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Probability Not Probability Forecasts:

The evolution of this probability distribution for
the chaotic Lorenz 1963 system, tells us all we can
know of the future, given what we know now.

It allows prudent quantitative risk management
(by brain-dead risk managers). And sensible
resource allocation within a perfect model
structure.

L But how well do we manage uncertainty in the

5.3 real world? For GDP? Weather? Climate?

350 I’ve shown that picture approaching 20 years:

20 Do we have a single example of a nontrivial

2.00
= o system where anyone has succeeded (and
1504 0o Willing to bet on their model-based PDFs?)
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How would yOU design a forecast system from scratch?

Suppose a newly rich nation rang up your statistics department

and asked for assistance in designing a new “Earth System” model

from scratch. A philosophically sound model for rational decision support:

How would you divide resources between obs, data assimilation, ensemble
formation, a hi-fidelity model, ensembles under alternative models, improving
background information...?

You would still face some constraints, although money is no object!

You can use the best computer technology and best scientific understanding of 2011
You can provide uncertainty information, even PDFs.  (As with Numerate users)
You can isolate teams of scientists professionally. (As if in different space stations)
You can provide information as far into the future as you can provide information.
Guidance is needed “quickly”, but the exact cost of delay is part of the project!

You are not constrained by:
|_egacy code
[_egacy domain specialists

i 2
-Blatant Political Interference  VVhat are you constrained by:

(Given a target)
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Preliminaries: “Given a target”

Unfortunately from a mathematicians point of view, the “target”
matters, as does the quantity used to evaluate the competing options.

Following | J Good (1952), | will use the log of the probability a

forecast assigns to the outcome to quantify skill.
(This choice is not an issue in this talk, but the fact there is a choice is central is central.)

Note that adopting an inappropriate skill score (perhaps RMS in the
seasonal context) will drive forecast system design in silly directions.

To transform a set of model trajectories into a forecast, | will use

kernel dressing and blending.
(1 would not defend this choice as strongly as the one for —log,(P), but I am often happy to
bet on it.)

This is not “post-processing” it is forecasting: model-output is not a
forecast until it can be contrasted with reality quantitatively.
(?the old distinction of “guidance” and “forecast” ?)

The next three slides make these choices concrete.

_—
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Ensembles Members In - Predictive Distributions Out
(1) Ensemble Members to Model Distributions

K is the kernel, with parameters 0,0 (at /easi)

/A

neps

Pl(x): z K(X’Sil)/neps
=1

n

clim
=1
Kernel & blend parameters are fit One would always dress (K) and blend
simultaneously to avoid adopting a wide (o) a finite ensemble, even with a
kernel to account for a small ensemble. perfect model and perfect IC ensemble.

Forecast busts and lucky strikes remain a major problem when the archive is small.

J Brocker, LA Smith (2008) From Ensemble Forecasts to
) Predictive Distribution Functions Tellus A 60(4): 663.
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Ensembles Members In - Predictive Distributions Out
For a fixed ensemble size a decreases with time

And If a, = 0, can there be any
operational justification for

P, unning the prediction system.

F:C“}\/\/‘/\—\'\__\ Ml e Pl ' (1-(11)P0“m

I Even with a perfect model and

perfect ensemble, we expect O to
decrease with time for small n,

\ Small ::n_./n

eps clim

Lead time

; | J Brocker, LA Smith (2008) Erom Ensemble Forecasts to
] Predictive Distribution Functions Tellus A 60(4): 663.
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Multi-Model Ensembles In - Predictive Distributions Out
(3) Model Distributions to Multi-model PDFs

M

IM = w, M, + w,M,

The decision hinges on the size of the
forecast-verification archive. Accounting for
“Lucky Strikes” can require a large archive.

But why not fit everything at once?

M = W, P+ w,Py, + (1-0-,)P

".-
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Better in Practice: Quantitative out-of-sample comparison
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Figure 5. Mustration of the results of Weather Boulette for predicting with a 10-day lead time in which quintile-category the I m emperatures at

London-Heathrow will fall daring the period 11 May—7 June 2006. (a} Probabilities of the venifying categones as predicted by the dressed HRES

forecast (open diamonds) and the dressed EPS forecasts (Alled squares); (b) loganthm of the accumulated capital when playing the dressed EPS
apainst the HRES forecast under the “fully proper” variant

Skill, in bits or interest rates, of ensemble forecasting LHR temperatures.
Similar results are found well after this paper was published.

R Hagedorn and LA Smith (2009) Communicating the value of probabilistic forecasts with

I weather roulette. Meteorological Applications 16 (2): 143-155.
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How would yOU design a forecast system from scratch?

Suppose a newly rich nation rang up your statistics department

and asked for assistance in designing a new “Earth System” model

from scratch. A philosophically sound model for rational decision-support:
How complicated/complex a model should you attempt?

How will you communicate your results?

You would still face some constraints, although money is no object!

You can use the best computer technology of 2011

You can use the best scientific understanding of 2011

You can provide uncertainty information, even PDFs.  (Numerate user)

You can provide information as far into the future as you can-provide information.
Guidance is needed “quickly”, but the exact cost of delay is part of the project!

You are not constrained by:
|_egacy code
|_egacy domain specialists
Blatant Political Interference
What are you constrained by?

(Given a taraet)
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Run Time Ratio

How would you design a forecast model?

What are you constrained by?

For decision support, the model has to run faster than real time.
The larger the lead time, the fewer ensemble members you can run to examine sensitivity.

Complex Models

A
We will quantify complexity in terms of a model’s run-time-ratio.
1000 A model with run-time-ratio of 10 will run 10x slower than the system
100 being modelled.
10
Forecast
1 =t —>
Lead time
0.1
001 (That is, “10” implies it will take ten days to simulate one model-day.
Sometimes fine for science, never good for decision support.)
0.001
This impacts ensemble size, maximum lead time considered,
0.0001 resolution and which phenomena to “include” in the model.
v The cost of Data Assimilation must be counted in addition.
Simple Models
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Run Time Ratio

How would you design a forecast model?

What are you constrained by?

Complex models may not fit in current hardware, even if you know which model class you
would deploy. And the more complex your model, the fewer “simulation hours” available.

Complex Models

1000
100
10
Forecast
| — —>
Lead time
0.1
0.01 Inaccessible
0.001 Accessible
00001 Technological Constraints
v
Simple Models
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Run Time Ratio

How would you design a forecast model?

What are you constrained by?

Requirements for model fidelity sets a lower bound on the complexity with lead time.
Almost always, the model is required to grow more complex at larger lead times.

Complex Models

Relevar.\t.-v
.o* lrrelevant

1000
100

10 .
o° Forecast
>

Lead time

0.1 °®

. .
0.01 . Inaccessible

0.001 .'. Accessible
0.0001f* Technological Constraints
Fidelity Constraints
Simple Models
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Run Time Ratio

How would you design a forecast model?

What are you constrained by? RS o
Limits of current scientific/mathematical knowledge mean the model may prove inadequate.
In the financial sector, regulators tolerate this as long as the Prob(Big Surprise) < 0.005

Complex Models
Relevar.\t.-v

I
| .** Irrelevant
| .°°
1000 °
ool
100 o I _ _ _
: Prob(Big Surprise) > 1 in 200
10 °®
| Forecast
1 - >
| Lead time
0.1 I
001 . I Inaccessible
0.001 | o : Accessible
. : Technological Constraints
Fidelity Constraints
Simple Models Knowledge Constraints
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Run Time Ratio

How would you design a forecast model?

The decision you take will depend on how these three curves lie.

Complex Models

Relevaqt.-v
.o Irrelevant

I
I
I
1000 o
o°f

100
Prob(Big Surprise) > 1 in 200

[N
o

Forecast
>

[EEN

Lead time

.
I

I

. I

I

0.1 I
I

0.01

A Inaccessible
0.001 | o : Accessible
..
[ J

0.0001 Technological Constraints

Fidelity Constraints
Knowledge Constraints

Simple Models
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Run Time Ratio

How would you design a forecast model?

The decision you take will depend on how these three curves lie.

Complex Models

1000

100

10

Relevajue -V

I
: o Irrelevant
!
I
I

Probf(Big Surprise) > 1 in 200
. Forecast
>

Lead time

|

I
0.1 A
0.0t .00000.00°.... : InaCCeSSIbIG
0.001 . \ Accessible
00001 : Technological Constraints

Fidelity Constraints
Simple Models Knowledge Constraints

Leonard Smith



Run Time Ratio

How would you design a forecast model?

What are the challenges we face with interpreting model simulations
In different regions of this schematic?

Complex Models

Relevajite -V
o Irrelevant Ambiguity

(Knightian Uncertainty)

Intractability

1000

I
I
I
I
100 [

Probf(Big Surprise) > 1 in 200
10 .

Implied Uncertainty
(Knightian Risk)

: Fo recasE
Lead time

|

I
0.1 A
0.0t .ooooo..o".... : |naCCGSSibIe
ooor | oo \ Accessible
00001k : Technological Constraints

Fidelity Constraints
Simple Models Knowledge Constraints
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Run Time Ratio

How would you design a forecast model?

We need to be above the green line, below the red, and to the left of the blue.
So we could make one relevant 100 day simulation and have it tomorrow.

Complex Models
Relevajue -V
o Irrelevant

!
I
1000 I
!
I

100 :
Prob(Big Surprise) > 1 in 200

. Fo recasE
Lead time

Inaccessible
Accessible

00001k Technological Constraints
Fidelity Constraints

Simple Models Knowledge Constraints
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Run Time Ratio

How would you design a forecast model?

But in this case, a valuable “100 day” forecast is out of our reach.
Of course we a simple model anyway, call it “best available” knowing it is
both best and irrelevant; and pass it on (saying clearly that Prob(B.S.)~1)

Complex Models

Relevapt® 4
. Irrelevant

Fo recasE
Lead time

Inaccessible
Accessible

0000 Technological Constraints
Fidelity Constraints

Simple Models Knowledge Constraints
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Run Time Ratio

How would you design a forecast model?

But in this case, a valuable “100 day” forecast is out of our reach.
Of course we a simple model anyway, call it “best available” knowing it is
both best and irrelevant; and pass it on (saying clearly that Prob(B.S.)~1)
Complex Models _
M; =a; Py + (1-09)Pgjim

Relevapt® 4
. Irrelevant

1000

100
Prob(Big Surprise) > 1 in 200

10 o
Forecast
>

Lead time
0.1

N X
R Inaccessible
0001 ] o Accessible
0.0001f¢ In weather-like forecast tasks, cases like this are exposed
when statistical models outperform complex models (for
_ example: a goes to zero).
Simple Models

What is the best approach in climate-like forecasting tasks?
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Weighing Alternatives
Schematic view of value added for improving initial condition uncertainty.

Return on Investment
|

A .00.......'....1

.....................’

o°* : ooooooooooooooooooooo}
.o ENSsize 1 ,e°1°°
100 I ..... .............“......I........................>
..1-.;:" " 0BS Coverage .,-'.
l. M, =0y Py + (1-09)Pgjim,
D & a threshold - - -
% 10 : ...ooo N
< s o7 OBSPrecision OBS Coverage (Gaps in Space)
E OBS Precision (Noise level)
S oL Ensemble Size
o X
... plus your favourite here ...

Increasing Real-time Cost g

These curves are not independent.

The curves vary with the target.

Development costs start from different legacy baselines

Historically these “optimised” separately (?draw on separate budgets?)
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What about “the” Multi-model Case?
Could there be a general result?

Case Dependent Result

) 4 Opi(:jinlwised single
Quality Models (each) s (rerrllc;efn ;;[eructure
100 Careful e-formation (?each?)
Complementary Dynamical ..' >
weaknesses (across) . oot

Similar models
Uncoordinated
e-formation

Value in Application

Increasing Real-time Cost
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Examples: Testing Data Coverage (Lorenz 1996, m=18)

Relative value of increasing number of sites observed.
Relative value of decreasing observational noise level.

Measured in now-cast skill to avoid both a host open choices
and the impacts of model-error in forecasts.
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Example: Target is Early Warning of Extremes
700
P ] — lead time 1
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Given noisy observations of Lorenz63, methodology to evaluate

EPS designs with imperfect models...
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Example: Target is Early Warning of Extremes
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Given noisy observations of Lorenz63, methodology to evaluate

- EPS designs with imperfect models...
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Early Warning:
Consider past
forecasts with
same verification
time.

log, of the ratio
forecast pdf to
climatological pdf

Extreme/Rare
threshold is 1/20C

Note scale of Y-
axis changes.
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Early Warning:
Consider past
forecasts with
same verification
time.

log, of the ratio
forecast pdf to
climatological pdf.

Note scale of Y-
axis changes.
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Note there is One Significant Talent Lacking

There are sensible sampling strategies for R™ ( as states and parameter values),
and for fully specified stochastic processes.

There are only a small number of data assimilation schemes, but contrasting even
two of them, other things being equal, is rare.

We are nearly clueless regarding how to intelligently sample the space of
possible models (and can never sample beyond the ever-growing subset of
accessible model structures).

The relative value of multi-model schemes must depend on how well the space of
accessible models is sampled.

Agreeing the target and the score beforehand would allow an operational decision.
Arguably a robust result

Is there a true opportunity to invest in optimizing the forecast system
across these (previously distinct if not competing) elements?

-
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Robust Expectations? Deployable Methodology?

One can contrast skill in an early warning context:

Ensemble size (CPU/member)
Data Assimilation (CPU/ scheme cycle)
Model complexity (CPU/’day”) Sorenz {c sin(x/c)} systems and Lorenz models

Could these tests be simplified and deployed?
For ensemble size: yes.
For details of the observation system: perhaps.
For Data Assimilation Schemes and Subtle model weighing: ?unlikely?

Can we learn what to look for when optimising operational systems?
Maybe. But how exactly?

Are there any robust insights that are likely to generalise?
Things like initialization on the model manifold: yes.
Value of testing for sensitivity of the design: yes.
Learning when to stop: perhaps.
Demonstrating the difficulty of climate-like forecasting: yes.

-
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Example: Transfefable insigh_t_

! Ll ey EnKF
For near perfect models we want S Obs
ensembles members near the L ISIS
manifold/attractor (because that is _

where “Truth” is), weighted by the obs. -

For imperfect models, we may still aim *
for ensemble members near the

model manifold (for better sampling in
the forecast)

x 107

35
-0.3f :
3
0.4} > .
o ¢ - 125
-0.5¢ \ ]
® - 12
0.7t T 1"
-08} \ | 1

-0.9F . 0.5

-0.2 -0.1 0 0.1 0.2 0.3

" ? A scheme that admits model error na"t't'j_ral'ly? |



But should be even be aiming at Probabilities?

Ensemble predictions up to lead time 256,

BIVIBJARD =3 wBOSS

Model 1

L i
180 200

100
Lead time, tp
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But should be even be aiming at Probabilities?

Ensemble predictions up to lead time 256,

Model 1 ..

5 L 1 = i L
&0 100 180 200
Lead time, tl"

Ensamble pradictions up to lead time 256,

Model 2

100 50 20
Lead tima, lP

Figure 7: Ensemble predictions using (a) model 1 oand (b) model 20 The

DTC & NUOPC Ensemble Design Workshop
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Moore-Spiegel Circuit (by Reason Machette)
One Initial State — Another Initial State

Ensemble predictions up to lead time 256

Ensemble predictions up to lead time 256.

25

Model 1

-25 | | | |
0 50 100 150 200 g 50 100 150 200
Lead time, t Lead time, tp

p

Ensemble predictions up to lead time 256. . Ensemble predictions up to lead time 256.
T T T T - T T T T T '|

Model 2

What generalizes:
There is no “stochastic fix” for an inadequate model (class;

1
0 50

Figure 7: Ensemble predictions using (a) model 1 and (b) model 2. The 2: Ensemble predictions using (a) model 1 and (b) model 2. T



Sensibly stochastic models and model inadequacy

Transforming a fixed parameter to a stochastic function changes the model class and
may be justified In practice even when the system is deterministic.

Doing so does not “address/resolve” model inadequacy, it just changes the model
class; hopefully to a class admitting better models. There is no stochastic fix.

Model inadequacy is always there, ideally at longer lead times and smaller spatial
scales. It cannot be addressed within the simulation, but in how they are turned into a
forecast, when blending for example.

Stochastic parameters need not reflect spread do to uncertainty in the initial
conditions: failure to keep IC ensembles can degrade the forecast obtainable from
such ensemble schemes. (for example, due to wide kernels)

Singleton ensembles seem a costly hope (punt) in all cases, but statistical exploration
of schemes (to determine the marginal values of this or that) is straightforward
(if rare).

Improving the model class does not vanquish the need to address model error!
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Providing “odds-on” and “odds-against”

It is not clear we can ever produce operational probabilities that one
could rationally bet on.

Odds provide an alternative approach | hope we can discuss over the
week ahead.

How would we optimise multi-model ensemble-based forecast
system design then?

-
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Take Home Points (and Questions)

Given atarget and a skill score, one can improve the skill of a forecast
system by redistributing resources amongst its component parts.
Can we find an agreed target (and standard score) a priori?

“Optimization” is costly; different targets (long range, early warning, medium-
range, real-time reanalysis, climate, ...) are unlikely to share the same best design.

Are the most relevant constraints scientific?

One needs an agreed standard for judging forecast systems on a given target.

Why would one rather target “the” multimodel distribution than maximise log(P) on the verification?

If the cost of one HiRes model run equals 4 LowRes runs, but it is only adds more
iInformation on days zero to three: less on days four to twenty, and neither add

much to a empirical prior in days 21-30. What do we prefer/desire/cherish?
Are we optimising for 2014 or 2020?

Statistical Benchmarks both improve skill and reveal when the “best available”
model is not “fit for purpose”.

It is useful to hold that model inadequacy cannot be addressed using the model:
progress requires a different information source (science, climatology, ...).
Improving the model class, by making it stochastic or more insightful, will of
course improve the skill of the forecast system; model inadequacy remains.

The contest between “multi-model” and “single model” appears ill-posed,;
depending on the nature of the model errors and level of skill.

Either could be made to fail in a given test-bed.

It is not at all clear we can ever obtain probability forecasts which can
rationally be used as such. What then is the reasonable aim?



Thank you
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Oxford Bus Shelter Sign:

X30+N30 predictions are wrong

sorry for any inconvenience
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The Future of Uncertainty

Jures 29, 7012 Midseat o Easl Coast Derecho
Radar magery Compasite Summaey 18-04 UTC
=500 milas n 10 hours / Average Speed =80 mgh

Owar S0 prafiminary thundersiorm wind reponts indicated by
Paoak wind gusis 80-100mph. Millions wic pawer.

Probability forecasts
or something more obtainable?

http://www.123rf.com/photo 12073667 the-road-ahead-of-you-splits-into-two-directions-with-arrows-pointing-left-and-right-so-you-must-mak.html

http://en.wikipedia.org/wiki/Thomas Bayes http://www.mistymountaingraphics.com/gallery6.html
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Challenges to the sustainability of “Fair” Odds

But can a player knowing nothing more than that the model is imperfect
systematically beat a house which attempts to set fair odds?

- DTC & NUOPC Ensemble Design Workshop 10 Sept 2012 Leonard Smith
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Decision Support Model Model (Designed to deliver)

Complex Models
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Then finding an
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complexity

>11in 200
FOI’EC&SE

Technological Constraints
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Knowledge Constraints
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Accessible

Lead time

Inaccessible

And using ensembles to
estimate “uncertainty”
within an irrelevant
model (or an ensemble
of models.)
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Run Time Ratio

Where have we designed operational models?

A subjective view of operational weather (< 10 days), seasonal (< 18 months),
GCM (<100 years) and hires Climate (< 80 years) forecast systems each fall.

Complex Models Technological Constraints

Fidelity Constraints
Knowledge Constraints

Relevajue -V
o Irrelevant

Prob(:Big Surprise) > 1 in 200
Forecast
>

Lead time

Inaccessible

Prob(B.S.)~1in?2
Simple Models
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Value Added
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10

Weighing Alternatives
Schematic view of value added for improving initial condition uncertainty.
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Distinguishing Weather-like and Climate-like tasks

Weather-like forecasting tasks:
model lifetime is long in comparison to the typical forecast lead-time
large archive of truly out-of-sample forecast-outcome pairs
arguably extrapolation in time but interpolation in state space

Here the same model is deployed many times in similar circumstances
and one can learn from past mistakes.

Climate-like forecasting tasks:
lead-times of interest are far longer than the lifetime of model
forecast-outcome archive is very small, arguably empty
lead-times of interest are long compared to the career of a researcher.

By the nature of the problem there are no true out-of-sample observations.

Best practice principles of forecasting differ in these two settings.

_ DTC & NUOPC Ensemble Design Workshop 10 Sept 2012 Leonard Smith



My vocabulary and biases

I will focus only on probabilistic forecasts: never point forecasts.

| start fully nonlinear, but am happy to go linear whenever possible.

I will attempt to avoid the word “uncertainty” and distinguish:
“imprecision”, "7ambiguity” and “indeterminacy” and “intractability”.
(Knightian risk)  (Knightian Uncertainty)

| hold that to be decision-relevant, probabilities must be useful as such.

| believe unnormalised jargon contributes to there being so few Earth
Science forecasters in the room today.

So, what are we after when forecasting?  when simulating?
predictions (PDFs) Insight

Which outcome is more useful to a decision makers with a deadline?

LA Smith & N Stern (2011) Uncertainty in science and its

role in climate policy Phil. Trans. R. Soc. A (2011), 369, 1-24.
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How important are different sources of
uncertainty'? Take Home Message: The value of qualitative

Insight is at risk of being discarded in favour of
guantitative mis-information.

= Varies, but typically no single source dominates.

Internal
variability
| Carbon cycle

Structural
uncertainty

arameter
uncertainty

Downscaling

we avold misuse in this case?
precipitation changes for the 2080s relative to

ox in SE England

Source: Met Office



Very schematic schematic of Prob(Big Surprise) “surface”.

Spatial The decision relevance of model-based PDFs will
Scales depend on the realism of model simulations in
space, time and lead-time, and of course, the
relevant aspects of the question in question.

—

metres

km

1000km

Target
Lead-time

v
(esuudans Big)qgoad

hours weeks years decades centuries
years

Where/when might simulation model
output add value to empirical models &

weeks scientific reflection?

Temporal
Average . .
Scale day Model-based-PDFs are incomplete without an

estimate for Prob(Big Surprise), as a function of
lead time, for the relevant space and time scales.

-
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What is a “Big Surprise”?

Big Surprises arise when something our simulation models cannot mimic turns out to
have important implications for us.

Often we can identify cases where we are “leaking probability” when a fraction of our
model runs explore conditions which we know they cannot simulate realistically.
(Science can warn of “known unknowns” even when the magnitude remains unknown)

Big Surprises invalidate (not update) model-based probability forecasts, the | in P(x|J)
(Arguably “Bayes” does not apply as this is not a question of probability theory.)

How might we better communicate the inadequacy as well as imprecision?

Financlal and energy market assumptions

Condition explicitly on the euro not collapsing [Bank of England].

Provide subjective estimates of the probability that the model is
misinformative in the future [P(BS)].

Refuse to issue a quantitative forecast, probability or otherwise [UK ML].

_ DTC & NUOPC Ensemble Design Workshop 10 Sept 2012 Leonard Smith



Model-based probability forecasts are incomplete without a
guantitative measure of the likelihood of model irrelevance.

Spatial , If precip over the Amazon (or Okeefenokee) is
Scales badly simulated, the biomass will be badly
Meres  simulated, this missing/extra feedback may lead
to model irrelevance... First local, then global.
-
m Timescales for such things may be sound o
science! g
o
Q
1)
1000km E
Target ©
Lead-time | =.
)
- 0
years decades centuries ot

weeks

Temporal
Average
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Communicating the Relevant Dominate Uncertainty

No scientist is admired for failing in the attempt to
solve problems that lie beyond his competence.”
P.D. Medawar

Good science can significantly improve the science in a model
without decreasing Prob(BS)

Following Medawar’s advice, scientists typically avoid the intractable
parts of a problem, even when uncertainties there dominate the
overall uncertainty of the simulation.

Clarifying the uncertainty most relevant to the decision maker, In
terms of dominating the uncertainty in the outcome whether,
modelled or not, would aid the use of projections in decision support.

Alternatives better than the probability of a big surprise would be
welcome.

_—
_ DTC & NUOPC Ensemble Design Workshop 10 Sept 2012 Leonard Smith
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A Player with Better Information is Expected to “Win”
A Population of Players with a perfect probability forecast

Focus on the forecasts that fall into
one bin of the reliability diagram, say
1/8<p<V

Suppose the house forecasts
systematically assign too low a
probability to these events.

Suppose players Kelly Bet with the
true probabilities.

logarithm of the wealth of the player

4l Bet Over
The logarithm of the wealth of different
realizations from this population is 6r
shown as a function of time. 0 200 200 500 500 1000

numkber of rounds

Percentiles are 1,10, 25, 50, 75, 90 and 99,
The _arrow Indicates the lead time at which the Figure 8: Player's wealth as a function of number of rounds, 1024 players
median member breaks the bank. are used to caleulate the percentiles(1th, 10th, 25th, 50th, 75th, 90th, 99th)
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Challenges to the sustainability of “Fair” Odds

Suppose a player doe not know the
true probabilities, but knows the
house probabilities are imperfect.

Bet Over
Bet Under

Create Portfolio of two accounts.

One (red) Kelly bets “over” the house
with pplayer = gplayer * phouse

The other (green) Kelly bets “under”
the house with

logarithm of the wealth of the player

“\““--_x e
pplayer = Phouse / gplayer ;m:x\
m;‘“m;\“‘a—
These populations reflect l l | . .
=1.05 0 200 400 600 800 1000
gplayer B number of rounds
Jirve ~ 1.10

Figure 1: Player's wealth as a function of number of rounds, 1024 players
are used to caleulate the percentiles(1th, 10th, 25th, 50th, 75th, 90th, 99th)
of the wealth changes, g = 1.1,gp1ay = 1.05.

The player bets when a certain probability is forecast,

o not on a particular kind of event.
EXTREMES 2012 Warwick Leonard Smith




The Player does not need to know if g;,.> 1

Suppose a player doe not know the sl T T
true probabilities, but knows the o T
house probabilities are imperfect. 5 4l S ]
g A T T -
o fff /ffj”:,f" B j,j"ffff" P
Create Portfolio of two accounts. 2 G N |
Y e o~
E el ﬂdﬂ
One (red) Kelly bets “over” the house g - |
with pplayer = gplayer * phouse E
5 ]
The other (green) Kelly bets “under” % Bet Over
the house with 3 oetinder]
pplayer = phouse / gplayer
These populations reflect . . . |
— 400 600 800 1000
gplayer =0.95 number of rounds
gtrue = 110

Figure 2: Player’s wealth as a function of number of rounds, 1024 players
are used to caleulate the percentiles(1th, 10th, 25th, 50th, 75th, 90th, 99th)
of the wealth changes, g = 1.1,gpiay = 0.95.
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A Population of Players with gy =1.01  g4;e=1.10

I T T T I +
T T A
T
T o
. - ____a-"'} _____--""d- -._‘__,_:-'"--
A house offering 5 T
imperfect “fair” odds is = f;;f-f"‘ﬁ
at risk, as the growth £ T
. . o
IS exponential; £
o
Opiayer -1 Can be small. § —
The portfolio can e '
iInclude each bin of % ——
113 1 . H - c —4r T
the rellablllty Bet Under
diagram; only one ol |
member need grow . . . . .
0 200 400 600 800 1000

exponentially to break
the bank.

numeber of rounds

Figure & Player's wealth as a function of number of rounds, 1024 players
are used to calculate the percentiles(1th, 10th, 25th, 50th, 75th, 90th, 99th)
of the wealth changes, ¢ = 1.1,gpa, = 1.01, the probahility bin 15 between

0.125 and 0.25.

The player bets when a certain probability is forecast,

not on a particular kind of event.
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Recalibration implies non-probabilistic odds

The house cannot recalibrate and still offer probability that correspond to a
probability forecast.

100 100

E‘S 20 Ei‘: 80 ‘l.
-~ >
(& [
S o £ & @
> = &
: o
@ Eventoccurred 15 times b
= 40 = .
2 = 40 @
: - : @
a 20 Event occurred 6 times @
O o 20
Event occurred 3 times o
0
0 20 40 60 80 100 0
20% was forecast 30 times 0 20 40 60 30 100

Forecast probability (%) Forecast probability (%)

http://www.ecmwf.int/products/forecasts/guide/The_reliability diagram.html
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If fair odds are not sustainable Is it
rational to interpret model-based
probabilities as probabilities for decision
support?

Accept (for a moment) that Model Inadequacy makes
probability forecasting irrelevant in just the same way
that chaos made the RMS/least-squares error of point
forecasts irrelevant.

If so: What is the role of quantitative modelling &
simulation in decision support? In explanation?

Where might the road ahead lead?

; |
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