!'_ Nowcasting with Indistinguishable States

Hailiang Du, Kevin Judd and Leonard A. Smith
Centre for the Analysis of Time Series
London School of Economics

h.l.du@]lse.ac.uk



Outline

> Uncertainty can be quantified by ensemble

> Perfect model scenario (PMS)

o Indistinguishable States (IS)
e Nowcastvia IS in PMS

o (Compare with) Alternative approaches
> Imperfect model scenario (IPMS)

e Nowcastvia IS in IPMS

o (Compare with) Alternative approaches

> Conclusion & Further discussion



Nowcast by ensemble

o In order to forecast the future evolution of a dyrm@ahsystem using a
model, we have to initialise the model.

e Itis impossible to determine the state of the systeruigely, even
given a perfect model and noisy observations.

o To maintain forecast uncertainty in the initial ddgron, we need to
launch our model with an ensemble instead of om&.po

e In the same way, to maintain uncertainty in the restiag requires an
ensemble.



Experiment Design (PMS)

e Let z,, € R, be the trajectory of a finite dimensional,

deterministic nonlinear dynamical system:
Ti4 1 = F($t),F : Rd — Rd.

e Observations: st = =+ + € where e is I1D. In this case s; can
be thought of as in the model state space.

e Perfect model scenario: F' is known, so as the noise model.

Goal: To form an ensemble near =g, consistent with the model dy-
namics, given the history of previous (and current) ocbservations

S§;j,1 = —1n, ..., 0.



Introduction of Indistinguishable States

Given a noise model, the probability of X = x4, t=1,....,n and
Y =y, t = 1,...,n being indistinguishable is Q(Y | X).

K.Judd and L.A.Smith. Indistinguishable states |. perfect model sce-
nario. Physica D, 151:125-141, 2001.
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How to find a reference trajectory?



Finding reference trajectory

Given a sequence of NV observations of M/ dimension system, we
define a sequence space a M x N dimensional space, which
contains any series of N model states.
Define the mismatch error:

6 =| f(z;) —xi41 |
Applying a Gradient Descent algorithm, starting at the observations
and evolving so as to minimise the sum of the squared J.
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i ADVAR

Let X, =F(X_) ,the 4DVAR cost function is

1 _ 1< _
C4dvar(X) = E(X—n - Xl—Jn)T B—i(x—n - X?n) +E Z (Xt - St)T I 1(Xt _St)
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Local minima in 4DVAR cost function

Gauthier (1992), Stensrud and Bao (1992) and Milied.g1994)
found that performance of assimilation varies sigairiity depending
on the length of the assimilation window and diffteg arises with
the extension of assimilation window due to the o@nae of multiple
minima in the cost function.



ISGD vs 4DVAR

e ——
Window length S@i stance from observat iw
” Average \_ Lower Upper
/4D‘u"ﬂR ISGD )\ 4DVAR | ISGD | 4DVAR | ISGD
4 steps { 1.58 1.66 \1.51 1.59 | 1.63 1.73
6 steps \ [ 11.06 | 1.77 |/8.17 1.71 | 14.28 | 1.83
8 steps \\51.84 | 1.85 A 461

6——1-=20—-58.54 | 1.90

Distance from truth

Window length

// Average\ Lower Upper

ADVAR | ISGD )\ 4DVAR | ISGD | 4DVAR | ISGD
4 steps { 0.52 | 0.61 \G.LIS 0.55 [ 0.55 | 0.67
6 steps |\ | 9.51 0.39 [/6.70 | 0.36 | 12.59 | 0.42
8 steps \\E-D.ﬂal 0.28 /| 43.59 | 0.25 | 55.77 | 0.31
~—_

Table 1. a) Distance between the observations and the model trajectory generated by 4ADVAR

and | SGD for Ikeda experiment, b) Distance between the true states and the model trajectory
generated by 4DVAR and 1SGD for Ikeda experiment.



i Form ensemble via ISIS

= Given the reference trajectory, there are many Ways
finding candidate trajectories.

= Draw ensemble members according to Q(Y|X*)

= Weight ensemble members according to the likelihofod
observations

Indistinguishable States Importance Sampler



* Form ensemble via ISIS

Reference trajectory

el

=

t

0



* Form ensemble via ISIS

Candidate trajectories



* Form ensemble via ISIS
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* Form ensemble via ISIS

Weight ensemble members
/\ according the likelihood
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Ensemble Kalman Filter Method

Anderson(2001) introduced an ensemble adjustment dafitter

method by sequentially updating equally weighteskeemble members
accordina to the observations.

Xt = X+ 7(0 = Dy — 107 + 75 )

K is the number of ensemble members. X; ;. is the prior ensemble
for state variable X;. As our model states stay at exactly the same

space of the observations, y. = X}.. v = 02 y/ay , Where o2 ry ! s

the prior covariance between the ensembies y;. and X, ., and (_Ty i

. 1 2,
is the variance of y;.. a = \/%bs(%bg +og y) , Where o2, is the

observational error variance. The updated mean for the observation
2

_I_ )(J,I\ _i_c'ran 2 31})

variable, J“ = (1 -

obs



Ensemble Kalman Filter Method

Anderson(2001) introduced an ensemble adjustment dafitter

method by sequentially updating equally weighteskeemble members
according to the observations.

Anderson,J.L.,2001: An ensemble adjustment Kalmaar fitir data
assimilation. Mon Wea Rev, 129, 2884-2903



Ensemble members in the state space

Compare ensemble members generated by Indistinguishable states
method and Ensemble Kalman Filter method in the state space.
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Low dimensional example to visualize, higher dimenal results later.
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Ikeda Map, Std of observational noise 0.05, 512 ensemble members



Simple evaluation method

We evaluate these two methods by looking at the probability mass
that stay inside different sizes of ¢ ball and counting the proportion
of times one methods beats the other (if tie, both win).
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Simple evaluation method

We evaluate these two methods by looking at the probability mass
that stay inside different sizes of ¢ ball and counting the proportion
of times one methods beats the other (if tie, both win).

KF>=IS

s |SsoKF

proportion of wins
o o
~ n

o
w

Il 1 1 1 L . Il |
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
size of eps ball

Lorenz96 12-D, o1 = 1, Nensjgs = 64; Nensgrp — 1024



Imperfect Model Scenario

In the IPMS, model state and system state are living in the
different state space.

Let x4 be a projection of system trajectory into model state
space RY

The chaotic model has dynamics y; 41 = f(y1), wt € RY.
Let 7(.) be the best model we have.
Observations: sy = x4 + ¢, Whereeis I1D.

Define the model error, w; =y — f(x4_1).w} € R?



Imperfect Model Scenario

e No model trajectories are able to be consistent with the infi-
nite observations.

e There are pseudo-orbits, with non-zero mismatch error, that
are consistent with the observations. We define

pseudo-orbit z;.t =0, -1, -2, ...
zir1 = f(z;) + w;, wy i

e Confounding of observational noise and model error
prevents one identifying either of them.

e Data assimilation can explore the model dynamics by
employing pseudo-orbits.



i Toy model-system pairs

lkeda system:

Tpit = ¥ + ulx, costd — y, s b)

Yn+1 = 'u(In sin 6 + yy, CDSQ),
where 8 = 3 — a/(1 + 22 + y2)
Imperfect model is obtained by using the truncated
polynomial, i.e.
cosf = cos(w+ ) — —w+ w6 — w® /120

sinf = sin(w 4 7) — —1 +w?/2 —w?/24



Toy model-system pairs

Lorenz96 system:

n
dx; h.c
= —Ti 9% | +Ti1Tis1 — Ti + F — 7 E Yij

dt =
dy;.i hyc
d;i = cbYji1,i(Yj—1,0 — Yj42.) — CYji + __E-Ti.

Imperfect model:

dI’i
dt

= —T; 9%; 1+ T 1T — L+ F



Insight of Gradient Descent

Given a sequence of NV observations of M/ dimension system, we
define a sequence space a M x N dimensional space, which
contains any series of N model states.
Define the mismatch error:

6 =| f(z;) —xi41 |
Applying a Gradient Descent algorithm, starting at the observations
and evolving so as to minimise the sum of the squared J.

Define the implied noiseto t 17; = s; — 2;

and the imperfection errorto bw; = z; — fCz-41)



i Insight of Gradient Descent




i Insight of Gradient Descent



* Insight of Gradient Descent
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i ISGD with stopping criteria

ISGD minimization with “intermediate” runs produces
more consistent pseudo-orbits

Certain criteria need to be defined in advancestmdi
when to stop.

The stopping criteria can be built by testing tbagistency
between implied noise and the noise model

or by minimizing some forecast utility function



Imperfection error vs model error

Noise level 0.01
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Imperfection error vs model error

Noise level 0.002

0.5

Imperfection error

Il
1.4

J
1.6

05

-1.5

Noise level 0.05

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6



i WC4DVAR

WCA4DVAR cost function:

1 _ 1N _
Cuntavar =5 (% -x2)" BN (% — X3) +§Z(>q -5) (% -5)
t=0

1 e~
+5 206 ~F ()X ~F(x.0)



ISGD vs WC4DVAR

/ \

Window Distance from cbservations
length Average N\ Lower— —  Upper

CADVAR | IS G.D':\\ WCADVAR | TSG D | WCADVAR | [5G DF
G hours | 16.42 14.00 16.24 13.85 16.59 14.14
12 hours |\ 20.60 1440 Y2041 14.30 20078 14.50
24 hours | A 11 14.52 /] 7817 1415 5417 | 14.50
Window ;gﬂistance from true states >
length | 7 Average Lower —Upper
[ WOADVAR | 75GDA\| WC4DVAR | T5G D< | WCADVAR | TSGDF
6 hours (| 5.87 4.15 5.76 4.08 5.958 4.23

12 hours\ 7.92 3.06 7T 3.01 &.10 3.10
24 hours | %429 245 7 | 71.M4 2.42 77.61 2.47
v

Table 2: Lorenz96 system-model pair experimenDiajance between the observations
and the pseudo-orbits generated by WC4DVAR and |38 Distance between the true
states and the pseudo-orbits generated by WC4ADWARSGD.



WCA4DVAR falls in long assimilation window

/ \
Window STD of the middle point of the pseudo-orbit
length Median [ 10th percentils [ 90Tth percentile
WCADVAR | [5G \WCADVAR | T5G D | WCADVAR | ISGD-

G hourg | 0.0430 | 0.0402 | P.0301 0.02095 [ 0L0515 (0.0697
12 hourk | 0.0540 | 0.0314  0.0411 0.0236 | 0.1045 (.0674
24 hours w% 8022703505 (0662

Window ; S10 of the end point of the pseudn—nrbi3/=>

length edia Toth percentile [ 90Th percentile
/' WCADVAR ISG.D"_\ WCADVAR | TSG D | WCADVAR | ISGLDF

6 hourd | 0.0563 | 0.0430 [ 0.0425 | 0.0243 | 0.0934 (0.0744
12 hourg | 0.0743 | 0.0477 /| 0.0573 | 0.0238 | 0.1332 (0.0741
24 hours WN0.2444 | 0.0477 | 0.1859 | 0.0236 | 0.3049 | 0.0740

— —

Table 3: Lorenz96 system-model pair experimentjSies of the standard deviation of
pseudo-orbits’ components for different lengths sdimilation window, for each
assimilation window. a) Standard deviation of thddte point of the pseudo-orbit, b)
Standard deviation of the end point of the pseutbat-o



‘-L Forming ensemble

= Perturbations.
= Apply the ISGD method on perturbed pseudo-orbit.
= Apply the ISGD method on the results of other data

assimilation methods. Particle filter?

How do we evaluate nowcasts??



Conclusion

= Sensitivity to initial conditions limits the ab#ito identify the current
state of nonlinear dynamical system.

= Given the noise model and perfect model, thered®zaiset of
indistinguishable states which can not be distisiged from each other.

= Form the ensemble by draw samples from the seididtinguishable
states beats the Ensemble Kalman Filter method asd&mble contains
the information from both model dynamics and obatowns.

= Outside PMS, there are no model trajectories bemighs-orbits are
consistent with the observations

= Applying the ISGD method with a stopping criteri@guces more
“relevant” pseudo-orbits and informative estimatanmodel error.



‘L Thank you!
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