Abstract

The design and interpretation of model simulations for climate services differ
significantly from experimental design for the advancement of the fundamental
research on predictability that underpins it. Climate services consider the sources of
best information available today; this calls for a frank evaluation of model skill in the
face of statistical benchmarks defined by empirical models. The fact that Physical
simulation models are thought to provide the only reliable method for extrapolating
into conditions not previously observed has no bearing on whether or not today's
simulation models outperform empirical models. Evidence on the length scales on
which today's simulation models fail to outperform empirical benchmarks is presented;
it is illustrated that this occurs even on global scales in decadal prediction. At all
timescales considered thus far (as of July 2012), predictions based on simulation
models are improved by blending with the output of statistical models. Blending is
shown to be more interesting in the climate context than it is in the weather context,
where blending with a history-based climatology is straightforward. As GCMs improve
and as the Earth's climate moves further from that of the last century, the skill from
simulation models and their relevance to climate services is expected to increase.
Examples from both seasonal and decadal forecasting will be used to discuss a third
approach that may increase the role of current GCMs more quickly. Specifically, aspects
of the experimental design in previous hind cast experiments are shown to hinder the
use of GCM simulations for climate services. Alternative designs are proposed. The
value in revisiting Thompson's classic approach to improving weather forecasting in the
fifties in the context of climate services is discussed.
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Data Data Everywhere, and Not a Bit to Bank On

It seems we are surrounded by model

output... much of it from models which appear
unlikely to provide reliable probability forecasts
for the questions we must answer.

| restrict attention to “decision-relevant” PDFs.

http://4umi.com/coleridge/rime/1
Leonard Smith
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Data Data Everywhere, and Not a Bit to Bank On

In terms of climate services alone (not research)
where should resources be focused?

On spatial and lead-time scales where
empirical models outperform simulation models
(historically), might their use in climate services
Improve the product delivered?

| will consider seasonal (3 month) predictions.

Then decadal (1-10 year) predictions.

And avoid 50+ year high resolution predictions.

All in 11 min.

http://4umi.com/coleridge/rime/1
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Data Data Everywhere, and Not a Bit to Bank On

In terms of climate services alone (not research)
where should resources be focused?

On spatial and lead-time scales where
empirical models outperform simulation models
(historically), might their use in climate services
Improve the product delivered?

| will consider seasonal (3 month) predictions.

Then decadal (1-10 year) predictions.

And avoid 50+ year high resolution predictions.

All in 09 min.

At seasonal lead-times...
... the Outlook is good!

http://4umi.com/coleridge/rime/1
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Seasonal Forecast accompanied by guidance.

(A very nice presentation of information)
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Ensembles Members In - Predictive Distributions Out
(1) Ensemble Members to Model Distributions

J Brocker, LA Smith (2008) Erom Ensemble Forecasts to K is the kernE|, W|th parameters 0',6 (at /east)

Predictive Distribution Functions Tellus A 60(4): 663.

_ RN

r]eps

P (x)= _gl K(X,5 )/ Neps

n

clim
|=
Kernel & blend parameters are fit One would always dress (K) and blend
simultaneously to avoid adopting a wide (o) a finite ensemble, even with a
kernel to account for a small ensemble. perfect model and perfect IC ensemble.

e Forecast busts and lucky strikes remain a major problem when the archive is small.
m DEC 2012 AGU: GCMs for Climate Services Leonard Smith



Ensembles Members In - Predictive Distributions Out
For a fixed ensemble size a decreases with time

And if a; = 0, can there be any
operational justification for

P, running the prediction system.

P_‘C“}W-/\_\_\_-\ M] —04 P] T (l_al)Pclim

1 Even with a perfect model and

perfect ensemble, we expect 0. to

RA: decrease with time for small ng,

\ Small :: Ngps << Ngim

Lead time

J Brocker, LA Smith (2008) From Ensemble Forecasts to

] _ Predictive Distribution Functions Tellus A 60(4): 663.
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Distinguishing Value and Skill in the MetOffice Outlook

http://www.metoffice.gov.uk/media/pdf/n/3/A3-plots-temp-OND.pdf
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Longer Lead-times require lower resolutions:
How Is a simulation model to prove its worth?
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By adding-value to empirical models, perhaps?
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Decadal Predictions
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Take eRAP (Dynamic Climatology) as an Empirical Model

LA Smith (1997) The Maintenance of Uncertainty.
Proc International School of Physics "Enrico Fermi"

z5g 155 Course CXXXIII, pg 177-246,
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Dressed Dynamic Climatology Decadal Forecasts:

a better option for blending than the static climatology?
E Suckling & L A Smith (2012) Empirical Probability Benchmarks. JoC (in review)
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Fic. 11. Ignorance of the ENSEMBLES models relative to DDC as a function of lead time.

GCMs do not outperform this empirical model (even in GMT).
Does this trouble you?

E Suckling & L A Smith (2012) Empirical Probability Benchmarks. JoC (in review)
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Questions of Perspective

Empirically based probability forecasts systematically outperform
GCMs.

Does this bother you? Or cheer you?
Operationally, why not welcome this source of added skill?

One can argue that ultimately simulation GCMs are our only hope for
long range climate prediction; but one cannot argue that today’s
GCMs they are appropriate for climate services a priori.

There are interesting ethical, legal, and rational questions
surrounding the provision of information known likely to mislead, but
perhaps our central concern should be maintaining the credibility of
science-based policy and science-informed action.

It would be interesting to revisit Thompson (1957) and ask where
Investment is likely to have the largest immediate reward in climate
services (purely in terms of deliverables on the table in 2014).

i
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Thank you

J Brocker, LA Smith (2007) Scoring Probabilistic Forecasts: The Importance of Being Proper Weather &Fore, 22, 2

H Du and L A Smith (2012) Parameter estimation using ignorance Physical Review E 86, 016213

LA Smith (2002) What Might We Learn from Climate Forecasts? Proc. National Acad. Sci. USA 4 (99): 2487-2492.
LA Smith & N Stern (2011) Uncertainty in science and its role in climate policy Phil. Trans. R. Soc. A (2011), 369

K Bevan, W Buytaert & L A Smith (2012) On virtual observatories and modelled realities Hydrol. Process., 26: 1905
J Brocker & LA Smith (2008) From Ensemble Forecasts to Predictive Distribution Functions Tellus A 60(4): 663 D
Orrell, LA Smith, T Palmer & J Barkmeijer (2001) Model Error in Weather Forecasting, Nonlinear Processes in
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Consider an Empirical Forecast Using e-RAP

For simplicity:

Consider the last 50 observed annual first differences in GMT

Add each to the current year to get an ensemble for next year.
Use two-year differences to get an ensemble for two years hence.
And n-year difference to get an ensemble for n years hence.

Dress as with the simulations models.

(never use the observation of a year within the forecast range at
any point, of course)

Eoas
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Select a Skill Score for Probability Forecasts

We will examine IGN = - log,(P(X)) 1.J. Good (1952)

J Brdcker, LA Smith (2007) Scoring Probabilistic Forecasts: The Importance of
Being Proper Weather and Forecasting, 22 (2), 382-388

Note that:
(a) Smaller is better;
(b) IGN = 0 implies no skill beyond the reference forecast.
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Fic. 8. Ignorance as a function of lead time relative to the static chmatology for each of
the four ENSEMBLES hindeast systems and the DDC model.

This empirical model outperform GCMs even in GMT.

E Suckling & L A Smith (2012) Empirical Probability Benchmarks. JoC (in review)
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Fic. 6. Ignorance as a function of lead time for each of the four ENSEMBLES multi-model
hindcast systems and the DDC model, usmmg a true leave-one-out methodolosy to it the
kernel parameters. The bootstrap resampling intervals are illustrated at the 10-90th percent
L],

This empirical model outperform GCMs even in GMT.

E Suckling & L A Smith (2012) Empirical Probability Benchmarks. JoC (in review)
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What is the aim of Chmate Modelhng?

It would be interesting to trace how

the idea that climate models could
provided quantitative insight came
about.

Weather models are simplified
climate models: you need not turn
on ocean currents in the first few
days, or ice in the first few weeks,
or forest in the first few years...

But climate models must run faster
than real-time, and so are
simplified in implementation:

do we have the technology to run
high fidelity climate models?

Why do we hide behind clouds
when we cannot realistically
simulate rock?

nnture com At
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@I rﬁtei dhtldi
“Computerpower pays off
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JLatter to Nature, pp 403-406, Vol 433,
27 January 2005
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Supplementary Figures

-4,

DA Stainforth, T Aina, C Christensen, M Collins, DJ Frame, JA Kettleborough, S Knight, A Martin, J
Murphy, C Piani, D Sexton, L Smith, RA Spicer, AJ Thorpe, M.J Webb, MR Allen (2005) Uncertainty in the
Predictions of the Climate Response to Rising Levels of Greenhouse Gases Nature 433 (7024): 403-406.
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Multi-Model Ensembles In - Predictive Distributions Out
(3) Model Distributions to Multi-model PDF's

Is this Bayesian if | believe neither “PDF” reflects reality?
And might I then be allowed more flexibility w/o penalty?

M=w M + oM,

But why not fit everything at once?

'Y 4
°e
0o
00

The answer for seasonal forecasting goes ?
back to the size of the forecast-outcome M =w, P+ 0,P, +(1-0;-w,)
archive.
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?What year did climate prediction move beyond understanding to quantitative forecasting’

The basic insight here is not new

" When in doubt, distrusting the indications, or inferences from
them (duly considered on purely scientific principles, and checked b
experience), the words “ Uncertain,” or  Doubtful,” may be
Dr. Platzman ‘l'ilhﬂt‘lt hmitaﬁnn_ Fitzroy, 1862

I may add to this another point mentioned by Dr. Charney, a somewhat philosophical
comment concerning model experiments. [ think that I agree with Dr. Charney's suggestion
that machines are suitable for replacing model experiments. But 1 think it i1s also necessary
to remember that there are in general two tvpes of physical systems which one can think

of modeling. In one tvpe of svstem one has a fairly good understanding of the dvnamical

workings of the system, involved. Under those conditions the machine modeling is not only

practical but probably 18 more economical in a long run. Typical examples of this kind, I
think, are problems where vou are concerned, let's say, with wave action in harbors,
in general a whole class of engineering problems of that kind. But there is another class of

problem where we are still far from a good understunding of the dyvnamical properties of

the system. In that case laboratory models, 1 think, are very effective and have a very
important place in the scheme of things
Because of the various simplifications of the model
described above, it is not advisable to take too seriously
PROCEEDINGS the quantitative aspect of the results obtained in this

OF : study. Nevertheless, it is hoped that this study not
THE INTERNATIONAL SYMPOSIUM only emphasizes some of the important mechanisms

ON NUMERICAL WEATHER which control the response of the climate to the change

PREDICTION IN TOKYO of carbon dioxide, but also identifies the various re-

NOVEMBER 713, 1060 , quirements that have to be satisfied for the study of
climate sensitivity with a general circulation model.

The Effects of Doubling the CO, Concentration on the Climate
of a General Circulation Model’

SyUrURD MANABE AND RicHARD T. WETHERALD

Geoplysical Fluid Dynamics Loboralory/NOAA, Princeton University, Princeton, N.J, 08540
(Manuscript received 6 June 1974, in revised form 8 August 1974)
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When the best available model is not adequate for purpose
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Fic. 1. Global mean temperature (2 year running mean applied) for the four forecast systems
- HadGem2 (UKMO), IF5/HOPE (ECMWF), ARPEGE4/OPA (CERFACS) and ECHAMS5
(IFM-GEOMAR) - that form Stream 2 of the ENSEMBLES decadal hindeast simulations
( Doblas-Reyes et al. 2010). HadCRUT3 observations and ERA4D reanaly=is are also shown
for comparison. Note that the vertical axis for the ARPEGE4/OPA model 1= different to
the other three panels, reflecting the larger bias in this model.
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