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1. Introduction 
 
Scientific computer simulation—here defined as involving a mathematical model that is 
implemented on a computer and that imitates real-world processes—is portrayed by some 
philosophers of science as a new method of doing science, besides theorizing and 
experimentation (e.g., Rohrlich 1991; Humphreys 1994; Keller 2003). Science studies 
generally seems to support this conclusion from an historical or sociological perspective 
(e.g., Galison 1996; Dowling 1999). Two major reasons are typically given for why 
simulation should be considered qualitatively different. First, it is claimed that 
simulations make it possible to ‘experiment’ with theories in a new way (e.g., Dowling 
1999: 271). Second, simulation enables us to extend our limited mathematical abilities so 
that we can now perform calculations that were hitherto unfeasible. Thus, we can both 
construct new theories using computer simulation and calculate the consequences of old 
theories.1 An example of the former category is the application of cellular automata in 
biology (Rohrlich 1991; Keller 2003). And the latter category is exemplified by the 
forecasting of the weather on the basis of the well-established nonlinear equations of 
fluid dynamics, the Navier–Stokes equations. 

Although there is no fundamental difference between the computability of 
problems before and after computers became available (an argument against putting 
simulation in a philosophically distinct category), through the introduction of the 
computer an actual barrier in scientific practice to the large-scale use of numerical 
mathematics—that is, the limited speed with which humans, even if aided by mechanical 
machines, can do calculations—was removed. We agree with Paul Humphreys: 

 
While much of philosophy of science is concerned with what can be done in principle, for the 
issue of scientific progress what is important is what can be done in practice at any given stage 
of scientific development (Humphreys 1991: 499). 

 
Science studies—which includes at least philosophical, historical, sociological and 
anthropological approaches—can shed light on all kinds of changes in scientific practice 

                                                 
1 Both ‘new’ aspects of scientific research are made possible by the high speed with which computers 
perform calculations. And both aspects are interrelated: we can derive new theories by ‘playing’ with 
variants of old theories and the calculation of results for the new theories is often unfeasible without using 
the computer. 
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that have resulted from the explosive growth of computer-based science. Here we argue 
that in particular the question of how the ‘reliability’ of models is conceived and 
established merits further interdisciplinary study, not only involving the science studies 
community but also involving practitioners. We consider the environmental sciences—
and in particular climate modelling—as a prime location where modelling practices need 
to be reflected upon, both for theoretical and practical reasons. In this paper we address 
the question of how the ‘reliability’ of models could be framed in different ways. 
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Figure 1. Typology of uncertainty in computer simulation (Petersen 2006) 

 
 
2. Establishing Reliability Through Error Analysis 
 
A scientific claim based on results from computer simulation may express a range of 
uncertainty. This range may in turn derive from uncertainty sources at different locations 
(see Fig. 1). In science, uncertainty ranges come in two types: statistical uncertainty and 
scenario uncertainty ranges. A ‘statistical uncertainty’ range can be given for the 
uncertainties which can be adequately expressed in statistical terms, e.g., as a range with 
associated probability (for example, uncertainties in model-parameter estimates). In the 
natural sciences, scientists generally refer to this category of uncertainty, thereby often 
implicitly assuming that the model relations involved offer adequate descriptions of the 
real system under study, and that the (calibration-)data employed are representative of the 
situation under study. Two different statistical paradigms are available for characterising 
probabilities: the frequentist and the Bayesian paradigm. In frequentist statistics, 
probabilities are considered to be ‘objective’ and are based on the empirically determined 
frequency of occurrence of events. In Bayesian statistics, probabilities are ‘subjective’, 
based on expert judgement and reflecting all information that is available on a particular 
event (not necessarily the frequency of occurrence).2  
                                                 
2 Although the IPCC is not very explicit about it and also no rigorous Bayesian updating procedure has 
been followed, its conclusion that most of the observed warming over the last 50 years is attributable to the 
anthropogenic emissions of greenhouse gases was qualified in a Bayesian framework: in 2001 the IPCC 
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However, ‘deeper’ forms of uncertainty are often at play. These cannot be 
expressed statistically but can sometimes be expressed by a range. Such a range is then 
called a ‘scenario uncertainty’ range. Scenario uncertainties cannot be adequately 
depicted in terms of chances or probabilities, but can only be specified in terms of (a 
range of) equally plausible events. For such uncertainties to specify a degree of 
probability or belief is meaningless, since the mechanisms which lead to the events are 
not sufficiently known. Scenario uncertainties are often construed in terms of ‘what-if’ 
statements. In principle, it is possible that uncertainties which are first expressed as 
scenario uncertainties later switch to the category of statistical uncertainty if more 
becomes known about the system processes.3 There are claims that this has happened 
with simulation-based estimates of the sensitivity of climate to greenhouse-gas increases, 
the ‘climate sensitivity’.4 In recent years, more and more articles have appeared in the 
literature that include statistical characterizations, through probability density functions, 
of the climate sensitivity (e.g, Murphy et al. 2004). However, some refuse to label these 
model-based distributions as if they were probabilities of climate sensitivity (Stainforth et 
al. 2005). The IPCC took a middle road, labeling the y-axis of such graphs ‘Relative 
Probability’. 

The measure of the spread of both types of uncertainty range is either 
inexactness,5 also called ‘imprecision’, which gradually moves from exact (small range) 
to inexact (large range), or unreliability1 (defined below), also called ‘inaccuracy’, which 
gradually moves from accurate (small range) to inaccurate (large range).6 Ranges of 
uncertainty can derive from any source of uncertainty in scientific practice, including 
model structure. Thus, in principle, ‘systematic error’ can be represented in the typology 
as statistical uncertainty arising from the model structure. 

The statistical uncertainty range can be qualified by information about the 
statistical reliability (reliability1). The term ‘(un)reliability’ is frequently used in science 
without explicit mention of what precisely is meant. We argue here that reliability must 
be understood as reliability for a purpose. Following Petersen (2006), two different 
notions of ‘reliability’ are distinguished, denoted by reliability1 (statistically characterized 
reliability) and reliability2 (methodologically characterized reliability). As Parker (2009) 
has shown, in order to establish the ‘adequacy-for-purpose’ of a model, scientists rely not 
simply on the statistical promixity of model results to, for instance, an historical dataset 
of the quantity of interest (since in that way the reliability1 for predicting the future 
cannot be established), but use a much more elaborate argumentation. This argumentation 
includes, we claim, an assessment of the reliability2 of the model, for instance of the 

                                                                                                                                                 
qualified this conclusion as ‘likely’ (defined as a ‘judgmental estimate’ of a 66–90% chance of being 
correct) and in 2007 as ‘very likely’ (a >90% chance). 
3 The switch can work the other way round (from statistical uncertainty to scenario uncertainty), if one later 
realizes that too little is known. 
4 The ‘climate sensitivity’ is defined as the equilibrium global surface temperature increase for a doubling 
of the CO2 concentration. 
5 The term ‘exactness’ (or ‘inexactness’) has many meanings (Kirschenmann 1982). I propose to use this 
one in accordance with Funtowicz and Ravetz (1990). 
6 While Funtowicz and Ravetz considered a ‘spread’ to derive typically from ‘random error’ (e.g., 
Funtowicz and Ravetz 1990: 23, 70), the interpretation of ‘range’ in the typology used here is much broader 
and encompasses all types of statistical and scenario-uncertainty ranges. 
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methodological quality of the representation of a particular dynamic process that is 
thought to be of importance for its use, e.g., for modelling particular future changes.  

Let us explore both notions of reliability a bit more, starting with reliability1. For 
scientific simulation laboratory practice, ‘reliability1’ is defined as follows: the 
‘reliability1’ of a simulation is the extent to which the simulation yields accurate results in 
a given domain. It is important here to distinguish between ‘accuracy’ and ‘precision’ 
(see Hon 1989: 474). Accuracy refers to the closeness of the simulation result to the 
‘true’ value of the sought physical quantity, whereas precision indicates the closeness 
with which the simulation results agree with one another, independently of their relations 
to the ‘true’ value. ‘Accuracy thus implies precision but the converse is not necessarily 
true’ (Hon 1989: 474).7 Traditionally, the distinction between ‘systematic’ and ‘random’ 
error is taken to correspond with the distinction between ‘accuracy’ and ‘precision’ (Hon 
1989: 474). Since systematic and random error are both statistical notions, Petersen 
(2006: 55) proposed to dissociate these two dichotomies from each other, so that all 
sources of error may be assessed in terms of their impact on the accuracy and the 
precision of the results.8 
 There is an epistemological and practical problem with maintaining a strong focus 
on the statistical reliability of models, however. We know that models are not perfect and 
never will be perfect. Especially when extrapolating models into the unknown, we wish 
‘both to use the most reliable model available and to have an idea of how reliable that 
model is’ (Smith 2002: 2491), but the statistical reliability cannot be established. There is 
no statistical fix here; also, we should not confuse range of outcomes of a diversity of 
models in ensemble projections, such as used by the IPCC, with a statistical measure of 
uncertainty. This does not mean that the information in models cannot be used, but it 
does imply that the ‘reliability’ of models needs to be assessed in the context of their use. 
 
 
3. Establishing Reliability Through Assessment of Quality for Use 
 
Models, when they do apply, will hold only in certain circumstances. We may, however, 
be able to identify shortcomings of our model even within the known circumstances and 
thereby increase our understanding (Smith 2002). As was observed in the previous 
section, a major limitation of the statistical definition of reliability is that it is often not 
possible to establish the accuracy of the results of a simulation or to quantitatively assess 
                                                 
7 For probability density functions as results of simulation, which obviously can be accurate but need not be 
sharp, this statement should be interpreted to mean: ‘An accurate PDF thus implies a precise PDF [that is, 
PDFs lie close to each other] but the converse is not necessarily true’. 
8 The theory of statistical error analysis, as is developed for instance by Deborah Mayo (1996) for 
experimentation, is too limited for a proper analysis of uncertainty in science. Both in the experimental and 
the simulation laboratory it is often not a straightforward exercise to determine the reliability1 of a 
simulation: there are many different factors involved that could cause error. The standard view of error in 
scientific textbooks holds that, ‘apart from random errors, all experimental errors can be eliminated’—a 
view which is grossly mistaken, however, since the complexity of actual reality typically prevents 
systematic errors from being reducible to zero (Hon 1989: 476). The distinction between systematic and 
random errors is only mathematically based and has only limited value for actually determining error in 
scientific practice. We therefore agree with Hon (2003: 191-193) that the theory behind the concepts of 
random and systematic errors is purely statistical and not related to the locations and other dimensions of 
uncertainty. 
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the impacts of different sources of uncertainty. Furthermore, disagreement (in 
distribution) between different modelling strategies would ague against the reliability of 
some, if not all, of them. ‘Reliability’ then will have to be defined in more pragmatic 
terms. In those cases, one may instead have recourse to qualitative judgments of the 
relevant procedures, the methodological quality given the purpose of use. A 
methodological definition of reliability, denoted by reliability2, can be given as follows: 
the ‘reliability2’ of a simulation is the extent to which the simulation has methodological 
quality. The methodological quality of a simulation derives from the methodological 
quality of the different elements in simulation practice, given the purpose of the model. 
The methodological quality of a simulation, for example, depends not only on how 
adequately the theoretical understanding of the phenomena of interest is reflected in the 
model structure, but also, for instance, on the quality of the initial and boundary 
conditions used as input data to the model; the numerical algorithms; the procedures used 
for implementing the model in software; the statistical analysis of the output data; etc. 

While the range of uncertainty is a quantitative dimension of uncertainty, the 
other five dimensions (including location) of uncertainty (see Fig. 1) are qualitative. 
Since methodological quality is a qualitative dimension and the (variable) judgment and 
best practice of the scientific community provides a reference, determining the 
methodological quality of a claim is not usually a straightforward affair either. It 
depends, for instance, on how broadly one construes the relevant scientific community 
and what one perceives as the purpose of the model. The broader the community, the 
more likely it is that the different epistemic values held by different groups of experts 
could influence the assessment of methodological quality. Criteria such as (1) theoretical 
basis, (2) empirical basis, (3) comparison with other simulations and (4) 
acceptance/support within and outside the direct peer community can be used for 
assessing and expressing the level of reliability2 (see Petersen 2006: 58–62). 
 
 
4. Conclusion 
 
Given the presence of many different ways the reliability of models is established in 
scientific practices and the importance attached to the assessed reliability in particular 
decision-making context, such as is in climate-policy making, it is important for science 
studies to further investigate the notion of reliability. The present paper has just presented 
some first analytical steps. Subsequent research should preferably be done in a multi-
disciplinary fashion, thus combining philosophical, sociological, anthropological and 
historical expertise. 
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