. The rim region is split into ‘rim1’ for 
former Soviet Union countries and ‘rim2’ for all other countries as 20th century 
energy technologies tended to diffuse in OECD countries and former Soviet 
Union countries either sequentially or concurrently, and then subsequently into 
non-OECD countries. Isolating the former Soviet Union countries also allows for 
structural differences in technologies’ diffusion context to be explored. 
 
The best fit lines for the technology data points in the core, rim1 and rim2 
regions are consistently exponential (see Figure 6). Also observable is the 
increasing rate of growth as a technology diffuses spatially. In other words, from 
the core to rim1 to rim2 regions, a given extent of growth requires a shorter 
duration of growth, confirming established theory (see Section 2.3).3 

                                                        
3 The best fit line for the global data might be expected to lie somewhere between the core and 
periphery regions in terms of steepness. However, it is actually slightly flatter than the best fit 
line for the core region data. The durations of growth (Δt) globally and in the core region are very 
close as diffusion in the core region strongly influences the overall global growth dynamic (in 
terms of the time taken to diffuse from 10% to 90% of the final saturation density). The extent of 
growth (K) is much larger globally than in the core region. However, the normalized extents are 
generally lower globally than in the core region which pulls the extent – duration relationship 
downwards. As the global growth dynamic is ‘stretched out’ in time at the tail by the inclusion of 



 
No best fit line is shown for the periphery region which has only 3 data points. 
The rightmost data point with a ∆t of over 30 years is for coal power, and is 
biased rightwards by the inclusion of South Africa in the periphery region (as 
part of Africa) despite its long history of coal exploitation under the trade 
restrictions of the apartheid era. A best fit line through the 2 remaining data 
points would be slightly steeper than the rim2 line as would be expected. 
 
FIGURE 6. REGIONAL COMPARISON OF RELATIONSHIPS BETWEEN EXTENT AND DURATION OF 

GROWTH.  

 
 

3.3 Cross-Technology Consistencies in the Extent – Duration Relationship 

As noted above, the positive relationship between the extent and duration of 
growth shown in Figure 5 is intuitive; however, the striking consistency of this 
relationship across different technologies is not. The technology lifecycles of 
refineries, power plants, jet aircraft, cars and light bulbs are characterised by 
distinctive cost and efficiency profiles, capital intensiveness, turnover rates, 
market niches, regulatory contexts, manufacturing bases, and so on. The 
technologies analysed also serve different functions within the energy system, 
converting primary energy to energy carriers or directly servicing end user 
needs. Any or all such differences would be expected to influence the extent and 
duration of a technology’s growth. 
 
But the observed consistency in the extent – duration relationship suggests 
influences on growth act proportionally on both ∆t and log K (to preserve the 
linear relationship on a semi-log plot). As an example, a strongly supportive 
regulatory context for a technology may successfully reduce the duration of 
growth (shorter ∆t) but in so doing also reduces the potential extent of growth 
(lower K) possible during that shorter duration. Conversely, demand for a 
technology which is dispersed and only incrementally increasing may imply slow 
growth rates and so a longer duration of growth (longer ∆t) but an associated 

                                                                                                                                                               
the periphery region, the inflection point, t0, at which primary energy is measured for the 
normalization is delayed, meaning the energy system is relatively larger and so the normalized 
extent relatively lower.  



potential for growth to be much more pervasive (higher K). This simple 
relationship between ∆t and K describes the inherent inertia of a large, complex, 
inter-related system of technologies, infrastructures and end user needs. 
 
It is worth recalling that the extent – duration relationship is for cumulative total 
capacity data. So the observed consistency across both technologies and spatial 

scales describes the energy system’s ability to accumulate energy conversion 

potential over time; or alternatively, the ability of actors within an energy system 
to manufacture and install capital stock. A full discussion of historical growth 
dynamics can be found in (Wilson 2009; Wilson forthcoming). Some of the main 
observations are summarised here. 
 
Firstly, final demand for energy technologies converting electricity and oil 
products into useful services has grown inexorably over the 20th century. This in 
turn has fed the demand for technologies to extract, process, transport and 
convert primary energy. A consistent extent – duration relationship may simply 
describe the dynamics of demand growth. How rapidly and how extensively 
demand changes is both driven and constrained by the adaptability of end user 
needs and wants, which are embedded in practices, routines, social networks, 
organisational structures and so on. Technology diffusion models emphasize the 
importance of reducing perceived uncertainties and risks as innovators and then 
early adopters seed an often lengthy process of social learning (e.g., Rogers 
2003). Thus the inherent inertia to change in technological systems is similarly 
found in social systems: arguably, the two are inseparably entwined. The 
consistent extent – duration relationship suggests both face the same trade-off 
between rapid growth and pervasive growth.  
 
Secondly, meta-analyses of energy technologies and innovation have found a 
common set of underlying mechanisms that shape innovation, market formation 
and early diffusion (Grübler 1998; Grübler et al. 2011). These include R&D 
investments, learning and scale effects, knowledge spillovers (and knowledge 
depreciation), entrepreneurialism, actor networks, demonstration activities, 
niche market applications, and so on. A consistent extent – duration relationship 
for different technologies may signal limitations in the capability of these 
underlying mechanisms to support technologies through into the mass market. 
Thereafter, growth rates are influenced by factors including relative advantage 
over incumbent technologies, inter-dependencies with other technologies and 
infrastructures, the size and growth of niche markets (see above) (Grübler et al. 
1999). But these factors may equally influence potential growth extents. 
 
Thirdly, the technologies analysed here are biased in two ways. They are all 
‘winners’, having successfully grown and approached (or reached) saturation. 
They also have growth dynamics that can be reliably and accurately described in 

hindsight by logistic functions. A consistent extent – duration relationship may 
only describe this biased sample of all energy technologies and so may not be 
generalisable. However, our interest is in applying the extent - duration 
relationship to future winners based on scenario depictions. So a similar future 

hindsight bias also describes the following analysis. 
 



4 Scenario Analysis 

4.1 Validating Future Scenarios Against Historical Evidence 

The consistent extent - duration relationship for energy technology growth 
shown in the previous section provides a historical comparator for externally 
validating the projections of energy system models (see Section 2.1). The null 
hypothesis is that projected growth dynamics are consistent with those 
evidenced historically in terms of their logistic form, and in terms of the 
relationship between the duration and extent of growth. Testing this hypothesis 
is a means of validating the quantitative model outputs used to enrich carbon 
constrained scenarios. 
 
As noted in Section 2.7, this means analysing technologically-explicit future 
scenarios in an identical manner to the historical data sets, by: 

i. compiling time series data of cumulative total capacity (in MW) for 
energy technologies in future scenarios; 

ii. fitting logistic functions to the time series data subject to a goodness of fit 
criterion (adjusted R2 > 95%) and a reliability criterion (maximum 
capacity data > 60% of estimated asymptote); 

iii. normalising extents of growth for differences in energy system size by 
dividing K by primary energy consumption at t0 of the logistic function 
(using primary energy data from the same scenario); 

iv. plotting the extent – duration relationship, and comparing with the 
historical data. 

4.2 Selecting Scenarios & Technologies for the Meta-Analysis 

We used carbon constrained scenarios generated by the MESSAGE energy 
system model as part of an ‘Integrated Assessment Modelling Framework’ which 
linked the technologically-explicit representation of the energy system with 
other greenhouse gas emitting sectors, including industry, agriculture and 
forestry (Riahi et al. 2007). A wide range of scenarios were generated within 
different scenario families and under different carbon constraints. Table 2 shows 
the full set of combinations; the 8 scenarios selected for this external validation 
exercise are marked in bold.  
 
The global A2r, B1 and B2 scenario families vary across a range of exogenous 
drivers (including economic growth, population growth, rates of technological 
change, and energy intensity improvements) and so describe a wide range of 
greenhouse gas emission profiles and stabilisation scenarios over the period 
2000-2100 (Nakicenovic et al. 2000). In the ‘Integrated Assessment Modelling 
Framework’ analysis used here, the A2r family has the highest baseline 
emissions, and its most constrained stabilisation scenario is 670 ppmv (see 
Table 2). The B1 family has the lowest baseline emissions and stabilisation 
scenarios between 480 and 670 ppmv. 



TABLE 2. MESSAGE-GENERATED SCENARIOS AS PART OF THE INTEGRATED ASSESSMENT 

MODELLING FRAMEWORK (RIAHI ET AL. 2007). SCENARIOS IN BOLD ARE USED IN THE META-
ANALYSIS. 
Scenario 

Family 

Carbon Constraints 

stabilisation target for 2100 in CO2-equivalent ppmv* 

No 

Constraints 

A2r    670 820 970 1090 1390 baseline 

B1 480 520 590 670     baseline 

B2 480   670     baseline 

* i.e., stabilisation targets of atmospheric CO2-equivalent concentrations measured in parts per 
million by volume. 

 
For the purposes of the meta-analysis, scenarios were selected to examine and 
compare the widest possible range of low carbon technology projections. This 
meant the least constrained scenario in each scenario family (the 3 baselines), 
the most constrained scenario in each family (B1 & B2 480 ppmv, A2r 670 
ppmv), and the most constrained scenario shared by all families (670 ppmv). The 
most extensive deployment of low carbon technologies is found in the most 
constrained scenarios, although the specific technology or technologies which 
are emphasized varies between scenario. For example, the B1 scenario family 
responds to carbon constraints with strong growth in renewables, particularly 
solar; the A2r scenario family rather emphasizes nuclear, bio-energy, and carbon 
capture and storage. 
 
For each of the 8 scenarios selected (see bold cells in Table 2), cumulative 
installed capacity data were extracted for low carbon technologies resolved by 
the MESSAGE model. This limited the analysis to alternative forms of electricity 
generation for which technology-specific data were available: 

• nuclear power; 
• natural gas power; 
• coal power with carbon capture and storage (coal CCS); 
• coal and natural gas power with carbon capture and storage (fossil CCS); 
• wind power; 
• solar PV power (centralised + decentralised). 

4.3 Fitting the Logistic Functions to Scenario Data 

For each of the 6 * 8 technology-scenario combinations, cumulative total capacity 
data for 2000 – 2100 were recalibrated so they continued from the historical 
data series up to the year 2000.4 As with the historical data, capital stock lifetime 
and turnover were not treated explicitly; rather they are internalised within the 
cumulative total capacity data and so may potentially explain differences in 
modelled growth dynamics between technologies. Each data series was compiled 
globally, and for selected technology-scenario combinations was then 
disaggregated into core, rim and periphery regions (respectively: OECD, former 
Soviet Union + Asia, rest of the world). 
 

                                                        
4 The decadal time steps in MESSAGE start from 1990. Cumulative total capacities are initialized 
at the net installed capacities for 1990 (i.e., no pre-1990 installed capacity is carried over into the 
model). 



Logistic functions were fitted to the cumulative total capacity data describing the 
combined historical + future time series. In almost all the technology-scenario 
combinations, logistic functions accurately and reliably described the modelled 
growth dynamic. In a few cases, the projected growth was still exponential in 
2100 and so the extent of growth from the model output was less than 60% of 
the fitted asymptote value (the 2nd fit criterion, see Section 2.5). Selected results 
are shown below; for full details of the scenario data and fitted logistic functions 
including all underlying data, see (Wilson 2009). Although the historical analysis 
presented data for the core region as it maximised the number of data points, 
here, global data are presented. In the scenario analysis, no further information 
is gained by moving to the regional level, and all results were found to be 
independent of the spatial disaggregation. 
 
Figure 7 shows an example of the combined historical + scenario time series data 
for natural gas power and nuclear power globally (data points) together with the 
fitted logistic functions (lines). The correspondence of the logistic functions with 
the underlying data is clear. 
 
Differing technological responses to carbon constraints between the scenario 
families are also clear: the A2r scenarios see more nuclear power whereas the B2 
scenarios rely more on natural gas. Similar differences exist for other 
technologies depending on the scenario family storyline and the more specific 
technological cost, performance, learning and other inputs used to model the 
scenarios (see Riahi et al. 2007 for more details). In the case of nuclear power, 
future growth to a cumulative total capacity of 10 - 25 TW by 2100 renders 
barely visible the ‘1st phase’ of logistic growth to the current level of 0.4 TW 
cumulative total capacity (see Figure 3).5 

                                                        
5 This is similar, though not quite as marked, for natural gas power which reaches a cumulative 
installed capacity of 4-11 TW in 2100 compared to 0.6 TW in 2000. Other technologies assessed 
in the scenarios - CCS, wind power, and solar PV – all have very low cumulative total capacities in 
2000. 



 
 
FIGURE 7. GROWTH IN CUMULATIVE TOTAL CAPACITY GLOBALLY OF NATURAL GAS POWER 

(1900-2100) & NUCLEAR POWER (1960-2100). 

 

 
 



4.4 Relationship between Extent & Duration of Growth in the Scenarios 

4.4.1 Global Data 

The relationship between the extent and duration of growth globally 
(normalised K vs. ∆t) for the 6 low carbon energy technologies in each of the 8 
future scenarios is shown in Figure 8. Different data points are used for each of 
the 6 technologies; specific scenarios are not distinguished. Unfilled data points 
(in outline form only) are for technology-scenario combinations for which 
projected capacity in 2100 had not yet reached 60% of the estimated asymptote 
(K), and so had breached the reliability criterion (see Section 2.5). These unfilled 
data points are included for indicative purposes only. As with the historical data, 
the asymptote parameter, K, from the fitted logistic function was divided by 
primary energy consumption in year t0 (the inflection point of the logistic curve) 
to normalise for differences in system size. Primary energy data were taken from 
the same scenario as the technology growth projection (e.g., B1 670 primary 
energy projections were used to normalise extents of growth for technologies in 
B1 670 scenarios). 
 
FIGURE 8. RELATIONSHIP BETWEEN EXTENT AND DURATION OF GROWTH GLOBALLY FOR 6 

LOW CARBON ENERGY TECHNOLOGIES IN FUTURE SCENARIOS 

 
 
Various points are salient in Figure 8. Firstly, the extent – duration relationship 
is again consistent across the different technologies along an exponential trend 
line. Secondly, the dispersion of data points is much greater between 
technologies than between scenarios. The data points for each technology are 
relatively well clustered, though the two CCS technologies (coal and fossil) are 
more dispersed as CCS makes a relatively low contribution (and so low extent of 
growth) in the B1 scenarios. The exceptionality of CCS is discussed further 
below. Thirdly, nuclear power is generally projected to grow to the greatest 
extent (in terms of MW of cumulative total capacity), followed by the 
intermittent renewables (solar PV and wind), followed by the fossil fuels 
(natural gas, gas + coal with CCS, just coal with CCS). Again, these relative 



contributions to low carbon growth – in terms of cumulative total capacities - are 
broadly consistent across the widely different scenarios. 
 
Figure 9 shows the same data points as Figure 8 but without the colour 
distinctions between technologies and without the unfilled (unreliable) data 
points. Also included are exponential best fit lines for all the historical 
technologies (black squares, solid black line), for only the historical power 
generation technologies (black circles, dotted black line), and for all the scenario 
technologies (grey diamonds, solid grey line). We emphasize that the best fit 
lines only describe the general relationship between the extent and duration of 
growth for energy technologies. In the case of the scenarios, this relationship is 
also further generalised for different future scenarios. The patterns shown are 
therefore at a high level of aggregation. 
 
The important, and surprising implication of Figure 9, is that the scenario 

projections of energy technology growth appear generally more conservative than 

the historical record suggests possible. By conservative, we mean requiring a 
longer duration of growth to reach a given extent of growth, i.e., towards the 
bottom right hand corner of Figure 9. With the exception of some of the low CCS 
data points, all the scenario data points lie below and to the right of the historical 
data points. 
 
This general finding holds if the historical comparator for the scenario data 
points is limited to power generation technologies (coal, natural gas, nuclear). 
Their extent – duration relationship is less steep than for all historical 
technologies (i.e., slower rate of growth) as shown by the dotted black best fit 
line. Although, this trend should be treated with some caution due to the small 
number of data points, almost all the scenario data points still lie below and to 
the right, i.e., are more conservative.  
 
FIGURE 9. COMPARISON OF EXTENT – DURATION RELATIONSHIP GLOBALLY: HISTORICAL 

EVIDENCE & SCENARIO PROJECTIONS 

 



 

4.4.2 Core Region Data 

As with the historical data, the patterns observed in Figure 8 and Figure 9 hold if 
the global data are disaggregated regionally. Figure 10 shows the same plot as 
Figure 9 but for the core region rather than globally, and for a reduced number 
of scenario technologies: nuclear power, fossil CCS and solar PV. 
 
Two observations from Figure 10 are salient. Firstly, the historical data points 
and scenario data points for each technology have the same relative position in 
the core region as globally. The findings above relating to the global data apply 
equally to the regional data. Secondly, the fossil CCS data points are again the 
closest to the historical pattern, and in some cases are overlapping. The 
exceptionality of CCS is discussed further below. 
 
FIGURE 10. COMPARISON OF EXTENT – DURATION RELATIONSHIP IN THE CORE REGION: 
HISTORICAL EVIDENCE & SCENARIO PROJECTIONS 

 
 
 

4.4.3 Explaining Extent – Duration Relationships in the Scenarios 

The main difference between the historical record and future scenarios is the 
longer durations of growth for low carbon technologies in the scenarios. In 
contrast, extents of growth in the scenarios are broadly in line with those 
experienced historically once growth in the energy system as a whole is 
controlled for. These normalised Ks range from 3 to 5 orders of magnitude, with 
the data point for cars as a high outlier historically, and a few CCS data points as 
low outliers in the scenarios. (Recall that these normalised Ks are meaningful 
only relative to one another, and not in absolute terms; see Section 2.6 for 
discussion). 



 
Figure 11 shows the duration of growth for nuclear power globally, measured by 
the Δt of the fitted logistic functions to both historical data and scenario 
projections. The two unfilled bars (in outline form only) are not considered 
reliable as the projected capacity in 2100 had not yet reached 60% of the 
estimated asymptote (K), and so had breached the reliability criterion. These 
unfilled data points are included for indicative purposes only. 
 
Figure 11 clearly shows the substantially longer durations of growth of nuclear 
power capacity in all the scenarios (all Δt > 85 years), compared to the growth 
evidenced historically (Δt = 19 years). A similar pattern is found with the 
durations of growth for other low carbon technologies in the scenarios (to the 
extent that a technology has an historical analogue). 
 
In the scenarios, nuclear power is projected to grow by two orders of magnitude 
in terms of cumulative total capacity (from ~0.4 TW in 2000 to 11-25 TW in 
2100). But once this huge increase in the extent of nuclear power capacity is 
normalised for growth in the overall system, the duration or timescale over 
which it takes place is much longer than historical growth dynamics suggest is 
possible. To bring the scenario data points for nuclear power in line with the 
historical extent – duration relationship shown globally in Figure 9, either the 
extent of growth (normalised K) would have to increase by another 3 orders of 
magnitude, or the duration of growth (∆t) would have to halve. 
 
FIGURE 11. DURATIONS OF GROWTH FOR NUCLEAR POWER: HISTORICAL EVIDENCE & FUTURE 

SCENARIOS 

 
 

4.4.4 CCS Exceptionality 

The extent – duration relationship in the scenarios for CCS is closer to the 
historical pattern than for the other low carbon technologies analysed. In 
particular, CCS has a shorter duration of growth for a given extent of growth (i.e., 
a lower Δt for a given normalised K). Globally, coal CCS and all fossil CCS have Δts 
in the range of 24 – 66 years compared to the historical range of Δts across all 



technologies of 19 – 64 years (with nuclear power and cars as the minimum and 
maximum respectively). 
 
This arises because the models treat CCS as a backstop technology, i.e., one 
whose relative attractiveness in terms of cost or other performance 
characteristics become secondary to the need to meet specified carbon 
constraints by a given point of time. As a result, growth in CCS capacity is 
concentrated in the second half of the 21st century, so compressing its duration 
measured by Δt. This delayed growth is a function of the cost characteristics of 
CCS used in the models which only become attractive when discounted over long 
time frames. Additional deployment constraints may be used to reflect the 
technology’s relative immaturity and lack of demonstrated viability at scale. 
 

5 Discussion: Why do the Scenarios Appear Conservative? 

5.1 Key Findings 

The comparative analysis of energy technology growth dynamics described in 
Sections 3 & 4 centres on the relationship between the extent of growth and the 
duration of growth. These are measured respectively by the asymptote 
parameter, K, and the value of Δt from logistic functions fitted to both historical 
and scenario data expressed in terms of cumulative total capacity (in MW). Only 
those logistic functions that meet stringent criteria of accuracy and reliability are 
included. We emphasize again that logistic functions are used simply to describe 
observed historical trends or modelled future trends and are in no way 
predictive. As explained in Section 2, the reason logistic functions are used is to 
control for the changing dynamic of growth over time and so enable comparisons 
between technologies and time periods. 
 
The striking finding from this meta-analysis is that projected capacity growth in 
carbon constrained future scenarios appears conservative relative to what has 
been evidenced historically. Specifically, a given extent of growth for a 
technology in the scenarios requires a longer duration of growth than has been 
the case historically, once changes in the overall size of the energy system are 
taken into account. We caveat this finding by noting that the historical data 
points are relatively sparse, particularly in the electricity generation sector from 
which the scenario data are drawn. 
 
Here, we posit and test various hypotheses to explain this apparent scenario 
conservatism. These are summarised here, and discussed further below: 
 

i. Past - Future Comparability (see Section 5.2): 
• the historical data on technology growth can not be directly compared 

with scenario data as past and future are discontinuous. 
ii. Time Series Artefact (see Section 5.3): 

• a single time series combining historical and future capacity data 
inherently shows longer durations of growth than the shorter periods 
used in the historical analysis.  



iii. Model Conservatism (see Section 5.4): 
• the MESSAGE model, or technologically-explicit energy system models 

in general, is run using conservative parameter estimates and/or 
deployment constraints for low carbon technologies. 

5.2 Past – Future Comparability 

The need for discontinuities in the trends of both energy and carbon intensity 
was discussed in the introduction. So: do fundamental differences between the 
historical and future contexts of energy technology growth mean the historical 
record is not a meaningful comparator for scenario data? 
 
The future represented in the scenarios tends to describe a world with carbon 
constraints, policies for inducing low carbon technological change, more 
globally-integrated technology markets and so more rapid spatial diffusion, and 
stronger regional growth in Asia. All these differences in the future context for 
energy technology growth would seem to imply more aggressive not more 
conservative extent – duration relationships for low carbon technologies such as 
wind, solar PV, nuclear, and CCS. 
 
Conversely, however, relying on regulation, externality pricing, and other 
supporting policies to drive low carbon growth may be slow or inadequate. The 
current dominance of fossil fuels relates to their relative advantages over low 
carbon technologies in terms of cost, energy density, convenience, versatility and 
substitutability (Smil 2003). Moreover, a transition away from the energy 
infrastructures and institutions which have co-evolved with fossil fuels over the 
last century or more carries its own costs and inertias (UnRuh 2000). The fossil 
fuel present arrived through a centennial process of incrementally innovating 
and building “on the shoulders of giants” (Acemoglu et al. 2009); the magnitude 
of decarbonisation required in the future affords no such gradualism. Although 
resource constraints may play an increasing role in driving this transition, such 
considerations would seem to support conservatism in the scenarios.   
Accelerated policy-induced technology deployment without lengthy formative 
periods of experimentation and testing also implies additional risks (Wilson 
forthcoming).  
 
But despite these competing arguments, it is important to note that whether 
discontinuities between past and future imply faster or slower growth potentials 
for energy technologies is not of immediate relevance. This is because the 
apparent scenario conservatism is not observed between past and future, but 
between past and energy system model representation of the future. The issue, 
therefore, is the extent to which MESSAGE takes into account the various future 
influences supporting either faster or slower technology growth. Here the 
argument is clearer as there is no obvious discontinuity between past and model 

representation of the future that can explain why projected growth appears 
conservative relative to the historical record. MESSAGE bases its mechanisms 



and drivers of technology deployment on historical evidence.6 The same is true 
of technology-specific parameters such as cost, efficiency, inputs, outputs, and so 
on. As an example, unit cost assumptions for a technology are derived from 
extrapolations of historical trends and industry surveys of current practice; and 
unit costs fall over time as a function of cumulative deployment according to 
empirically-founded learning rates. 

5.3 Time Series Artefact 

The logistic functions fitted to scenario data described the growth in capacity 
over the combined historical + future time series, i.e., the full course of a 
technology’s (future) history. These combined time series all ended in 2100, but 
began as early as the 1900s (natural gas and coal power), or the 1950s (nuclear 
power), the 1970s (wind power and solar PV), and the 2020s or later (CCS). They 
ranged in length, therefore, from 80-200 years. For all 6 of the low carbon 
technologies analysed across the range of 8 scenarios, logistic functions were 
very accurate fits for this combined historical + future time series (the lowest 
adjusted R2 was 98%). 
 
But the historical analysis showed that logistic functions also describe growth 
dynamics for natural gas power from 1903 to the late 1970s (a ‘1st phase’ of 
growth) and for nuclear power from 1956 to 2000 (similarly a ‘1st phase’ of 
growth if nuclear power is again deployed at scale). In other words, the 
centennial pattern of logistic growth in the combined historical + future time 
series incorporates - and hides - at least one, and potentially more episodic 
periods of logistic growth. 
 
So: do the centennial logistic functions used in the scenario analysis inherently 
mean longer durations of growth (and so higher ∆ts) than the episodic logistic 
functions used in the historical analysis? In other words, is the observed scenario 
conservatism simply an artefact of the length of time series data used in the 
scenario analysis? 
 
Again, we reject this argument for two reasons. Firstly, longer durations of 
growth (higher ∆t) should also mean greater extents of growth (higher K). 
Ultimately it is the extent – duration relationship which is conservative, not the 
duration in isolation. As shown in Section 4.4, scenario data points show 
substantially longer durations of growth for similar extents of growth as those 
evidenced historically, after controlling for changes in the size of the energy 
system. 
 
However, this does assume that the K and ∆t parameters of the logistic function 
are affected proportionately by different time frames of analysis, and specifically 
in this case, the move from an episodic to a centennial time frame. Do longer time 

                                                        
6 Note that this does not mean MESSAGE can faithfully reproduce historical dynamics, not least 
because MESSAGE is an optimisation model implicitly representing the perspective of a cost 
minimising social planner. This structural characteristic of MESSAGE should also make 
technological growth projections more aggressive rather than more conservative. 



frames increase ∆t proportionately more than K, and so inherently result in 
slower growth rates? 
 
An iterative exercise in fitting logistic functions to increasingly long periods of 
the same underlying data series offers only a partial answer to the question. 
Figure 12 shows two different sets of logistic functions. Each set shows 5 
different logistic functions fitted to increasingly long time frames of an 
underlying data series which is also logistic in form.7 The underlying data series 
is analogous to the centennial logistic functions from the scenario analysis. The 5 
fitted logistic functions are analogous to the episodic logistic functions from the 
historical analysis. And all 5 accurately describe the time frame of the underlying 
data series over which they are fitted. 
 
Figure 13 then shows the corresponding extent – duration relationships for both 
sets of logistic functions. The first set (left-hand graphs) clearly show a flattening 
of the K – Δt relationship as the time frame lengthens; Δt increases 
proportionately more than K (on a semi-log plot). The second set of logistic 
functions (right-hand graphs) clearly show a consistently straight K – Δt 
relationship independent of the time frame; Δt and K increase proportionately 
(on a semi-log plot). 
 
As both sets of 5 logistic functions accurately describe their respective 
underlying data series (Figure 12), this simple exercise suggests there is no 
inherent reason why a longer time frame should increase Δt proportionately 
more than K (on a semi-log plot). So the flatter extent – duration relationship of 
technology growth in future scenarios compared to the historical pattern is not 
simply an artefact of the methodology. However, as the first set of fitted logistic 
functions show (left-hand graphs), neither can it be ruled out as a potential 
explanation for apparent scenario conservatism. 
 
Figure 14 shows the same graphs as Figure 12 but with a log y-axis to emphasize 
the goodness of model fits over shorter time frames. All fitted functions should 
describe the initial period of growth in the underlying data series (from t=0 to 
around t=15). Figure 14 shows that this initial period is weakly described, 
particularly in the first set of functions (left-hand graphs). But this initial period 
is also the most relevant part of the overall data series as it corresponds to the 
time frame for the historical analysis. In part, therefore, this is an issue of 
function fitting accuracy and subjectivity. 

                                                        
7 Note that the episodic and centennial logistic functions describe the same initial growth, but 
differ thereafter in terms of rate, timing of the inflection point, and final saturation density. This 
distinguishes this exercise from the more common problem of identifying sequential logistic 
growth phases that are combined into an overall non-logistic growth pattern (Meyer 1994). 



 
 
FIGURE 12.  FITTING LOGISTIC FUNCTIONS OVER DIFFERENT TIME FRAMES. (EACH LOGISTIC 

FUNCTION SHARES THE SAME INITIAL GROWTH, BUT DIFFERS THEREAFTER IN TERMS OF RATE, 
INFLECTION POINT, AND ASYMPTOTE). 

 
FIGURE 13. EXTENT – DURATION RELATIONSHIPS FOR LOGISTIC FUNCTIONS FIT OVER 

DIFFERENT TIME FRAMES. 

 
FIGURE 14. UNCERTAINTIES IN LOGISTIC FUNCTIONS FIT OVER DIFFERENT TIME FRAMES. 
(LOG Y-AXIS EMPHASIZES UNCERTAINTIES DURING INITIAL GROWTH PERIOD AT LOW T). 

 

5.4 Model Conservatism 

Optimisation models such as MESSAGE are typically set up with constraints on 
technology deployment to prevent dramatic changes in model output as input 
parameters vary (Grübler & Messner 1996). This ‘flip-flopping’ behaviour is 
exacerbated by perfect foresight, i.e., models’ knowledge of expected technology 
cost trends throughout the scenario time frame. As a result, a cost minimal 



solution for a given set of model conditions may swing from a dominant market 
position of technology A to a dominant market position of technology B if 
technology B’s relative cost is reduced only marginally or technology B’s relative 
learning rate is increased only marginally. To prevent such unrealistic outcomes, 
MESSAGE uses market penetration constraints for technologies: e.g., maximum 
of x% growth in installed capacity over time period y. These constraints are 
based on observed trends and realistic extrapolations. 
 
So: are these market penetration constraints the reason for scenario 
conservatism? A similar argument applies to the cost and performance 
parameters used in MESSAGE for specific technologies. For example, capital cost 
reductions over time are derived from historically evidenced learning rates and 
scale economies, but these may be conservative over the centennial future time 
frames of the scenario analyses.8 

5.5 Summary & Further Research 

In sum, none of the hypotheses to explain the apparent scenario conservatism 
can be roundly rejected. The centennial timescales of future scenarios, the limits 
represented in MESSAGE on the potential for policy to induce a transition away 
from relatively advantageous fossil fuels, and the possible structural or 
parametric conservatism of MESSAGE with respect to technology growth in 
general, may all help explain the findings. 
 
On balance, the evidence points towards model conservatism as the most likely 
explanation, though as noted, CCS is an exception here (see Section 4.4.4). Model 
conservatism could be further investigated by incrementally relaxing market 
penetration constraints and/or increasing learning rate assumptions for a 
particular technology. This should result in a more extensive and shorter 
duration growth dynamic. The relevant data points in Figure 8 & Figure 9 should 
swing up and to the left, towards the historical extent - duration relationship. 
Taking the market penetration constraints as an example, a sensitivity analysis 
could estimate how low constraints on specific technologies’ growth would have 
to be in order to bring the extent – duration relationship in the scenarios in line 
with historical data (see Figure 9). These minimal constraints (and ditto with 
cost or learning rate assumptions) could then be compared with observed data 
to revisit their basis and determine whether they are overly restrictive. 
 

6 Conclusions 

The methodology set out in this paper is a means of externally validating the 
technology projections in future scenarios by comparing the relationship 
between extents and durations of growth with the historical record. The 
approach used should be of interest to the energy system modelling community 
as it provides a way to test model structure and parameters against 

                                                        
8 Learning can be modelled endogenously, but not in perfect foresight models as technologies are 
simply selected based on their (known) expected future costs. For further discussion, see 
(Gritsevskyi & Nakicenovic 2000; Ma & Nakamori 2009). 



observations. The analysis is first-order; potential explanatory variables for both 
observed and modelled growth dynamics, including the relative costs, 
efficiencies, and lifetimes of different energy technologies, are not addressed 
explicitly. It should also be emphasized that model output can only be assessed 
ex post; the method developed can not be used for ex ante evaluations of 
potential growth rates or likely successes of specific technologies. Consequently, 
no implications should be drawn for policymakers seeking insights into 
technology selection or R&D portfolio design.  
 
Two key findings emerge. Firstly, the extent – duration relationship for 8 
different energy technologies historically is consistent. Secondly, the analogous 
extent – duration relationship for 6 different low carbon technologies in a range 
of future scenarios is also consistent, but more conservatively so. The scenarios 
depict longer duration growth to reach a given extent of growth compared to the 
historical data. These findings are interesting precisely because they are largely 
robust across different technologies in different regions at different times. 
 
However, the inherent generality of the meta-analysis means that the observed 
consistency of the historical and scenario extent – duration relationships shown 
in Figure 9 should not be imbued with false precision. In particular, more 
historical data points covering a wider range of technologies are needed than 
those shown in Figure 5 to provide a reliable trend against which scenarios can 
be compared. 
 
The meta-analysis is also predicated on technologies that have ‘succeeded’ and 
that are ‘mature’ enough to have exhibited signs of saturation (so allowing 
reliable logistic function fitting). Although the validation methodology’s reliance 
on logistic functions is a strength in that it provides a common growth form with 
both extent and duration parameters, its weakness is that it excludes 
technologies early in their lifecycle and/or technologies still growing 
exponentially. This in turn makes the findings more robust in initial or core 
markets compared to later or periphery markets. Findings should not be 
generalised beyond successful, mature technologies (whether these are 
historically-evidenced, or represented in models). 
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