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Define Drift

Model Imperfections 
D Orrell, LA Smith, T Palmer & J Barkmeijer

(2001) Model Error in Weather Forecasting, 

Nonlinear Processes in Geophysics 8: 357-371. 

http://www2.lse.ac.uk/CATS/publications/papersPDFs/45_ModelError_2001.pdf


















When would Cross Pollination of the models do better than any one of them?
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Know your goal in ensemble forecasting.

Move towards an information theoretic point of view.

(Fully Probabilistic, No linear or Gaussian assumptions, no RMS, …)

Avoid Pliable Scores (anomaly correlations, ensemble mean scores)

Is your evaluation score reflecting the thing you are aiming for? Exactly?

What is the information deficit in your forecast system?

Do you have actionable “probabilities”?

CPT aims for a phi-shadow in a more effective bounding box.

Exploiting complementary shortcomings to get one realistic/ valuable 

trajectory amidst an ensemble of mostly poor ones.

Take Home Points
“Even the losers, get lucky some times”

Tom Petty
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Legacy  Code;  Legacy  Dreams;  Legacy Personnel

Rational Risk Aversion in all Successful Operational Centres

Pre-1960 Cost functions.   

Overly-presumptuous DA Schemes

What is your  goal in ensemble forecasting? (exactly)

What is the ultimate aim of super-modelling?

CPT allows access to plausible futures single models just can’t reach. 

(At the cost of many many implausible “paths”  in state space)

Challenges in Meteorological Forecasting

“Even the losers, get lucky some times”

Tom Petty
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One initial condition at t = 0, 4 models : four one step forecasts.

Four initial conditions at t=1, 4 models : 16 two step forecasts.    And so on.

Raw (uninformed) CPT  (for ONR in the late 90’s)

t=0                t=1                     t=2

Why do this?

And what is it that comes out?!?

Smith, L.A. (2000) Disentangling Uncertainty and Error: On the Predictability of Nonlinear 

Systems in Nonlinear Dynamics and Statistics, ed. Alistair I. Mees, Boston: Birkhauser, 31-64

http://www.lse.ac.uk/CATS/Publications/Publications PDFs/40_Disentangling_2000.pdf
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Different Models Excel at Different Things

Coloured circles 

show where each 

model is particularly 

good, or bad.

These “things” may be regions, or they may be phenomena.

Regions: by design or by local talent and interest:

Phenomena: Parameterizations that best capture the onset of blocking  

may not  capture the breakdown of blocking best! El Nino/La Nina, 

Drought/Flood (nonlocal drivers)  …

The aim of CPT is to take the best behaviours of each model, then mix and 

match as we cannot know which will be best tomorrow.
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These “things” may be regions, or they may be phenomena.

Or Regions of state space. 

This is real data from a real 

annulus…

Different Models Excel at Different Things

Smith, L.A. (1992) Identification and 

prediction of low dimensional dynamics

Physica D 58 (1-4): 50-76.

http://www.lse.ac.uk/CATS/Publications/Publications PDFs/17_IdentificationAndPrediction_1992.pdf
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Different Models Excel at Different Things

Smith, L.A. (1992) Identification and 

prediction of low dimensional dynamics

Physica D 58 (1-4): 50-76.

These “things” may be regions, or they may be phenomena.

Or Regions of state space. 

This is real data from a real 

annulus…

http://www.lse.ac.uk/CATS/Publications/Publications PDFs/17_IdentificationAndPrediction_1992.pdf


Cross Pollination in Time2 OHRID                   6 Sept 2013      Leonard Smith              

Different Models Excel at Different Things

Smith, L.A. (1992) Identification and prediction of low dimensional 

dynamics Physica D 58 (1-4): 50-76.

These “things” may be regions, or they may be phenomena.

Or Regions of state space. 

and my RBF model beat CFD… 

http://www.lse.ac.uk/CATS/Publications/Publications PDFs/17_IdentificationAndPrediction_1992.pdf
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The forecast intervals are based on the distribution of local 

errors (out of the learning set).

Different Models Excel at Different Things

Smith, L.A. (1992) Identification and prediction of low 

dimensional dynamics Physica D 58 (1-4): 50-76.

Nonlinear RBF model, linear in parameters: but weighted with the data?

Uniform on the attractor or uniform in the state space  -> two models….

http://www.lse.ac.uk/CATS/Publications/Publications PDFs/17_IdentificationAndPrediction_1992.pdf
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In these forecasts of a simple 

“chaotic”  circuit, the limitations on 

predictability come from model 

inadequacy (structural model error) 

not from chaos.

This model could not shadow past 

the point  where the ensemble 

departs from the future trajectory.

Different Models Excel at Different Things
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CPT was originally designed for low-dimensional models whose skill varied 

with location in state space

Local Linear  Models in a 5 dim delay space from independent learning & training sets.

“The weighting is the hardest part.”

Tom Petty

Different Models Excel at Different Things
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These “things” may be regions, or they may be phenomena.

Regions: by design or by local talent and interest:

Phenomena: Parameterizations that best capture the onset of blocking  

may not  capture the breakdown of blocking best!

The aim of CPT is to take the best behaviours of each model, then mix and 

match as we cannot know which will be best tomorrow.

Different Models Excel at Different Things

But what is it we are trying to do?



Oct 2012        IEEE eScience: Science in the Dark                                                          Leonard Smith              

http://2darts.com/2dtuts/articles/50-terrifying-creatures/

Laplace's Demon (1814)  

1) Perfect Equations of Motion (PMS)

2) Perfect noise-free observations

3) Unlimited computational power

Demon’s Apprentice (2007)  

1) Perfect Equations of Motion (PMS)

2) Perfect noise-free observations

3) Unlimited computational power

Apprentice’s Novice (2012)  

1) Perfect Equations of Motion (PMS)

2) Perfect noise-free observations

3) Unlimited computational power

http://2darts.com/2dtuts/articles/50-terrifying-creatures/
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Original CPT(2000)

Smith, L.A. (2000) Disentangling Uncertainty and Error: On the Predictability of 

Nonlinear Systems in Nonlinear Dynamics and Statistics, ed. Alistair I. Mees, Boston: 

Birkhauser, 31-64

http://www.lse.ac.uk/CATS/Publications/Publications PDFs/40_Disentangling_2000.pdf
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CPT(2000)

Smith, L.A. (2000) Disentangling Uncertainty and Error: On the Predictability of Nonlinear 

Systems in Nonlinear Dynamics and Statistics, ed. Alistair I. Mees, Boston: Birkhauser, 31-64

http://www.lse.ac.uk/CATS/Publications/Publications PDFs/40_Disentangling_2000.pdf
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CPT (2000)

Smith, L.A. (2000) Disentangling Uncertainty and Error: On the Predictability of Nonlinear 

Systems in Nonlinear Dynamics and Statistics, ed. Alistair I. Mees, Boston: Birkhauser, 31-64

http://www.lse.ac.uk/CATS/Publications/Publications PDFs/40_Disentangling_2000.pdf
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Original Ikeda Example –or- Circuit Story

Smith, L.A. (2000) Disentangling Uncertainty and Error: On the Predictability of Nonlinear 

Systems in Nonlinear Dynamics and Statistics, ed. Alistair I. Mees, Boston: Birkhauser, 31-64

http://www.lse.ac.uk/CATS/Publications/Publications PDFs/40_Disentangling_2000.pdf
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Smith, L.A. (2000) Disentangling Uncertainty and Error: On the Predictability of Nonlinear 

Systems in Nonlinear Dynamics and Statistics, ed. Alistair I. Mees, Boston: Birkhauser, 31-64

Lorenz ‘95 Two Level System

http://www.lse.ac.uk/CATS/Publications/Publications PDFs/40_Disentangling_2000.pdf
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Given Four Models, each gets one region very well.

Model I

Model 2

Model 3

Model 4
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Exponentially Growing Ensembles:   Prune to maintain diversity

Models need not share common state space:     PDA/ ISIS DA

Forming Stable Couples:  

Pairing Unique Brother States                                 (PUBS)

Data Assimilation of Truest Ensemble Signals        (DATES)

Quantifying  Success: NOT RMS

Perhaps Best RMS?

Is a Probability Forecast an Achievable Aim?

What am I trying to achieve with ensemble forecasting?

I would like to treat imperfect model ensembles as information: 

NOT AS LIKELY FUTURES

(A digression on parameter estimation)

Three Challenges of CPT

Judd, K., Reynolds, C.A., Smith, L.A. and Rosmond, T.E. (2008) The Geometry    

of Model Error . Journal of Atmospheric Sciences 65 (6), 1749--1772.

http://www.lse.ac.uk/CATS/Publications/Publications PDFs/77_Judd_GeomOfModelError_JAS.pdf
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How might we use probability forecasting to estimate parameters?

a) Form a series  of  ICE ensembles for a given parameter value

b) Compute a series of probability forecasts

c) Select a proper score: -log(p(x)/μ(x))    (IJ Good, 1952)

d) Compute the score as a function of parameter value.

Parameters Estimation via Forecasting P(x)

H Du and L A Smith (2012) Parameter estimation through 

ignorance Physical Review E 86, 016213

http://www2.lse.ac.uk/CATS/Publications/abstracts_Papers/Du&Smith-PhysicsReviewE-016213-2012.pdf
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Perfect Model Structure

All Proper Scores agree

Data Assimilation Method Matters

Target uncertain (but exists)

Implied IGN reveals information deficit

Empirical IGN = ‹–log2p(xobs)›obs Implied IGN = ‹Expected IGN›forecasts

Parameter Estimation: Correct Model Structure

Note that the Implied IGN 

is less than the Empirical IGN 

even at the correct value of a.

This Information Deficit(s) indicates that the 

(each) forecast scheme can still be 

improved.

H Du and L A Smith (2012) Parameter estimation using 

ignorance Physical Review E 86, 016213

<Σ q(x) log2(p(x)/μ(x))>

<Σ p(x) log2(p(x)/μ(x))>

http://www2.lse.ac.uk/CATS/Publications/abstracts_Papers/Du&Smith-PhysicsReviewE-016213-2012.pdf
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Parameter Estimation: Imperfect  Model Structure
Empirical IGN = ‹–log2p(xobs)›obs Implied IGN = ‹Expected IGN›forecasts

H Du and L A Smith (2012) Parameter estimation using 

ignorance Physical Review E 86, 016213

http://www2.lse.ac.uk/CATS/Publications/abstracts_Papers/Du&Smith-PhysicsReviewE-016213-2012.pdf
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Parameter Estimation: IGN in the Logistic Map Model

Imperfect Model Structure

Score matters

DA Method matters

Target indeterminate (none exists)

Implied IGN reveals info deficit

Perfect Model Structure

All Proper Scores agree

DA Method Matters

Target uncertain (but exists)

Implied IGN reveals information deficit

Empirical IGN = ‹–log2p(xobs)›obs Implied IGN = ‹Expected IGN›forecasts

H Du and L A Smith (2012) Parameter estimation using 

ignorance Physical Review E 86, 016213

http://www2.lse.ac.uk/CATS/Publications/abstracts_Papers/Du&Smith-PhysicsReviewE-016213-2012.pdf
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Target uncertain (but exists)   :  Be a Bayesian

Target indeterminate (none exists): Bayes ( & the probability calculus) irrelevant.

P(α | Data, I)  = P(Data | α, I) P(α | I) / P(Data | I) ∝ P(Data | α, I) P(α | I) P(α | Data, I)  = P(Data | α, I) P(α | I) / P(Data | I) X P(Data | α, I) P(α | I) 

= 0  
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Parameter Estimation: IGN in the Henon Map

Remember: Least Squares can be proven to yield the wrong 

answer  even given an infinite number of observations: 

It aims to minimize RMS error which is the wrong target when the 

forecast distribution is not Gaussian (even if the observational 

uncertainty was Gaussian)  
H Du and L A Smith (2012) Parameter estimation using 

ignorance Physical Review E 86, 016213

http://www2.lse.ac.uk/CATS/Publications/abstracts_Papers/Du&Smith-PhysicsReviewE-016213-2012.pdf
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Outside PMS:
Target Parameter depends on Noise Level and Lead Time

Imperfect Model Structure

Score matters

DA Method matters

Target indeterminate (none exists)

Implied IGN reveals info deficit

Perfect Model Structure

All Proper Scores agree

DA Method Matters

Target uncertain (but exists)

Implied IGN reveals information deficit

H Du and L A Smith (2012) Parameter estimation using 

ignorance Physical Review E 86, 016213

http://www2.lse.ac.uk/CATS/Publications/abstracts_Papers/Du&Smith-PhysicsReviewE-016213-2012.pdf


Cross Pollination in Time2 OHRID                   6 Sept 2013      Leonard Smith              

In the short term: Better Cluster                              (recall the golf balls)

In the longer term: a cluster in the wrong place

Multi-model, IC ensembles: many clusters each one in the wrong place

ENSEMBLES/CMIP5 would provide an example. 

What does the word “uncertainty” mean in connection with IC or parameter 

values when model structure cannot shadow?

What is your goal in ensemble forecasting?

What does a good IC ensemble give us?
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Lorenz 96 One Layer Model Worked Example

Consider 4 models, Each individual model is very good over ¾ of the planet.

None can simulate  their  far side of the planet well.

Each Quadrant has a different  value of  F in the world.

Each model has a good value of the local F, but a poor estimate of far field F. 

What is an achievable aim here?
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Consider 4 models, Each individual model is very good over ¾ of the planet.

None can simulate  their  far side of the planet well.

Each Quadrant has a different  value of  F in the world.

Each model has a good value of the local F, but a poor estimate of far field F. 

What is an achievable aim here?

Lorenz 96 One Layer Model Worked Example
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CPT2 Lorenz 96 M=40 One Layer Model

Forecast each of the N=4 

models out a time τ.

Record the forecast of 

the (expected) best 

model at each grid point.

(DATESobs)

Assimilate DATES 

using PDA/ISIS

Forecast a second time τ.

Form a probability forecasts of this CPT ensemble, contrast with 

both of PURE ensembles and large singleton model ensemble.
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Consider  an m=40 case of Lorenz 96 with different F values on each 

quadrant, specifically F= { 8, 12, 14, 10}.

Take N=4 models each with the correct values of F in its local hemisphere, 

and a single average value in its far hemisphere.

tau = 2.5 days

Data analysis for single (hereafter PURE) models  by PDA/ISIS.

Launch N forecasts for a time tau.

Compute DATES pseudo observations 

Data Assimilation of Truest Ensemble States: expected best model at xi

Assimilate DATES obs in (future) window t= (0,tau)

Repeat DATES process on window t=(tau, 2 tau)

Form Probability forecasts from PURE ensemble and DATES ensemble by 

dressing and blending.

What would you mean by uncertainty in the IC here?

There is only uncertainty in the forecast-outcome pair!

Lorenz 96 M=40 Worked Example
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Skill of  Probability forecasts from PURE ensemble and from DATES ensembles:

PURE has 2 bits more information than the climatology 

(that is 4x the probability mass placed on the outcome).

PCT2 DATES has 2 bits more than PURE: 16x probability of climatology) 

What would you mean by uncertainty in the IC here?

There is only uncertainty in the forecast-outcome pair!

Lorenz 96 M=40 Worked Example
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Skill of  Probability forecasts from PURE ensemble and from DATES ensembles:

PURE has 2 bits more information than the climatology 

(that is 4x the probability mass placed on the outcome).

PCT2 DATES has 2 bits more than PURE: 16x probability of climatology) 

What would you mean by uncertainty in the IC here?

There is only uncertainty in the forecast-outcome pair!

Lorenz 96 M=4- Worked Example
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Smith (2002) Chaos and Predictability in Encyc Atmos Sci

The evolution of this probability distribution for 

the chaotic Lorenz 1963 system tells us all we can 

know of the future, given what we know now. 

It allows prudent quantitative risk management 

(by brain-dead risk managers)

And sensible resource allocation.

We can manage uncertainty for chaotic systems 

(given a perfect model).

But how well do we manage uncertainty in the 

real world? For GDP? Weather? Climate?

Do we have a single example of a nontrivial 

system where anyone has succeeded (and 

willing to offer odds given their model-based 

PDFs?)

Probability Forecasts: Chaos 
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Fitzroy, 1862
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Target
Lead-time

day

Spatial
Scales

Temporal
Average
Scale

metres

km

1000km

Model-based probability forecasts are incomplete without a 
quantitative measure of the likelihood of model irrelevance.

weeks

years

hours          weeks               years                decades             centuries 
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If precip over the Amazon (or Okeefenokee) is 

badly simulated, the biomass will be badly 

simulated, this missing/extra feedback may lead 

to model irrelevance… First local, then global. 

Timescales for such things may be sound 

science!

“No presentation of model-based 
probabilities is complete without an 

expression of model irrelevance.”
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Thank you

predictions are wrong

sorry for any inconvenience
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http://www2.lse.ac.uk/CATS/Publications/Publications PDFs/LA-Smith,-(2002)-What-Might-We-Learn-from-Climate-Forecasts.pdf
http://www2.lse.ac.uk/CATS/Publications/Publications Abstracts/46_ClimateForecasts_2002_Smith.pdf
http://www2.lse.ac.uk/CATS/Publications/Publications PDFs/45_ModelError_2001.pdf
http://www2.lse.ac.uk/CATS/Publications/Publications PDFs/40_Disentangling_2000.pdf
http://www2.lse.ac.uk/CATS/Publications/Publications Abstracts/40_DisentanglingNonLinearSystems_2000_Smith.pdf
http://www2.lse.ac.uk/CATS/Publications/Publications PDFs/35_UncertDynAndPred_1999.pdf
http://www2.lse.ac.uk/CATS/Publications/Leonard Smith Publications.aspx
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END
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Missing 2km tall walls of rock!

At what lead times do inadequacies in 
downstream flow (or precipitation) 
result in feedbacks with beyond local 
impacts? alter extremes? &c?

At what lead times is it no longer 
reasonable to interpret the diversity of 
climate models as reflecting the 
uncertainty in the future climate?

RDCEP is moving forward to quantify 
these limits as it continues to develop 
methodology to make the dynamics of 
state-of-the-art models available to 
decision makers and economists.  

Observed Height – HadCM3 Height

And long term 
feedbacks (bio-
feed backs, 
albedo, …)

Shortcomings of State of the Art Models 



VVUQ Park City           Aug 2011                                              © Leonard Smith

http://www.ukcip.org.uk/

Is it plausible to provide a  PDF of hottest or 

stormiest summer day in 2080’s Oxford???

http://ukclimateprojections.defra.gov.uk/content/view/1263/521/#limitations

http://www.ukcip.org.uk/
http://ukclimateprojections.defra.gov.uk/content/view/1263/521/#limitations
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Pseudo-orbit Data assimilation

• Start with a pseudo-orbit defined by the noisy observations

• Generate 1-step ahead trajectories

F(0ut=-5)


0ut=-

4

0U = S
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Pseudo-orbit Data assimilation
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• Generate 1-step ahead trajectories
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Pseudo-orbit Data assimilation

• Start with a pseudo-orbit defined by the noisy observations

• Generate 1-step ahead trajectories

• Define mismatch function and minimise

• The pseudo-orbit U converges to a trajectory as

CPDA(
aU) = F(aut )- aut+1

2

t=1

n

å

a®¥

0U = S

a®¥



Properties of PDA

• There are no local minima other than trajectory of the model 

• More reliance on model dynamics

• Advantageous for long assimilation windows

• Not a shooting technique

• Does not attempt to stick too closely to the observations

• Observations are used to define initial model pseudo-orbit

• Doesn’t assume structure of model error is known

• Fully nonlinear

• No assumptions/requirements for linear dynamics or Gaussian distributions

not 4dvar
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Ensembles Members In - Predictive Distributions Out

(1) Ensemble Members to Model Distributions

.  .  ... .   . …  . . . ….. . . . .. .  . Pclim=∑ K(oi)/nclim

nclim

i=1

P1(x)= ∑ K(x,si
1)/neps

neps

i=1

K is the kernel, with parameters σ,δ (at least)

One would always dress (K) and blend 

(α) a finite ensemble, even with a 

perfect model and perfect IC ensemble.

Kernel & blend parameters are fit 

simultaneously to avoid adopting a wide 

kernel to account for a small ensemble.

Forecast busts and lucky strikes remain a major problem when the archive is small.

J Bröcker, LA Smith (2008) From Ensemble Forecasts to 
Predictive Distribution Functions Tellus A 60(4): 663. 

http://www.lse.ac.uk/collections/cats/papersPDFs/74_Broecker_PDFs_tellus_2007.pdf
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α

Ensembles Members In - Predictive Distributions Out

For a fixed ensemble size α decreases with time

M1 =α1 P1 + (1-α1)Pclim

1

Pclim

P1

Lead time

1  -

½ -

0  -

Even with a perfect model and 

perfect ensemble, we  expect α to 

decrease with time for small neps

Small :: neps << nclim

And if α1 ≈ 0, can there be any 

operational justification for 

running the prediction system.

J Bröcker, LA Smith (2008) From Ensemble Forecasts to 
Predictive Distribution Functions Tellus A 60(4): 663. 

http://www.lse.ac.uk/collections/cats/papersPDFs/74_Broecker_PDFs_tellus_2007.pdf
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Multi-Model Ensembles In - Predictive Distributions Out

(3) Model Distributions to Multi-model PDFs

Pclim

M1

M2 

M = ω1 M1 + ω2M2I

+ (1-ω1-ω2)PclimM = ω1 P1+ ω2P2I
?

But why not fit everything at once?

MI

The answer for seasonal forecasting goes 

back to the size of the forecast-

observation archive.
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Ensembles Members In – Normal Predictive Distributions Out

(1) Ensemble Members to Model Distributions

.  .  ... .   . …  . . . ….. . . . .. .  .

One approach is simply to fit a Normal distribution to the ensemble.

A second would allow an offset in the mean. (What would be a good offset?)

A third would allow the offset and the width to be a function of the ensemble.

J Bröcker, LA Smith (2008) From Ensemble Forecasts to 
Predictive Distribution Functions Tellus A 60(4): 663. 

There is often good reason to believe the best forecast will not be Normal, as 

tonight when a cold front either will, or will not, arrive before the target lead time.

Ideally, the forecast would be conditioned on the ensemble.

http://www.lse.ac.uk/collections/cats/papersPDFs/74_Broecker_PDFs_tellus_2007.pdf
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Physical Probability: this is the actual probability of the outcome.

P(BS) zero

Subjective Probability : a(n IJ) Good Bayesian Probability

One Laplace's  Demon’s Apprentice or a Rational “Org” would strive for.   

An accountable ensemble and an actionable probability.  P(BS) small

Dynamic (Evolving) Probability: This is a probability that is expect to change 

without any additional empirical information, as  when a chess playing 

computer is stopped early, or only half of your ensemble has run.

Mature Probability:  A mature probability encapsulates all the information 

implied by your knowledge, more compute power is not expected to make an 

unexpected different.                                                              P(BS) small

If your model is computationally constrained and you would expect a 

significant change in the PDF given a different model on a bigger machine, 

then your probability is immature.                                        P(BS) required!

Types of probability (after I.J. Good)
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Take home questions
How might we better communicate model diversity given the 

possibility that we cannot get probabilities useful as such!

Do we have a single example of a nontrivial system where anyone has 

succeeded (and willing to bet on their model-based probabilities?)

At what lead times do inadequacies drive (or fail to drive) feedbacks yielding 

local impacts? extremes? global impacts? 

How far to one go with a simulation model (when to stop: in time? space?)

How can we best deal with models behaving badly?

What prevents the provision of Prob(Big Surprise) with lead time?

How can we improve the communication of insights from simulations 

without falling afoul of forecasting good practice?

How to distinguish the value of improvement from the utility of prediction? 

Might the provision of probability be maladaptive?

How might we better communicate the inadequacy as well as imprecision

Is the value of qualitative insight at risk of being discarded in favour of 

quantitative mis-information?

Does Model Inadequacy preclude the rational use of Probability Forecasts 

as such?

How else might we communicate probabilistic forecast information?
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Parameter Estimation

20 Feb 2013 Lecture 11                                                                  
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Ignorance and the Information Deficit

The Empirical Ignorance reflects the skill of the forecast in practice.

The Implied Ignorance tells us the skill the forecast claims to have.

If these two values differ, then there is an “Information deficit” in the forecast system, 

which quantifies how overconfident the forecast is. 

Information Deficit = Empirical IGN – Implied IGN

Unlike “Potential Predictability” the Information Deficit does not assume that the world 

becomes like the model: although incomplete, it can sometimes quantify overconfidence. 

Parameter Estimation Through Ignorance. 

H. Du & L. A. Smith Phys Rev E, 2012
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The Circuit and Ensemble Size

Is chaos the dominant uncertainty in practice?

There is a long standing claim in   

meteorology that going to 

ensembles larger than ~16 adds 

nothing tangible to the accuracy 

for the forecast.

Consider a house that offers 

odds based on a 16-member 

forecast, and a player who Kelly 

bets based on a larger 

ensemble…
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From “distance” to climatology to Forecast evaluation:

The IGN relative to climatology only reflects information content when the 

distribution is a “good forecast”.
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What about “the” Multi-model Case?

Could there be a general  result?

Increasing Real-time Cost

Case Dependent Result

100

10

1

V
a

lu
e 

in
 A

p
p

li
ca

ti
o
n

Quality Models (each)

Careful e-formation (?each?)

Complementary Dynamical 

weaknesses  (across)

Focus on # of models 

for its own sake 

Similar models

Uncoordinated          

e-formation

Optimised single  

model structure 

ensemble 

DTC & NUOPC Ensemble Design Workshop                     10 Sept 2012                             Leonard Smith              
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Thompson (1957) investigated  the improvement of US weather forecasting  

as a resource allocation problem. 

How should  a given investment be spread between:

(a) better obs, (b) better theory, (c) faster computers?

Today we face different alternatives:

A Resource Allocation Methodology for Forecasting

Increasing Real-time Cost

100

10

1

V
a

lu
e 

A
d

d
ed

OBS Coverage  (Gaps in Space)

OBS Precision   (Noise level)

Ensemble Size

Data Assimilation Complexity

… plus your favourite here …

ENS size

OBS Precision

DA Scheme(s)

OBS Coverage
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Improving Predictability

Schematic  view of  value added for improving initial condition uncertainty.

Increasing Real-time Cost

100

10

1

V
a

lu
e 

A
d

d
ed

OBS Coverage  (Gaps in Space)

OBS Precision   (Noise level)

Ensemble Size

Data Assimilation Complexity

… plus your favourite here …

ENS size

OBS Precision

DA Scheme(s)

OBS Coverage

These curves are not independent. 

The curves vary with the target.

Development costs start from different legacy baselines

Historically these “optimised” separately  (?draw on separate budgets?)

How to measure “value added” in this context? 

α threshold  - - -

M1 =α1 P1 + (1-α1)Pclim
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Lyapunov Time,   Doubling Times, Shadowing Times, Decay of Predictability

Measures of Predictability

The distribution of i-shadowing times provides an excellent upper bound on predictability. 

But they are expensive, perhaps undefined in a forward forecast context, and if the model 

is perfect they are all infinite!

Smith, L. A. (2000) 'Disentangling Uncertainty and Error: On the Predictability of Nonlinear 

Systems' in Nonlinear Dynamics and Statistics, ed. Alistair I Mees, Boston: Birkhauser, 31-64

Smith, L. A. (1996) Accountability and Error in Ensemble Forecasting. In 1995 ECMWF Seminar 

on Predictability. Vol 1, pg 351-368. ECMWF, Reading

http://www.lse.ac.uk/CATS/Publications/Publications PDFs/40_Disentangling_2000.pdf
http://www.lse.ac.uk/CATS/Publications/Publications PDFs/26_AccountabillityAndError_ecmwf1995.pdf
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The Circuit and Ensemble Size
House Odds based on N=8                                              and N= 16

C
o
lo

u
r is lead

 tim
e

Hagedorn, R. and Smith, L. A. (2009) Communicating the value of probabilistic 

forecasts with weather roulette. Meteorological Applications 16 (2): 143-155.

http://www.lse.ac.uk/CATS/Publications/Publications PDFs/78_Weather_Roulette_t.pdf
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0   0        1 1 1   0 1 0 10 00110 0
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1001 10 1010  1 00 101          1  001  101  10   01   1 1   

1002   01  10 1 1   01                 0  01   1   010     1  1 

1      0     0    10     0   0                 1   1      1  1   1    0    1 

101  10101 10 1 101 1              1   1 1 001  1 1 01 01 1 0

01 101 1  1  1010 1                   01 10 1    0 1  0 

01   1010 1  101  1                  1 1 1 1     100  1    1 0 01

1  0   0 0 1   1  1 0                                    1 10101 1        

10 101 000 1                                          101  10  1 10 101   

1     0 1 0 1                                                 0 1     0   1  1       

10  0  10                                                   1  10 10    11          

1                                                                      01  10 11

1

1          0          0 0    0

1   0                   0

0                     1    0 1 1      

1  1                  1         0    

1    1                               0 1 

0                                    1  0

http://4umi.com/coleridge/rime/1

Data Data Everywhere, and Not a Bit to Bank On

It seems we are surrounded by model 

output… but we know that the models 

are unlikely to be adequate to inform 

the questions we must answer.

What is the rational path forward when 

the best available model is known not 

to be adequate for purpose?

Claim only insight?

Estimate the probability that your 

model probability is misleading? 

That is, state the P(Big Surprise)

Inspired by Andy Morse (thx andy)

http://4umi.com/coleridge/rime/1
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Perfect Model Scenario      Weather-like  Tasks            Climate-like Tasks

Distinguishing Three Distinct Situations

A very nice 

presentation of 

information.

Are these 

actionable 

probabilities?

http://www.metoffice.gov.uk/media/pdf/n/3/A3-plots-temp-OND.pdf

See: Bröcker, J. and Smith, L. A. (2008) 

From Ensemble Forecasts to Predictive 

Distribution Functions Tellus A 60(4): 663.

http://www.metoffice.gov.uk/media/pdf/n/3/A3-plots-temp-OND.pdf
http://www.lse.ac.uk/CATS/Publications/Publications PDFs/74_Broecker_PDFs_tellus_2007.pdf
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Proper Scores for formation and evaluation

J Bröcker, LA Smith (2007) Scoring Probabilistic Forecasts: On the Importance of Being Proper
Weather and Forecasting 22 (2), 382-388 

A score S(p(x), X) is proper if, for any two probability densities 
p(x) and q(x): 

So the expected score will be a minimum when the verification 
is drawn from the forecast distribution being evaluated.

This does not imply there is a “true” density function, nor that 
the forecaster is human (and so might “hedge” her forecast). 

(How might a parameter estimation algorithm “hedge”?)

http://www.lse.ac.uk/collections/cats/papersPDFs/JB&LAS_ImportanceBeingProper_2006.pdf
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Local Scores and Distant Scores

IGN = -log(p(X))                               Good(1952)

S(p(x), X) = ∫p(z)2 dz – 2 p(X)   

Distant Scores: The proper linear score is distant in that the score depends 

on the structure of p(z) far from the outcome x.

All proper polynomial scores are distant: the score includes a term that 

rewards the forecaster for the shape of the distribution independently of p(x). 

J Bröcker, LA Smith (2007) Scoring Probabilistic Forecasts: On the Importance 
of Being Proper Weather and Forecasting 22 (2), 382-388 

Local Scores: Local scores depend only on the value of p(z) at z = X.

IGN is the only proper local score for continuous variables.

http://www.lse.ac.uk/collections/cats/papersPDFs/JB&LAS_ImportanceBeingProper_2006.pdf
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How can we know our simulation models are inadequate? 

Science is more than simulations

When does 
“Sit and Think” trump
“Simulate and Count”?

Example: When we 
know moist air must go 
over or around in (and 
only in) the real world!

Missing 2km tall walls of rock!

If our models cannot reproduce today’s 
driving meteorological phenomena, can 
we expect them to get second order 
feedbacks “well enough”?

At what lead times do inadequacies in 
downstream flow (or precipitation) 
result in feedbacks with beyond local 
impacts? alter extremes? &c?

Can we provide Prob(Big Surprise) 
with lead time?

One-way coupled regional models  
cannot account for missing physics or 
inactive feedbacks. 

Observed Height – HadCM3 Height

And long term 
feedbacks (bio-
feed backs, 
albedo, …)
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Karl and Trenberth 2003

Climate Models: “Included” vs “realistically simulated”

The detail you see above is what is missing in 

HadCM3: the large squares reflect model grid 

resolution, the detail reflects the difference between 

the observed surface height and the model surface 

height, “constant” within a grid point,

A very schematic schematic reflecting 

phenomena the model “includes”.

(Note the turtle)
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Page 591

Climate in Practice: In-sample examples.
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What is a “Big Surprise”?

Condition explicitly on the euro not collapsing [Bank of England].

Provide subjective estimates of the probability that the model is 

misinformative in the future [P(BS)]. 

Refuse to issue a quantitative forecast, probability or otherwise [UK ML].

Big Surprises arise when something our simulation models cannot mimic turns out to 

have important implications for us. 

Often we can identify cases where we are “leaking probability” when a fraction of our 

model runs explore conditions which we know they cannot simulate realistically.

(Science can warn of “known unknowns” even when the magnitude remains unknown)

Big Surprises invalidate (not update) model-based probability forecasts, the I in P(x|I) 
(Arguably “Bayes” does not apply as this is not a question of probability theory.)

How might we better  communicate the inadequacy as well as imprecision?
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Communicating the Relevant Dominate Uncertainty

Following Medawar’s advice, scientists typically avoid the intractable 
parts of a problem, even when uncertainties there dominate the 
overall uncertainty of the simulation.

Clarifying the uncertainty most relevant to the decision maker, in 
terms of dominating the uncertainty in the outcome whether, 
modelled or not, would aid the use of projections in decision support.

Alternatives better than the probability of a big surprise would be 
welcome.

Good science can significantly improve the science in a model 
without decreasing Prob(BS)

No scientist is admired for failing in the attempt to

solve problems that lie beyond his competence.”

P.D. Medawar 
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Fitzroy, 1862
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Structural uncertainty IS noted in the IPCC AR4:

Admittedly, quantitative statement of the systematic errors are not easily found…


