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THORPEX:
“THORPEX will develop, demonstrate and
evaluate a multi-model, multi-analysis and
multi-national ensemble prediction system,
referred to as TIGGE.”
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• Combining Simulations

• Evaluation
– skill scores → Broecker
– bootstrapping and meaningful skill comparison

• Example - combining ECMWF and NCEP
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The combination is based on the skill of the

final forecast

s = S(f, o)

f forecast distribution

o verifying observation

S skill score

s skill of forecast f



Combining 5

Motivation

Overview

Combining

Evaluation

Example

One combination method is to take a
weighted sum of the component distributions

f =
∑

αifi

Choose αi that maximises the skill score

〈s〉 = max 〈S(f, o)〉

over a set of historical forecast-verification
pairs

Ignorance : s = − log p(o)

Roulston & Smith, Monthly Weather Review 130
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We do not want to compare the uncertainty in
the average performance of two models.

We want the uncertainty in the comparative
performance of the models to each other.

Bootstrap the difference: 〈sA − sB〉BS

Not the difference of the bootstraps:〈sA〉BS − 〈sB〉BS
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Predicting temperature at Heathrow.

Using
• NCEP high resolution
• NCEP ensemble
• ECMWF high resolution
• ECMWF ensemble

Evaluating using Ignorance - out of sample
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We have:
• presented a user-orientated methodology for com-

bining simulations
• whatever combination method, the evaluation must

be robust
• dressing method, combination method and size of

forecast-verification archive affects performance
• potential relevance to TIGGE, provides a frame-

work for allowing users to extract the forecast in-
formation most relevant to them


