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Abstract

The aim of this thesis is to explore the question: can scientific models improve

insurance pricing? Model outputs are often converted to forecasts and, in the context

of insurance, the supplementary questions: ‘are forecasts skillful?’ and ‘are forecasts

useful?’ are examined.

Skill score comparison experiments are developed allowing several scores in com-

mon use to be ranked. One score is shown to perform well; several others are shown

to have systematic failings; with the conclusion that these should not be used by

insurers. A new skill score property ‘Feasibility’ is proposed which highlights a key

shortcoming of some scores in common use. Variables from a well known dynam-

ical system are used as a proxy for an insurable index. A new method relating

the system and its models is presented using skill scores to find their score optimal

piecewise linear relationship. The index is priced using both traditional techniques

and new methods that use the score optimal relationship. One new method is very

successful in that it produces lower prices on average, is more profitable and leads

to a lower probability of insurer failure. In this context the forecasts are both skilful

and useful. The efficacy of forecast use is further explored by considering hurricane

insurance. Here forecasts are shown to be useful only if very simple adjustments to

pricing are made. A novel agent based model of a two company insurance industry

containing many key features in the real world is presented enabling the impact of

regulation and competition to be assessed. Several common practices are shown to

reduce expected company lifetime.
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2
2)) is shown in blue. The blended

forecast ri(y), for an illustrative value of α = 0.6, is shown in purple. Note that

the blended forecast assigns greater probability to the forecast variable in the left

and right hand tails of the distribution. . . . . . . . . . . . . . . . . . . . . 127

2.19 Blending example: Figure (a): Relationship between the blending parameter α

and the quality of the forecast β; as the forecast quality increases (β → 1), then

the weight put on the forecast increases (α → 1 ). Figure (b) shows the size of

the kernel bandwidth (σm) against β for a blended forecast (purple) and kernel

dressed forecast (blue). For the kernel dressed forecast as the quality of forecast

improves the bandwidth narrows; for the blended forecast the bandwidth initially

narrows but then slightly widens again. Figure (c) again compares the blended

and kernel dressed cases, showing the relative Ignorance versus forecast quality

β; the blended forecast shows better skill than climatology (Relative Ignorance

negative) for all values of β; the kernel dressed forecast only shows skill for β > 0.6.

In each experiment results are produced for 10 different random seeds and the

resulting values are plotted using points; for each value of β the median values

are joined together to form a line plot. . . . . . . . . . . . . . . . . . . . . 128

12



3.1 Probability density plots for two different values of K (Figure (a) K=4 and Figure

(b) K=36). The x-axis shows the value of the forcing parameter (F) and the y-

axis shows the value of the X1 variable in Lorenz System I and the colour denotes

the normalised density of observations taking that value, shown in the colour key.

Red indicates high density, cyan low density and blue zero density. The density is

normalised by dividing by the maximum density for each value of K - this ensures

the plots are both on the same colour scale. . . . . . . . . . . . . . . . . . . 139

3.2 Lorenz System I, K=36. F is variable and shown on the x-axis in each plot. In

Figure (a) the y-axis shows the mean of a chosen statistic of X1 (dots) and the

bar indicates the 10th and 90th quantiles of the statistic (these are estimated over

128 blocks of data). Each block contains 365 observations every 0.1. Figure (b)

shows just the mean dots compared with a stable quantile/mean ratio estimated

when F = 5. Figure (c) again shows mean dots - against the quantiles from a

Gaussian distribution with same mean (red dot) and standard deviation as the

observed X1 variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

3.3 Illustration of Lorenz 96 system II, parameterisation 80001, where K=36 and

J = 10. X values shown in red and Y values shown in blue. The J-block of the

10 Y values that relate to each X value are shown at the foot of the green lines

emanating from that X value. . . . . . . . . . . . . . . . . . . . . . . . . . 141

3.4 Illustrative time series plots from the Lorenz System II, parameterisation 80001.

Y2,1 values are shown in the graphic (a), X1 in graphic (b). The y-axis scale of

graphic (a) is chosen to be equal to that of (b) to highlight the difference between

the Y and X variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

3.5 Probability density plot of X20 from System 80001 (black line). Density plots for

Xk k 6= 20 are also shown in grey. Density produced using Gaussian kernel with

bandwidth 0.4584 over 214 observations in time increments of 0.1. . . . . . . . . 143

3.6 Sample probability density for each j value (1,2,...10), for System 80001 over 214

sample values. A each pane shows multiple red lines, i.e. the probability density

of the 36 Y variables with value j (i.e. Yj,1, ...Yj,36). The sample probability

density for Y3,1 is shown (in grey) to ease comparison between the plots and to

ensue the y-axis scales are the same in each plot. . . . . . . . . . . . . . . . 144

13



3.7 Figure (a) shows correlation coefficient value (y-axis) against k for X1 and Xk.

Figure (b) shows correlations between Xk1 and Xk2 for all pairs of variables

indexed by i=k1 and j=k2. The strength of correlation is indicated by the colour.

The colour key (c) shows that blue shades are used to denote negative correlation

and red shades, positive. Black is reserved for 100% correlation. . . . . . . . . 146

3.8 Figure (a) short time series of Instantaneous Effective Forcing (IEF1) with time-

mean value shown as red line. Figure (b) histogram of IEF1 values with box plot

above (calculated over 214 sample values). . . . . . . . . . . . . . . . . . . . 147

3.9 Xk values for k ∈ {33, 34, 35, 36, 1, 2, 3, 4, 5} (y-axis) versus IEF1 (x-axis). The

middle graphic shows that X1 is strongly related to IEF1 with an R2 value of

0.79. The relationship between Xk and IEF1 for k 6= 1 is much weaker with low

R2 values in all cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

3.10 IEF (t) versus IEF (t− 0.1) showing that the value of the Instantaneous forcing

at time t is conditionally related to its value at time t− 1. . . . . . . . . . . . 149

3.11 Figure (a) correlation colour plot for IEFk1 and IEFk2 for all pairs of variables

i=k1, j=k2. The strength of correlation is indicated by the colour map shown in

figure (b), blue shades are reserved for negative and red for positive. White is

used for correlation in the range (-3%, 3%) and black for 100%. . . . . . . . . . 149

3.12 Partial autocorrelation function for IEF1 . . . . . . . . . . . . . . . . . . . 151

3.13 Akaike Information Criterion (AIC) graphics for IEF . Figure (a) shows the AIC

value for different AR(p) processes where p is shown on the x-axis - the black line

uses the IEF1 variable to derive the fitted parameters, the grey lines illustrate

the results for the remaining k variables. Figure (b) shows the value of p (y-axis)

that gives the minimum AIC value for each k. Figure (c) shows log2(AIC) on the

y-axis against p to illustrate how the value is significantly reduced by the time

p = 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

3.14 Results of fitting an AR(4) processes Îk to each IEFk. Boxplot of coefficients
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the relationship is stable. . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

3.18 Comparison of functional relationship F = IEF (X) for systems 80001, ...80006,

used in definition of model class *11 . . . . . . . . . . . . . . . . . . . . . . 160

3.19 Boxplots of time series quantiles of one system and three models of that system

(boxes show interquartile range). Quantiles of Xk are shown in four blocks of four

graphics for values 50%, 60%, 90% and 99.5%. Each box plot shows the range of

quantile values arising for every value of k. Each block of 4 graphics shows four

cases,left to right: (1) system 80001 (2) model 10008 (3) Model 10009 (4) Model

10010. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

3.20 Boxplots of time series quantiles. Similar to figure 3.19. Comparison of sys-

tem quantiles with varying-F models (10012 AR(4) and 10011 F = IEF (X)).

Quantiles of Xk are shown for values 50%, 60%, 90% and 99.5% . . . . . . . . 166

3.21 Comparison of ensemble values (grey) from model ID=10008, with system values

(red) for various illustrative periods, each containing 24 timesteps of length 0.1 . 168

3.22 Comparison of system (red) with ensemble values (grey) from models 10008,

10009, 10010, 10011 and 10012 . . . . . . . . . . . . . . . . . . . . . . . . 169

3.23 Illustration of process to determining the discrete-best blending α parameter for a

fixed kernel bandwidth (σ = 1.0 in this case). This process was repeated for each

of the observation times during the period. The graphic illustrates the relationship

between the value of α and the average Ignorance score when the observation time

is 0.833 through the period. The graph is piecewise linear illustrating the discrete

values at which α was tested. The value of α that minimises the average Ignorance

score is 0.65 in this case. . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
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3.24 Discrete-best α0 values for each observation time through the period . . . . . . 172

3.25 Discrete-best σ against observation time for locally discrete best α0(t). The left

hand graphic shows the value when the time is 3
24 through a period and the right

when it is 19
24 through. The left hand plot shows that a kernel bandwidth of less

than 1 gives a lower average score in the early part of the period; the right hand

plot shows that a value greater than 1 is optimal nearer the end of the period. . 173

3.26 Discrete best σ0 values for each value of α0(t) . . . . . . . . . . . . . . . . . 173

3.27 Contour plot of average Ignorance score for different values of α and σ. Average

score values are calculated at 49 grid points with the one factor best σ(t) and

α(t) taken as the centre of the grid. The values of the average score are shown

in grey and plotted at the intersection of the grid lines. This example illustrates

the picture for observations 0.833 through the period. In this case the grid-best

(minimum Ignorance) parameters are in the centre of the grid. . . . . . . . . . 174

3.28 σ vs α - where the time that the parameter pairing occurs is shown in the text - the

blue dots show the chosen parameters which fit through the grid-best parameters. 175

3.29 Blending parameters: chosen (manually smoothed) σ (figure (a)) and α (figure

(b)) values (blue lines and dots) for different times through the period; grid-best

values (before smoothing) are shown as black circles. . . . . . . . . . . . . . . 176

3.30 Chosen blending parameters for the other forecasts. Black line shows the param-

eters for forecast 10008. Grey shading shows the range of parameter values tested

in the grid. Dots show the gird-best parameters (i.e. those giving the best score

on the grid a particular proportion through the period); lines show the chosen

manually smoothed values. . . . . . . . . . . . . . . . . . . . . . . . . . . 178

3.31 Comparison of system observations (red) and forecast ensemble for model 10008

(grey dashes and grey bar). The Ignorance score for the given observation and

climatology blended forecast is illustrated with a black line whose values are shown

on a secondary y-axis to the right of the plot. . . . . . . . . . . . . . . . . . 180

3.32 Box plots of Ignorance values for forecast 10008 at different times during the

period. Coloured lines show the quantiles of the distributions. Dots show all

values outside of interquartile range. . . . . . . . . . . . . . . . . . . . . . 181
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3.33 Black line shows average Ignorance at different proportions though the period for

the climatology blended forecast, for forecasts of the variable X1. Grey lines show

the average score for the other 35 variables (X2, ...X36) . . . . . . . . . . . . . 182

3.34 Average period forecasts, comparison of climatology blended forecast and kernel

dressed (only) forecasts. Top left shows density of average period score over 1184

periods; top right shows box plots of the mean average period score over 36 X

variables; bottom plot shows the range of standard deviation of the average period

score for the same variables. In each of the box plots and for a given variable Xk

a grey line is drawn between the value of the statistic in the kernel dressed case

and in the blended case. . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

3.35 Comparison of scores for models 10008 to 10012. Mean score over 1184 periods

- at different times during the period. Model 10011 outperforms the others and

retains skill relative to climatology through the entire period. . . . . . . . . . 186

3.36 Comparison of skill score quantiles for forecasts from models 10008 to 10012. For

the low quantiles (Top left, top right and mid left graphics) model 10011 performs

better than the others throughout the period. For the high quantiles (mid right,

bottom left and bottom right graphics) model 10011 performs best for the first

half of the period but worst for the second half. . . . . . . . . . . . . . . . . 187

3.37 Comparison of forecasts 10008 to 10012. Diagonal shows forecast ID and also

the mean of the period average scores over all periods. The lower triangle shows

scatter plots comparing the period average score from each pair of models. Let

Model A (x-axis) be defined by the model label in the column above and model

B by the row label to the right, then each point in the scatter plot is the period

average score from model A compared to that of model B; the line y = x is shown

for easy comparison. Model 10011 clearly outperforms the other models since the

scatter points are almost all one side of the line. The top right triangle shows the

correlation coefficient between model A and model B defined by the label in the

column below and row to left. . . . . . . . . . . . . . . . . . . . . . . . . . 188

3.38 Grid-best α value over the period- lines represent manually smoothed values and

dots represent the best points on the tested grid. The model numbers are shown

in the legend of each plot. The corresponding system can be inferred from these. 192
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3.39 Grid-best σ - lines represent manually smoothed values and dots represent the

best points on the tested grid The model numbers are shown in the legend of each

plot. The corresponding system can be inferred from these. . . . . . . . . . . 193

3.40 Mean Ignorance score at different proportions through the period 1
24 , ...

24
24 . Com-

parison of all forecasts from all model ensembles in all systems. Model ID is

shown in the plot from which the system can be inferred. . . . . . . . . . . . . 194

3.41 Comparison of period average scores for forecasts from each model. Figure (a)

shows the average score for K=1 (red) compared to a box plot of the average score

for the other 35 K variables. Figure (b) shows the average score for K1 (again

red) but this time against a box plot of bootstrap resampled means. 29 samples

each of size 29 are taken (with replacement) from the 1184 period scores available

to indicate the uncertainty in the mean value. These resamples are chosen so that

the same periods are chosen for each of the forecasts in each case. . . . . . . . . 196

4.1 Discretisation of the system and model sample spaces, with resulting relation-

ship φ. The top graphic shows the sample space of the system (the interval

Σ = (a0, aM ) partitioned into sub intervals A1, A2, ...AM , these are mapped in

1:1 correspondence to M intervals in the model sample space Θ = (b0, bM ) parti-

tioned by B1, ...BM . This can be represented by a piecewise linear, non-decreasing

relationship φ :
⋃M
i=1Ai →

⋃M
i=1Bi as shown in the bottom plot. . . . . . . . . 206

4.2 Example C4.1.1: Flowchart describing the observation and forecast ensemble cre-

ation process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

4.3 Example C4.1.1: Figure (a) Histogram of pseudo observations of the system.

End points of equal cardinality bins indicated by the blue tick marks), Figure

(b) Scatter plot of pseudo observations of the system (x-axis) with corresponding

forecast values (y-axis) for one ensemble member. The line y = x reveals that the

model tends to predict values above the system in some regions of the distribution. 211
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4.4 Example C4.1.1: Figure (a) Blue line shows the true relationship φ between the

system and the model. The blue tick marks show an equal cardinality partition

of the system sample space. The model space is subdivided into equal length

intervals and the black line shows a line drawn between the points the form the

intersection between the interval end points and the equal cardinality partition -

this is the relationship that forms the initialisation of the optimisation routine.

Figure (b) the blue line shows the true relationship φ′ and the black line shows

the result of the optimisation routine (i.e. the estimator φ) the SOPLR is closer

to the true relationship in figure (b) than in the initial partition (a). . . . . . . 212

4.5 Example C4.1.1: Left plot show a scatter plot of observations of the system versus

one forecast ensemble member. This is a lower quality forecast than in graphic

4.3 as evidenced by the greater scatter of points. The right plot shows the true

relationship φ (blue line) and the estimator in black. Despite the poor quality of

the forecast the estimator closely aligns with the true relationship. . . . . . . . 213

4.6 Example C4.1.2: Coarse partition of the system space with just 4 equal cardinality

bins. The true relationship (blue line) and estimator (black line) are close together

indicating success of the method despite the coarse partition of the model space.

The initial trial relationship φtrial is shown in grey. . . . . . . . . . . . . . . 214

4.7 Example C4.1.3: Perfect system partition. The optimisation routine doesn’t quite

find the true φ′. The figure types follow those already described in this section.

Figure (a) a histogram of pseudo observations of the system. Figure (b) a scatter

plot of system versus observed values. Figure (c) the initial estimate for the

optimisation routine. Figure (d) the result of the optimisation (φ, black line)

versus the true relationship (φ′ blue line) versus the initial trial (φtrial grey line). 215

4.8 Example C4.2.1: Flowchart describing the observation and forecast ensemble cre-

ation process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

4.9 Example C4.2.1: Left plot, a histogram of observations of the system with equal

cardinality bins shown by the blue tick marks. Right hand plot shows observations

plotted against forecast ensemble values (all ensemble members) . . . . . . . . 220
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4.10 Example C4.2.1: Figure (a) shows the results of the optimisation routine for equal

cardinality bins. Figure (b) shows the result using the same partition but with

two additional points added close to the end points of the first and last intervals

- this helps to suppress the overshoot at the end points. . . . . . . . . . . . . 220

4.11 Example C4.2.2: Figure (a) shows histogram of observations against equal cardi-

nality bins (blue tick marks), note that the density is now highest in the centre

of the distribution. Figure (b) shows the true relationship φ′ as a blue line with

a scatter plot of ensemble values versus system values. Figure (c) shows the true

relationship in blue and shows the SOPLR φ in black. The fit is now closest in

the centre where the density of observations is highest. . . . . . . . . . . . . . 221

4.12 Example C4.3: Histogram of observed index values from System 80001 - y-axis is

count of observations per bin out of 512 observations. Blue tick marks show the

equal cardinality bins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

4.13 Example 4.3: Various examples of the SOPLR φ for different sets of observations.

System 80001 and model 10011 are illustrated. Black line shows the result for the

training data set. Blue lines show four other non-overlapping observation data

sets to illustrate the stability of the estimator. The relationship is clearly above

the red line y = x. The lines are not all identical indicating the estimator is quite

sensitive to the observations, but do show the same pattern. . . . . . . . . . . 232

4.14 Example C4.3.1.x: SOPLR φ. The line y = x is shown in solid red for comparison. 233

4.15 Example C4.3.2.y: SOPLRs φ. The line y=x is shown in solid red for comparison.

Note that φ is above the y = x line in each case. . . . . . . . . . . . . . . . . 234

4.16 Illustration of selection of low scoring parameters for the blending process. Red

dot shows the chosen value and the two sets of contours (of the average score)

illustrate the two step process for choosing it. System 80001 and model 10011. . 238

4.17 PDF of index distributions: Green = climatology, Blue=Kernel dressed forecast,

Black = Blended forecast . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

4.18 Grid-best blending parameters for various systems and models. Plot labels show

the system ID on the top and the model ID on the bottom, the inner dot colour

represents the forecast, outer ring represents the system - labels are in the same

colours. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
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4.19 Lorenz 96 Index example: Histogram of technical price based on the Updated

Expectation method. Vertical red line indicates the climatology price. . . . . . . 240

5.1 Histograms of actual hurricane counts per year (left) and simulated from Poisson

distribution (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

5.2 Hurricane landfall proportion (ratio) by year since the 1950s based on HURDAT

data to 2010. The long term average of 24% is illustrated by the horizontal red line. 255

5.3 Flow chart for stationary climate experiments . . . . . . . . . . . . . . . . . 260

5.4 Experiment C5.1.x: Exceedance Probability (EP) curve of hurricane losses gen-

erated from simple landfall model. . . . . . . . . . . . . . . . . . . . . . . 263

5.5 Experiment C5.1.0: Histogram of profits π0 from the control experiment; x-axis

shows profit π for pricing method 0 in USDbn. . . . . . . . . . . . . . . . . . 264

5.6 Experiment C5.1.x: Spread of premium rates arising from the different pricing

methods indicated by the label on the x-axis, values are shown in black with the

premium rate in text plotted at the appropriate level). The mean premium under

each method is highlighted in red with a line joining them (this may not be a

premium level that is ever charged). Note that the average premium rates for

variants 4 and 5 are lower than the control. . . . . . . . . . . . . . . . . . . 266

5.7 Experiment C5.1.x: Premium rates (y-axis) against number of Atlantic Basin

hurricanes (x-axis) for each pricing method. The pricing method is indicated by

the y-axis label. The control P0 and variants 1 and 5 charge the same premium

rate in all cases (the latter methods scale the volume of business sold). P1 shows

three levels corresponding to the low, medium and high seasons. P2 by construc-

tion has a 1-1 correspondence with the number of basin hurricanes. Variants 4

and 5 show many different rates against number of basin hurricanes since they

take account of more forecast information. . . . . . . . . . . . . . . . . . . . 269
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5.8 Experiment C5.1.x: Premium rates (y-axis) against number of landfalling hurri-

canes (x-axis) for each pricing method. The pricing method is indicated by the

y-axis label. Variant 2 has three premium levels except when the number exceeds

5; in this case it is not possible for the basin season to have been ‘low’. Variant 3

has many premium rates but the landfalling number places a lower bound on the

basin frequency explaining the white space at the bottom right of the plot. By

construction Variant 4 shows a 1-1 relationship with landfalling number. Variant

5 shows three rates (low, medium and high season strength) when the landfalling

number is 1; for larger landfalling counts only medium and high strength seasons

are possible. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

5.9 Experiment C5.1.x: Premium rates (y-axis) against number of city hits (x-axis)

for each pricing method. The pricing method is indicated by the y-axis label. The

white space in the bottom right of the figures for variants 3,4 and 5 are caused

by the number of city hits placing a lower bound on the basin and landfalling

frequencies respectively. Note that under variant 4, when there is 1 city hit it is

possible for this variant to have charged less than the control premium rate. . . . 271

5.10 Experiment C5.1.x: Boxplot of mean underwriting profit relative to the control

(π0). The mean profit (E(π)) of each resample is calculated for each pricing

method and then divided by E(π0) from the control method. The profitability

of variant 4 (π4), where the number of landfalling storms is known perfectly, is

significantly lower than the others despite the additional information used. The

profitability of Variant 5b (π5b) which makes use solely of the season strength

information is significantly higher than the others. Boxplots produced using sam-

pling method A (taking 210 bootstrap resamples each of size 214 from the 215

underwriting results produced by simulation). . . . . . . . . . . . . . . . . . 272
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5.11 Experiment C5.1.x: Boxplot of 1-in-200 negative profit (Q(π, 0.005)) for each

pricing method relative to the control. The quantile for each pricing method is

divided by the value for the control experiment. Values greater than 1 indicate

the 1 in 200 underwriting loss will be worse under the pricing variant and values

less than 1 indicate a better outcome. Each of Variants 4,5 and 5b have signifi-

cantly lower extreme negative profits than the other methods. Variant 5b (π5b)

in particular achieves a 9% reduction in extreme negative profits relative to the

control. Created using sampling method A (taking 210 bootstrap resamples each

of size 214 from the 215 underwriting results produced by simulation). . . . . . . 273

5.12 Experiment C5.1.2- C5.1.5b: Capital requirements arising under each method.

Red lines show the 1 in 200 annual aggregate claim arising black shows the capital

arising after deduction of the premium charged from the 1 in 200 claim. Figure

(b), Variant 3 shows that when the number of basin hurricanes is 1 or 2 the

chances of a category 4 or 5 storm making landfall as a city hit is beyond a 1

in 200 probability so that capital does not (in theory) need to be held for this

eventuality. Figure (4) Variant 5 shows that if the season strength is medium

and there are more than 3 landfalling storms then no capital is required as the

premium rates are more than sufficient. In practice no insurance would be bought

under these conditions on the assumption that the forecasts are exact. . . . . . 277

5.13 Experiment C5.2.3 - C5.2.5. Comparison of premium rates using the Kreps

method (Pj on the y-axis) and the Target Return method (P̃j on the x-axis) for

variants j ∈ {3, 4, 5}. The line y = x is shown in red for easy comparison. Figure

(a) The plot character is the number of basin hurricanes in the year (noting that

there will be one premium rate for each forecast of basin hurricane numbers under

variant 3), figure (b) the plot character is the number of landfalling hurricanes in

the year (noting that there will be one premium rate for each level of forecasted

landfalling number under variant 4) and figure (c) shows variant 5 the plot char-

acter is the number of landfalling hurricanes in the year, the plot colour shows

the severity strength of the season - the premium rate is sensitive to both these

parameters so there is a unique premium rate for each combination of landfall

number and season strength. . . . . . . . . . . . . . . . . . . . . . . . . . 281
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6.1 Impact of competition on market share. The graphic shows the change in market

share of a given level of main company premium Pmain relative to a fixed com-

petitor premium P comp = 10. The Market share change factor δmaint (equation

6.13) is shown as a function of Pmain. The maximum change in share δ
main

= 0.2

and αmain = 2, the red line illustrates a shape factor σmain = 1.5, the grey lines

show various other values of σmain ranging from 0.5 to 2.5. Note that when

Pmain > P comp the volume of business will fall for the main company as the

prior market share is multiplied by
1

1 + δ
. . . . . . . . . . . . . . . . . . . 290

6.2 Experiment 6.2: Time Mean plot showing the average premium rate per unit of

risk for hypothetical Perfect Company (shown in cyan) compared to Control Com-

pany (shown in red). The minimum number of simulations included in the average

starts at 1024 (all simulations) and ends at 160 indicating that in many simula-

tions one or both of the companies is typically dead before this time. The red

region for the Control Company shows a 95% confidence interval around the mean

(black line) based on a Gaussian approximation (P̄ (t) ∼ N(E(P (t)), sd(P (t))√
n(t)

).

The Cyan region is also a 95% confidence interval but is thin because the Perfect

Company sets almost the same premium in each simulation (slight differences

arise from sampling error in calculating the capital requirement K̂). Note that

the Control Company’s red confidence interval falls below the Perfect Company’s

cyan region: the underpricing of the former is therefore significant at the 95% level. 309

6.3 Experiment C6.3.x: Quantile Boxplots showing the mean lifetimes, free asset

proportion, and present value of dividends of the main company for different

target return on capital (5-25%). In the mean lifetimes plot the width of the grey

boxes illustrate sampling error in the calculation of the mean. Whilst these grey

boxes overlap it is still clear that the increasing trend in lifetime is robust as the

target return increases because the quantile lines almost all show an increasing

trend and do not overlap very frequently. The increase in free asset proportion as

target return increases is clear to see. Note, the Company Value initially increases

as the target return increases but this levels off for target returns in excess of 15%. 310

6.4 Experiment C6.4.x: Specific Simulation Plots for the main company claims and

premiums per unit of risk for simulation 753. Results are shown for the control

experiment (red) and several levels of payback percentage (between 10% and 50%) 312

24



6.5 Experiment C6.4.x: Specific Simulation Plots for the main company in simulation

753 zoomed into years 25 to 35. Top left shows claims per unit of risk, top right

shows premiums per unit of risk, bottom left shows the number of risk units sold

by the main company by year and the bottom right shows the dividend paid in

each year. Results are shown for the Control Company (red) and several levels of

payback percentage between (10% and 50%). . . . . . . . . . . . . . . . . . 315

6.6 Experiment C6.4.x: Quantile Boxplots of key statistics (y-axis) for the control

(0% payback) and other values of payback percentage from 10% to 50% shown on

the x-axis. Top left shows the mean number of risk units across all simulations,

top right shows average lifetimes, mid left shows the premium rate per unit of

risk and mid right shows the average value of free assets, the bottom plot shows

the present value of dividend payments for different payback rules. . . . . . . . 316

6.7 Experiment C6.5.x: Quantile Boxplots for main company showing key statistics

for different regulatory capital requirements (VaR levels from 50 years to 500

years). Top left shows mean premium rate per unit of risk, top right shows the

mean present value of dividends paid, bottom left shows the average number of

risk units sold and bottom right shows the average lifetime. . . . . . . . . . . . 318

6.8 Experiment C6.6: Scatter plot showing estimated mean µ̂j (x-axis) and variance

σ̂2
j (y-axis on log2 scale) of claims process from j ∈ {1, ...10, 000} 15 year samples.

For each point (µ̂j ,σ̂2
j ), 128 estimates of the VaR0.005 and TVaR 1

69
are produced

by sampling 10000 values from the Estimated Claims Distribution. The orange

dots show the pairs for which the VaR ≥ TVaR more than 50% of the time and

vice versa for purple. In 7178 cases the proportion of VaR estimates that exceed

the TVaR is greater than 50% demonstrating that the capital calculation is more

likely to result in a higher VaR calculation than TVaR in this experiment. . . . . 321

6.9 Experiments C6.7.x: Quantile Boxplots for the main company for different un-

derlying claims distribution assumptions used in calculating the premium rate.

Shown for the control (Lognormal), Pareto and Gamma distributions. Top left

shows average lifetime, top right the capital held at the end of the year, bottom

left shows the number of risk units sold on average and bottom right shows the

premium rate per unit of risk. . . . . . . . . . . . . . . . . . . . . . . . . 324
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6.10 Experiments C6.7.x: Specific Simulation Plots for the main company and simu-

lation 820. Shown for each pricing distribution assumption: Lognormal (control,

red), Pareto (green) and Gamma (blue). Top left shows claims per unit of risk,

top right shows the premium rate, bottom left shows the number of risk units

sold and bottom right the capital held at the end of the year. . . . . . . . . . 325

6.11 Experiments C6.7.x: Quantile Boxplots for main company for different levels of

underlying claims variance 50%, 65% (control) and 80%, where distribution is

Lognormal with mean 1 in all cases. Top left shows average lifetime, top right

premium rate per unit, middle left shows the number of risk units sold, middle

right the proportion of the company assets that are free and bottom shows the

Company Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

C.1 Colour key used for most plots. Y axis shows probability of slope occurring from

random resampling of points . . . . . . . . . . . . . . . . . . . . . . . . . 350

C.2 Flow chart for the calculation of the slope probability. . . . . . . . . . . . . . 352

C.3 Flow chart for Integer Segmentation Plot. Right hand column illustrates the steps

for n=1,2, and 9 and also shows the resulting plot in the case of a linear trend.

Data set is C7.1.3 for illustration. . . . . . . . . . . . . . . . . . . . . . . . 353

C.4 Flow chart of Running Window plots: Graphics in middle column illustrates

the Running Window Triangle and the right hand column illustrates the Stacked

Square method in the case of a linear trend. Data set is C7.5.1 (Convective events

in the USA) for illustration. . . . . . . . . . . . . . . . . . . . . . . . . . 356

C.5 Example C7.1.1: Perfect Gauss-Markov: σ = 0.01, slope = 1
128 . The Stacked

Square and Triangle plots show highly significant slopes for all illustrated window

sizes. The Integer Segmentation plot shows highly significant trends down to

subdivision of the data into 1
14 ths. . . . . . . . . . . . . . . . . . . . . . . 360

C.6 Example C7.1.2: Perfect Gauss-Markov: σ = 0.1, slope = 1
128 . As with figure

C.5 the Stacked Square and Triangle plots show highly significant slopes for all

illustrated window sizes. The Integer Segmentation Plot shows highly significant

slopes only up to when the data is divided into fifths (consistent with a higher

variance (σ = 0.1 > 0.01) of the Gaussian Noise term), positive trends with mixed

significance are evident until the data is subdivided by a factor of 9 after which

there is no discernible pattern in the colours. . . . . . . . . . . . . . . . . . 361
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C.7 Example C7.1.3: Perfect Gauss-Markov: σ = 1.0, slope = 1
128 . The variance

term in time series underlying this series of graphics is much larger than in figure

C.5 and C.6. Consistent with this, in the Integer Segmentation Plot the trend is

only highly significant for the data set as a whole. The Triangle plot shows that

this degree of high significance is retained for all windows with up to 22 points

removed and the trend remains significant up to the removal of 37 points. The

Integer Segmentation Plot shows that once the data is halved high significance

is only evident in the second half of the data after which there is no discernible

pattern in the colours. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362

C.8 Example C7.2.1: Perfect Gauss-Markov: σ = 0.01, slope = 0. The Integer

Segmentation plot shows that whilst the slope of the ordinary least squares line

is negative it is not significant. By construction the time series has no long

term trend and any observed trend is an artefact of the sampled Gaussian Noise.

The Triangle plot and Stacked Square plots show that that the sign of the slope

(negative) is retained and even becomes significant for some smaller window sizes

in some locations. The Integer Segmentation Plot, however, shows no discernible

pattern in the colours. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

C.9 Example C7.3, Cosine with Gaussian Additive Observational Noise : Sample from

times series whose mean values vary with the cosine of time. Top plot shows a

sample from the distribution, with the underlying mean values shown in blue

and the fitted least-squares regression line in red. Lower plot shows the residuals

from the linear model with a kernel smoother (green) through the data and also

a linear trendline (red) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365

C.10 Example C7.3, Cosine with Gaussian Additive Observational Noise: By construc-

tion in this time series the Gauss-Markov assumptions do not apply and so the

t-test may not be used. The Integer Segmentation plot clearly shows a highly

significant trend in the data down to division of the data by 4 - and a signifi-

cant trend to division by 7. The Stacked Square and Triangle plots show highly

significant trends for all window sizes considered. . . . . . . . . . . . . . . . 366
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C.11 Examples C7.4.1-4 Time Series plots: x = t1.5 example, cases C7.4.1 (top left),

C7.4.2 (top right), C7.4.3 (bottom left) and C7.4.4(bottom right). By construc-

tion the Gauss-Markov assumptions do not apply, it is therefore notable that the

Shapiro-Wilk, Breusch-Godfrey and Breusch-Pagan tests do not reject Guassian,

independent or homoskedastic residuals respectively in the top left and top right

time series. In the bottom left and right plots the length of the time series is

greater and the Breusch-Godfrey test rejects independence. . . . . . . . . . . . 369

C.12 Examples C7.4.1-4: Integer Segmentation Plots: x = t1.5 example, cases C7.4.1

(top left), C7.4.2 (top right), C7.4.3 (bottom left) and C7.4.4(bottom right) Each

of the Integer Segmentation plots shows that the trend is significant at least up to

where the data is split into thirds. The bottom right plot shows a ‘wedge’ shape

in the bright red coloured segments; consistent with the accelerating slope of a

t1.5 line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370

C.13 Examples C7.4.4-7 Time Series plots: x = t1.5 example, cases C7.4.4 (top left),

C7.4.5 (top right), C7.4.6 (bottom left) and C7.4.7 (bottom right) In this series

of plots the length of the time series is 128 but the variance of the Gaussian Noise

term increases. It is notable that apart from the lowest variance plot (top left)

the Breush-Godfrey test does not reject independence of residuals, as with figure

C.11 it would appear that the t-test can be used despite this not being the case

by construction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371

C.14 Examples C7.4.4-7: Integer Segmentation Plots: x = t1.5 example, cases C7.4.4

(top left), C7.4.5 (top right), C7.4.6 (bottom left) and C7.4.7 (bottom right). The

row numbers are difficult to read at this scale but run form 1 to 64. Each plot

shows a highly significant trend in the full data set and a significant trend when

the data is halved. The wedge shape described in figure C.12 is arguably retained

in the top right and bottom left figures here. . . . . . . . . . . . . . . . . . . 372

C.15 Figure to illustrate that a time series of type C7.4.5 (t1.5) is likely to lead to

a right handed wedge in the Integer Segmentation Plot. Figure shows (y-axis)

Log(Density) of simulations that have a given slope probability (x-axis), based on

1024 simulations. The colour key is shown as a strip at the top of the graphic for

easy comparison. The top figure shows the results when the data set is quartered,

the bottom figure shows the results when it is divided into 8. . . . . . . . . . . 373
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C.16 These Box plots reflect the frequency with which high slope probability is detected

in a sub segment, as a function of where that sub segment lies in the time series.

The clear increase in frequency reflects the fact that detection in later segments

is much more likely than in earlier segments; the trend supports the expectation

that a right-handed wedge is very likely. The boxplots show results of bootstrap

resampling of slope probabilities; 1024 resamples of 512 subsamples from 1024

time series. The frequency of occurrence of a slope probability that exceeds 0.99

is shown (the probability of observing a bright red segment). Conclusion: the 8th

segment is more likely to be bright red than the 1st: a right handed wedge is very

likely for time series of type Examples C7.4.5. . . . . . . . . . . . . . . . . . 374

C.17 Example C7.5.1: Convective events in the USA. The Integer Segmentation Plot

and the Running Window Triangle plots clearly show that, whilst the full time

series shows a highly significant trend, this level of significance is only retained

in the first half of the data set when the data is subdivided. The Stacked Square

plot, however, shows that the positive trend is significant for windows to size 30

and is retained in many windows to size 24. . . . . . . . . . . . . . . . . . . 378

C.18 Example C7.5.2: Convective events in the EU. The trend line in the top left plot

is shown not to be significant in the Integer Segmentation Plot although there is

a highly significant trend in the second half of the data set. . . . . . . . . . . 379

C.19 Example C7.5.3: Normalised hurricane losses - USA. The Integer Segmentation

plot shows a significant trend in normalised hurricane losses over the period. The

Stacked Square and Triangle plots show that some windows of size 31-36 are

highly significant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380

C.20 Sample of values from Lorenz 63 system. The right hand plot shows the trajectory

of x against time with the sampled values shown in red; the left hand plot shows

the trajectory in xyz phase space - again with the sampled values highlighted in

red. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
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C.21 Example C7.6: Lorenz 63 sample of x values. The Integer Segmentation, Triangle

and Stacked Square plots all show that whilst there is a positive slope in the data

this is not significant. The Integer Segmentation Plot has considerable structure,

consistent with trajectories which alternate between the lobes of the Lorenz 63

attractor and also higher frequency cycles evident when the colours alternate

between red and blue when the data is divided into more than 125 segments. . . 383

C.22 Example C7.7: Tide Gauge Data: Location of NewYork gauge - number 12,

denoted by green arrow. . . . . . . . . . . . . . . . . . . . . . . . . . . . 385

C.23 Example C7.7: Tide Gauge Data: NewYork - number 12. The Triangle and

Stacked Square plots show a highly significant trend for all window sizes consid-

ered. The Integer Segmentation plot shows that the trend remains significant up

to when the data is divided into 5. There is some evidence of a ‘wedge’ shape

(similar to that of figure C.12) where the significant segments appear more on the

right of the plot than the left down to where the data is divided by 12. . . . . . 388

C.24 All tide gauges plotted at their geographical location. Colour indicates slope

probability as per colour key. Red shades arise when sea level is rising at the

given location and blue for falling levels. A black dot within the plot character

indicates a gauge with a short time series (less than 25 data points). . . . . . . 389

C.25 Tide gauge data, restricted set. 4-block slopes versus, 4-block slope probabilities.

Outliers highlighted with a red cross. Data indicates 67% correlation between the

slopes and slope probabilities which rises to 78% with the outliers removed. . . . 389

C.26 Example C7.8: Sunspot numbers: SIDC. Annual mean. All plots show a highly

significant trend in the full data set. The Integer Segmentation Plot has consid-

erable structure and alternating bands of red and blue are consistent with the 11

year solar cycle when the data is subdivided into 50+ groups. . . . . . . . . . 391
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List of Variable Names

The following table lists the main variables that are used within this thesis. Some

variables are not listed here if they are used briefly in a chapter with no lasting

meaning. The column ‘variable name’ is used for chapter 6 to enable easy translation

of axes labels on the graphics. Where appropriate equation numbers are also given.

equation

number

mathematical

notation

description chapter

2.1 S(p, v) skill score for forecast p and observation v 2

p, q probabilistic forecasts 2

2.37 fu underlying distribution created by kernel dressing

a set of data points

2

2.36 θ̂ score optimal parameter value 2

2.55 fw1,w2,w3 weighted average of Gamma, Lognormal and

Pareto distributions, with weights wi

2

2.54 GS Skill Gap when skill score S is used 2

2.62 rn(α, σ) Climatology blended forecast with blending pa-

rameter α and kernel width σ

2

3.2 Xk Lorenz 96 ‘slow’ variable, with index k ∼ {1, ..36} 3

3.2 Yk,j Lorenz 96 ‘fast’ variable associated with slow vari-

able Xk and with index j ∼ {1, ...10}

3

3.3 IEFk Instantaneous Effective Forcing within Lorenz full

system, associated with variable Xk

3

Page 200 fk transformation of observed system variable to de-

cision relevant quantity

4

4.1 R insurance index based on observed system vari-

ables

4

4.3 λ relative frequency of ensemble members falling

within a chosen interval

4

Page 201 Ω space of values taken by insurance index R in the

full system

4
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Page 202 Θ space of values take by the insurance index R̂ in

the model

4

4.18 D Ground Up Loss 4

4.19 L Gross Loss 4

Page 253 NB Number of hurricanes generated in the atlantic

basin

5

Page 253 NL Number of hurricanes that make landfall 5

Page 253 NC Number of hurricanes that hit an urban or com-

mercial centre

5

Page 254 sa Saffir Simpson hurricane strength category (1-5) 5

Page 254 S(sa) Insurance industry loss as a function of hurricane

strength

5

5.6 f(nB) Low fidelity forecast of number of basin storms

into category high, medium and low

5

5.5 P0 Price for hurricane insurance using climatology

information only

5

5.8 P2 Price for hurricane insurance based on approxi-

mate season frequency forecast f(nB)

5

5.9 P3 Price for hurricane insurance using perfect fore-

cast of number of basin storms NB

5

5.10 P4 Price for hurricane insurance using perfect fore-

cast of number of landfalling storms NL

5

5.12 P5 Price for hurricane insurance based on an adjust-

ment to P4 which uses approximate season sever-

ity forecast

5

t index for the simulated year of business 6

6.2 , 6.22 Cmaint claims in year per unit of risk for ‘main ’ company;

definition for competitor (superscript ‘comp’ ) is

not shown.

6

6.3 Pmaint premium charged per unit of risk 6

e−µÊ(Cmaint ) expected claims discounted to start of year 6

6.5 e−µpayback portion of premium relating to ‘payback’ 6

6.8 e−µK̂main capital required per unit of risk 6

6.16, 6.30 Nmain
t number of policyholders within the market (since

all of equal risk)

6

e−µ discount factor at the risk free rate where µ is the

force of interest

6

eµ accumulation factor at the risk free rate 6

6.1 Cmaint main company’s share of industry claims 6
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6.20 Pmaint total premium written by main company (for all

policies)

6

6.23 Imaint investment return in the year from all sources (for

profit and loss account)

6

6.24 πmaint profit in year for main company 6

6.25 Dmaint dividend paid by main company to its sharehold-

ers, in year t

6

6.29 Kmaint capital required by main company at Beginning

Of Year (BOY)

6

6.21 Jmaint capital injection in year t for main company 6

Kmaint+1 capital held at the End Of Year 6

Kmaint + 1 > 0 boolean test to check whether the main company

is alive or dead at the end of the year

6

6.6 V aR Value at Risk (see Glossary) 6

6.7 TV aR Tail Value at Risk (see Glossary) 6
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Glossary of terms

Term Definition

Additive

Observa-

tional Noise

A time series xt can be thought of as a series of draws from a random variable

Xt with mean µt. The differences et = Xt − µt are then a random variable with

zero mean. The terms et are often called innovations, error terms, white noise

or dynamic noise - here they will be called Additive Observational Noise. They

are often assumed to have a Gaussian distribution but this is not a necessary

condition.

Attractor Let f be a map. An attractor is ‘the set of points to which most points evolve

under iterates of f’ (Milnor 1985, quoting Collet and Eckmann 1980).

Capital Money held against the possibility that the premium charged is insufficient to

pay for expenses and any insurance claims during the period the insurance is in

force.

Categorical

forecast

A probabilistic forecast where the possible outcomes are discrete items.

Claim The monetary amount which the insurer will pay to a policyholder if an insurable

event has occurred

Climatology A climatology is an empirical distribution based on past observations over a

defined period of time

Climatology

blending

A weighted average between a probabilistic forecast and a climatology forecast.

The blending parameters can include the weight variable and also any parameters

of the forecast (such as the kernel width if kernel dressing is used). These can

chosen to optimise a particular skill score for a give set of observations.

Convective

event

Atmospheric event such as thunderstorm or tornado.

Exceedance

probability

The exceedance probability (EP) curve is commonly used in general insurance.

It denotes the probability that a loss will be greater than or equal to a given

amount. If the Cumulative Distribution Function (CDF) of insurance losses is F

then the EP curve is 1− F .

Fahrenheit

(F)

A temperature scale where water freezes at 32 degrees and boils at 212 degrees.

One hundred and five degrees fahrenheit is expressed as 105F.
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Forecast A prediction of the value of an observed variable at some point in the future.

Free assets Insurance jargon: investments held by an insurer in excess of reserves and any

statutory capital. In theory this money could be paid back to shareholders and

the insurer would remain solvent and able to trade; in practice rating agencies

typically expect free assets to be greater than zero in order to grant a BBB or

above rating.

Gamma A continuous probability distribution with pdf f(x) = βα

Γ(α)x
α−1e−βx with

α, β > 0 and support = (0,∞)

GBP Great British Pounds - currency in the UK; also known as ‘Sterling’.

Gross Loss

(GL)

An measure of insurance loss after allowance for terms and conditions such as

deductibles and limits- but before the deduction of any reinsurance.

Ground Up

Loss (GUL)

Financial damages following an insured event before the application of any de-

ductibles or other relevant terms and conditions. The deductible is paid by the

insured (also sometimes called the excess)

Hazard A class of event that has the potential to cause economic or insured loss (or

injury, loss of life). Examples include: Earthquakes, Hurricanes and Flooding.

IID Independent and Identically Distributed (IID). Two events are independent if

their joint probability is the product of their marginal probabilities. Two random

variables are IID if they are independent and have the same marginal distribution.

Insolvency An insurer/reinsurer is insolvent if its regulator decides that it is no longer capable

of trading. There are various triggers that would lead to this decision, some

qualitative and some quantitative. If a firm’s reserves and minimum capital

requirements exceed the assets available this would be a key trigger.

Kernel

Dressing

A method to create a probabilistic forecast from an ensemble of forecast out-

comes. Formed by the summation of kernel’s which are normalised probability

distributions each with mean equal to the observation and a chosen kernel width.

Lognormal A continuous probability distribution, with support = (0,∞). If X ∼ N(µ, σ2)

then Y = eX is lognormally distributed

Long tailed

business

Policies where it can take a number of years to establish whether a claim has

occurred. For example liability policies where a court case can take many years

to make a final ruling to determine who is liable.

Losses Insurance jargon: The claims paid out following an insurable event are sometimes

referred to as losses by insurers. This is an unfortunate phrase when compared

to general usage of the word because insurance losses may still be profitable if

premium rates were adequate.

Model A collection of mathematical expressions that attempt to describe the key features

of a system.

Normal A continuous probability distribution with pdf f(x) = 1√
2πσ

e
−(µ−x)2

2σ2 , for σ > 0,

with support = (−∞,∞). Also described as a Gaussian Distribution.
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Observation A data point that can be used to evaluate a forecast.

Optimum

score esti-

mation

The process of finding the parameters of a forecast that lead to best possible skill

score given a series of observations.

Pareto A continuous probability distribution with pdf f(x) = αβα

xα+1 , for α, β > 0,

support = (β,∞)

Premium The amount paid to the insurer for the provision of insurance - this is the price

of insurance.

Probabilistic

forecast

A forecast where the value of the variable is not predicted deterministically - but

is described by a distribution function that can either be discrete or continuous

Probability

Forecast

A probabilistic forecast whose support is a continuum.

Rating

Agency

Examples include Standard and Poor’s, AM Best, Fitch and Moody’s. These

firms consider financial information along with qualitative management informa-

tion in order to give a rating (i.e. comparative score) for different firms. They

rate many financial firms/ assets including credit ratings and financial strength

ratings. Each firm has its own rating scales - but these are broadly compatible.

Ratings such as AAA indicate the highest quality assets.

Regulator Insurance regulators oversee the insurance industry in their country. They impose

restrictions on types of business that can be covered and have various reporting

and capital requirements. Examples include the Prudential Regulation Authority

in the UK and OSFI, the Office for the Superintendent of Financial Institutions,

in Canada.

Reinsurance Insurance purchased by insurers to offset specified insurance claims.

Reinsurance

to close

Specific reinsurance bought in the Lloyd’s market to transfer all the business

from one syndicate into another.

Relative ig-

norance

The difference between the average skill score for a given forecast and the skill

score obtained though using climatology as the forecast

Reserves Reserves are held to pay insurance claims in the future. They are either (1)

unexpired risk reserves, money held against risks that may arise in a future

period of time for policies on-risk; (2) case reserves, money held against known

insurable events that have been advised to the insurer by the policyholder and (3)

Incurred but not reported reserves IBNR, statistical reserves held against events

that are likely to have occurred already but which have not yet been advised to

the insurer.

Run off Insurance jargon: A firm is in ‘run off’ if it ceases to write new business and

continues to trade until any residual claims are paid. Modelling the run off

means letting the computer model run until all claims are settled.
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Short tailed

business

Business that is not ‘long tailed’ typically includes policies which cover damages

that are quickly identified such as property damage.

Skill A measure of the quality of a forecast, defined fully in chapter 2 (2.1)

Skill Gap The sum over many observations of the difference between the skill score for a

given observation/forecast pair and the expected skill score given the forecast

Statutory

minimum

capital

Regulators around the world will specify the method that insurers have to use to

calculate the minimum amount of capital that must be held.

Syndicate Type of insurance vehicle at Lloyd’s of London.

Sum Insured Insurance jargon: this is the monetary value of the insured item.

System A set of processes, either real or artificial, that produce a number of observable

variables.

Time Series A series of Observations X = {x1, ...xN} made at times T = {t1, ...tN}. The

differences di = ti − ti+1 may not all be equal. A time series will be denoted

{X,T}. N is described as the ‘length’ of the time series.

TVaR Tail Value at Risk - the expected value of a variable given that it is in excess of

the Value at Risk for a specified probability

USD bn Billions of United States Dollars

VaR Value at Risk at probability p. A term used in banking and insurance to indicate

the value (K) of a financial random variable (X) such that P (X > K) < p.

X ∼ N(0, 1) A random variable X that has the standard unit normal distribution.
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Chapter 1

The insurance industry and the

problem of extremes

‘Critics suggest that financial models were ineffective ....[highlighting] the need

for a close look at the role and effectiveness of financial models and the exper-

tise of modellers ...A stubborn disregard for the dynamic reality of market rela-

tionships will lead to poor outcomes. A reliance on the persistence of historical

relationships is dangerous....Those who seek an interdisciplinary, multidimen-

sional approach to modelling the dynamics of markets and the macroeconomy

are more likely to prove successful.’

Financial models useful but limited (Financial Times) Sullivan 2011 [246]

The discipline of statistics is vital to and deeply embedded in the insurance

industry. Its methods are used in analysis of past claims data to calculate premium

rates and to determine the funds required to survive adverse events be they man

made or natural [3, 7, 18, 141]. Statistical methods are used in combination with

those of engineering and physical sciences to create catastrophe models [76] that are

now widely used by insurers [132,159].

The insurance industry aims to provide protection for society against all manner

of hazards including: earthquakes, the costs of fighting legal action and paying

damages, compensation and physical damage in marine and aviation disasters and

terrorism [138, 175]. A number of these hazards relate to atmospheric perils such

as flooding, tropical cyclones or hailstorms [248]. The scientific community have

40



developed models to explore the range of potential outcomes and to try to make

predictions. An important question insurers are now asking: can scientific models

improve insurance pricing? [60, 139]

This thesis explores that question. First the concept of ‘skill’ is considered in

detail in Chapter 2. The chapter lists key skill scores that are used in practice and

then carries out a series of experiments to determine which perform well in various

circumstances. One score, I J Good’s, ‘Ignorance’ [20, 29, 97], is shown to perform

well in most circumstances; several others are shown to have systematic failings;

arguably these should not be used by insurers. It is important to know when a

model produces forecasts that are statistically unlikely. A new method is introduced,

which compares the running average observed skill score to the distribution of the

expected score allowing model rejection1 once observed values are outside of expected

confidence intervals.

An ideal system-model pair consists of a dynamical system (which may arise in

the real world or be a stated set of mathematical relationships) and mathematical

approximations, called ‘models’ which attempt to capture one or more critical fea-

tures of the system. Models can take many forms, they may be statistical, physical,

or based on coupled partial or ordinary differential equations. The initial conditions

of such models can be set to approximate the current state; the ensuing behaviour

of the model is then a ‘forecast’ of the system. A range of model parameters can be

trialled each, likely, leading to different model behaviour. Such a collection of model

outputs is called an ‘ensemble’ from which probability forecasts can be created.

A collection of system-model pairs, based on models introduced by Lorenz [155],

are introduced and explored in Chapter 3. The skill of forecasts arising from the

models is assessed using the Ignorance score and this is shown to be improved

by mixing with the empirical distribution of past observations, a process known as

Climatology Blending [30]. Chapter 4 then uses these system-model pairs to explore

whether such models can be useful in an insurance context. An artificial hazard is

created from system variables and an insurance index is created where the payout

depends on the value of the index (as with some catastrophe bonds [13]). The

1‘Rejected’ is used here to imply that a forecast system has been shown to be inconsistent with

the distribution from which the observations are drawn. This does not imply that the forecasts

contain no useful information and, if they do, they may still be used in practice.
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model is not the system, however, and there is no a-priori reason why model values

should correspond precisely to those of the system [243, 245]. A mapping between

the model variables and the system is therefore required; the approach presented

(called φ-transformation) is thought to be a new approach. Traditional insurance

methods [128] are used to price the index and also two approaches using the φ-

transformed forecasts. The results are encouraging for one model: prices are on

average 10% lower, yet the insurer becomes 16% more profitable and goes insolvent

with one fifth of the frequency.

Chapter 5 introduces a different method to that described in Chapter 4 to explore

hurricane risk [148,208]. A simple model of the hurricane process is developed with

forecasts that become increasingly accurate - then pricing methods are considered

that use the forecasts. One business volume scaling method results in a 7.9% increase

in profits and a 9.1% reduction in negative profits. The other, more sophisticated,

pricing methods, however, cause a reduction in profitability leading to the conclusion

that forecasts are useful only if they are used carefully.

Whilst the Lorenz 96 system is an interesting test bed [103] the insurance set-

ting in Chapter 4 remains highly simplified. Chapter 5 introduces alternative pricing

methods but still avoids consideration of the complexity of the insurance industry.

Chapter 6 moves closer to reality by introducing a novel agent-based model of an

insurance industry with two competitors; complications such as dividend payment,

payback rules and customer loyalty are included. A variety of real world inspired

regulatory regimes, pricing methods and claims processes are tested leading to some

unexpected results relative to a control experiment. For example, a traditional pric-

ing method is shown to reduce company lifetime by 10% and company value by 2%;

conversely a company that uses the wrong underlying claims distribution has a 50%

longer lifetime and 6% higher company value despite having a 3.5% lower market

share of business. This new model therefore highlights that competitive effects im-

pose strong constraints on what can be achieved in practice through regulation and

pricing.

In short, the question of how to determine whether scientific models can provide

decision relevant information to insurers is considered throughout this thesis. To pro-

vide effective decision-relevant information models must be skillful [29] and ideally
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that skill must be demonstrated quantitatively and coherently (Chapter 2). Second,

the insurance relevant aspects of the model must be isolated, interpreted and de-

ployed; methods to do this are illustrated by analogy (using Lorenz 96) in Chapters

3 and 4. Hurricane forecasts are ubiquitous in the insurance sector [126, 221, 260],

the limited utility of the targets of today’s forecasts are noted in Chapter 5, making

them of limited use even if they had skill beyond climatology. The complexities of

a simplified insurance market using a more traditional actuarial approach are illus-

trated with a novel agent based model in Chapter 6. The findings and relevance to

insurers are summarised and discussed in Chapter 7.

1.1 Description of the insurance industry and key

players

The following section is written based on the author’s working knowledge of the

Insurance Industry over 20 years and gives an introduction of the key stakeholders

in the insurance industry that are relevant to this thesis; readers with a background

knowledge of insurance may wish to skip this section. The insurance industry is ac-

tive in all developed world countries [188]; with a nascent ‘micro insurance’ industry

in the developing world [176, 269]. The main sub-sectors can be grouped as: life,

health and general insurance. Insurers themselves purchase insurance, the compa-

nies offering this cover are called Re-insurers [143]. The Lloyd’s insurance market is

a unique mutual market place and offers both insurance and reinsurance [133].

New business comes to insurers through a variety of channels including: direct

(via the telephone or internet) or through brokers [147]. Insurance operations are

regulated in a variety of ways around the world, some regulators are elected whilst

others are fixed bodies appointed by governments.

General Insurers As noted earlier general insurers provide insurance against a

wide variety of hazards. Business is typically on a one year renewable basis [164] and

is provided to commercial businesses (‘commerical lines’) and the public (‘personal

lines’) (though longer term policies are also common in some classes of business).

Property damage policies pay out when property (buildings or contents) are dam-
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aged or lost when certain specified insurance events occur. Events can include: wind

damage, flood damage, earthquake, subsidence, theft, fire, escape of water (burst

pipes etc), vandalism [15]. Insurability is hard to define [22] but usually requires

that losses be fortuitous; i.e. there needs to be some variance of outcome or there is

no need for the insurance - but the variance should not be too large. The loss should

ideally have a maximum size. The International Actuarial Association define [113]

‘normal’ claims as those resulting from a number of independent events. Catastro-

phes such as hurricanes, earthquakes and floods do not fit this definition. In some

regions some hazards are, therefore, excluded from standard cover, but can either be

covered through national pooling arrangements [71,78,279] or via specialist ‘Excess

and Surplus’ markets [202]. Liability policies (called ‘Casualty’ in the US) pay out

when the insured is deemed to have harmed a third party [143]. Other forms of

insurance include: motor, aviation, marine, agriculture and political risks [145].

Reinsurers Reinsurers provide insurance to insurers. The majority of coverage

is to direct insurers (those providing insurance to either the public or commercial

businesses) - some reinsurers provide reinsurance to reinsurers - this is called ‘retro-

cession’ [143]. Two major reinsurance markets are in London [150] and Bermuda [9]

with multiple companies in each locations. Two of the largest reinsurers are Swiss

Re and Munich Re and these are based in Switzerland and Germany [112]. Rein-

surance contracts are written on various bases such as: quota share, excess of loss

and stop loss [100, 143]. With quota share contracts the direct insurer retains a

fixed proportion of all claims and ‘cedes’ the remainder [143]. The direct writer is

sometimes also called the ‘cedant’. The cedant passes on premiums in accordance

with the proportion ceded, but also often with an additional amount. There is

typically no limit to the claims payable by either party although some quota share

contracts do have limits. Quota share reinsurance is often used by insurers with

limited capital who wish to use the expertise of the reinsurer in a given class of

business before accepting more of the risk in due course [79]. With excess of loss

contracts the cedant retains the first portion of losses up to a specified ‘retention’

level [143]. The reinsurer then pays for claims in excess of this level, up to a specified

amount. The difference between the upper threshold and the retention is called the

‘limit’. Direct insurers often have a reinsurance ‘programme’ where they will pur-
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chase reinsurance in a number of layers, often with different reinsurers [100]. Stop

loss contracts typically apply to the total underwriting profits of a defined ‘book’ of

business [177].

Lloyd’s of London The Society of Lloyd’s is an insurance market [79, 133]. The

Lloyd’s building, in London, houses many competing entities offering insurance. The

capital to support the business comes from ‘Names’ who allocate their funds to one

or many ‘Syndicates’, the syndicates are open for a single ‘Year of Account’ after

which they cease to write new business [135]. They remain ‘open’ typically for a

further 2 years and then declare profits and close (often by purchasing reinsurance to

cover any remaining liabilities, called ‘Reinsurance To Close’, this is typically from

the next open year of the syndicate). The Syndicates are run by ‘Managing Agents’

who provide the underwriters and other staff to carry out the insurance operations.

New business comes to Lloyd’s via many channels including brokers who typically

take a risk round several underwriters who agree to take a certain share of the risk

(and record this on a paper record called a ‘slip’) [147]. Hence insurance in the

Lloyd’s market often follows a ‘Co-insurance’ model with many separate insurers

each taking a share of a risk. The Lloyd’s market writes both direct business and

reinsurance. Lloyd’s maintains a large fund called the ‘Central Fund’ [134]. This

fund is paid into by the Syndicates. If any of the Syndicates becomes insolvent

the Central Fund has the discretion to pay the claims. This is why no valid claim

has ever gone unpaid in Lloyd’s history even though certain Syndicates have failed.

In this sense the Society of Lloyd’s is a mutual organisation. The Corporation of

Lloyd’s is a body which represents the market (for example negotiating licences to

trade around the world) but also sets and enforces standards, admits new syndicates

and calculates capital requirements.

Regulators Insurance is a highly regulated market because insurers provide no

tangible product or service at the time of purchase [203]. Instead they provide a

‘promise’ to pay for damages should an insured event occur [106]. An unscrupu-

lous insurer could take the premium, pass it to shareholders and fail to have suffi-

cient funds to meet claims when they are due. For this reason insurers must hold

additional money (‘capital’ ) in case the premiums are not sufficient to pay the
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claims [203]. There is a variety of insurance regulation around the world [77]. In

the EU insurers are required to calculate the capital required so that their balance

sheet at the end of the year is solvent with 99.5% probability; also expressed as a

1-in-200 test [83,252].

1.2 Use of forecasts within Insurance

This thesis seeks to explore whether forecasts can be useful within insurance. This

section discusses briefly how forecasts are (or can be) used at present. The various

uses are considered under four headings: (1) Immediate use, (2) Short term pricing,

(3) Medium term forecasts within Catastrophe models; and (4) Longer term strategic

uses.

Immediate use Some insurance events occur without warning (e.g. Marine or

Aviation accidents); compared to others, such as hurricanes, for which there is usu-

ally several days if not weeks of warning. Once a Hurricane is observed in the

Atlantic (or Typhoon in the Pacific and Indian Oceans) insurers will start to con-

sider the implications for their business [223]. From my own experience at Lloyd’s,

forecasts of storm track [182,257,261] and likely damages [257] are useful to enable

management to brief their Boards of Directors and to respond to questions from

the Media, Regulators and Rating Agencies. Short term planning (for example de-

ciding to mobilise a team of loss adjusters in a region) can also be assisted [223].

Should ‘live hurricane trading’ [223] ever be available the forecasts would be useful

in assessing whether to purchase them.

Short term pricing In 2010 Lloyd’s [139] convened a group of underwriters, sci-

entists, exposure managers and catastrophe modellers to consider the use of seasonal

forecasts, I facilitated this meeting. Several of the attendees noted they would be

nervous to use forecasts if they were the first institution to do so, due to the po-

tential for harm to their company’s reputation should the forecast prove incorrect.

The attendees felt that forecasts should be of value to the industry but noted that

competitive pressure could prevent the benefits being ‘fully realised’. The Lloyd’s

paper suggested that insurers ‘should educate themselves on the ways in which the
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skill of forecasts can be measured ’; chapter 2 lists multiple skill scores, properties of

those scores and then seeks to objectively compare them, an insurance perspective

is given in sub-section 2.1.4.

A more recent paper by major reinsurer SCOR [223] considers whether seasonal

hurricane forecasts can be useful and considers their level of skill. They make the

following comments:

• Forecast skill is low until after the 1 July yet this is key reinsurance contract

renewal date; so forecasts will have little practical value until they have skill

prior to this date;

• ‘It is inconceivable that [Regulatory capital] would be reset on the basis of a

forecast’ (They are referring here to annual forecasts. See the medium-term

rate discussion below where, I believe, forecasts are already affecting capital);

• Marginal reinsurance purchase decisions could be assisted by a skillful forecast

(e.g. where other metrics do not lead to a clear decision);

• The pricing of third of fourth event covers2 would be especially sensitive to

the forecast.

In light of these (scarce) publications it appears that annual forecasts are not used

actively for pricing within the insurance workflow and this would agree with my own

experience. However it is possible that other companies are using such forecasts and

not stating this publicly.

Crop insurance is one area where there has been considerable academic debate

about the role of forecasts and there have clearly been some attempts to use them

(or to assess whether they would have been useful after the fact). Osgood [191] notes

that seasonal forecasts were not used in the pricing of weather insurance in Malawi

due to ‘operational constraints and limitations of launching a pilot’ and goes on to

say that average payouts in practice were very different in El-Nino and La-Nina years

(an order of magnitude different according to Osgood [190]). As such, they conclude,

a skillful ENSO forecast could undermine traditional insurance due to Inter-temporal

2For example a third event cover pays out only after two other major hurricanes have made

landfall in the year.
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adverse selection [157,214]. Carriquiry [37] suggests that forecasts and insurance can

be combined to good effect but note that ‘implementation of forecast-contingent

insurance policies will require non- trivial innovation’. Skees [232] suggests that the

price of insurance should be adjusted to take account of season-specific information

or sold before such information becomes available [233]. Daron [57, 58] successfully

developed a Bayesian Network approach to crop insurance in Kolhapur (India).

Daron built forecasts from the HadRM33 into the model but found ‘Given the size

and nature of the uncertainties associated with climate predictions on the scales

relevant for [Weather Index Insurance], it is only conceivably appropriate to use

[Bayesian Networks] to promote improved understanding rather than attempting to

provide optimal decisions’. It appears that the use of forecasts is not yet widespread

within insurance pricing of crop or other parametric products. Chapters 3 and 4 de-

velop an insurance index within the Lorenz 96 systems [155] and show, in section 4.6,

that forecasts can improve profitability and reduce the risk of insolvency, so there

may be circumstances where such forecasts are useful. Chapter 5 considers hurricane

forecasts and whether they can be used to amend pricing or business volume deci-

sions, demonstrating, in section 5.3, that suitably skillful forecasts could improve

profitability if carefully used.

Medium term forecasts within Catastrophe models Following the 2005 hur-

ricane season a number of studies were published suggesting that hurricane risk was

elevated above long term averages [73,266]. The insurance industry called for better

modelling (for example Benfield [230]). In light of this the major Catastrophe Model

providers updated their approach to modelling by providing a ‘medium term’4 view

of risk [226], to augment the climatology view already provided. Lloyd’s has required

its market to consider the capital implications of such raised levels of hurricane risks

for some time [137]. According to evidence given to the NAIC in 2011 [212] from

2005 to 2008 RMS carried out an ‘Expert Elicitation’ process [8, 119, 151] to calcu-

late their medium-term view5; after this they switched [264] to a blend of 9 (and

3UK Hadley Centre Regional Model
4These are also referred to by some in the insurance industry as a ‘near term’ view.
5Under the expert elicitation, respected hurricane scientists were each asked to state how they

expected hurricane frequencies to change (relative to climatology) over the next 5 year period -

these views were then average with equal weight and the model was adjusted accordingly.
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later 13) separate forecast-based models weighted according to their hind-cast skill.

AIR (the other major Catastrophe model provider in common use) offers a warm

sea surface temperature conditioned hurricane catalogue [4]. The AIR approach

does not explicitly use forecasts but allows their clients to decide whether to do so.

Catastrophe models are used in practice for Pricing and Capital setting; therefore,

since forecasts are embedded within such models, it is clear that Insurers are us-

ing forecasts in their workflow although, in my experience, many would not say or

recognise that they are. To my knowledge, North Atlantic Hurricane risk is the only

natural peril for which catastrophe models build forecasts in, in this way.

Longer term strategic uses The insurance industry has been concerned about

climate change and the long-term impact on its operations for a number of years

[67, 136, 173]. For example the impact on coastal communities at four locations

around the world of potential extreme sea level rise by 2030 has been considered

by Lloyd’s [149]. A study [2] commissioned by the Association of British Insurers

in collaboration with AIR and the UK Met Office used climate forecasts to adjust

a catastrophe model to examine the impact on Hurricane, EU Windstorm and Ty-

phoon risk. The impact on UK flood risk was explored in 2009 by the ABI [54] again

by taking climate model output and adjusting a catastrophe model. UK Flood risk

was also explored by Lloyd’s in 2015 [142] working with flood modeller JBA to assess

the changing nature of Thames food risk by 2080. As a final example the UK Insur-

ance Regulator, the Prudential Regulation Authority published their assessment of

the impact of climate change on the UK Insurance industry in 2015 [204] and this

was grounded in long-term climate forecasts. Therefore, it is clear that long-term

forecasts do have an influence on strategic thinking within insurers.

1.3 History of computer modelling in the insur-

ance sector

Over the past 35 years the complexity of computer modelling within the insurance

industry, driven by improvements to computer power and speed, has increased enor-

mously. The insurance industry was slow to adopt the methodology in mainstream
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business practice6 however: ultimately a major encouragement to use arose in 2004

when the Financial Services Authority in the UK moved to a probabilistic formation

of regulatory capital setting.

Standard insurance company internal models generally assess risk over a one

year time horizon. Some assume modelled insurance claims reach their ‘Ultimate’

levels (i.e. allow for the final settled values after many years of legal debate); but

they still typically just take one year of business. Some companies (typically Life

Companies) do test the run off7 of their longer term policies but these still often

exclude new business or assume it arises in a largely deterministic way. This time

horizon and model definition limits the questions that can be asked of such models.

Indeed the models are generally designed to answer the single question ‘How much

capital should I hold to survive a 1 in 200 level of risk over the next year?’.

The insurance industry is a collection of a large number of competing companies.

Competition is a major force and (particularly for larger companies) the actions

of one company can affect the whole industry. Yet, typical insurance company

models do not include competition effects (as shown by the following literature

review). These omissions from models mean that (for example) questions about the

long term impact of regulatory decisions or pricing rules are not assessed. Given

the vast uncertainty in such models they cannot be considered predictive; but the

insights they offer can still be valuable. They can even challenge long held views of

appropriate management actions in given situations by demonstrating that they are

unlikely to work even in a simplified model world. In some cases data is plentiful

and past claims from prior years can be projected forward into the future allowing

for inflation to assess the risk and calculate a price. This ‘burning cost’ method

is used frequently. For some classes of business (e.g. motor) the methodology

is sophisticated and uses Generalised Linear Models (GLMs) [31] to derive rating

factors so that individuals can be differentiated.

Insurance pricing has to combine past claims information of a particular poli-

cyholder with average behaviour of representative cohorts [170]. There are many

methods to do this, for example credibility weighting [16]. A similar concept has

6Based on personal experience of over 20 years in the financial services industry.
7‘Run off’ occurs when all policies have expired. This can take decades depending on the type

of insurance written.
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been introduced for forecasting termed Climatology Blending [30]. The recent past

is a very short sample of the full distribution of potential outcomes and insurers

may be misled by a series of below average claims and this can lead to losses or

even insolvency once claims return to more typical values (see Chapter 6). This is

particularly the case for companies that are exposed to natural catastrophes where

the law of large numbers may take many years to even out (if, indeed, it applies at

all). This leads to difficulties in estimating underlying distribution families (model

structure error) and also the appropriate parameters of those families. Parameter

and model structure errors become even more significant when estimating extreme

quantiles of claims distributions. In some areas of insurance (e.g. life assurance or

catastrophe insurance) the industry has addressed this challenge by breaking down

the risk in a reductionist way. For example as described by Risk Management So-

lutions [211], hurricane catastrophe models first create synthetic hurricanes based

on past hurricane statistics (genesis location, likely track, intensity statistics, radius

etc). They then take idealised exposure databases including: location of property,

construction characteristics, age, estimated value etc. Using past hurricanes they

estimate how different wind speeds have led to different levels of destruction and

from this they calculate so called ‘vulnerability’ functions which relate one to the

other. Using vulnerabilities they combine the simulated hurricanes with the prop-

erty information to create simulated economic damages. They finally take (often

idealised) insurance terms and conditions and from this simulate insurance losses.

The resulting distributions are a starting point for pricing calculations. Another

challenge with the burning cost8 method is that if risks are non-stationary the past

may not be a good guide to the future (a regular disclaimer on policy projections). In

fact, risks are changing all the time: climate change is affecting the weather, urban-

isation is affecting the built environment, population growth is affecting the density

of humanity exposed to risk, inflation affects the costs of replacement, wealth is

increasing leading to greater values exposed, technology can reduce risks and costs.

To explore these issues a novel insurance market model is described in Chapter 6

containing two companies which compete on price for a share of the available busi-

8The ‘Burning cost’ is a jargon term used by the insurance industry to mean a moving average

of historical claims.
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ness based on a simulated (and realistically short) past claims history. In order to

motivate the design of the model a literature review of the history of insurance mod-

elling has been undertaken and is presented as background material below; readers

familiar with insurance modelling may wish to skip this.

Discussion of the reasons for modelling Daykin et al [61] note, that the

General Insurance Study Group of the Institute of Actuaries was founded in 1974 and

turned its collective thoughts to the problem of assessing and modelling insurance

company solvency. Initial papers listed the reasons for solvency issues but quickly

concluded that it is difficult to assess the impact of non-stationary and random risks

using deterministic methods which by their nature relate to single scenarios or best

estimates. For example, Daykin et al [63] state ‘It is important for the management

to view the company as a dynamic entity’ when they compare this to the traditional

static accounting view. Having made the case for dynamic functional analysis it

was quickly realised that Montecarlo techniques would be necessary, for example

Ryan [220] stresses ‘Since even the convolutions of claim frequency and severity in

the most simple cases cannot be determined in closed forms, in practice the only

approach is to use simulation.’ This point is emphasised throughout the literature.

Ryan’s model [219] was published in 1980 in a paper for the International

Congress of Actuaries and contains many of the key features that later models

adopted. Regulators in Finland (see Pentekainen et al [194]) appear to be the first

to formally consider such models from a regulatory perspective in the insurance

industry following initial work in Germany in banking in the 1960s according to

Hooker et al [106]. The ‘Finnish Solvency Study’ as it became known in the UK

appeared to spur UK actuaries on to develop stochastic models [64]. This was

clearly part of an international collaboration, work presented in the US by Coutts

and Devitt in 1986 [49] was presented at the first international conference on In-

surance Solvency held at the Wharton School an event which many of the authors

referred to in this literature review attended. In 1987 a major paper was presented

to UK actuaries [62], this model included a complex investment model developed by

Wilkie [270] for the maturity guarantees working party. This model was the core as-

set model of much actuarial work until market consistent models gained precedence

in the late 1990s and early 2000s [234], [104]. Coutts and Clarke [51] investigated
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asset allocation in 1991 using the 1987 model. Meanwhile Daykin et al [63] con-

tinued to develop their 1987 model and published a new model in 1990 which is

the first reviewed paper to contain a simple insurance market rather than a single

company. Daykin and Hay use the 1990 model in various investigations stressing

‘Traditional accounting models are of limited value in assessing the financial strength

of a general insurance company, partly because of difficulties of measurement and

valuation and partly because they do not help the user to understand the inherent

uncertainty. The accounting model is even less promising as a vehicle for providing

management with the information necessary to make proper decisions about future

business strategy...’.

Despite the fact that shortcomings to deterministic methods were identified in

the 1980s, when the first ‘Model Offices’ 9 were developed, the approach took many

years to gain acceptance. Coutts and Thomas [50] were still urging actuaries in

1997 to consider ‘...the power of Stochastic modelling as a technique for examining

the overall risk...’ noting the trend in the US and also at Lloyd’s to consider ‘risk

based capital’ introduced by the NAIC10 in 1993 and Lloyd’s in 1995, as described

in Hooker et al [106]. Lowe and Stannard [156], also in 1997, illustrated the use

of Dynamic Functional Analysis (DFA) modelling in one particular company - as

an encouragement for others to follow. In 2001 Ryan et al [218] considers how

actuaries can play a role in Financial Condition Assessments focussing on general

insurers and Spiers et al [244] illustrated in 2004 how stochastic modelling could be

used to investigate the implications of different management actions on life assurance

companies. In the autumn of 2004 the Financial Services Authority introduced the

Individual Capital Adequacy Standards (ICAS) [83] and this effectively required

larger companies to use stochastic modelling techniques in the UK. Only after this

regulatory intervention did this methodology become fully embedded in the board

room of UK insurers - a process that still continues in the EU at the current time

with the forthcoming introduction of Solvency II. However, the models used by

9The phrase Model Office is used in the insurance industry to refer to a computer model of the

underwriting, claims, investment and other relevant processes within a firm.
10The National Association of Insurance Commissioners [180] is ‘the U.S. standard-setting and

regulatory support organisation created and governed by the chief insurance regulators from the

50 states’.
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firms for regulatory reporting tend to focus on one insurance company (or group)

at a time (their own). Indeed Daykin, Pentikainen and Rantala [198] described the

addition of multiple insurers as ‘largely intractable ’ in their seminal 1994 book.

Despite this, recent model developments have attempted to include competition

effects by considering multiple insurers with rules of interaction for example the

work of Taylor [250] and Wright et al [277].

Approaches taken to modelling insurance companies Insurance is an un-

usual industry because when policyholders pay their premiums they receive nothing

tangible in return. The insurer has taken on some of the risks they face and offers

to pay out some or all of the costs should they materialise. As such the policyholder

has purchased peace of mind. By pooling, the insurer tames a variable risk in re-

turn for a fixed payment (effectively a certain loss for the policyholder). The reason

why anyone would wish to make such a trade was largely (but not wholly [65]) ex-

plained by Friedman in 1948 [87] through consideration of the policyholder’s utility

function (assuming, as is typical, that it is monotonic increasing though possibly

with decreasing slope as wealth increases). The small premium reduces utility with

certainty - but by far less than the large decrease in wealth, and hence utility, that

would occur should an insurance risk (e.g car crash or house fire) arise. Depending

on the price, the expected utility can be higher after the purchase of insurance than

before, despite the fact that the premium is calculated to exceed expected losses.

This latter point, and the fact that the pooled risk is less volatile, explains why the

expected utility of the insurer is also higher. It is critical, however, that the insurer

be solvent to pay the claims should the policyholder make them and for this reason

regulators require that insurers hold capital over and above reserves (which are held

to meet expected payouts only) to ensure a sufficiently high probability that claims

can be paid. This reason for holding capital is emphasised in Hooker et al [106]

‘...A major reason why this is required of insurance businesses is that insurers are

regarded as trustees for what is in effect policyholders’ money, whereas in many

other businesses the goods or services are delivered either in advance of, or very

soon after, the consideration is paid. In other words ‘trust me’ is a major element

of what the insurer is selling.’

There are many stakeholders as listed in Daykin [62] : legislators, regulators,
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policyholders, third party claimants, intermediaries (brokers), company creditors,

shareholders, management and employees. Hooker et al [106] differentiate between

existing and future policyholders: the first wants security only (for now), the sec-

ond wants a mixture of security and cheap insurance. Hitchcox et al [105] also

consider rating agencies as an additional stakeholder as they now exert a major im-

pact on management decisions. Coutts and Devitt [49] include future investors and

company analysts in the list. None of the papers reviewed explicitly mentions the

Inland Revenue as a stakeholder although some do consider taxation directly. The

extent to which these various stakeholders are modelled varies across the literature.

Typically, legislators and regulators are modelled exogenously. Managers are mod-

elled explicitly (e.g. through premium rating calculations or dynamic choices for

asset allocation). Policyholders actions are modelled explicitly in two of the models

(Spiers et al [244] and Wright et al [277]) - but are often modelled implicitly via an

impact on modelled volumes of business as a function of premium rate. Third party

claimants, intermediaries and company creditors are not modelled in the papers

reviewed.

Despite being central to the running and prudential regulation of the industry

there was no standard definition of solvency in the literature. A practical definition

is given in Daykin [62] ‘When it comes to definition most people would readily agree

that being solvent implies having assets sufficient to meet the liabilities...in practice,

therefore, it may be true to say that a company is solvent if the supervisor says that

it satisfies his requirements’ although Hitchox et al [105] extend this by noting that

unless rating agencies are happy with the level of capitalisation the company will

effectively cease to be able to write business.

As noted above, insurers hold capital in addition to reserves in order to maintain

solvency. Hooker et al [106] list the following additional reasons: claims paying

ability, desire to maintain dividend payments in times of unprofitability, the desire

to be able to invest in other projects and to support other risks11 the business runs.

Hitchox et al [105] adds that a higher financial strength rating may be achieved with

a larger capital buffer12 and also suggests that an additional buffer above regulatory

11‘Other risks’ might include those associated with investing in more volatile asset classes like

equities or lower investment grade corporate bonds.
12A higher financial strength rating may be desirable if it enables the (re)insurer to appear
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minimum could be held to reduce the probability of costly, time consuming and

intrusive regulatory intervention. It is clear from the reviewed literature, and my

own experience, that insurers do hold such a buffer in practice.

Daykin et al [61] note the following factors which affect claims paying ability: ad-

equacy of premium rates, claims frequency, weather and natural disasters, court case

judgements, inflation, reinsurance recoveries and negotiations on individual claims.

All models reviewed have included premium adequacy13 in some form. Ryan [220],

Pentekainen and Rantala [195], Coutts and Thomas [50], Taylor [250] and Wright

et al [277] incorporate claim frequency specifically (separating it from severity).

Few models explicitly allow for catastrophes (these are modelled explicitly in [50]

and [250]). Inflation (both retail price and additional claims related) is modelled

explicitly in several models, particularly those defined in the 1980s a time of quite

high inflation [184]. Inflation is of particular relevance for long tailed classes14 (e.g.

liability) when high inflation can be a major cause of insolvency - the models which

focus on shorter tailed classes (e.g. Taylor [250] and Wright et al [277]) will not

be materially affected by their choice to exclude specific consideration of inflation.

Reinsurance is modelled explicitly only in Coutts and Thomas [50] despite being a

common feature in the insurance market in practice. Court case judgements and

individual claims negotiations are not modelled explicitly in any of the reviewed pa-

pers; however the impact of these can be (broadly speaking) thought to have been

included in the choice of stochastic claims parameters.

Insurers often split modelled claims into three classes [144] : Attritional, Large

and Catastrophe. Catastrophe claims relate to major events, such as hurricanes,

which lead to multiple policies claiming simultaneously, often modelled with a Catas-

trophe model [211]. Large claims are used to describe events that affect policies with

stronger to customers and to, therefore, sell more insurance business.
13‘Premium adequacy’ arises when the premium is greater than the sum of the average claim

amount and expenses.
14Long tailed classes include contracts whose policy term exceeds one year (such as many Life

Assurance contracts) but also includes General Insurance policies whose policy term may be only

year but where claims can still be payable if damages can be shown to have arisen during the

period of insurance. In the second case it can take many years for an insurer to be sure they will

get no more claims from such policies. Policies that are not long tailed are often described as ‘short

tailed’.
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very large sums insured (such as oil refineries or sky scrapers), often modelled with

a ‘frequency/severity’ approach [140] (such as a compound Poisson process). At-

tritional claims cover all causes and policies not covered by Large or Catastrophe

models, they are often modelled by sampling from a fitted claims distribution [140].

In summary there are a variety of methods of modelling insurance claims as stochas-

tic processes and, from the papers reviewed, these can be grouped as follows:

• Model total annual claims ratio [219], [62], [63] and [50] (for attritional claims);

• Model frequency and severity separately, [220], [50] (for large and catastrophe

claims), [250] and [277].

The methodology in Chapter 6 is similar to the stochastic claims ratio (or loss

ratio) approach but uses Lognormal distributions which several papers state they

would have liked to use but for run time issues. For example, Ryan [219] and

Daykin [62] both mention they used a Normal distribution due to run times as-

sociated with other approaches. This can lead to a reduction in the number of

simulations considered, however, Daykin et al [63] argue this need not be a prob-

lem and useful comparisons can be drawn provided the random seeds are held fixed

between different experiments.

The main cash flows within an insurer are listed in Daykin et al [62] (see

also [198]): premium income, interest and dividends on assets, reinsurance and

other recoveries, claims settled, reinsurance premiums, expenses, tax and dividends.

Daykin et al [63] further divide expenses into fixed and variable components which

are not treated stochastically in their model.

Insurers have to retain premiums to pay for future claims; they also hold capital

in addition as described above. These are both invested in a variety of assets in order

to provide: a return to shareholders, inflation protection and liquidity. Some asset

classes are more risky than others of course; if insurers choose to invest in volatile

asset classes they risk suffering a fall in asset values at a time when they need the

money to pay claims. Within general insurers, premium reserves are typically in-

vested in highly liquid low risk assets whereas a portion of shareholder funds is often

invested in higher risk equities or corporate bonds. For with-profits15 life assurers

15‘With-profits’ business is a form of life assurance/ saving policy where the claim payment is
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the asset allocation and benefits are intimately linked and so must be modelled to-

gether using an asset model of sufficient sophistication [244]. For general insurers

the main linkage between investment returns and claims payments is through the

common driver of inflation. This tends to affect longer tailed policies (e.g. liability

contracts) [93]. Hence papers with a focus on longer tailed business may see the need

to include a more complex asset model (as with Daykin et al [63]) whereas those

focussing on shorter tailed business (e.g. property catastrophe covers or motor) do

not need a complex model; or indeed (as with Wright et al [277]) arguably no model

at all.

Dividends are payments back to shareholders. They are at the discretion of

the management of the company and reflect the philosophy of the company [198].

If dividends are overpaid the capital base of the insurer is weakened and this can

contribute to insolvency. Benjamin [21] suggests the discounted value of future

dividends provides a measure of the value to the shareholders. The models reviewed

take a variety of approaches to dividend modelling and these can be split as follows:

• Dividends not modelled at all: [219], [220], [195];

• Reduction in investment return: [62];

• Percentage of profits: [50], [277];

• Set dividends to reduce excess capital to a floor: [250];

• Percentage of premium written: [63].

In practice finance directors take multiple factors into account when setting

dividends including stability, inflation, real growth, links with recent profitability,

size of capital held [198].

Taxation is clearly an important feature for insurers. Changes to taxation (par-

ticularly if retrospective) can put a strain on company finances in any industry. All

the models reviewed, however, assume taxation levels are held constant throughout

the simulation. The methods taken for modelling taxation in the models reviewed

are as follows:

variable and dependent on the investment performance of the assets in which the premiums are

invested.
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• Not modelled explicitly: [219], [220], [195], [250] and [277];

• Reduction to investment return: [62];

• Explicit model, complex treatment of gains and income: [63].

In the case where taxation is not modelled explicitly this need not be considered

a major flaw, if changes to the taxation regime during the simulation are ruled

out, since premiums would be calculated to cover the taxation arising. Coutts and

Thomas [50] are silent on taxation - this is likely to imply they also do not model it

explicitly. Expenses are not modelled explicitly in any of the papers reviewed apart

from Daykin et al [63].

As described above the amount of effort different research groups or authors put

into modelling different features depends on the focus of their study. For example

Coutts and Clarke [51] base their study on asset allocation on the model used by

Daykin et al [62], presumably because it contained Wilkie’s quite detailed asset

model. Coutts and Thomas [50] focus on modelling reinsurance so need to develop

a detailed model of gross claims and hence model attritional, large and catastrophe

claims explicitly. Pentikainen and Rantala [195] focus on the running off of a long

tail book of business so develop a reasonably sophisticated reserving algorithm.

Shareholders own the capital held by an insurer and stand to lose all their invest-

ment if claims exceed reserves. To compensate for this risk the premium must pro-

vide for expected losses and a return on capital (as described in Kreps in 1990 [128]).

Only Ryan’s 1984 paper [220] and Daykin et al [63] model this feature explicitly.

Hooker et al [106] introduces the concepts of: process risk, parameter uncertainty

and specification error. The definitions they give are:

• process risk: variability due to the random nature of the outcomes;

• parameter uncertainty: even if the ‘true model’ were known you would have

to estimate the parameters of the model from a sample of past data - the

extent to which these differ from the ‘true parameters’ leads to a potential

error which they call parameter error;

• specification error: The model itself may not be correct. If you chose a different

model you would get different view of risk - the difference between these views
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they call specification error.

Hooker et al also note that ‘Trends and cycles contribute to the overall risk. The

perils which give rise to insurance claims and the forces behind them are not static,

but change over time. The causes of change may be legal, technological, social,

economic, fiscal, political or environmental. The effect of these changes may be

retrospective as well as prospective. Changes can be exhibited as trends or cycles

and it is often not easy to distinguish between the two.’. Retrospective changes

would include, for example, a new law that allows past settled claims to be re-

opened and re-negotiated. Hence past losses become higher than initially estimated.

The impact of cycles and trends (except for the, so called, ‘underwriting cycle’)

is not investigated further in any of the papers or in this thesis. A critical step

towards making allowance for trends is their detection. Some methods in common

use require strong assumptions of Gaussian residuals and fulfilment of the Gauss-

Markov assumptions [207] in order to use the t-test [121,131,207]. Appendix C gives

some thoughts on trend detection and proposes a permutation method to calculate

significance which does not rely on strong assumptions. The appendix also suggests

some graphical methods for data exploration using the permutation method.

All insurers will fail eventually (unless additional capital is made available in

times of crisis which often happens in practice). All models in the reviewed literature

truncate the simulation after a small number of years (the number increases as

computing power increases). This will fail to show up any features that emerge

after the end of the simulation.

The framework of stochastic modelling developed by the actuarial profession in

the context of insurance, described above, is closely linked to methods to determine

real option values [168] and optimal control techniques [41]. Such techniques extend

traditional Net Present Value methods in corporate finance [110] by recognising the

value within projects of: delay, abandonment and expansion [56]. Indeed, real option

techniques have been incorporated into Life Assurance modelling since the early

2000s. The use of state price deflators [12] rather than risk neutral pricing methods

[19, 110], enabled traditional actuarial models and option prices to be merged [118,

235]. Christophides and Smith [44] use DFA modelling to compare two business

mix strategies in the presence of stochastic uncertainty. My own experience, whilst
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working in the life assurance industry from 1997 to 2004, included using real option

methods to assess the efficacy of different bonus16 decision rules and the efficacy of

different investment strategies. Sinha [231] has used the binomial method and real

option pricing to explore the purchase of Ahisa, a Mexican life assurance company,

by Met Life; concluding that traditional Net Present Value methods would suggest

they overpaid but when embedded options are explicitly allowed for, the value was

fair. This thesis does not explicitly consider real option theory but it may be useful

to explore this in future, for example to quantify the financial value of forecasts

within insurance in comparison to their price.

Modelling insurance markets Insurance companies do not operate on their

own. They are embedded within a global marketplace of insurers and reinsurers. As

such, as with any industry, they are subject to the forces of competition. Insurers

serve a variety of customer groups whose sophistication is wide ranging: corporate

clients may have risk functions and understand their individual risks better than

their insurer does.

The majority of models used in practice by insurers for regulatory purposes

focus on the single company in question and do not consider either competitors or

customers. Some will include expected levels of new business but these generally

enter as exogenous parameters rather then emergent features. This approach reflects

the assessment of regulatory solvency over one year (which is the current test). The

interaction of the marketplace is likely to be of increasing importance, however,

when assessing the value of longer term strategies, new regulation etc. For example

Taylor [250] notes that a model office framework allows for testing of proposed

regulation before imposing it on the marketplace, stressing that ‘regulatory controls

need to be applied with great caution lest they induce perverse effects, possibly even

the reverse of those intended.’

None of Ryan [219] [220], Pentekainen and Rantala [195], Daykin [62] and Coutts

and Thomas [50] model an insurance market. Daykin [63] considers a single company

and its behaviour relative to a market that it is deemed too small to influence (though

the market does influence it). Taylor [250] considers 20 competing insurers. Wright

16Bonuses are a contractual addition to the Basic Sum Assured in a With Profits Policy which

is granted following positive investment, expense or mortality experience.
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et al [277] have considered markets with 4 and 10 insurers.

Various methods have been developed to introduce competition into the models.

In Daykin [63] a process is defined which reduces the amount of business assumed

to be written when the company premium rates are above market rates and vice

versa. Each company within Taylor’s [250] formulation is given a well defined peer

group - its own premium rates are a blended average of the peer group’s rates and its

own target rate which is an expected loss plus a loading which takes account of the

company’s solvency position. More business is written when rates are cheap and less

when they are expensive relative to competitors. Wright et al [277] have the most

complex market dynamics, they model both competing insurers and also customer

groups (the only model to consider customers) - the customers choose insurers based

on both price and also non-price factors as a proxy for customer preferences (such as

loyalty) they combine these into the ‘total cost’ which customers seek to minimise.

It is common practice to carry out profit sharing between the insurer and the

customer. This is often done in an informal (non contractual) way and is described

as ‘payback’ as described in Hitchcox et al [105]. Of the models noted here, only

Daykin [63] models this explicitly.

The insurance industry is well known [150,278] for going through periods where

premium rates are high (or ‘hard’) across the industry and other periods when they

are low and less profitable (‘soft’). Lowe and Stannard [156] describe the process of

pricing within catastrophe markets:

• If results are good, prices will decline from their current level;

• Prices will continue to decline until results are poor, at which point they will

rise;

• The rate of decline will be greater in a period of benign claims;

• Rises in prices include nominal increases in premium rates and also implicit

increases through higher retentions and other coverage reductions.

A major catastrophe may cause some capital providers to reduce their appetite

to invest in insurance thus reducing competition and allowing prices to rise. Higher

profits are made, attracting new capital providers, increasing competition, lowering
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prices and hence profitability. At this point some companies may lose business and

the cycle begins again. It is not clear whether this is a repeating behavioural cycle or

a series of unprofitable periods punctuated by catastrophes leading to short periods

of high profits. Daykin [63] have hard coded underwriting cycles into their model

(these can vary by class of business). In contrast Taylor [250] and Wright et al [277]

test to see whether cycles emerge from their model set up - and find that they do

so in some circumstances.

Consideration of Bayesian methods This thesis does not explicitly make ref-

erence to Bayesian methods, though the Climatology Blending approach in sections

2.7 and Chapters 3 and 4 is similar to ‘credibility weighting’ methods discussed

by Bailey [16] who made an explicit link to Bayesian methods in 1950 [17], which

was extended by Mayerson [160] in 1964. In 1996 Scollnik [222] used Monte Carlo

Markov Chain methods to give a Bayesian prediction of frequency counts in work-

ers compensation insurance. It appears, however, that Bayesian methods had not

been taken much further by practicing actuaries since, in 1999 Pereira [196] sought

to convince actuaries that Bayesian statistics ‘could be useful for solving practical

problems’, adding ‘Bayes is a powerful branch of statistics not yet fully explored by

practitioner actuaries’. Pereira’s paper considers several standard actuarial proce-

dures from a Bayesian perspective, specifically: ‘graduation’ (smoothing empirical

probabilities), claims reserving and credibility weighting. In the same year Klug-

man et al [127] carried out a survey of the use of credibility techniques over 190

US insurers and concluded ‘. . . that credibility theory is not widely adopted among

surveyed actuaries at United States life and annuity carriers to date in managing

mortality, lapse and expense related risks’. In 1999, Reiss et al [209] used Bayesian

methods in the context of Excess of Loss reinsurance and Verral [262] reinterpreted

the well known Bornhuetter-Ferguson [26] method of reserving within a Bayesian

framework in 2001. Such methods do not seem to have found their way into main-

stream practice in the UK [36], however. Studies have continued to explore Bayesian

methods in an insurance context for example Fellingham et al [80] have applied

Bayesian methods to Health Insurance Claims Costs in 2007, Puustelli et al [205] to

Financial Guarantee insurance in 2008 and Luoma et al [158] to Equity-linked life

insurance contracts in 2011. Daron’s work on Bayesian Networks in relation to crop
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insurance [57,58] has already been noted. Lloyd’s have recently started to consider

Bayesian techniques [92] to assess the credibility of forecasted loss ratios given past

experience. Given increasing computing power such methods seem to have growing

promise to enable continuous adjustment of insurance risk models; it would there-

fore be interesting to extend the work in this thesis in future to consider Bayesian

methods.

1.4 Major new results in this thesis

Details of new work are given in every chapter; this section briefly describes the

major new results in this thesis. The insurance question: ‘can scientific models im-

prove insurance pricing?’ can be focussed into two sub-questions: (1) Are forecasts

skillful? and (2) Are forecasts useful?

The concept of forecast skill is shown, in Chapter 2, to be relevant and important

to insurers. There are many skill scores with different properties, these properties

are listed and discussed in an insurance context. Scores that are ‘proper’ have an

expected score that is minimised when a forecast has the same probability density

function as the process that generates the observations [94]. This has previously

been shown to be a key property [29] and the results of Chapter 2 are in agreement.

A new property called ‘feasibility’ is introduced, requiring a poor score to be given to

forecasts that systematically ascribe non-trivial probability to unlikely events. Two

common scores are shown to fail this property, one of these (the Continuous Ranked

Probability Score - CRPS) is a proper score. Three new robust conclusions are

proposed in an insurance context: (1) Multiple, proper, feasible, local, skill scores

should be used to assess forecast skill; (2) the Ignorance skill score should certainly

be included in the scores used and (3) The CRPS score, since not feasible, should

not be used.

Three experiments are designed to provide a ranking amongst scores. The first

takes an arbitrary set of real numbers and defines the underlying distribution as

a sum of normalised Gaussian kernels centred on them, to produce a probability

density function from which a sample of observations is drawn. Several forecasts are

produced using the method of Kernel Dressing [30] one of which has the same kernel
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width as used to generate the observations. Different skill scores are used to assess

the best scoring forecast. Score A is deemed to have ‘beaten’ score B if A’s best

scoring forecast has a kernel width that is closer to the true value than B’s. The

experiment is repeated multiple times and this allows the number of wins, draws or

losses to be counted. Score A is ranked higher than B over all if it wins more often.

This method finds that the Ignorance score has the highest rank.

A second experiment is carried out where the number of observations is small.

This sparse data setting is typical of insurance where we often have only a few years

of relevant data [53]. Observations are drawn from a standard Gaussian distribution

and three forecasts are tested, also Gaussian but with varying standard deviation,

one of which is correct. Similar to the first experiment the skill score that more

often picks the correct distribution based on very little information is ranked highest.

Apart from data sets with only one or two observations, the Ignorance score again

performs best.

The Skill Gap is defined to be the sum over many observations of the difference

between the skill score for a given observation/forecast pair and the expected skill

score given the forecast, this is defined for any score and is the same as the Infor-

mation Deficit [216] if the Ignorance score is used. An experiment is set up to test

how quickly the Skill Gap can reveal forecasts that are inconsistent with the process

generating the observations (termed ‘rejection’) with a prescribed confidence and

probability of rejection. The Ignorance score is shown to reject certain types of

forecast more quickly than others, but not all, leading to the conclusion that it is

appropriate to use multiple skill scores when using the Skill Gap in this way.

Atmospheric hazards arise from complex, chaotic dynamical systems rich in non-

linearities and thresholds [153, 154]. The Lorenz 96 systems (I and II) [155] are

used as a proxy for such processes in Chapters 3 and 4. A key component of

System II, the ‘Instantaneous Effective Forcing’ is explored and, using System I,

three models are developed: (1) constant forcing, (2) a functional relationship based

on the slow variables and (3) an Auto-Regressive process of order 4 (AR(4)) [32]

based on prior forcing values. From these, five parameterisations are explored (three

for the constant forcing term, and one each for the functional and AR(4) models).

An ensemble of forecasts at each lead time is created and these are Climatology
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Blended and then scored using the Ignorance score. Six different parameterisations

of Lorenz System II are explored in this manner. Initially four parameterisations

were considered in two pairs (1) Lower forcing and (2) Higher forcing. A second

parameter, ‘coupling’ determines the influence of the fast variables on the slow

variables and this was varied in each pair between high and low coupling. Models

in the low coupling systems were expected to perform better but unexpectedly did

worse for reasons explained in Chapter 3. Two further systems (each with five

models) were introduced in response. The chapter concludes that the models are

skillful at least for part of the observation period.

Armed with skillful forecasts from the Lorenz system, Chapter 4 explores whether

they can be useful in an insurance context. To facilitate this a new concept,

φ-transformation, is introduced. This is the best scoring relationship between sys-

tem values and those of a given model. It explicitly recognises that the model is

not the system and that when models take certain values the system may tend to

take different values. An insurance index is developed which has hypothetical claims

payments depending on values of the observed Lorenz variables. This is analogous

to existing insurance indices such as those used for catastrophe bonds [116], but

the use of φ-transformation is novel. Prices for the index are calculated first using

traditional, climatology, methods and then using two variants which make use of

φ-transformed, forecasts. The first variant takes the transformed ensemble mean

to update expectations and the second uses climatology blending [30]. The first

method is shown to be the most successful in this case and, using the most skillful

forecasts, outperforms climatology pricing in several ways: (1) the company is 16%

more profitable on average, (2) it goes insolvent with one fifth of the frequency and

(3) the prices charged are on average, 10% cheaper. This method therefore bene-

fits shareholders, insurance regulators and policyholders respectively. The chapter

concludes that skillful forecasts can be useful for insurers.

The efficacy of forecasts for insurers is further explored in Chapter 5 where a

simple yet informative model of hurricane damages is presented along with a series

of forecasts and pricing methods which make use of them. The model incorpo-

rates each of the processes: generation, landfall, city hit and strength of storm.

Pseudo-forecasts are produced at several of these stages and attempts are made to
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improve on climatology insurance pricing. The results highlight that skillful fore-

casts, may not be useful to insurers unless very carefully used. Indeed a key new

finding demonstrates that using such skillful forecasts can reduce profitability and

financial stability rather than increase it, as the impact of lower variance is passed

to policyholders through lower premiums which can prove inadequate on multiple

occasions. The new findings are discussed in the context of: chance of insolvency,

career performance of underwriters; expected profitability and return on capital.

A novel insurance industry agent based model is presented and explored in

Chapter 6 that has many of the key structures observed in the insurance indus-

try and discussed in section 1.3. Realistic looking behaviours emerge which are

informative and enable various insurance questions to be explored. The model con-

siders two competing companies that suffer the same underlying claims process but

have different approaches to pricing. One company (the main company) is the focus

and a series of single competitors are included to ensure that realistic checks and

balances on profitability are included. Each simulation is run until the main com-

pany dies and this is repeated multiple times in a Monte Carlo approach. Average

company lifetimes are significantly lower than the regulatory target due to the im-

pact of parameter uncertainty on estimating capital requirements. In the particular

experiments explored it is shown that: (1) it is possible to create such a model which

displays realistic looking, yet subtle, market behaviours; (2) the insurance pricing

method of ‘payback’ [253] reduces company value and leads to shorter company life-

times; and (3) the TVaR (see Glossary) regulatory metric, commonly thought to be

robust due to its desirable mathematical properties, leads to shorter company life-

times due to difficulties in its estimation, with the conclusion that it should be used

cautiously. This work suggests that further development of agent based models of

the insurance industry would lead to considerable insights regarding: resilient forms

of regulation and robust pricing methodologies.

Appendix C presents some comments on a stand-alone problem of interest in the

insurance sector, ‘Trends’ which play a key role in insurance. For example, their

‘detection’ is important to ensure premium rates remain adequate and capital suffi-

cient. Modern computing power can reduce the need for often restrictive statistical

assumptions about the process underlying a potential trend. A permutation method
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for estimating the slope probability is presented in the appendix along with three

novel graphical techniques which are explored for various pseudo and real data sets.

The example of tide gauge data is explored in detail and the new methods used to

give evidence for accelerating sea level rise at multiple locations.

In summary, based on the work presented here I believe the question posed at

the start of this chapter can be answered affirmatively. Provided they are used

appropriately, scientific models can improve insurance pricing.
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Chapter 2

Measuring forecast skill

‘A reasonable fee to pay to an expert who has estimated a probability as p1

is k log(2p1) if the event occurs and k log(2 − 2p1) if the event does not occur

...When making a probability estimate it may help to imagine that you are to

be paid in accordance with the above scheme.’

Good 1952 [97]

Forecasts are often carried out to aid decision making or test a theory [274].

In this context ‘skill scores’ have been developed for a variety of tasks including

[274] comparing forecasts, training forecasters, encouraging their honesty and finding

‘optimal’ parameters [69, 94].

According to Murphy [178], J.P.Finley (an American Meteorologist) was the first

to attempt to appraise a forecast by defining a score equal to the ‘percentage correct’

for his own tornado forecasts in 1886. In his case, however, skeptical reviewers noted

that he would have achieved a better score by forecasting ‘no tornado’ every time,

illustrating that his proposed skill score was flawed. The situation is even more

challenging for continuous probability forecasts. Many probability skill scores have

been proposed and discussed over the last 100 years. Since the 1950s a wide variety

of properties of skill scores have also been defined. All the properties found in a

literature review are listed (see table 2.2) and then interpreted in the context of

insurance. A new property ‘Feasibility’ is proposed which certain common scores do

not possess, to their detriment.

There are infinitely many skill scores [224] and their merits and uses have been
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discussed in the literature. This chapter adds to that debate in three ways (1) by

comparing different scores in various ways to provide a ranking amongst scores, (2)

by interpreting scores and their properties in the context of insurance and (3) by

illustrating methods where skill scores allow additional insight or robustness com-

pared with traditional methods. The original elements of this chapter are believed

to be as follows:

• Section 2.2: Extending the method, first introduced by Benedetti [20], of using

the Taylor Expansion to contrast the Ignorance Score and the Brier Scores.

Thereby showing that the Brier score should be passed over in favour

of the Ignorance score;

• Section 2.4: A kernel dressing experiment whereby multiple skill scores are

compared objectively, creating a ranking amongst scores, demonstrating

that I J Good’s Ignorance score [69, 97, 216] performs best in that

setting;

• Introduction of a new skill score property ‘Feasibility’ (defined in section 2.1)

which highlights scores that penalise impossible or highly improbable events.

Later sections (2.3.1 and 2.3.2) show that some skill scores fail this property.

This work has been partially published by the author in [240];

• Section 2.5: Illustration of how scores perform under conditions of sparse data

and demonstration the Ignorance score again performs best;

• Section 2.6 describes an experiment, using a measure known as the ‘Skill Gap’

(defined later), to calculate how quickly a given score will show that a forecast

system is different from the distributions underlying observations, showing

that the Ignorance score performs well in some cases but the Proper Linear,

Spherical and Naive Linear scores do better in some circumstances, leading to

the conclusion that the use of multiple proper scores to assess forecast

skill can be useful;

• The poor performance of the MSE and Naive scores in some or all of the

experiments described suggest that non-proper scores should not be used.

• Section 2.7: Introduces an algorithm to produce forecasts of varying ‘quality’

and then uses the climatology blending method [30] to improve the skill score

for each of these forecasts.
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2.1 Definitions and score properties

This section defines key skill scores and some of their properties [23,34,81,84,90,94,

165, 224, 274]. There is nothing original in this section except for the presentation

and the definition of the ‘Feasibility’ property in section 2.1.2.

2.1.1 Definition of a skill score

Let Ψ denote the space of probability density functions. If p is a probabilistic

forecast (i.e. p ∈ Ψ) and v an observation of the system with sample space Ω (so

that p : Ω −→ [0, 1]) then a skill score is a functional S : Ψ×Ω −→ R. All the skill scores

below can be thought of as having three components (one or more of which are often

zero) (1) A local component which is the contribution of the forecasted probability

of the event that actually occurred, only, (2) A forecast only component which is a

contribution of the structure of the forecast to the score value - without reference

to what occurred and (3) A mixed term which relates the forecast distribution and

the event that occurred in a non-separable way. The following equation uses this

split where f represents component (1), g component (2) and h component (3).

S(p, v) = f(p(v)) + g(p) + h(p, v) (2.1)

2.1.2 Properties of scores

The following is a list of all the skill score properties in the reviewed literature,

which may not be exhaustive.

Orientation Scores can be either positively or negatively oriented. In the negative

case scores operate like cost functions - the lower the better. In this chapter all scores

are given a negative orientation. This is always an arbitrary choice and the literature

contains examples of each. With negative orientation a poor score is one with a high

value and a good score has a low value. Forecast A has a better score than forecast

B if it is lower, and a worse score if it is higher. The terms: Good, Poor, Better

and Worse will be used consistently in the following chapter. In some cases there is

a forecast which gives the lowest possible score and in this case the term Best will

be used given the choice of negative orientation.
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Propriety A score S is ‘proper’ (see for example [274]) if, for any pair of forecast

pdfs p and q, the following inequality holds.∫
q(z)S(p(z), z)dz ≥

∫
q(z)S(q(z), z)dz (2.2)

A score is ‘strictly proper’ if the inequality is strict, this concept is made clear in

Bernardo [23] but he uses the term Proper. Brown [34] uses the term ‘admissable’

instead of proper. The implication of this property is that if forecasters are incen-

tivised using Proper scores they will do best to give a forecast p that is equal to their

true beliefs q. McCarthy [165] calls this ‘keeping the forecaster honest’. Selten [224]

uses the phrase ‘Incentive Compatible’ in place of strictly proper. By this he notes

that Improper scores encourage forecasters to deliberately issue a forecast that does

not agree with their true beliefs (q). In recent times many forecasts have been fully

automated largely removing such behavioural features. As will be illustrated in this

chapter, however, it is also advisable to use Proper scores because, in the limit of

many observations, they favour the true distribution above other forecasts. Here

scores that do not have the Propriety property will be referred to as either Improper

or non-Proper.

Locality A score is ‘Local’ if it depends only on the forecast density of the

observation1 (p(v)). This concept was mentioned by McCarthy in 1956 [165] when

he commented that I J Good’s skill score (defined in equation 2.9) depends only ‘on

the probability assigned’. Winkler and Murphy [274] also distinguish scores which

take account of all the forecasted probabilities (i.e. including p(x) for x 6= v and

those which are concerned only with the outcome that occurred p(v)). The latter

are Local, the former are not Local. Winkler and Murphy call these ‘partial’ and

‘total measures’ (respectively). The first paper in the reviewed literature that gives

a formal definition of Local is that of Bernardo [23] where he defines a Local score

as one where,

S(p, v) = S(p(v), v) (2.3)

Using the characterisation in equation 2.1 above, a Local score only has component 1.

1‘Observation’ is used here in a broad sense which includes estimates of outcomes, for example

during data assimilation.

72



Equity Introduced in 1992 by Gandin and Murphy [90] the equity property relates

to categorical forecasts. In this case there are n complete and mutually exclusive

categories, probabilities are assigned to each category and one occurs. Following

Gandin and Murphy [90], define a ‘performance matrix’ P where pij is the relative

frequency of the event in which the ith category is forecast and the jth arises. A

scores matrix S has elements sij which denotes the score given in the situation stated.

They note that ‘climatology’ is defined as pj =
∑

i pij and the ‘predictive probability

vector’ is qi =
∑

j pij. A random forecast is, they define, one where pij = pjqi. Then

a score is ‘equitable’ when the level of skill ascribed to a constant forecast is the

same as the average level of skill ascribed to a random forecast. They argue that

both these situations represents a zero skill situation and hence should not differ.

Specifically [90],

∑
i

∑
j

qipjsij =
∑
j

pjsij (2.4)

The left hand side being the average score of a random forecast and the right hand

side the score when the forecast is constantly set at category i. Equation 2.4 imposes

some constraints on the values sij, but still allows for many score types particularly

for larger values of n. Jolliffe and Stephenson [122] show that for a large class of

Proper scores it is impossible for the score to be both equitable and Proper at the

same time.

Regularity Gneiting and Raftery [94] define a ‘regular score’ (for a categorical

forecast) as one where S(., i) is real valued for i = 1, ....m, except possibly that

S(p, i) = −∞ if pi = 0. They are using the positive orientation rule; the infinite

score would be +∞ in the negatively oriented case. In other words a score can only

take an infinite value if the event that occurred was designated as impossible in the

forecast.

Insensitivity Selten [224] defines scores in a categorical setting where there are

n possible states. He defines a forecast as a vector p = (p1, ...pn) where each pi is

the probability ascribed to event i occurring, summing to unity over n since the

events are a complete description of all possible events and are mutually exclusive.
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He defines ∆n to be the set of all such probability distributions and then defines the

score given to forecast p if event i occurs as Si(p). The expected score of p under

another distribution r is defined as V (p|r) =
∑n

i riSi(p), the ‘expected score

loss’ is then defined as L(p|r) = V (r|r)− V (p|r). A score is then strictly Proper if

L(p|r) > 0 ∀p, r ∈ ∆n such that p 6= r.

Given p is such that pj = 0 and q another forecast such that qj > 0 Selten then

suggests a skill score is ‘insensitive’ if L(p|(1−α)q+αp) = +∞ for any 0 ≤ α < 1;

here he uses the positive orientation and defines L(p|r) = +∞ if V (r|r) > −∞ and

V (p|r) = −∞.

This is motivated as follows. Let r = (1 − α)q + αp for an arbitrary p and q.

Then he suggests that as α tends to 1, r is ‘closer’ to p. So that L(p|r(α)) should,

he argues, decrease as α increases. A score is insensitive if this does not happen for

some p. Selten argues that insensitivity is undesirable.

Hypersensitivity Selten [224] then defines the property ‘hypersensitivity’; us-

ing the notation above. If r, p ∈ ∆n are two distributions with rj > 0 and pj = 0

for at least one j then the score is hypersensitive if both the following hold: (a)

V (p|r) = −∞ and (b) for every ε > 0 and M > 0 it is possible to find r, p ∈ ∆n

with ri > 0 and pi > 0 such that |r − p| < ε and L(p|r) > M .

A score is hypersensitive if forecasts can be ‘close’ (defined by the Euclidean

distance between them as n-vectors), yet their scores arbitrarily far away.

Symmetry Selten [224] defines a symmetric score as one in which , given a per-

mutation of the numbers 1, ..n (π say) then: Sπ(i)(π(p)) = Si(p). The term is also

used differently by Ferro [81] who states that the score should not depend on the

ordering of ensemble members.

Elongation invariance Another property defined by Selten [224] considers ex-

tensions to the sample space. Specifically a given score may be considered to operate

on both ∆n and ∆n+1. Then a distribution p ∈ ∆n can be mapped by an ‘elongation

function’ to a distribution θ(p) ∈ ∆n+1 by adding zero as the nth component. So

θ(p) = (p1, ...pn, 0). Then a score is ‘elongation invariant’ if Si(θ(p)) = Si(p).
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Neutrality Selten [224] defines a ‘neutral’ score to be one in which for any pair

of forecasts p, q it is true that L(p|q) = L(q|p). He motivates this by considering

two theories p and q with one correct. Whichever is wrong should be considered as

far from the truth as if the other were wrong, he argues.

Feasibility Motivated by new work in this chapter the following definition (illus-

trated in figure 2.1) is introduced for a negatively oriented score.

A score S is ‘Feasible’ if it assigns bad scores to forecasts that give material

probability to highly improbable events. Specifically, let λ = inf{p(z)|z ∈ supp(p)},

this is the probability density of the least likely outcome, the infimum (where supp(p)

denotes the support of the random variable with pdf p). For any ε > 0 define a set

Mε := {z|p(z) < λ+ ε}; when ε is small these are the set of observations that the

forecast ascribes small probability density to. Let µ = inf{S(z, p)|z ∈Mε}, the best

score amongst the minimal probability events. Then a score is Feasible if S(z, p) ≤ µ

∀z /∈ Mε, that is, for any observation that is not in Mε the skill score ascribes a

better or equal score than µ to the forecast.
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Figure 2.1: Illustration of Feasibility property for a skill score that is not Feasible. The

top graphic shows the forecast probability density (p) of the observed variable X, where

λ = inf{p(z)|z ∈ supp(p)} the probability density of the least likely observation. ε is a given small

real number and Mε is the set of values with probability density within ε of λ, informally, the

set of observed values that are expected to arise with low probability, or ‘minimal probability

events’. The lower graphic shows the skill score value arising for different observed values X and

µ = inf{S(z, p)|z ∈Mε}, is the best score amongst the minimal probability events, the observed

value m which corresponds to this best score is illustrated by an orange solid dot. This skill score

is not ‘Feasible’ because the value z (illustrated by a green dot with dark border) is outside of the

minimal probability events Mε yet has a worse (i.e higher) score than m, formally S(p, z) > µ.
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2.1.3 Ensemble evaluation

The following properties are ensemble evaluation techniques and do not relate to

probability forecasts.

Fairness Ficker et al [84] define a property they call Fairness. The property Fair-

ness relates to the evaluation of ensembles. They state there are at least three

interpretations of ensembles (1) that they define the only outcomes the forecaster

believes are possible and are equally probable, (2) the ensembles represent a col-

lection of functionals of the distribution (such as mean, median or quantiles and

(3) that the ensemble outcomes are a random sample from the predictor’s belief

distribution. Using interpretation 3 they say that a skill score will be Fair if given a

forecaster is required to issue a random sample from some distribution then the ex-

pected score (using the distribution they truly believe is correct) will be maximised

when they choose a distribution equal to their beliefs. They define strictly fair when

the expectation is uniquely optimised by the belief distribution.

Accountability Let a ‘perfect model’ be defined as one which captures com-

pletely the dynamics of a system. ‘Model error’ can then be defined as the dif-

ference in predictions that arise from models that are not perfect. Smith [237] notes

that a prediction from a model that has initial condition uncertainty will not be ex-

act, even if made by a perfect model. In the case of a perfect model this form of error

is, however, different to model error since, provided [238] the initial conditions are

consistent with observations and chosen to lie on the attractor, the forecasted values

will reflect the true Probability Density Function (PDF) of the system. An ensemble

that samples the true PDF of a system is defined by Smith [237] as ‘Accountable’,

he (and others) note that imperfect models cannot be accountable [123,237].

Uselessness If an ensemble cannot be distinguished from a sample from the cli-

matology then it is ‘Useless’ [237].
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Figure 2.2: Summary of skill score properties and ensemble evaluation techniques
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2.1.4 Score properties from an insurance perspective

Propriety is an important property for insurers. Non-proper scores can reject fore-

casts that match the underlying distribution of outcomes and, in an insurance con-

text this could lead to mis-pricing of risks, reducing profitability and even potentially

leading to insolvency. It is surely nonsensical to use a skill score that is known to

favour forecasts that are systematically wrong; insurers should not do so. Also,

although, as noted, many forecasts are automated now there is still a strong role for

judgement in many fields and any feature that discourages misrepresentation of an

expert’s beliefs (deliberate or otherwise) is desirable.

Locality is also an important concept for insurers. Profitability over a period

will often be assessed when judging whether an underwriter is competent, this is

only influenced by what actually happened, not what didn’t happen. As noted,

non-Local scores take account of aspects of the forecast that did not arise. It should

be noted, however, that in one of the uses described in this chapter the, non-Local,

Proper Linear score performs better than the, Local, Ignorance score so it may be

premature to rule them out completely, see section 2.6.

As noted, some scores cannot be both Equitable and Proper; non-proper equi-

table scores should therefore be passed over by insurers. Also, it is not intuitively

obvious to me that constant scores and random ones (defined earlier) should have

the same score. Whilst they both appear to have zero skill this ascribes too much

weight on the heuristic interpretation of ‘zero’.

Regularity, elongation invariance and symmetry are fairly technical requirements

but are sensible. In particular the regularity condition which requires that an in-

finitely bad score should only arise in cases where an observation forecasted to be

impossible actually occurs. In an insurance context such a forecast could be very

significant. For example a prediction that there is no possibility of losing a court

case would support a zero reserve for that possibility. If the case is eventually lost

there will be no earmarked funds to pay the claim which must then be paid out of

general cashflow thereby reducing profitability. Effectively this is what happened

in the asbestos cases of the 1980s which cost the insurance industry hundreds of

billions of dollars.

Insensitivity and Hypersensitivity seem designed to penalise the Ignorance score
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which only fails them because it gives an infinitely bad score to events that were

stated to be impossible (argued above to be a positive feature of the Ignorance

score in an insurance context). These properties are therefore not important in an

insurance context.

Selten’s Neutrality property is the critical property that leads to recovery of the

Proper Linear score as being the unique score which is proper, elongation invariant

and symmetric. Later in this chapter it will be shown that the Ignorance score

performs better in a variety of settings. Given this, the fact that Ignorance does

not have Neutrality suggests this property does not have any features that could be

considered important from an insurance perspective, since it rules out arguably the

most successful score.

It is not clear why the Fairness property is useful in an insurance setting. Any

ensemble can be converted to a probability forecast (for example using kernel dress-

ing or blending described in Brocker and Smith [30]) and then the usual probabilistic

scores can be used. In insurance it is necessary to have probability distributions to

assess capital requirements.

The Feasibility property, novel to this chapter, is important from an insurance

point of view. Rewarding a forecast that consistently ascribes very low probabilities

to events that actually arise may lead to that forecast being selected for use in pricing

or capital setting. If this is done then the events that obtain will consistently be

those that were not expected. In my experience Boards of Directors take a negative

view of plans (i.e. forecasts) that are consistently different from the outcome that

arises. Scores that are not Feasible might be useful to assess forecasting methods

that could be adjusted to be better (i.e. to avoid ruling out forecasting methods that

are in development) but such forecasts should not be used in practice unless they

had been corrected and then scored well when tested with proper, Local, Feasible

scores.

2.1.5 Various skill scores

The following describes various skill scores, these are defined and it is highlighted

whether they are proper, Local and/or Feasible. These properties have been high-

lighted due to the importance for insurance as discussed above. Feasibility or oth-
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erwise for each score is demonstrated in section 2.3.

Naive Linear Score [Not proper, Local, Feasible]

S(p, v) = −p(v) (2.5)

The Naive Linear score has been used for many years, for example it is discussed

in Friedman 1983 [86]. This score uses the probability density that the forecast

would ascribe to the occurrence of a given observation value. This is intuitive in

that: if an observation occurs at a point that the forecast thought highly unlikely

then the forecast would score badly - in other words this is a Feasible score. This is

a Local score in that it depends only on the value of PDF at the outcome, i.e. only

has component 1 of the three described in equation 2.1. This score is not Proper

however [29] (i.e. a forecaster can get a better score by giving a forecast that is

different to the probability of the event that occurs).

Proper Linear Score [Proper, Not Local, Feasible]

S(p, v) =

∫ ∞
−∞

p2(z)dz − 2p(v) (2.6)

The improperness of the Naive Linear score can be ‘fixed’ by adding the integral

term to define the Proper Linear Score in equation 2.6; as described in in Friedman

1983 [86]. By fixing the propriety of the score it is no-longer Local due to the integral

term, the integral term is component 2 of equation 2.1 above as it does not refer to

the event that occurs at all. For a given p the integral term is constant, hence if the

observation, v, occurs at a point of zero probability the score is maximised, hence

the score is Feasible. Selten [224] shows that the Proper Linear score is the unique

scoring rule up to affine transformation that is symmetric, elongation invariant,

Proper and neutral.

Power Rule Scores [Proper, Not Local, Feasible]

S(p, v) = (α− 1)

∫ ∞
−∞

pα(z)dz − αp(v)α−1 (2.7)

The power rule score family is a generalisation of the Proper Linear score defined

for α > 1; all are proper. The rule is discussed in Selten [224] although his presenta-

tion is for categorical forecasts; the definitions have been converted to a continuous
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formulation above. When α = 2 the Power Rule score is equal to the Proper Linear

score. In this chapter: a power rule score with parameter α is denoted ‘powerrule

α’. Since each value of α defines a Proper scoring rule, Selten notes ‘... the power

family shows the there are infinitely many incentive compatible scoring rules’. Again

the integral terms implies that the score is not Local and is component 2 of equation

2.1. As with the Proper Linear score the integral term is constant for any particular

forecast hence this score is Feasible.

Mean squared error Score [Not Proper, Not Local, Not Feasible]

S(p, v) =

∫ ∞
−∞

(v − z)2p(z)dz (2.8)

The Mean Squared Error (MSE) (see for example Ferro et al [82]) is another

example of an Improper score. The further the observation (v) is from the part of

the forecast distribution that has the highest density, the greater weight will be given

to the squared ‘error’ term. Hence a high (bad) score is given when high density

is ascribed to values far from where the outcome actually occurs. The MSE score

can be seen as a generalisation of the Root Mean Squared Error average score (see

section 2.4.1). The latter is not a score at all but an average over many forecasts - it

suffers from non-properness and as it includes information about the whole forecast

distribution is not Local. It is easy to show that SMSE(p, v) = σ2 + µ2 + v(v − 2µ),

where σ2 is the variance of the forecast and µ the mean. Therefore, the Mean

Squared Error has both components 2 and 3 as described above. This score is not

Feasible as shown in section 2.3.2.

Ignorance Score [Proper, Local, Feasible]

S(p, v) = − log2(p(v)) (2.9)

The Ignorance score, so named in Brocker and Smith [29] is the same as the

logarithmic score proposed by I J Good [97] in 1952. This is a Feasible, Proper

and Local score. Being Local it only has component 1 of equation 2.1. In his

paper Scoring Rules for Forecast Verification, R Benedetti [20] notes that only the

Ignorance score is Local and Proper (up to affine transformation).
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Continuous Ranked Probability Score [Proper, Not Local, Not Feasible]

The Continuous Ranked Probability Score (CRPS) is defined by:

S(p, v) =

∫ ∞
−∞

(

∫ z

−∞
p(t)dt−H(z − v))2dz (2.10)

Where the Heaviside (step) function H is defined as follows:

H(x) =

0 if x < 0

1 if x ≥ 0

(2.11)

Hence, the CRPS is defined as the square of the L2 distance between the dis-

tribution function of the forecast and a step distribution function centred on the

outcome. See Ferro et al [82] for a similar definition to the one above. The CRPS

score, whilst proper, is not Local and as with MSE the squared term in the integral

can be expanded to show that this score has components 2 and 3 of equation 2.1.

Also, CRPS is not Feasible as shown in section 2.3.1. Ficker et al [84] show that

CRPS is not Fair for ensembles, but they also derive an extension (not shown) to

CRPS that does have this property.

Spherical Score [Proper, Not Local, Feasible]

S(p, v) =
−p(v)

(
∫∞
−∞ p

2(z)dz)
1
2

(2.12)

As noted in Friedman 1983 [86] the spherical score provides another ‘correction’

to the naive score to convert it to a Proper score. Note the integral term is the

L2 norm of the forecast PDF. Due to the integral this is not a Local score and can

naturally be thought as only having component 3 of equation 2.1. For any forecast

the integral term is constant, so as for the Proper Linear score, it is Feasible.

Brier Score [Proper, Feasible] The above skill scores may all be used to score

forecasts with continuous PDFs. The following score is used for binary events in

a categorical setting. Let p denote the forecast probability of an event occurring.

Then there is a forecast probability of 1 − p that it does not occur. Following the

notation in Benedetti [20] the event occurring is represented by the vector (1, 0) and

its non-occurrence by (0, 1). Then given that event

êk ∈ {(1, 0), (0, 1)}
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occurs (one of these two vectors) the Brier score is calculated as:

S(p, êk) = |(p, 1− p)− êk|2 (2.13)

Where |.| denotes Euclidean distance between two vectors. Ferro [81] shows that

the Brier score is not Fair. The concept of Locality does not apply to Binary scores

since once p is specified, the remaining probability is immediately specified.

Table 2.1: Key properties for selected skill scores from insurance perspective

Skill score Proper Local Feasible Continuous

Naive Linear × X X X

Proper Linear X × X X

Power rule(s) X × X X

Mean squared error × × × X

Ignorance X X X X

CPRS X × × X

Spherical X × X X

Brier X NA X ×

2.2 Ignorance and the Brier score

Benedetti [20] uses Taylor’s theorem to expand the mean value of the Ignorance

score2, for a binary event, around a forecast that ascribes equal probability to each

of the two possibilities. He shows that the second order Taylor approximation of

the average Ignorance score equals that of the expected Brier score indicating that

for forecasts with close to equally probable outcomes the expected scores from both

scores will behave similarly. He argues this may explain the popularity of the Brier

score in circumstances when the two outcomes are close to equally likely. He also

notes that the Brier score fails to adequately praise good forecasts of extreme events,

however he does not use the Taylor polynomial approach to gain further insights

2In the current section an alternative definition of Ignorance is used to ease the notation, i.e.

S(p, v) = ln(v), Since log2(v) = ln(v)
ln(2) this score is a scalar multiple of the Ignorance score defined

above and so the minima etc below will be the same for each.
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here. This section builds on his approach to show that the Taylor expansion of

the mean Ignorance is very different for an extreme forecast. Later sections in this

chapter show that the Ignorance score performs well under a number of conditions

which suggests the use of the Brier score should be foregone in place of the Ignorance

score. In summary, for forecasts close to equally likely the two scores will give similar

results, while for extreme events the Brier score will fail to reward better forecasts

and penalise worse ones.

2.2.1 Expected Brier score

Following Benedetti’s notation and given a background climatology frequency for

the event (denoted f) the expected value of the Brier score in this setting is:

E[BS(f, p)] = f |(p, 1− p)− (1, 0)|2 + (1− f) ∗ |(p, 1− p)− (0, 1)|2 (2.14)

= f((p− 1)2 + (1− p)2) + (1− f) ∗ (p2 + p2)

= 2(f − 2fp+ p2)

Statement of Taylor’s multivariate theorem If g : D ⊆ Rm → R is n times

continuously differentiable then.

g(x+ h) = g(x) +
n−1∑
r=1

1

r!
[(h1

∂

∂x1

+ ...+ hm
∂

∂xm
)rg](x) +Rn (2.15)

Where Rn is the remainder term.

In two dimensions this reduces to the following. Let x = (φ, π), h = (f − φ, p− π):

g(f, p) = g(φ, π) +
∂g

∂f
|(φ,π)(f − φ) +

∂g

∂p
|(φ,π)(p− π) (2.16)

+
∂2g

∂f 2
|(φ,π)(f − φ)2 + 2

∂2g

∂f∂p
|(φ,π)(f − φ)(p− π) +

∂2g

∂p2
|(φ,π)(p− π)2 (2.17)
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Derivation of Taylor expansion of Ignorance Following Benedetti’s notation

the expected value of the Ignorance score is: Ψ(f, p) = f ln(p) + (1− f) ln(1− p)

where f is the frequency the event occurs in the climatology (assumed to be sta-

tionary) and p is the probability the forecaster assigns to the event. Let

A(f, p) := Ψ(f, p) (2.18)

dΨ

df
= ln(p)− ln(1− p) =: B(p) (2.19)

dΨ

dp
=
f

p
− 1− f

1− p
=: C(f, p) (2.20)

d2Ψ

dpdf
=

1

p
− 1

1− p
=: D(p) (2.21)

d2Ψ

dp2
= − f

p2
− 1− f

(1− p)2
=: −E(f, p) (2.22)

d2Ψ

df 2
= 0 (2.23)

Suppose the forecaster believes that the correct value for the event probability

is p = π and the observed value of the climatology for the event is f = φ, then the

second order Taylor polynomial for the score value Ψ(f, p) around the point (φ, π)

is given by:

Ψ(f, p) = A(φ, π)+B(π)(f−φ)+C(φ, π)(p−π)+D(π)(f−φ)(p−π)− 1
2
E(φ, π)(p−π)2

(2.24)

Multiplying out and gathering terms this can be re-written as:

Ψ(f, p) = (A−Bφ−Cπ+Dφπ− 1
2
Eπ2)+(B−Dπ)f+(C−Dφ+Eπ)p+Dfp− 1

2
Ep2

(2.25)

Comparison of Taylor polynomial to Brier score Following Benedetti if

(φ, π) = (1
2
, 1

2
) then:

A = 1
2

ln(1
2

+ (1− 1
2
) ln(1− 1

2
) = − ln(2) (2.26)

B = ln(1
2
)− ln(1− 1

2
) = 0 (2.27)

C =
1
2
1
2

−
1− 1

2

1− 1
2

= 0 (2.28)

D =
1
1
2

+
1

1− 1
2

= 4 (2.29)
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E =
1
2

1
2

2 +
1− 1

2

(1− 1
2
)2

= 4 (2.30)

So around (1
2
, 1

2
) as in Benedetti’s paper:

Ψ(f, p) ' −(ln(2) + 1
2
− 2(f − 2fp+ p2) (2.31)

Benedetti then notes that the polynomial in f and p is exactly the same as the

formula for the expected Brier score and hence for situations where the event is

neither extremely likely or unlikely (i.e. f is close to 50%) then the Ignorance score

and Brier scores will give similar behaviour.

2.2.2 Expansion for rare events

Benedetti notes that the Brier score ‘becomes inadequate as a skill score’ when events

are rare and considers a rare event with probability φ = 1
1000

. He notes that the

difference in Brier score between a forecast that considers such an event impossible

and one that ascribes the correct probability is just 0.1%, a tiny gain in score. The

Ignorance score will severely penalise a forecast that ascribes zero probability density

to an event that occurs. The Taylor polynomial of the mean Ignorance score around

the point ( 1
1000

, 1
1000

) is derived as follows: A = −0.007907255, B = −6.906755,

C = 0, D = 1001.001, E = 1001.001. Substituting these value into the formula the

following expression arises:

Ψ(f, p) ' 3.143236− 2(3.953878f − 500.5005 ∗ fp+ 250.2502 ∗ p2) (2.32)

In this case the polynomial in equation 2.32 is very different to that of the

expected Brier score (equation 2.14) which helps to illustrate why the two scores

behave differently in the rare (or near certain) event setting.
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2.3 Feasibility of various score types

The following subsections show whether the various scores described above are Feasible.

In summary, the following scores are Feasible: Ignorance, Naive and Proper Linear,

Power Rule, Spherical and Brier. The CRPS and Mean Squared Error scores are

not Feasible.

2.3.1 CRPS - not Feasible

This subsection demonstrates that the CRPS is not Feasible by providing two coun-

terexamples.

Counterexample 1: Gaussian mixture The following sequence of graphics

illustrate a major shortcoming of the CRPS score. Consider a bimodal forecast with

PDF (f(v)) and Cumulative Density Function (CDF) (F (v)), for a given observation

v. The PDF (figure (a)) and CDF (figure (b)) of one such distribution is shown in

figure 2.3. Figure (b) also shows a Heaviside function (H(v) shown blue) centred at

an observation value of v = −1. The difference, δ(z) = F (z)−H(z − v), between

the CDF of the bimodal forecast and the Heaviside function is shaded green. It is

this difference term which is squared and integrated over the whole support of the

forecast which defines the CRPS. Note that the CDF has an inflection point at v=0

which corresponds to the trough between the two peaks.

Figure 2.4 illustrates various observations v1, ...v9 increasing from negative, through

zero, to positive, these are shown by a blue vertical line plotted at the observation

value. The graphic also shows the forecast f with a dotted red line and the integrand

of the CRPS (i.e. δ(v)2) as a shaded green region. The CRPS score is the area of the

green region. This is clearly least when v = 0 which is at the at the median of the

forecast distribution. The fact that the score is minimised at the median is easily

shown. Differentiate S to get
dS

dv
= 2.

∫ v
−∞ p(t)dt− 1 (see appendix A for a proof),

this is zero when the integral is equal to 1
2
, i.e. at the median of the forecast. In the

above example the median occurs in the middle of the two peaks when the density is

close to zero (the pdf of the forecast, in red, has been superimposed on the graphic

to illustrate this). Suppose that an outcome of x=0 arose (which would be likely
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Figure 2.3: Figure (a) bimodal Gaussian distribution. Figure (b), the CDF of the bimodal

distribution is shown by the red line, the Heaviside function is drawn at an observation of -1. This

illustrates the region that is taken into the CRPS integral when the observation is -1.

if the process generating the observations (the ‘truth’) was unimodal for example).

Then the CRPS score for the forecast, observation pair would be the best possible

value. This is despite the fact that the forecast ascribed close to zero probability to

the event that occurred. It can therefore be seen that CRPS ascribes a good score

(in fact the best) to a highly improbable event, which is opposite of the behaviour

required for a skill score to be ‘Feasible’, clearly CRPS does not have this desirable

property.

Counterexample 2: Sawtooth The following extends the discussion presented

in Smith et al [240]. Suppose the support of a forecast PDF (f) is comprised of 17

intervals from 0 to 17 each of length 1. Also suppose that the forecaster believes

that values are highly likely to arise from only 8 of these intervals (‘high density

blocks’) and that the likelihood is close to uniform within each block. In between

these are ‘low density blocks’ with density approximately f(x) ≈ 1
1000

. Each block

is not quite uniform with a small positive or negative adjustment, each an order

of magnitude lower than the average density within the block. This example is

illustrated in figure 2.5(a),(b) and (c). The adjustments are made to make figure (c)

clearer. The PDF f is illustrated in figure (a) with a red line - its median is shown

with a black vertical line. The score value for each of the potential observations

from 0 to 17 is shown in the figure (b): the Ignorance score is shown in green and

the CRPS in black. Note that the Ignorance score is inversely related to the density
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Figure 2.4: Integrand of the CRPS integral (shown green) for various observation values with

respect to a Bimodal Gaussian forecast (shown red). This highlights visually that the CRPS score

is best (i.e. a minimum) at the median of the distribution; in this example this is at a point of

very low forecast density.

of the forecast. The CRPS, however, behaves very strangely. First, as shown above,

the best score is at the median of the forecast. This is in a region the forecaster

believes is highly unlikely to occur. Also the score smoothly decreases from values

to the left of the median and then smoothly increases after this. It passes through

several other intervals of near-zero forecast probability, but there is no indication

from CRPS the graph that this has occurred. CRPS is indifferent between intervals

that are forecast to be highly probable and near impossible.

Assume the the true distribution is shifted one unit to right of the forecast. So

that for every outcome that can occur the forecast assigned a near-zero probability.

The average CRPS score (i.e. integrated over all possible outcomes) will be close

to that of a perfect forecast; the average Ignorance score will be close to the worst

possible score recognising that the forecast was completely wrong. Figure (c) illus-

trates this point a different way; the CRPS and Ignorance score values are plotted

as x(v) and y(v) coordinates as functions of increasing observation values v. As the

observation increases from 0 to 17 the Ignorance value fluctuates whilst the CRPS

gradually descends to its minimum at the median, then the process reverses and the
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path is approximately traversed in the opposite direction. The small positive and

negative adjustments from the multi-modal uniform distribution described above

were made so that these two paths are discernible.

The sawtooth example can be used to prove that the CRPS is not Feasible as

follows. Using the notation in the definition of Feasibility note that λ ≈ 1
1000

and

let ε = 2
1000

. In this case Mε =
⋃8
i=0(2i, 2i + 1) and from Figure 2.5(b) it is clear

that µ < 2, since all values on the black line, which represents the CRPS score for

the low probability region (8, 9) ⊂Mε, are less than 2. Choose t = 1.5 then t /∈Mε,

then S(p, t) > 4. In conclusion, there exists a probability density p such that

∃t /∈Mε s.t. S(p, t) > 2 > µ

and so CRPS is not Feasible.

Gneiting and Raftery [94] see this behaviour of CRPS as desirable. They note

that with Local scores ‘no credit is given for assigning high probabilities to values

near but not identical to the one materialising’. In the above example the sawtooth

forecast looks very similar to the truth, it is just located in the wrong place. So

in a sense the forecast is close, and this is what CRPS rewards. In the bimodal

case, above, (with a unimodal truth) CRPS is not close, however. In decisions that

require accuracy (‘is outcome X likely at location Y or not?’) this definition of ‘close’

is not helpful. It may therefore be arguable that the CRPS score could be useful

in the context of model development where a forecast that resembles reality should

be highlighted for further improvement. Using CRPS in a production setting (i.e.

where real decisions are to be made) is inadvisable due to its lack of Feasibility.
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Figure 2.5: Implications of lack of ‘Feasibility’ - CRPS (not Feasible) vs Ignorance (Feasible). Top

left: Probability density function of 8-uniform forecast - with median shown as vertical black line.

Top right: Score value for various observed values. Ignorance shown in green and CRPS shown in

black. Note that the Ignorance score reacts sensitively to the probability density of observations

whereas the CRPS gives similar scores to observations that vary from highly likely (the peaks in

probability density) and highly unlikely (the troughs) Bottom: CRPS score vs Ignorance score as

the observation moves from lowest to highest value.
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2.3.2 Mean Squared Error - not Feasible

The Mean Squared Error skill score SMSE is not Feasible and this is shown by way of

the following counterexample. This section uses the notation used in the definition

of Feasibility. Recall, to show that a skill score is not Feasible we have to find a value

outside of the minimal probability events (i.e. z /∈Mε) for which the score is worse

than the best score µ for all points within Mε. In short we must find a probable

event that scores worse than an improbable one. Where ‘Improbable events’ are

defined for a given value of ε.

Let ε = 1
4

and consider a bimodal uniform distribution p defined for δ < ε
8
, as:

p(z) =


1
2
− δ

2
z ∈ [−2,−1] ∪ [1, 2]

δ
2

z ∈ (−1, 1)

(2.33)

Consider two possible outcomes 0 and 2. Note that, the probability density of

the least likely outcomes λ = δ
2

which is the density for all outcomes in the open

interval (−1, 1) so that Mε = (−1, 1). In particular note that 0 ∈ Mε. Note,

however, that p(2) = 1
2
− δ

2
and so 2 /∈ Mε. By integration, SMSE(p, 0) = 7

3
− 2δ,

and SMSE(p, 2) = 19
3
− 2δ. The outcome with the best score in Mε must have score

µ that is lower than or equal to the score for the observation 0, by definition of the

infemum. Therefore µ ≤ 7
3
− 2δ = S(p, 0) < 19

3
− 2δ = S(p, 2).

The above has shown that ∃z /∈ Mε (i.e. z = 2) such that S(p, z) > µ. Therefore

MSE is not Feasible.

2.3.3 Ignorance - Feasible

By defintion, ∀t /∈Mε we have p(t) ≥ λ+ ε, and also ∀z ∈Mε we have p(z) < λ+ ε.

Since Ignorance is defined as S(p, v) = −log2(p(v)) and by the continuity and mono-

tonicity of log it is always the case that S(p, t) ≤ −log(λ+ ε) < S(p, z) where t and

z are defined as above. Hence S(p, t) ≤ inf(S(p, z)) = µ. Therefore the Ignorance

score is Feasible, since the above inequality is true for any t /∈Mε.
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2.3.4 Linear scores - Feasible

‘Linear’ scores are taken to include: Naive Linear, Proper Linear, Spherical and

Power Rule scores. In each case the score S(p, v) = A(p) + −p(v)α

B(p)
where α is

a positive real number and A(p) and B(p) are non-negative terms that depend

only on p (and for a given p are therefore constant terms). In particular, with

the spherical score A(p)=0 and for the other scores B(p)=1. Note that p(v)α is

monotonic increasing and continuous. Since both A and B are non-negative and

constant for all observations (z or t), dividing by B and adding A does not change

the inequality so, with the same definition of t and z in section 2.3.3:

S(p, t) ≤ A+
−p(λ+ ε)α

B
< S(p, z) (2.34)

Hence, S(p, t) ≤ inf(S(p, z)) = µ and since the above inequality is true for any

t /∈Mε the Linear scores are all Feasible.

2.3.5 Brier - Feasible

In the case of the Brier score there are only two possible observations - the event

occurs or it does not. These are denoted e1 = (1, 0) and e2 = (0, 1) respec-

tively. The assigned probability that the event occurs is denoted p. There are

then three cases to consider: p < 0.5, p = 0.5 and p > 0.5. Case 1: If p = 0.5

then λ = 0.5 and Mε = {e1, e2} for all ε > 0, there are therefore no points

z /∈ Mε and the condition for Feasibility is met trivially. Case 2: consider the

case when p < 0.5, then λ = p. If ε > 1 − 2p then Mε = {e1, e2} and again

the condition is met trivially. Consider the other situation when ε ≤ 1− 2p then

Mε = {e1} and µ = |(p, 1− p)− (1, 0)|2 = 2(p− 1)2. In this situation e2 /∈Mε and

S(e2) = 2p2 < 2(p− 1)2 = µ since p < 0.5 < 1− p. Case 3: the case for p > 0.5 is

similar, here λ = 1− p. If ε > 2p− 1 then Mε = {e1, e2} and, as before, the Fea-

sibility criteria is trivially met. If ε ≤ 2p− 1 then Mε = {e2} and, by definition,

µ = |(p, 1− p)− (0, 1)|2 = 2p2. Under these conditions e1 /∈Mε and

S(e1) = 2(1− p)2 < 2p2 = µ. Therefore in all possible cases the Feasibility criteria

is met and the Briar score is Feasible.

94



2.4 Comparison via ‘optimum score estimation’

Gneiting and Raftery [94] note that one of the uses of skill scores is ‘optimum score

estimation’ where parameters are found by finding those which produce the best

average score given observations (defined in full in equation 2.36 below); this is

also explored in Du and Smith [69]. This section describes a situation where the

true parameters are known by construction and then the optimum score estimation

technique is carried out using a variety of scores. The scores which lead to parameters

that are closer to the true parameters are deemed to have done better than those

which find parameters further away. Such experiments lead to a clear ordering

amongst scores (in each example). The Ignorance score is shown to perform well in

this setting.

Optimal Score Estimators Given a forecast f(x, θ) of a variable x with pa-

rameters θ and observations X1, ...Xn, and a Strictly Proper scoring rule S(p,X)

Gneiting and Raftery [94] define the ‘Optimal Score Estimator’ (θ̂) as follows. Let

Sn(θ) = 1
n

n∑
i=1

S(f(x, θ), Xi) (2.35)

then define

θ̂n = argminθ(Sn(θ)) (2.36)

argmin(S(θ)) is a function that returns the minimum value of Sn(θ) over all possible

values of the parameter θ. Let θ̃ be the true parameter underlying a data generating

process, then Gneiting and Raftery [94] note that θ̂n → θ̃ for Strictly Proper scores.

(Note their expression uses argmax because they use positive orientation for their

scores.)

The following procedure creates an underlying distribution, fu(x) for an observed

variable x whose functional form is defined by a single parameter σu. Multiple

probability forecasts are also produced using the same procedure. Observations are

sampled from the underlying distribution and Optimal Score Estimation is used

to choose the forecast with the best score. For a given set of observations this is

repeated for multiple score types to test which score chooses the forecast that is

‘closest’ (defined on page 96 below) to the underlying distribution.
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Defining the underlying distribution - Kernel Dressing The following method

is known as ‘Kernel Dressing’ [30]. Define a PDF fu as follows. Given any set of

N real numbers Su = {r1, ..., rN}, let σu be a kernel width and let the ‘underlying

distribution’ be defined as:

fu(x) =
1

N

N∑
i=1

1
σu
φ(
x− ri
σu

) (2.37)

Where,

φ(z) = 1√
2π
e−

z2

2 (2.38)

Create observations Sample Nobs values x1, ...xNobs from the underlying distri-

bution fu - call these ‘observations’. This process can be repeated Nseed times to

produce multiple sets of observations to quantify the impact of sampling error.

Create a family of forecasts Let σm ∈ {σ1, ....σMfcsts
} be one of Mfcsts positive

real numbers and use the same set Su to define forecast distributions as follows:

pm(σm, x) =
1

N

N∑
i=1

1
σm
φ(
x− ri
σm

) (2.39)

This creates a family of probability forecasts indexed by σm and when σm = σu the

forecast pm is exactly equal to the underlying distribution fu.

Definition of ‘closeness’ Given forecasts pi (i ∈ {1, 2}) (with kernel widths σi).

p1 is ‘closer’ to the underlying distribution fu than p2 if |σ1 − σu| < |σ2 − σu|.

Create datasets Su to avoid serendipity Given that the underlying distribu-

tions are defined using Gaussian kernels there would be a danger that creating the

data sets Su by sampling (say) from Gaussian distributions will produce results that

are not general because of the common distribution family. Even other well known

distributions such as Lognormal or Gamma may be too ‘well behaved’. To avoid this

unwanted serendipity the data sets Su are generated from a dynamical process (the

‘Duffing map’) which produces highly non-Gaussian outputs. The Duffing map, a

discrete version of the Duffing equation [70], is defined as follows:

Xk+1 = Yk (2.40)
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Yk+1 = −bXk + aYk − Y 3
k (2.41)

Where a and b are parameters and X0 and Y0 are given initial values from which

iterative values are generated. The following algorithm is used to produce the real

numbers in the set Su:

• Choose initial values Let x0 and y0 be real numbers chosen to be on the

Duffing Map attractor 3

• For j ∈ {1, ...Nens}

– Create jth perturbed initial condition Let x0,j = x0 + εj, where

εj ∼ N(0, σ2
duf ) and let y0,j = y0 + νj, where νj ∼ N(0, σ2

duf )

– Evolve forward K steps Define rj = XK where XK is the Kth iterate

of the Duffing Map (2.40) with initial conditions X0 = x0,j and Y0 = y0,j.

• Repeat until j = Nens

• Define Su = {rj}Nensj=1 .

It is now possible to define the following experiments:

Experiment C2.1 Test convergence speed of optimal score parameter.

Parameters for observations: Let σu = 0.1, Nobs = 210 and Nseed = 10. The

set Su is generated from the Duffing map with parameters below.

Parameters for forecast family: Let σm ∈ Σ where Σ =
⋃3
i=1 Σi and Σi is

defined for integer t in the table below:

Σ1 0.05 + 0.01t 0 ≤ t ≤ 2

Σ2 0.08 + 0.0025t 0 ≤ t ≤ 23

Σ3 0.14 + 0.01t 0 ≤ t ≤ 3

Parameters of Duffing Map: Let a = 2.75 and b = 0.2, σduf = 0.01, Nens = 212

and x0 = 0.283995145703728 , y0 = 1.092899393566238, K = 32.

3For a definition of ‘attractor’ see the glossary, or Milnor [174]. In practice, potential values are

found by running the Duffing map until the values have visually settled down and then choosing

any values after this point.

97



Experiment C2.2.p Find optimal score parameters using different scores.

These experiments are designed to produce an ordering amongst scores.

Parameters for observations: Let Nobs = 27 and Nseed = 10. Seven different

sets S1, ...S7 are produced from the Duffing map as defined in the table below.

Experiment C2.2.p refers to the data set Sp.

Parameters for forecast family: Let σm ∈ Σ where Σ is defined as for experi-

ment 2.1

Parameters of Duffing Map: Let a = 2.75 and b = 0.2, Nens = 212, σduf = 0.01,

K = 32 and let the initial conditions be defined in the table below. These underlying

data sets are illustrated in figure 2.6:

Experiment Underlying dataset S x0 y0

C2.2.1 S1 -1.409707255606690 -0.952496328839017

C2.2.2 S2 -1.237472722490239 -1.375416550272213

C2.2.3 S3 -0.398660021372058 -0.979897892460767

C2.2.4 S4 0.075153134286194 -0.113837933918633

C2.2.5 S5 0.135405448765377 0.700349003561764

C2.2.6 S6 0.283995145703728 1.092899393566238

C2.2.7 S7 0.374505007140980 0.666289868430975
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Figure 2.6: Illustration of the 7 underlying sets Su drawn from a Duffing Map and shown as a

blue tick marks and a histogram. The ‘underlying distribution’ fu is illustrated by the red line.
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Results for experiment C2.1 Figure 2.7 plots the optimal score estimate σ̂u

arising from each of the 10 sets of observations, the plot character 0, ...9 shows

result for each observation set. The plot compares σ̂u derived from the Ignorance

score (x -axis) and Proper Linear score (y-axis). The cross hairs in the graphic

intersect at the true underlying kernel width width (i.e. σu = 0.1). The shaded

double-triangular area shows the region where the score type on the x-axis is closer

to the true value than the score on the the y-axis. It is clear that even with Nobs = 210

observations (far higher than would be available in many practical situations) there

is still some scatter around the true value.

0.08 0.09 0.10 0.11 0.12 0.13

0.
08

0.
09

0.
10

0.
11

0.
12

0.
13

ignorance

pr
op

er
lin

ea
r

0

1

2

3 4

5

6

7

8

9

Figure 2.7: Experiment 2.1: Optimum Score Estimates of underlying kernel width - comparison

of Ignorance and Proper Linear Scores. Grey cross hairs indicate the true underlying parameter

σu. The shaded triangular region illustrates the zone where the parameter value derived by the

Ignorance score is closer to the true value than the value derived using the Proper Linear score.

The Ignorance derives a parameter that is closer to the truth 6 times out of 10.

By aggregating the observations from all 10 seeds, 10,240 equally likely observa-

tions are created. Figure 2.8 shows that for both score types (Ignorance and Proper

Linear) the average skill score across all outcomes is lowest when σm is close to the

true underlying parameter of 0.1. Even with this many observations the minimum

is not at 0.1 which shows that convergence can be slow.
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Figure 2.8: Average skill score values for different trial values of the forecast kernel width. Figure

(a) shows the Ignorance score and figure (b) the Proper Linear. The best score (minimum) occurs

close to the true underlying parameter value (σu = 0.1, shown with vertical orange line) in each

case. Average scores for each value of σm are calculated over 10,240 simulated outcomes.

Results for experiment C2.2.k These experiments were carried out for all the

scores described in this chapter (except the Brier score because the data is not bi-

nary). Figure 2.9 shows the results of all the experiments when comparing Ignorance

and CRPS. The plot characters are of the form [k,s] where k refers to one of the

seven data sets Sk and s ∈ 0, ...9 refers to the Nseed observations produced by the

seed indexed with s. Various conclusions follow from inspection of the graphic:

• Ignorance beats the CRPS score in this example since more of the plot charac-

ters are in the white areas reflecting the fact that Ignorance gets closer to σu

more often than CRPS; specifically, Ignorance does better 54 times and CRPS

16 times; there are no occasions where they tie. (although one looks close, it

is marginally off the diagonal);

• On a number of occasions the optimal score estimate for the CRPS score is

at the extremes of the range of tested σm values. It is certain, however, that

the optimal score estimate on those occasions is equal to or further away from

the underlying parameter value σu. Truncating the values of {σm} tested is

therefore generous to the CRPS score by assuming it picked a parameter closer

to the underlying kernel width than it would have with a wider mesh. In these
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cases the Ignorance score estimation method finds parameters that are closer

to the truth anyway, so there is no miscounting;

• There is a wide degree of scatter arising from the different seeds;

• There is a wide degree of scatter arising from the various underlying data sets.
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Figure 2.9: Comparison of Optimum Score Estimates σ̂u for CRPS and Ignorance. The plot

character is of the form [k,s] where k refers to one of the seven data sets Sk and s ∈ 0, ...9 refers

to the Nseed observations produced by the seed indexed with s. The shaded area shows the cases

where the optimal score estimator for CRPS is closer to the true underlying parameter than the

value derived using the Ignorance score. Note that in 54 of 70 cases the result falls in the white

area indicating that Ignorance outperforms the CRPS score.

Score comparison metric Figure 2.9 suggests a simple format for comparing

the scores. For each pairing of scores, where score1 is on the x-axis (say) and score2

on the y-axis: count the number of times the result falls in the white region, call

this N2 (score2 wins) and the shaded region, call this N1 (score1 wins). Also count

any cases where the coordinate is on the diagonal lines, where the scores draw, call

this D. Define the score1 ratio, R1 =
N1+

D
2

N1+D+N2
. R1 is a real number between 0.000

and 1.000. A value of 1.000 denotes a case where score1 produces a better optimal

score estimate in every case, a value of 0.000 arises when score2 does best every

time. When R1 ≈ 0.5 the scores either regularly draw, or they each win a similar
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number of times. Using this method, the following table shows the results of many

such tests using the same comparison approach. If R1 > 0.5 then score 1 is said to

be ‘better’ than score 2, or ‘score 1 wins’.

Based on this method of comparison the following conclusions can be drawn.

• The Ignorance score does best at choosing parameters that are close to the

true kernel width;

• Amongst the Proper scores the CRPS does worst;

• The Improper Naive Linear score never outperforms the Ignorance score but

does occasionally beat the other Proper scores;

• The Improper Mean Squared Error score does worst (and the reason for this

is described in section 2.4.1 below);

• The Proper Linear, Power Rule and Spherical scores all have similar perfor-

mance in this test;

• As α gets smaller the power rule score performs better on this test.
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Table 2.2: Skill score comparison results, Experiment C2.2.k

Scores tested N1 D N2 R1

CRPS vs Ignorance 16 0 54 0.229

CRPS vs MSE 70 0 0 1.000

CRPS vs naive linear 64 1 5 0.921

CRPS vs powerrule1.5 20 4 46 0.314

CRPS vs powerrule2.0 19 4 47 0.300

CRPS vs powerrule2.5 20 4 46 0.314

CRPS vs properlinear 19 4 47 0.300

CRPS vs spherical 21 6 43 0.343

Ignorance vs MSE 70 0 0 1.000

Ignorance vs naivelinear 69 1 0 0.993

Ignorance vs powerrule1.5 37 5 28 0.564

Ignorance vs powerrule2.0 44 2 24 0.643

Ignorance vs powerrule2.5 44 2 24 0.643

Ignorance vs properlinear 44 2 24 0.643

Ignorance vs spherical 41 5 24 0.621

MSE vs naivelinear 0 4 66 0.029

MSE vs powerrule1.5 0 0 70 0.000

MSE vs powerrule2.0 0 0 70 0.000

MSE vs powerrule2.5 0 0 70 0.000

MSE vs properlinear 0 0 70 0.000

MSE vs spherical 0 0 70 0.000

naivelinear vs powerrule1.5 3 0 67 0.043

naivelinear vs powerrule2.0 3 0 67 0.043

naivelinear vs powerrule2.5 3 0 67 0.043

naivelinear vs properlinear 3 0 67 0.043

naivelinear vs spherical 4 0 66 0.057

powerrule1.5 vs powerrule2.0 28 16 26 0.514

powerrule1.5 vs powerrule2.5 32 14 24 0.557

powerrule1.5 vs properlinear 28 16 26 0.514

powerrule1.5 vs spherical 31 19 20 0.579

powerrule2.0 vs powerrule2.5 27 26 17 0.571

powerrule2.0 vs properlinear 0 70 0 0.500

powerrule2.0 vs spherical 29 20 21 0.557

powerrule2.5 vs properlinear 17 26 27 0.429

powerrule2.5 vs spherical 28 16 26 0.514

properlinear vs spherical 29 20 21 0.557
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2.4.1 Behaviour of MSE for a kernel dressed ensemble

This section contains a proof that the MSE always chooses the smallest kernel width

available. Equation 2.8 is equivalent to:

SMSE(pm, xi) = (xi − µ̃)2 + σ̃2 (2.42)

Where µ̃ is the mean and σ̃ is the sd of the forecast pm (using the same terminology

as defined in section 2.39). Now µ̃ is calculated as:

µ̃ =

∫ ∞
−∞

xpm(x)dx =
1

Nσm

N∑
i=1

∫ ∞
−∞

xφ(
x− ri
σm

)dx (2.43)

Change variables in the integral using s =
x− ri
σm

; then:

µ̃ =
1

N

N∑
i=1

∫ ∞
−∞

(σms+ ri)φ(s)ds =
1

N

N∑
i=1

ri =: r̄ (2.44)

The above derivation makes use of the fact that
∫
sφ(s) = 0 since φ is the PDF

of a unit normal distribution and also that
∫
φ(s) = 1. So E(pm) =: µ̃ = r̄, i.e. the

mean of the forecast is equal to the mean of the ensemble values that gave rise to

it. The slight abuse of notation E(pm) is introduced to help with the next step.

To calculate σ̃ the formula σ̃2 =: V AR(pm) = E(p2
m)− (E(pm))2 is used. Now using

the same change of variables the following equation arises:

E(p2
m) =

1

N

N∑
i=1

r2
i + σ2

m (2.45)

So that,

σ̃2 =
1

N

N∑
i=1

r2
i + σ2

m − r̄2 = V AR(r) + σ2
m (2.46)

Finally substituting the values of µ̃ and σ̃ into equation 2.47:

SMSE(pm, xi) = (xi − r̄)2 + V AR(r) + σ2
m (2.47)

For a given ensemble the terms (xi− r̄) and V AR(r) are constants, hence SMSE can

be minimised by letting σm −→ 0 which is exactly the behaviour observed.
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RMSE The Root Mean Squared Error (RMSE) of the ensemble mean quantifies

the distance between the ensemble mean and its corresponding observed value. It

is defined as

SRMSE(x̄, X) =

√√√√ 1

m

m∑
i=1

(x̄(i)−X(i))2, (2.48)

where x̄(i) is the ensemble mean of the ith forecast and X(i) is the observed outcome

corresponding to forecast i. While easily interpreted as a distance from the observed

value, the ensemble mean is somewhat meaningless in that it does not quantify the

distance of any particular forecast trajectory or distribution from what actually

happened. The RMSE can be generalised as follows:

S∗RMSE((p1, ....pm), (X1, ...Xm)) =

√√√√ 1

m

m∑
i=1

(

∫ ∞
−∞

(X − z)2p(i, z)dz. (2.49)

The original RMSE re-emerges by setting the forecast p as a delta function at the

ensemble mean. It should be noted that the RMSE is not a score in the same

sense as the others. These are all defined on single forecasts whereas RMSE is

defined on multiple forecasts. Note the integral in the summation the Mean Squared

Error defined in equation 2.8. The above discussion of MSE showed that the lowest

score can always be attained by reducing the standard deviation to zero in the

forecast (i.e. reducing the forecast to a delta function as described above)- surely

an unfortunate incentive when probabilistic forecasts are intended to illustrate the

uncertainty rather than hide it. The RMSE does this for the forecaster automatically

which is undesirable.

106



2.5 Skill score efficacy given sparse data

The previous experiment produced a ranking amongst forecasts. In that example

the number of observations (27) was relatively large. In many real world problems

the number of observations can be much less than this. The following experiment

illustrates how well different scores perform when data is sparse, to test whether the

skill score rankings are different in this case. The following defines a ‘sparse data

experiment’.

Create observations Let xk,j be sampled from a unit normal distribution (N(0, 1)).

Define ‘Observation Set k’ as Ok = {xk,1, ....xk,2N}, where N is an integer and

k ∈ {1, 2, ...M}

Define forecasts Three forecasts distributions P = {pNarrow, pPerfect, pWide} are

tested:

1. pNarrow ∼ N(0, 1√
2
);

2. pPerfect ∼ N(0, 1); and

3. pWide ∼ N(0,
√

2).

Experiment algorithm The following experiment algorithm is used:

• For a given skill score S(p, x)

• For k ∈ {1, ...M}

– Calculate the average score S̄p,k for each of the three forecasts over the

observations Ok. S̄p,k = 1
2N

∑2N

j=1 S(p, xk,j), where p ∈ P ;

– For p ∈ P define Cp,k =

0 S̄p,k ≤ S̄q,k for some q 6= p

1 S̄p,k > S̄q,k ∀ q 6= p

• Define Fp,S =
∑M
k=1 Cp,k
M

, where S denotes the skill score.

In words, for each of the three forecasts the average score is calculated for a

given observation set; the forecast which has the best average score is deemed to be

‘chosen’ by the score. This is repeated for M observation sets and the frequency
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Fp with which the score chooses each forecast p is calculated. Forecast pPerfect is

correct and so scores with a high value of FPerfect,S have done well. F defines a

ranking between scores: i.e. if FPerfect,S1 > FPerfect,S2 then we say that score S1 is

better than S2. The above description now allows experiment 2.3 to be defined:

Experiment C2.3 Sparse data

Parameters for observations: M = 210, N ∈ {0, 1, ..7}

Skill scores: The following skill scores are tested: Ignorance,

Powerrule (α ∈ 1.5, 2, 2.5), Spherical, CRPS, MSE, Naive Linear

Results for experiment C2.3 Figure 2.10 shows the results for the Ignorance

score. When the number of observations is small (up to 22) the Narrow forecast is

chosen more often. This is not surprising because there is a significant chance with

so few observations that all of them are close to the mean, in which case the narrow

distribution will give high probability to the observed values. If an event occurs

far from the mean the narrow distribution would be penalised more than the wider

ones, but such events are rare. Hence the narrow distribution will often avoid being

penalised and will therefore be preferred by the Ignorance score. This behaviour is

only observed when the number of observations is low. Indeed once the number of

observations are equal to or greater than 25 the correct distribution is chosen by the

Ignorance score over 80% of the time.

Figure 2.11 shows, for multiple skill scores, the proportion (FPerfect) that the

correct distribution is chosen (for comparison this is the width of the blue segment in

figure 2.10). As is typical, the non-Proper scores perform poorly: MSE never picks

the correct forecast (in fact it always picks the narrow distribution - not shown)

and the Naive Linear score does little better. Apart from situations with very few

observations (i.e. two or less) Ignorance performs best out of all the score types.

CRPS has similar performance to the power rule score with α = 1.5. As the α

parameter increases the success rate for the power rule decreases - a similar result

to experiment C2.1. Amongst Proper scores the Spherical score performs worse for

larger sample sizes. The proportion appears to tend to 1 for all the Proper scores.

Selten’s criticism [224] of the Ignorance score is, again, unfounded.
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2.6 Testing skill scores using the Skill Gap

This section explores the speed with which forecasts from a structurally incorrect

model are ‘Rejected’4 by various scores. A sequence of forecasts from a given model

will be referred to as a ‘forecast system’ in this chapter. The running average

Skill Gap (defined in equation 2.50 below) is calculated. The forecast system can

be rejected if the Skill Gap falls outside of a chosen confidence interval. A family of

distributions are defined from which the underlying truth and forecasts are chosen.

The concept of ‘Rejection Time’ is introduced as the number of observations after

which the forecast system can be rejected with a chosen probability. Initially the

Rejection Time is explored using the Ignorance score and then one case is illustrated

for the Naive Linear, Proper Linear and Spherical Scores. Other scores are not

discussed due to their poor performance in earlier sections of this chapter. The

Ignorance score is shown to perform well in some circumstances, but other scores

sometimes do better.

Definition of Skill Gap For a forecast system p
¯

= {pt}τt=1, skill score S, and

observations X
¯

= X1, ....Xτ the Skill Gap(G) is defined as:

GS(τ,X
¯
, p
¯
) =

1

τ

τ∑
t=1

(
S(pt, Xt)−

∫ ∞
−∞

pt(x)S(pt, x)dx

)
(2.50)

The integral term is the expected score assuming the observation is drawn from the

forecast distribution. Where this converges, define

G∞(X
¯
, p
¯
) = lim

t→∞
GS(t,X

¯
, p
¯
) (2.51)

The score S(pt, Xt) is a random variable; therefore GS is also a random variable.

If the Ignorance score is used then the Skill Gap is the same as the Information

Deficit [69, 216]; the name ‘Skill Gap’ is used rather than Information Deficit to

emphasise that, while the Ignorance score is naturally interpreted as information (in

bits) the other skill scores considered below are not.

4Here ‘Rejected’ means that the observed outcomes are inconsistent with the probability distri-

butions from the forecast system. The forecasts may still be useful and they may be informative,

but it is not appropriate to use them as probability forecasts.
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Let P (A) denote the probability of A and let inf(S) denote the infimum of the set S.

Define the quantile (QGS), at time t, of the Skill Gap for a forecast system p
¯

as:

QGS(t,X
¯
, p
¯
, λ) = inf{x|P (GS(t,X

¯
, p
¯
) < x) = λ} (2.52)

Definition of Rejection If the forecasts are correct in the sense that observa-

tions (Yi say) are drawn from the forecast distributions, so that Yi ∼ pi, then it is

possible to calculate QGS(τ, Y
¯
, p
¯
, λ) (either analytically, or estimated through sim-

ulation). Given actual observations X
¯

let g = GS(τ,X
¯
, p
¯
), Q1 = QGS(τ, Y

¯
, p
¯
, λ)

and Q2 = QGS(τ, Y
¯
, p
¯
, 1− λ). Then the forecast system can be ‘Rejected’ if either

g > Q1 or g < Q2.

Note that the definitions of the Skill Gap and Rejection make no assumptions

about the process generating the observations which may be unknown and even

potentially unknowable. The following definition, however, considers a situation

where observations are generated from known underlying distributions q
¯
.

Definition of Rejection Time For a forecast system p
¯
, underlying distributions

q
¯

and observations Xt ∼ qt, for chosen confidence level λ and probability γ and a

given skill score S: the ‘Rejection Time’ RTS(q
¯
, p
¯
, λ, γ) is defined as follows:

RTS(q
¯
, p
¯
, λ, γ) =



inf{t|QGS(t,X
¯
, q, 1− γ) = QGS(t,X

¯
, p, λ)} if G∞(q) > 0

∞ if G∞(q) = 0

inf{t|QGS(t,X
¯
, q, γ) = QGS(t,X

¯
, p, 1− λ)} if G∞(q) < 0

undefined G∞ doesn’t converge

(2.53)

Note that, for given components p
¯
, q

¯
, λ and γ the Rejection Time is a property

of the given skill score S; allowing different scores to be compared. Specifically if

RTS1 < RTS2 for scores S1 and S2 then score S1 can be said to be ‘better’ than S2

for those particular components. The Rejection Time has been defined in general;

in the following examples, however, a forecast PDF (p0) is chosen and then used for

every time t (i.e. pt = p0 ∀t). In this case the integral term is constant for each t so

that

GS(τ,X
¯
, p
¯
) =

1

τ

(
τ∑
t=1

S(p0, Xt)

)
−
∫ ∞
−∞

p0(x)S(p0, x)dx (2.54)
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If observations are drawn from the forecast distribution, for a proper score, the

summation term will converge to the integral and hence G∞ is defined in each case.

The following family of distributions will be used to test the Rejection Time concept

in a specific controlled environment.

Definition of controlled distribution families Define (f) as the weighted sum

of Lognormal, Gamma and Pareto distributions each with the same mean (µ) and

variance (σ2). Specifically:

f(w1,w2,w3)(x) := w1fLognormal(x) + w2fGamma(x) + w3fPareto(x) (2.55)

Where,
∑3

i=1wi = 1 and wi > 0 ∀i. Once two weights are chosen the other is

determined since they are constrained to sum to unity. The set of weights that

meet the criteria above fall in a triangular region of the plane and distributions

can therefore be defined uniquely by points (w1, w2) in the triangle. Each point

represents the distribution fw1,w2,1−w1−w2 . The ‘distance’ between two distributions

f1 and f2 is defined to be the Euclidean distance between the points in the triangle

defining them.

Figure 2.12 (called a ‘Rejection Time diagram’) illustrates the calculation of

Rejection Time for two points in the triangular distribution space. The series of

truth distributions q
¯

is defined by the red dot in the triangle (note these are all the

same) and the forecasts p
¯

by the blue dot. The quantile lines for various values

of t are illustrated for quantiles λ, γ ∈ {5, 10, 25, 50, 75, 90, 95}, these are created

by sampling and are therefore not smooth as they would be in theory. QG(t, q
¯
, λ)

are illustrated by the grey quantile lines and those of p
¯

by the black lines. The

chosen confidence level for rejection is chosen to be 90% (i.e. λ = 90), the desired

probability of rejection is chosen to be 75% (i.e. γ = 75). The long run Skill Gap is

positive in this example because the grey lines converge above the x-axis. Therefore

we look for the intersection of the 90th quantile of the black lines with the 25th

quantile of the grey lines, illustrated by a red cross - and vertical line in figure.

The time at which the lines cross (i.e. the Rejection Time) occurs at the 102nd

observation.
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Figure 2.12: Rejection Time diagram: The Rejection Time is illustrated by red vertical line.

Grey quantile lines show the observed Skill Gap, black lines show the expected Skill Gap if the

forecast is correct. By time 102 we will have rejected the forecast system 75% of the time (at a

90% confidence level). The top right triangle graphically illustrates the chosen truth and forecast

distributions.

The following algorithm (see also figure 2.13) uses an empirical approximation

of QG(t, q, p, λ) by sampling M values - sorting them and taking the 100λth largest

value.
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Experiment 2.4: Algorithm to calculate the Rejection Time

• Choose confidence level λ and probability γ

• Choose forecast and truth Let p′ and q′ be points in the triangle of allowable

distributions

• For i ∈ {1...M}

– Sample observations Let Xi,1, ....Xi,Nobs be sampled from a distribution

with PDF q′ and let Yi,1, ....Yi,Nobs a sample from PDF p′

– Calculate Skill Gap sequences Let SX = {Gi(j, q
′, p′)}Nobsj=1 and let

SY = {Gi(j, p
′, p′)}Nobsj=1

– If i = M stop, otherwise continue for next value

• Calculate proxy for G∞(p′,q′) Let the median QG(M, p′, q′, 0.5) be a proxy

for G∞(p′,q′)

• If G∞(p′,q′) > 0

– Estimate QG For each j ∈ {1, ...Nobs} estimate QG using the em-

pirical approximation. Let QX(j) = QG(j, q′, p′, 1 − γ) and QY (j) =

QG(j, p′, p′, λ)

• If G∞(p′,q′) < 0

– Estimate QG For each j ∈ {1, ...Nobs} estimate QG using the empirical

approximation. LetQX(j) = QG(j, q′, p′, γ) andQY (j) = QG(j, p′, p′, 1− λ)

• Estimate Rejection Time Let RT (q′, p′, λ, γ) be the smallest value j′ at

which QX(j′) = QY (j′)
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distribution with pdf q.

Notes:

2. Gi(1,q’, p’) is the Skill Gap for truth q’ and forecast p’ - 

up to the ith observation 
3. QG(M,q’,0.5) is a proxy for G∞(q’), 

4. QG(j,q’, p’,λ)  is estimated by sorting the M values 
{Gi(j,q’,p’)} and taking the 100λ th value. 
5. Note that the same value of G∞ is used in each branch.
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j j j j

Same G∞

Figure 2.13: Experiment 2.4 Flowchart illustrating the algorithm to estimate the Rejection Time
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Experiment C2.4.1 Find Rejection Times for specified forecast/truth pairs using

Ignorance.

λ = 0.75 , γ = 0.75 (these are chosen to keep run times lower)

µ = 1, σ2 = 0.65

The available distributions are constrained to (1) lie inside the triangle defined

above and (2) be defined by grid points of the form (a
4
, b

4
), where a, b ∈ {0, 1, 2, 3, 4}.

The exception to this is the point (0, 0) which represents a Pareto distribution.

The Pareto distribution requires that values less than its defining parameter be

impossible; which leads to infinite Ignorance scores for some observations since the

other distributions considered allow any value greater than or equal to zero. To

avoid this the Pareto was not tested and a ‘HybridPareto’ , defined as having

the PDF f(0.025,0.025,0.95), is used in its place. Hence the point (0, 0) is replaced

by (0.025, 0.025) in the triangle. The forecast is always denoted by a blue dot. All

possible truth distributions within the available distribution space are tested (except

where the forecast and truth are the same).

Nobs = 29, M = 210

Skill Scores = {Ignorance}

Experiment C.2.4.2 Find Rejection Times for multiple skill scores.

As for C2.4.1 except for the following:

p
¯

restricted to only consider a Gamma forecast (i.e. f(0,1,0)).

Skill Scores = {Ignorance, Naive Linear, Proper Linear, Spherical}

Results for experiment C.2.4.1 Figure 2.14 shows the Rejection Times plotted

at the coordinates of the two dimensional weight combination that determines the

true underlying distribution. For example, in the triangle in column two and row four

of the graphic, the forecast is p = f(0.25,0.75,0.00). Consider the truth q = f0.25,0.25,0.50,

this has Rejection Time RT (q
¯
, p
¯
, 0.75, 0.75) = 127. The bottom graphic in figure

2.14 shows the results for this combination of truth and forecast for 11 different
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seeds this level of uncertainty would not alter the key conclusions.

Some key findings from the graphics are:

• The further the truth is from the forecast the shorter the time it takes to reject

the forecast system.

• If the forecast is close to a HybridPareto and the outcome is drawn from a

different distribution - then the method rejects it quickly whereas it takes

longer to reject Gamma-like forecasts.

• Some truth distributions did not lead to a rejection at all within the timeframes

considered (2048 time steps, shown as 9999 in the graphic).

Results for experiment C.2.4.2 Figure 2.15 shows Rejection Times. Some key

observations are:

• An initially surprising result, all the scores apart from the Ignorance score

have the same Rejection Times. This is because the extensions of the Naive

Linear score all involve integral terms that are constant for a given forecast,

these cause the Skill Gap of these related scores to be scalar multiples of one

another and hence the same Rejection Times arise. This is proved on page

120 below.

• For all scores, the further truth is from the forecast the faster the forecast

system will be rejected.

• Ignorance gives a shorter Rejection Time when the truth is HybridPareto - but

the Naive Linear, ProperLinear and Spherical do better (in some cases much

better) when the truth is Lognormal like. This leads to a key conclusion that

using multiple scores would be useful in some contexts.
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Figure 2.14: Rejection times as truth and forecast (blue dot) vary over the available weights

- for fixed mean (µ = 1) and variance (σ2 = 0.65). 9999 denotes non-convergence within 2048

observations. The bottom plot illustrates the degree of sampling error by considering 10 different

seeds when the forecast is (0.25,0.75,0) and truth is (0.25, 0.25, 0.5) (from the triangle in column

2 and row 4 of the top graphic), the black filled dot shows the results from the seed used in the

top graphic, the hollow plot characters show 10 other seeds - the vertical height allows duplicate

cases to be shown without overlap.

118



58
87

111

115

154

259

208

302

494

9999

344

9999

9999

9999

●

ignorance

72
74

121

83

139

343

99

167

400

9999

110

196

487

9999

●

properlinear

72
74

121

83

139

343

99

167

400

9999

110

196

487

9999

●

naivelinear

72
74

121

83

139

343

99

167

400

9999

110

196

487

9999

●

spherical

Figure 2.15: Rejection times for different score types, for forecast f(0,1,0) (Gamma distribution,

denoted by a blue dot). Note that the Rejection Times for the Proper Linear, Naive Linear and

Spherical scores are all the same. When observations are drawn from a Hybrid Pareto distribu-

tion (bottom left vertex of triangle) the Ignorance score rejects the forecast after 58 observations

compared to (and faster than) 72 for the other scores. When the observations are drawn from a

Lognormal (bottom right vertex) distribution, however, the Ignorance score required 344 observa-

tions to reject the forecast compared to 110 for the other scores. This illustrates that there

are situations where using multiple proper skill scores will be informative. Values of

9999 (in small font) show cases where the forecast is not rejected within the maximum number

(2048) of observations tested.
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Demonstration why the Rejection Times are the same for Naive Linear,

Proper Linear and Spherical scores In the following let GS denote the Skill

Gap for score type S. Then GNL refers to the Naive Linear score, GPL to Proper

Linear and GSP to the Spherical score. When the Naive Linear score (equation 5.1)

is substituted, equation 2.54 becomes:

GNL(t) =
−1

t

t∑
i=1

q(Xi) +

∫
q(x)q(x)dx (2.56)

Lemma 1: If GS = αGR for two scores S and R then the Rejection Time

from S will be the same as R. This is because the Rejection Time is calculated

as the intersection point of two quantile lines for the Skill Gap. Since, for every

sequence of observations, the Skill Gap for S is a scalar multiple of R its Rejection

Time diagram will simply be a stretch in the y-axis direction - this doesn’t affect

where the lines cross and so Rejection Times will be the same.

Lemma 2: Proper linear GPL = 2GNL. When the Proper Linear score (equation

2.6) is substituted into equation 2.54 the equation becomes:

GPL(t) =
1

t

t∑
i=1

(

∫
q2(z)dz − 2q(Xi))−

∫
q(x){

∫
q2(z)dz − 2q(x)}dx (2.57)

Now
∫
q2(z)dz is just a constant so:

GPL(t) =
t

t

∫
q2(z)dz+

−2

t

t∑
i=1

(q(Xi))−
∫
q2(z)dz

∫
q(x)dx+2

∫
q2(x)dx (2.58)

Because q is a PDF
∫
q(x) = 1, hence the two

∫
q2(z)dz terms cancel out. So the

Skill Gap reduces to:

GPL(t) = 2(
−1

t

t∑
i=1

q(Xi) +

∫
q(x)q(x)dx) (2.59)

This is exactly double the expression for the naive linear score stated in equation

2.56. So GPL = 2GNL.

Lemma 3: Spherical GSP =
1

κ
GNL, where κ = (

∫∞
−∞ q

2(z)dz)
1
2 . When the

spherical score (equation 2.12) is substituted into the Skill Gap equation we see:

GSP (t) =
−1

t

t∑
i=1

q(Xi)

(
∫∞
−∞ q

2(z)dz)
1
2

+

∫
q(x)

q(x)

(
∫∞
−∞ q

2(z)dz)
1
2

dx (2.60)
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κ, defined above, is a constant so:

GSP (t) =
1

κ
{−1

t

t∑
i=1

q(Xi) +

∫
q(x)q(x)dx} (2.61)

This is a scalar multiple of the Naive score, so GSP =
1

κ
GNL.

Corollary: The Rejection times are always the same for Naive Linear,

Proper Linear and Spherical scores Let R = NL then lemma 2 shows that

the condition of lemma 1 is met for S = PL where α = 2 and lemma 3 shows the

condition of lemma 1 is met for S = SP where α = 1
κ
. So the Rejection Times for

NL,SP and PL are the same.

2.7 Improving skill with climatology blending

The intention of this section is to test the extent to which Climatology Blending,

introduced by Brocker and Smith [30], can improve forecast skill for various levels

of forecast quality (defined on page 123 below). A climatology [30] is an empirical

distribution based on past observations over a defined period of time. Let a fore-

casted variable be denoted y, let fu(y) be the climatology of the variable and p(y)

a forecast. The Blended Forecast is defined as a weighted average r(y) of these two

PDFs as follows:

r(y) := αp(y) + (1− α)fu(y) (2.62)

Where 0 ≤ α ≤ 1. The weighting variable α, as well as any parameters5 used

to create the forecast p(x), are found simultaneously to minimise a chosen average

skill score, given multiple observations. Brocker and Smith’s method ensures that

r(y) will not be zero for any observations unless they fall outside of the union of

climatology values and the support of p(y); this reduces the chance of very large or

even infinite scores for some score types. If infinite scores do arise an observation

has occurred that is both outside of the historical record and also beyond what the

forecast thought possible. It is arguable that an infinite penalty is appropriate in

such a case; it is surely important to draw attention to such anomalies.

5For example, if Kernel Dressing, as described in equation 2.37, is used to generate the forecast

PDF then the kernel width parameter σm is one of the parameters of p(y). Note, however, that

parameters used to generate the ensemble are not included in this process.

121



In an insurance context it is common to use Climatology (fu) as a forecast when

the history of past insurance claims, and averages arising, are used to calculate

expected claims in the future. This assumes the claims process is stationary and

that the data contains sufficiently many observations to produce an appropriate

estimate of the average. Often the risk environment in future is not expected to be

identical to the past and so an adjustment is made. The purpose of any forecast,

insurance or otherwise, is to describe the distribution of potential outcomes in a

way that is more skillful than relying on climatology alone. This additional skill is

measured by the ‘Relative Skill Score’ which is the difference between the score

for a given forecast/observation pair and the score that arises using climatology.

Specifically:

Definition of Relative Score For a given score S with a forecast p, climatology

fu and observation v:

Relative Score = S(p, v)− S(fu, v) (2.63)

Definition of Discrete Forecast A discrete forecast is a single real number ŷ

that is an estimate of the value of an observed variable y in future. I.e. a forecast

ensemble with one member only.

The algorithms below are designed to create a forecast which has a controllable

level of ‘quality’. Let u ∼ U(a, b) denote a sample from a uniform random variable

with lower limit a and upper limit b, the character Q is used below to denote a

random real number between zero and 1 (i.e. Q ∼ U(0, 1)).

Algorithm to create observations and discrete forecasts of desired quality

(See figure 2.16)

• Choose a real number β ∈ [0, 1]

• Let i ∈ {1, ...Nobs}

• Sample potential observations Let vi,1, vi,2 ∼ fu be two sample values from

the climatology distribution fu

• Create discrete forecast A discrete forecast (ŷi) is created as follows:

– let X ∼ Lognormal(µL, σL), so that E(X) = 1
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– let ŷi =
vi,1
X

(note the use of vi,1 specifically here)

• Create observation: The observation vi is controlled by a parameter β, as

follows:

– If Q < β then set vi = vi,1;

– if Q ≥ β then vi = vi,2. This defines a ‘forecast bust’ where the forecast

and observation are likely to be very different.

• Repeat to Generate multiple pairs (vi and ŷi) for i ∈ 1, ...N

Definition of Forecast Quality In this experiment a ‘high quality’ forecast is

one with β close to 1; a ‘low quality’ forecast is one with β close to zero.

Algorithm to create Kernel Dressed and Blended forecasts (See figure

2.17)

• Kernel dressed forecast Define pi,1(y) ∼ N(ŷi, σ
2
1) where σ1 is the optimal

score estimate given the observations {v}.

• Blended forecast Define pi,2(y) ∼ N(ŷi, σ
2
2), and define ri by equation 2.62.

Iterate to find the minimum of the average score Savg =
∑Nobs

i=1 S(ri, vi) over

all observations using constrained optimisation on the variables σ2 and α si-

multaneously;

In words, the two algorithms, in sequence, result in forecasts ri(y) and pi,1(y) that

are, with probability β, closely related to the observation vi, or, with probability

1 − β, independent from the observation. The three forecasts (fu, pi,2 and ri) are

illustrated in figure 2.18.
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i = Nobs?

Sample potential 
observations:(Note 1) 

vi,1 ~ fu 
vi,2 ~ fu

 YES

NO

Create discrete forecast 
(Note 2)

ŷi = vi,1 / X

Choose Forecast 
Quality
0 ≤ β ≤ 1

1. v ~ f means sample a value (v) 
from a random variable with 
distribution f

Notes:

For 1 ≤ i ≤ Nobs

Save observations and 
discrete forecasts

 {vi}{ŷi}

2. X ~ Lognormal, such that E(X) = 1

Q < β ? 
(Note 3)

 YES NO

Create 
Observation

vi = vi,1

Forecast
 bust

vi = vi,2

3. Q ~ U(0,1)

Save observation and 
discrete forecast

vi , ŷi

Figure 2.16: Example 2.5: Flowchart for process to create observations and discrete forecasts.

124



Savg minimised?

 YES

NO

1. p = N(μ,σ2) Is a forecast with Gaussian 
distribution with mean μ and variance σ2.

Notes:

Kernel Dressing Only
Define candidate forecasts 

(note 1) 
pi,1 = N(ŷi, σ12)

Given observations and 
discrete forecasts

 {vi}{ŷi}

Calculate Average Score
(note 6) 

Savg = (Σi S(pi,1, vi)) / Nobs

Iterate
(note 4)

Try a different 
value of σ1

Save values/ forecasts
Savg, σ1, {pi,1}, β

Blending
Define candidate forecasts 

(note 1,2,3) 
pi,2 = N(ŷi, σ22) 

ri = αpi,2 + (1-α)fu

4. Use constrained optimisation 
where σ1 > 0 

2. Blending parameter 0 ≤ α ≤ 1

3. Climatology fu

5. Use constrained optimisation 
where σ2 > 0 and 0 ≤ α ≤ 1 

Iterate
(note 5)

Calculate Average Score
(note 6) 

Savg = (Σi S(ri, vi)) / Nobs

Savg minimised?

Save values/ forecasts
Savg, σ2, {ri}, β, α

NO

Try different 
values of 
σ2 and α

 YES

6. Σi means sum over
values i = 1,…Nobs

Figure 2.17: Example 2.5: Flowchart for process to create kernel dressed and blended forecasts

from observations vi and discrete forecasts ŷi.
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The following experiment is carried out to test whether blending adds skill over

kernel dressing alone and whether this occurs for various levels of forecast quality.

The experiment will also test whether such forecasts do better than climatology.

Experiment C2.5 Testing Blending.

The following values of forecast quality are tested: β ∈ {0, 0.1, ...1}

Climatology fu is defined using equation 2.37 with the following variables:

Su = {X1, ....XM} where X ∼ N(µS, σ
2
S) and M = 213. µS = 5 and σS = 5.

The kernel width σu = 1.3.

The Lognormal variable (X) is defined with σL = 0.1 and µL = −1
2
σ2
L.

Nobs = 27

Skill Score = Ignorance (chosen because it has performed well in the experiments

described in this chapter)

In the calculation of the blended forecasts ri the values of α and σm are chosen using

a constrained Nelder Mead algorithm (where 0 ≤ α ≤ 1 and σm > 0)

Results for experiment C2.5 The key results from the Blending Experiment

are:

• Figure 2.19(c) shows that as the forecast quality increases (β → 1) the skill of

both ri and pi,1 increases (since the Relative Ignorance becomes more negative).

The blended forecast ri(y) is more skillful than the kernel dressed forecast pi,1

for all values of β and is more skillful than climatology (because the Relative

Ignorance is negative for all values of β). The kernel dressed forecast is only

more skillful than climatology for β > 0.6. Hence in this experiment

Blending improves the skill of forecasts at all quality levels (β).

• Figure 2.19(b) shows that as the forecast quality decreases the kernel width

σ1 widens. This is intuitive as a wider bandwidth will give more probability

further from the mean value ŷi and so will not score so poorly when the obser-

vation vi is far from the mean. Such cases can arise randomly but are likely

(with probability 1 − β) when Q > β in the Blending Experiment Algorithm
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above. The behaviour of σ2 (the kernel width in the blended forecast) is more

complex; for very poor forecast quality (β ≤ 0.2) the kernel width widens to

compensate for forecast busts; but otherwise this parameter is quite stable

around a value σ2 ≈ 2 though it increases slightly for larger values of β;

• Figure 2.19(a) shows the value of α against β. As expected, as the forecast

quality increases, the weight put on the forecast (α) increases. The increase

in α is monotonic which helps to explain the behaviour of σ2 discussed above:

the climatology has a wide distribution and so the effect of putting more

weight on the forecast pi,2 is to narrow the blended distribution (i.e. put more

probability near the mean). This has broadly the same effect as narrowing σ2

and appears to provide better improvements in skill score - this has not been

explored further.

forecasted variable (y)

pr
ob

ab
ili

ty
 d

en
si

ty

vi ŷi

ri

pi,2

fu

Figure 2.18: Example 2.5: Climatology fu (red) along with a particular observation vi (green)

a kernel dressed forecast (pi,2(y) ∼ N(ŷi, σ
2
2)) is shown in blue. The blended forecast ri(y), for an

illustrative value of α = 0.6, is shown in purple. Note that the blended forecast assigns greater

probability to the forecast variable in the left and right hand tails of the distribution.
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Figure 2.19: Blending example: Figure (a): Relationship between the blending parameter α and

the quality of the forecast β; as the forecast quality increases (β → 1), then the weight put on the

forecast increases (α→ 1 ). Figure (b) shows the size of the kernel bandwidth (σm) against β for

a blended forecast (purple) and kernel dressed forecast (blue). For the kernel dressed forecast as

the quality of forecast improves the bandwidth narrows; for the blended forecast the bandwidth

initially narrows but then slightly widens again. Figure (c) again compares the blended and kernel

dressed cases, showing the relative Ignorance versus forecast quality β; the blended forecast shows

better skill than climatology (Relative Ignorance negative) for all values of β; the kernel dressed

forecast only shows skill for β > 0.6. In each experiment results are produced for 10 different

random seeds and the resulting values are plotted using points; for each value of β the median

values are joined together to form a line plot.
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2.8 Conclusions

This chapter has investigated the properties of various skill scores most relevant in

the insurance sector. A new property has been introduced called ‘Feasibility’. A

score is not Feasible if it evaluates highly a forecast that places a high probability

on an event that has a low frequency of occurrence in practice. The CRPS and

MSE scores are shown to not be Feasible. The Ignorance score performs very well

in two ranking tests. A third ranking test uses the Skill Gap to test how quickly a

chosen skill score will reject a forecast system. The Rejection Time of the Ignorance

score can be more or less than the Proper Linear, Spherical and Naive Linear scores,

suggesting that the use of multiple proper6 scores will be helpful in practice. Finally

Climatology Blending is explored using the Ignorance Score and is shown to improve

forecast skill in one particular experiment. The next chapter makes use of the well

known Lorenz 96 dynamical system [154] and uses the results in this chapter to

improve various forecasts of this system.

6noting that the Naive Linear score is not proper and should be passed over in favour of proper

scores
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Chapter 3

Exploring Lorenz 96

‘The relevance of mathematically defined systems cannot be too strongly em-

phasised; much of what we know, or believe that we know, about real systems

has come from the study of models.’

Ed Lorenz 1996 [155]

This chapter explores a well known dynamical system of differential equations

introduced by Ed Lorenz [155] in 19951 as a simple yet rich system to examine

predictability. In this chapter both systems and models of these systems will be

introduced. The models will be run with various parameterisations to produce

forecasts of the systems. Five models are developed for each system, to test whether

different modelling approaches do better.

Climatology Blending (described in Chapter 2) is used to create best scoring

forecasts. One system (800012) is explored in detail. The process is repeated for

five different systems (80002, to 80006) to assess whether the results are particular

to system 80001 or more general. The results of this chapter are then used to guide

further exploration and applications to insurance in Chapter 4.

1Ed Lorenz presented the two systems of ODEs discussed in this chapter at a Seminar Held

at ECMWF on Predictability in 1995 but the proceedings of the meeting were published in 1996.

For this reason the systems are known as both Lorenz 95 and Lorenz 96 in the literature; here the

latter is used.
2To enable future extensibility of this work and to ensure unique IDs each system and model is

given a 5 digit ID where the leading digit is different to emphasise systems (leading digit 8) and

models (leading digit 1), these are defined in sections 3.2 and 3.6.
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The original elements of this chapter are believed to be:

• Illustration of the impact of an increasing forcing parameter on various quan-

tiles of the X variables including a comparison with the quantile relationship

for lower forcing levels and also comparison with a Gaussian distribution with

the same mean and standard deviation at each level of forcing;

• Exploration of a model using kernel smoothers to derive a functional relation-

ship between the effective forcing in the system and the value of the corre-

sponding X variable, this model has the best skill scores;

• Exploration of a model which uses an AR(4) process to parameterise one of

the key variables, this model performs poorly, leading to the conclusion that

the lack of conformity with the dynamics of the system is a larger factor in

model quality than the closer adherence of one of its parameters to the ‘correct’

statistical behaviour;

• Use of the derived blending parameter values to: compare and discuss differ-

ent systems (each with five models); and to explore the effect of the forcing

parameter in the systems.

Chapter Structure The figure below sets out the structure of this chapter. The

method used to create forecasts is described first because it introduces terms used

thereafter. Next the two Lorenz systems are defined. Section 3.3 explores the impact

of a key parameter in Lorenz System I. Six parameterisations of Lorenz System II

are described and given IDs 80001, ...80006. System 80001 is used throughout the

chapter to illustrate detailed methods and results; then results are shown for the

other systems 80002-80006. Five models for each of these systems are defined in

section 3.6, model behaviour is then illustrated for the five models of system 80001.

Climatology blending (Chapter 2, equation 2.62) is carried out for each forecast and

skill scores are calculated in each case. This is first derived in detail for system

80001 and one of the models (ID 10008), is then compared with the other models of

this system (10009... 10012). Finally the blending parameters and skill scores are

compared for the remaining systems and models.
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3.1 Description of forecasting method

Motivating analogy The following example will motivate the general description

below. Consider an atmospheric variable such as temperature at a given location.

This variable changes continuously but is observed discretely (say twice a month)

over a given year. The atmosphere is the ‘system’ using the terminology above.

Models are initialised at the start of the year using the observed temperature and

values are sampled with the same frequency so that values can be compared. The

observed temperatures are subject to observational error (such as instrument fail-

ures, human errors etc) and to allow for this the initial conditions for the models

are sampled from a distribution around the observed temperature so that a range of

predictions are produced. The outputs from these different initial conditions com-

prise an ‘ensemble’ whose values at each observation time can be compared to the

system.

Definition of Initialisation Time Consider a continuous system whose variables

are indexed by time t, let estimates of variables from the system be observed at time

t0. If a model is run with initial conditions based on the observed variables then the

‘initialisation time’ is t0.

Definition of Initial Condition The ‘initial conditions’ are the starting val-

ues for a given model at time t0.

Definition of Period A ‘period’ is the length of time τ between model initial-

isation times. Equivalently the length of time for which a model is evolved forward

before being reinitialised.

Definition of Lead Time Given model outputs at time t, within a given period,

with initialisation time t0 then the ‘lead time’ is defined as t− t0.
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Table 3.1: Concrete example to illustrate forecast definitions

Definition Example

Initialisation time 00:00 on 1 January 2015

Period 2015 (one year)

Lead time 4 months (i.e. forecasts of variables at

00:00 on 1 May 2015)

Definition of model ensemble Let the variables of interest from the system

be denoted Xk(t) for k ∈ 1, ...K. Consider a model of the system, and Nens sets

of initial conditions {{xk}k=1,...K}i=1,..Nens with initialisation time 0. Let the values

from the model with initial condition i be denoted X̂(t)ik. Then the set of values

{X̂(t)ik} at a given lead time t is known as an ‘ensemble’.

Process to create initial conditions The initial conditions used in this chapter

are created as follows. This will be referred to as a ‘Gaussian Initial Condition

Ensemble’.

• Extract the true positions of the X variables from the system at the initiali-

sation time t0, (xk,0 = Xk(t0));

• Perturb these using dynamical noise (IID Gaussian) - to create an ‘observed

initial condition’ (x̂k,0 = xk,0 + ε), where ε ∼ N(0, σ2);

• Create an ensemble of model initial conditions also using a Gaussian dynamical

noise centred around the observed initial condition with standard deviation σ2

(i.e. the same as used to create the observed initial condition), specifically:

x̂jk,0 = x̂k,0 + εj, where εj ∼ N(0, σ2) and cov(εja, ε
j
b) = 0 ∀a, b.

Note that the true positions xk,0 are unknown in practice but are used as an in-

terim step here to create observations. This method ensures that the mean observed

initial condition will be centred on the true initial condition. Also, the ensemble val-

ues will be centred on the observed initial condition and hence also on the true initial

condition on average, so there is no inherent bias in the starting point. The use of

the same standard deviation in both perturbation processes guarantees this for a

Gaussian distribution. With this ‘inverse noise method’ the initial conditions cre-

ated may not lie on the attractor of the model [69] which can lead to less informative
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results. Methods to correct for this are currently being explored [268] but these are

not considered here.

3.2 Lorenz 96 systems I and II

A ‘system’ of Ordinary Differential Equations (ODE) is formed by specifying two

or more ODEs with some dynamical variables in common, each being a function

of an independent variable (such as ‘time’). Lorenz introduced the following two

systems in 1995 at a conference followed by a paper [155] in 1996.

Lorenz System I Lorenz defined the following system in equation 3.1 of his 1996

paper.
dXk

dt
= (Xk+1 −Xk−2)Xk−1 −Xk + F (3.1)

Where, k ∈ 1, ....K for some integer K which determines the number of X variables

within the system. k is defined mod K so that Xk = Xk−K . The ‘forcing’ F is

an exogenous parameter which prevents the solution tending to zero. In Lorenz’s

original paper F is constant, but can be extended (e.g. [11,129,239,271–273]) to be

a function of time or other variables. An Initial Condition for this system is a set

of real numbers {x1, ...xK} which are the starting values for the Xk variables.

Lorenz System II Lorenz defined the following system in equations 3.2 and 3.3.

of his original paper.

dXk

dt
= (Xk+1 −Xk−2)Xk−1 −Xk + F − hxc

b

J∑
j=1

Yjk (3.2)

dYj,k
dt

= cb(Yj−1,k − Yj+2,k)Yj+1,k − cYj,k +
hyc

b
Xk

where, again F is a forcing term which prevents the solution tending to zero. hx

and hy determine the strength of ‘coupling’ between the X and Y variables, i.e.

the extent to which the value of the Y variables influence the X variables and vice

versa. In Lorenz’s original paper the coupling parameter h = hx = hy was not split

into its x and y components, the presentation here follows Smith [239] and allows

the influence of the Y’s on the X variables to be controlled without affecting the

influence of X ′s on the Y variables (except through second order effects). b and
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c both affect the strength of coupling but also affect the Y dynamics in different

ways. Lower values of b reduce the number of oscillations of the X series materially

but less so for Y . Lower values of c slightly increase the number of oscillations

of the X variables whilst materially reducing those of the Y variables. The total

number K, of X variables can be any integer value and the indices k are calculated

mod K, so that XK+1 = X1. The variables Xk form a system and can be thought

of as sitting on a circle. The values Yj,k also form a system and sit on a circle

so that Y1,1 = YJK+1,K and in general Yj−J,k = Yj,k−1 and Yj+J,k = Yj,k+1. The

system is illustrated in figure 3.3 which is an actual realisation of system 80001 after

Smith [239]. The X values are shown as perturbations from their mean value (red

circle) and the Y values from their mean value (blue circle). The X and Y values

are scaled to have unit standard deviation in the graphic. The Y s are thought of

as small scale dynamics which feed into the larger scale X dynamics. Note that for

each Xk there are J variables Y1,k, ...YJ,k which have an influence. This is referred

to as the ‘J-block’ below. An ‘Initial Condition’ for this system is two sets of real

numbers {x1, ...xK} and {y1,1, ...yJ,K} which are the starting points for the Xk and

Yj,k variables respectively. The following describes the various parameterisations of

Lorenz System II that are used in this and the next chapter.

Systems 80001 - 80006 Lorenz System II parameterisations

The following parameterisations are for Lorenz System II (equation 3.2).

Each parameterisation is given a unique ID code of the form 8000[x] where [x] ∈

{1, ..6}. These IDs will be used in descriptions and various plots.

In all cases K = 36, J = 10, c = b = 10 and hy = 1. 80001: F = 10 , hx = 1

80002: F = 20 , hx = 1

80003: F = 20 , hx = 0.1

80004: F = 10 , hx = 0.1

80005: F = 9.1 , hx = 0.1

80006: F = 11 , hx = 1

System 80001 has the same parameterisation used by Lorenz [155].

Values are produced using method ‘lsoda’ under the R statistical language ‘ode’

function. Outputs are captured in 0.1 time increments.
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Definition of Instantaneous forcing In Lorenz System I the X values are forced

only by the term F . In Lorenz System II, however, the Y variables provide additional

forcing and the total forcing varies at each point in time. For later use the total

forcing is defined below as the ‘Instantaneous Effective Forcing’ (IEF ):

IEFk := F − hxc

b

J∑
j=1

Yjk (3.3)

3.3 System I - Impact of forcing parameter

This section explores the impact of the forcing parameter in Lorenz System I, defined

in equation 3.1. Figures are created by evolving the system forward from a point on

the attractor.

Probability density of Xk Two examples are illustrated in figure 3.1 with K = 4

and K = 36. The figure illustrates the normalised probability density for each value

of F (x-axis) and value of X1 (y-axis). Densities are normalised, for a given value

of K, by dividing each density by the maximum density, this ensures the two plots

are on the same colour scale. These reflect the behaviour described in Orrel and

Smith [189] but are ordinal in that they show normalised probability densities. The

colour represents the probability density of a given point. Red indicates high density

and cyan low density. Dark blue shows zero density.

• As F increases the range of X also increases;

• The density initially clusters around a few values suggestive of periodic be-

haviour - but after a threshold (F ≈ 11.7 in figure 3.1(a) and F ≈ 4.4 in figure

3.1(b)) the density plot evens out and X1 then takes a broad range of values;

• The threshold of periodic behaviour is larger when K = 4 - suggesting that

systems with larger values of K stop displaying periodic behaviour for lower

forcing values.

Impact of F on high quantiles of Xk Figure 3.2 illustrates how the mean and

four different quantiles of the values taken by X1 change as the forcing increases

from F = 5 to F = 11. All figures illustrate the median, 90th, 95th and 99th
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isopleths as well as the mean. To create these statistics the system is evolved from a

point on the attractor over a time period of length 36.5, the time series is observed

in time increments of 0.1. Figure (a) shows the 10th and 90th quantiles of each

statistic estimated from 128 different initialisations of the system. Figure (b) shows

the average value of the five statistics only (as dots); the solid lines define the higher

quantiles for F relative to the values when F = 5. Specifically if Qp(F ) denotes the

pth quantile value for a forcing value of F , and if M(F ) denotes the mean value,

then the solid lines are defined as yp(F ) = Qp(5)

M(5)
M(F ). Figure (c) shows the average

statistic values (as dots) - against the quantiles from a Gaussian distribution with

same mean (red dot) and standard deviation as the observed X1 variables for a given

level of forcing. The key findings are:

• Figure 3.2(a) - the mean and median are similar to each other for all values

of F and increase by ≈ 60% amount as F increases from 5 to 11, the 99th

quantile increases by ≈ 100% as the forcing increases over this range;

• Figure 3.2(b) also shows that the higher quantiles increase faster than the

mean, as F grows;

• Figure 3.2(c) - the relationship to a normal distribution with same mean and

standard deviation at each F value, remains broadly stable. The 90th %ile is

larger in the Lorenz System I and the 99th %ile is smaller;
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Figure 3.1: Probability density plots for two different values of K (Figure (a) K=4 and Figure (b)

K=36). The x-axis shows the value of the forcing parameter (F) and the y-axis shows the value of

the X1 variable in Lorenz System I and the colour denotes the normalised density of observations

taking that value, shown in the colour key. Red indicates high density, cyan low density and blue

zero density. The density is normalised by dividing by the maximum density for each value of K -

this ensures the plots are both on the same colour scale.
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Figure 3.2: Lorenz System I, K=36. F is variable and shown on the x-axis in each plot. In

Figure (a) the y-axis shows the mean of a chosen statistic of X1 (dots) and the bar indicates

the 10th and 90th quantiles of the statistic (these are estimated over 128 blocks of data). Each

block contains 365 observations every 0.1. Figure (b) shows just the mean dots compared with a

stable quantile/mean ratio estimated when F = 5. Figure (c) again shows mean dots - against the

quantiles from a Gaussian distribution with same mean (red dot) and standard deviation as the

observed X1 variables.

140



3.4 System II behaviour: Parameterisation 80001

The following defines the sample of system values used in this section.

Sample S3.1 Sample from system 80001 used in section 3.4

System: Lorenz System II

System: 80001

Number of observations: Nobs = 214

Observations of each Xk variable and each Yj,k variable are taken in time increments

of 0.1. Values of IEFk are calculated from these values using equation 3.3 and the

chosen parameters.

Figure 3.3: Illustration of Lorenz 96 system II, parameterisation 80001, where K=36 and J = 10.

X values shown in red and Y values shown in blue. The J-block of the 10 Y values that relate to

each X value are shown at the foot of the green lines emanating from that X value.

Illustrative sample values Using system 80001, for illustration, figure 3.4 shows

a sample of Y2,1 compared with X1 up to time 20 with observations every 0.1. Note

that the Y values oscillate more quickly (there are 57 local maxima in the Y variables
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over this period compared to 22 in the X variables) - for this reason the Y variables

are sometimes referred to as the ‘fast’ variables and X is described as ‘slow’. The

Y values are approximately 1
10

th the size of the X variables.
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Figure 3.4: Illustrative time series plots from the Lorenz System II, parameterisation 80001. Y2,1

values are shown in the graphic (a), X1 in graphic (b). The y-axis scale of graphic (a) is chosen to

be equal to that of (b) to highlight the difference between the Y and X variables.

Probability density for X variable Figure 3.5 shows a kernel smoothed proba-

bility density (in black) the X20 variable from sample S3.1. The kernel bandwidth is

0.4584. The grey lines are the density plots for the other X variables. By symmetry

each X variable has the same asymptotic distribution; despite the density being cre-

ated over a large sample, however, there remains a degree of spread between them

in this case.
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Figure 3.5: Probability density plot of X20 from System 80001 (black line). Density plots for Xk

k 6= 20 are also shown in grey. Density produced using Gaussian kernel with bandwidth 0.4584

over 214 observations in time increments of 0.1.

Probability density for Y variables Figure 3.6 shows ten kernel smoothed

density plots of the Yj,k variables in sample S3.1, one for each j position. The

kernel bandwidth is derived using Silverman’s ‘rule of thumb’ [229] and takes values

between 0.02086 and 0.02232, for such a large sample size this makes little difference.

Each plot shows the density of values taken by each of the 36 Y variables that

take value j (i.e. Yj,1, ...Yj,36). The plot shows that the different Y variables (Yj,k)

have slightly different distributions. This is because the Yj in the same J-block

are not defined symmetrically, and so need not share the same distribution even

asymptotically. In each J-block the first Y variable is influenced by other Y variables

that are themselves influenced by the the previous X variable. Similarly, the last

two Y ’s are influenced the following X variable (counting round the circle). Those

in the centre of the J-block are not so directly influenced by other X variables in this
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way. It is clear that, for each fixed j, the density plots appear similar and, indeed by

definition, should be asymptotically equal. Hence when the Y variables are summed

in the forcing term for the X values they will on average provide the same influence.

j=1 j=2 j=3 j=4

j=5 j=6 j=7 j=8

j=9 j=10

Figure 3.6: Sample probability density for each j value (1,2,...10), for System 80001 over 214

sample values. A each pane shows multiple red lines, i.e. the probability density of the 36 Y

variables with value j (i.e. Yj,1, ...Yj,36). The sample probability density for Y3,1 is shown (in grey)

to ease comparison between the plots and to ensue the y-axis scales are the same in each plot.
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Correlation between X variables Figure 3.7 compares the correlation coeffi-

cient (within sample S3.1) between the X variables. Figure (a) shows the correlation

of X1 with Xk for all values of k, Figure (b) plot is divided into squares (i, j), where

i refers to the row number labelled on the left hand side and j denotes to the column

labelled at the top. Each square is coloured according to the correlation between

Xi and Xj. Shades of blue denote negative correlation and red positive, as shown

in the colour chart in figure (c). The diagonal is shown in black to emphasise the

correlation of a variable with itself is 100%. The graphics show that the correlation

between Xi and Xj decays as |i− j| increases. Xk and Xk+1 are slightly positively

correlated for each k; Xk and Xk+2 show the strongest correlation for each k with an

average coefficient of -0.44 in this sample. It is clear from the colour plot that the

correlation decay seen in the top plot is repeated for each X variable as as required

by the symmetry of equations 3.2. The red line of figure 3.3 shows series of peaks

and troughs around the circle. These correspond to waves which are easily seen

in an animation of the system over time. These explain the negative correlation

between Xk and Xk±2 since when one variable takes a high value (the peak of the

wave) the others are typically take low values (nearer the trough). Since this cor-

relation applies for any k it explains why there are waves of negative and positive

correlation though this does not occur exactly in k-steps of 2 (this was not explored

further). The key conclusion is that (for any k, j) Xk and Xj are not independent,

but the strength of dependency is weak, especially when |k−j| > 2. This will be ex-

ploited later when certain parameters are derived using all X values simultaneously

as though they were independent.
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Figure 3.7: Figure (a) shows correlation coefficient value (y-axis) against k for X1 and Xk.

Figure (b) shows correlations between Xk1 and Xk2 for all pairs of variables indexed by i=k1 and

j=k2. The strength of correlation is indicated by the colour. The colour key (c) shows that blue

shades are used to denote negative correlation and red shades, positive. Black is reserved for 100%

correlation.
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Instantaneous forcing Figure 3.8 illustrates a short time series of IEF1 (as

defined in equation 3.3) in system 80001; the mean (calculated over values in S3.1) is

9.01. Note that the average IEF is less than the fixed forcing term (F = 10). Hence

the average contribution from the Y variables is negative. Figure 3.9 illustrates

IEF1 (on the y-axis) compared to Xk, for k ∈ {33, 34, 35, 36,1, 2, 3, 4, 5}. There is

clearly a strong relationship between X1 and IEF1, with a high R2 value suggesting

that the value of X1 at a given time explains much of the variance in IEF1. In the

other cases the R2 value is low suggesting that the influence of Xk on IEF1 where

k 6= 1 is not significant. Figure 3.10 illustrates how the value of the IEFk is related

quite strongly to the value time 0.1 previously. The strength of R2 between times

t and s where |s − t| > 0.1 diminishes quickly (not shown). Figure 3.11 shows the

correlation between pairs of IEFk variables, blue shades for negative and red for

positive. As with figure 3.7 there are decaying waves of correlation between IEFi

and IEFj as |i− j| increases.
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Figure 3.8: Figure (a) short time series of Instantaneous Effective Forcing (IEF1) with time-

mean value shown as red line. Figure (b) histogram of IEF1 values with box plot above (calculated

over 214 sample values).
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Figure 3.9: Xk values for k ∈ {33, 34, 35, 36, 1, 2, 3, 4, 5} (y-axis) versus IEF1 (x-axis). The

middle graphic shows that X1 is strongly related to IEF1 with an R2 value of 0.79. The relationship

between Xk and IEF1 for k 6= 1 is much weaker with low R2 values in all cases.
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Figure 3.10: IEF (t) versus IEF (t− 0.1) showing that the value of the Instantaneous forcing at

time t is conditionally related to its value at time t− 1.
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Figure 3.11: Figure (a) correlation colour plot for IEFk1 and IEFk2 for all pairs of variables

i=k1, j=k2. The strength of correlation is indicated by the colour map shown in figure (b), blue

shades are reserved for negative and red for positive. White is used for correlation in the range

(-3%, 3%) and black for 100%.
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An autoregressive parameterisation for IEF An autoregressive process (Î)

is presented in the following as a parameterisation for the IEF . Such a process

takes the form:

Ît = C +

p∑
i=1

φiÎt−i + ξt (3.4)

Where, C is a constant, φi determines the contribution of past values of Î and ξt is

Additive Observational Noise at each time t with zero mean. ξt is assumed to be

normally distributed with standard deviation σ.

Given a sample of the process the parameters can be estimated using the Yule

Walker method [32]. Taking expectations if follows that C = E(Î)(1−
∑
φi). The

Yule Walker approach (after first deducting the mean so that the resultant process

has zero mean) requires us to multiply the equation defining Ît by Ît−j and then

to take expectations so that these cross terms become covariance terms. These

operations result in a linear equation in φi which can be solved. Finally the variance

of the noise term can be determined by multiplying the equation defining Ît by itself

and taking expectations. This gives:

σ2 = V ar(Ît)−
p∑
i=1

φiE(ÎtÎt−i) (3.5)

The first step is to determine a suitable value for p. Figure 3.12 shows that the partial

autocorrelation function achieves value zero reliably after around p = 12. Figure

3.13 shows a sequence of three plots: (a) shows the Akaike Information Criterion

(AIC 3) that is derived from an AR(p) fitting process as p increases (values for IEF1

are shown in black and the other 35 variables shown in grey). These are equal in

distribution so the variation in the grey lines represents sampling error and is quite

high. They all show a similar pattern. Figure 3.13(b) shows the p values at which

the AIC is minimised for each of the 36 variables - they are all greater than or equal

to 12 but there is significant scatter. Finally figure (c) shows (on a log scale) that

considerable improvement in AIC is achieved even when p = 4.

3AIC := 2p− 2 ln(L), where L is the maximum value of the likelihood function for the model.

150



5 10 15 20
−

0.
2

0.
0

0.
2

0.
4

0.
6

K 36 J 10 F 10
Lag

P
ar

tia
l A

C
F

pacf for effective forcing

Figure 3.12: Partial autocorrelation function for IEF1

0 10 20 30 40

0

20

40

60

80

100

(a)

p

A
IC

 v
al

ue

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

12

14

16

18

20

22

(b) derived order of AR(p) from AIC

k

p

0 2 4 6 8

7
8

9
10

11
12

13
14

(c)

p

lo
g2

(A
IC

)

Figure 3.13: Akaike Information Criterion (AIC) graphics for IEF . Figure (a) shows the AIC

value for different AR(p) processes where p is shown on the x-axis - the black line uses the IEF1

variable to derive the fitted parameters, the grey lines illustrate the results for the remaining k

variables. Figure (b) shows the value of p (y-axis) that gives the minimum AIC value for each

k. Figure (c) shows log2(AIC) on the y-axis against p to illustrate how the value is significantly

reduced by the time p = 4.
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Parameters of AR(4) model Î Based on the previous analysis AR(4) pro-

cesses Îk are fitted to the IEFk data in sample S3.1. The derived values for Î1

are: φ1 = 0.8483, φ2 = −0.0825, φ3 = −0.0736, φ4 = −0.1018, C = 3.689 and

σ2 = 0.6710. Figure 3.14 shows box plots for the coefficients for each of the 36 IEF

variables, it is clear that these parameters are quite stable. Note that no correla-

tion has been included between the AR(4) processes for each k whereas figure 3.11

suggests there should be some weak correlation; it would be possible to build such

correlation in but this has not been explored further here.
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Figure 3.14: Results of fitting an AR(4) processes Îk to each IEFk. Boxplot of coefficients arising

when each of the 36 X variables is used separately to fit the model. Since the IEFk are equal in

distribution these parameters should converge in the limit, the boxplots show that there is little

scatter in values and hence using the same parameter set for each k, as an approximation to the

true parameters, is appropriate.

Gaussian model Ĝ for IEF A sample of values is drawn from a Gaussian distri-

bution with the same mean and variance as IEF1. This will be shown for comparison

with outputs from the AR(4) process Î1 and also the true IEF1.

Comparison of IEF with AR(4) and Gaussian models Figure 3.15 shows

histograms of the IEF1 values (a) from sample S3.1 , AR(4) model Î (b) and Gaus-

sian model Ĝ (c) . Both the AR(4) and Gaussian models understate the interquartile
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range (slightly) and overstate the full range of values. The Gaussian distribution

produces extremes from the model that are larger than the AR(4) (which is in turn

larger than the system). Figure 3.16 shows histograms of the differences between

successive values from the system and models. In this case the AR(4) and Gaussian

models tend to overstate the interquartile range. The AR(4) model, however, un-

derstates the largest jumps (considerably) and the Gaussian model overstates them

considerably.
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Figure 3.15: Histograms of true IEF values (a) , values derived from an AR(4) model (b) and

from a simple Gaussian model with the same mean and variance as the observed IEF1 (c). Box

plots are shown above the histograms illustrating the mean, interquartile range and data extremes.
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Figure 3.16: Histograms of the differences between successive values of the IEF1 (a) , AR(4)

model (b) and a simple Gaussian model (c).

A parameterisation of IEFk as a function of Xk Figure 3.17(a) shows a

scatter plot from sample S3.1 of IEF1 compared to the value of X1 at the same

time. A one dimensional functional relationship between the IEF and X is created

by averaging (truncated) kernel smoothed lines through the data; for data extremes

(the far left and far right of the plot) the relationship is restricted to a constant; the

points at which the kernel smoother is replaced by these horizontal lines is chosen

manually. This process is first carried out when k = 1 and the resulting line is

shown as the black line on the left hand graphic. The process is then repeated for

each of the values of k to derive the relationship given those data points. As the the

variables IEFk are the same in distribution and similarly Xk the relationship should

be identical in the limit. Differences will be caused because the system observations

are finite. All 36 relationships are shown in Figure 3.17(b) as grey lines. It is clear

that there is only a small amount of difference between the lines. Finally a central

line is chosen (shown as red) by averaging the values of the 36 grey lines. It is this

average line that is taken to define the relationship between IEF and X for later

use. The relationship between X and IEF suggests that using a constant forcing

term in any model of the system will cause systematic errors. This is explored

154



later. The general idea here is not new (see Smith [239] and has been developed

further by Wilks [271–273], Kwasniok [129] and Arnold [11]). The development and

exploration of this and the other models in this chapter has been carried out to

enable consideration of model use in the context of insurance in chapter 4.
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Figure 3.17: Figure (a) IEF1 versus X1 scatter plot with smooth line through the data, Figure

(b) truncated smooth lines for all K variables (grey) and chosen average relationship F = f1(X)

(red); this illustrates the impact of sampling error is small and the relationship is stable.

Definition f(X) Let the functional relationship defined by the red line in figure

3.17 be denoted f1(X). The subscript 1 refers to the last digit of the system ID

80001 to which the relationship applies. The relationship fs for other systems 8000s

is found similarly.

3.5 System II behaviour: 80002 - 80006

This section briefly discusses the differences in behaviour between the different pa-

rameterisations defined in section 3.2. In Chapter 4 it will be important to have

systems that behave in different ways to illustrate various features. Specifically it

will be interesting to consider systems that are more or less predictable. For this rea-

son four forcing parameters are considered (F = 9.1, F = 10, F = 11 and F = 20)

and two different coupling parameters are considered (hx = 1 and hx = 0.1). Several

combinations of these are used, giving six systems in all, as previously defined.

155



Parameterisation 80004 was chosen to be a more predictable version of param-

eterisation 80001. The reason predictability was expected to increase is that the

coupling parameter is lower in 80004, hence the influence of the fast Y variables will

be much less and the effective forcing much closer on average to the fixed forcing

parameter. Therefore it was initially thought that the models would do better in

this system; this is not correct as shown in section 3.12 below. System 80002 has

a much higher forcing term and is a-priori expected to be less predictable. System

80003 was chosen as a pair for this system that was expected to be more predictable

for the same reasons just described and, for the same reasons, this turns out to

be false. Given the unexpected results for predictability two further systems were

introduced: System 80005 has a lower forcing term but also lower coupling than

80001, in fact these parameters are chosen so that the IEF , defined in equation 3.3,

is approximately equal in both systems. System 80006 is chosen so that the IEF is

approximately 10.

The following results are based on samples defined as follows:

Samples S3.2 - S3.6 Sample from parameterisations 80002 - 80006 used in section

3.5

Sample names: S3.x relates to system 8000x

System: Lorenz System II

Systems: 80002 - 80006

Number of observations: Nobs = 214

Observations of each Xk variable and each Yj,k variable are taken it times each

0.1 apart. Values of IEFk are calculated from these values using equation 3.3 and

the chosen parameters.

Comparison of systems The following comments summarise differences in the

behaviour of the six systems:

• System 80001 is discussed in section 3.4 and is shown as a familiar baseline

against which the others can be compared;
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• System 80004 has the same forcing as 80001, but lower coupling. The range of

values arising is slightly wider at the interquartile range and full range. The

median is also slightly higher. The IEF of system 80004 is much narrower

and much closer to 10. This is expected because the coupling is much smaller,

so the Y variables have much less influence. The median IEF is higher as a

consequence. Recall the mean IEF (not shown) of system 80001 is 9.01; for

80004 it is 9.91. This explains why the range of X1 values is higher for system

80004, because on average it has larger forcing and section 3.3 shows that this

leads to a wider range of values.

• Similarly 80003 has a slightly larger range of values than 80002 because the

coupling is lower and the IEF is consequently higher on average. Specifically

the mean IEF for system 80002 is 18.9 and for 80003 is 19.90

• Systems 80002 and 80003 have a much wider range of values than 80001 - this

is due to the larger forcing value F = 20 vs F = 10 in these systems.

• System 80005 is designed to have very similar average effective forcing as 80001

(in the sample taken it is 9.0061 compared to 9.0065 respectively) however be-

cause it has hx = 0.1 the effective forcing has a much lower standard deviation

(0.136 compared with 1.27).

• System 80006 is designed to have a slightly larger range than 80001. The lower

end of the range of Xk values for system 80006 is on average 15.7% lower than

system 80001 (but with a high standard deviation of 13.5%), and the upper

end of values is on average 11% higher (with standard deviation 6.8%).

3.6 Model specifications

This section defines the specific models and parameterisations that will be used to

produce forecasts for testing later. First consider the following variant to Lorenz

System I.

Lorenz System I - model variant A Consider the following variant to Lorenz

System I.
dXk

dt
= (Xk+1 −Xk−2)Xk−1 −Xk + Fk (3.6)
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Where Fk is constant over time but varies with k.

Model L1A1 - AR(4) method The following model uses Lorenz system I, variant

A with the following ‘time step’ parameterisation of Fk.

• Let {x̂k,0} be a set of initial conditions for the system s.

• For period πj ∈ {π1, ...πNperiods}, where πj = {tj,0, ....tj,P}

• For tj,r ∈ πj,

– Define Fk,tj,r = Cs+
∑4

i=1 φi,sFk,tj,r−i +ξt, where ξt ∼ N(0, σ2
A) (This is an

AR(4) process as defined in equation 3.4). Values Fk,tj,r−i := Fk,tj−1,P−i+1

for i ∈ {1, 2, 3, 4} come from the prior period. (Note that the AR(4)

parameters Cs and φi,s depend on the system s.)

– Using equation 3.6 evolve the system forward using Fk = Fk,tj,r to time

tj,r+1

• Loop through values of tj,r ∈ πj redefining the forcing terms each time.

Note that Fk is constant for each k between observation times tj,r−1 and tj,r but

different for each value of k. As such Fk does not describe a continuous time au-

toregressive process [33] rather it is derived from a discrete time AR(4) process and

held constant between observations.

Model L1A2 - fs(X) method The following model uses Lorenz system I, variant

A with an alternative ‘time step’ parameterisation of Fk.

• Let {x̂k,0} be a set of initial conditions for the system s.

• For period πj ∈ {π1, ...πNperiods}, where πj = {tj,0, ....tj,P}

• For tj,r ∈ πj,

– Define Fk,tj,r = fs(Xk(tj,r)), for some functional relationship fs

– Using equation 3.6 evolve the system forward using Fk = Fk,tj,r to time

tj,r+1

– Loop through values of tj,r redefining the forcing terms each time.

Note that Fk is constant for each k between observation times tj,r−1 and tj,r but

different for each value of k.
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Description of models Five models have been set up for each of the systems

80001 to 80006, three use Lorenz System I, one uses model L1A1 and the other

L1A2. These models are each given a unique ID which is made up of 5 digits which

have the structure [xx][y][zz]. The leading two digits have [xx] = [10] in each case

and was used to allow exploration of different models in future, [y] relates to the

system in increasing order such that y=0 relates to system 80001 and y=5 to 80006.

[zz] relates to the model type. In summary:

zz = 08 implies a model where the constant forcing variable is set equal to the

forcing in the system;

zz = 09 where the constant forcing variable is set equal to the average Instanta-

neous Effective Forcing in the system;

zz = 10 when the constant forcing term is set equal to the same quantile of the

corresponding system’s IEF in each case (defined on page 162);

zz = 11 when the model forcing is time dependent and equal to a function of the

value of the X variable chosen as described above; and finally

zz = 12 when the model forcing is an AR(4) process related to prior values of the

forcing

The value of [zz] therefore determines a ‘class’ of model types across the systems and

for brevity a shorthand notation is used below where, for example, *8 relates to all

models where [zz]=08. From now on, rather than say ‘System II, parameterisation

80001’ the short description ‘system 80001’ will be used unless the longer description

is clearer. The following specify the models in detail and also state the numbers of

observations used in various forecasts.

Table 3.2: Constant forcing parameters for models *8, *9 and *10

Model class 80001 80002 80003 80004 80005 80006

*8 10 20 20 10 9.1 11

*9 9.008 18.957 19.903 9.905 9.005 9.989

*10 8 17.547 19.752 9.794 8.896 8.925
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Figure 3.18: Comparison of functional relationship F = IEF (X) for systems 80001, ...80006,

used in definition of model class *11

Table 3.3: Parameters of AR(4) processes for IEF in systems 80001-80006

Parameter 80001 80002 80003 80004 80005 80006

φ1 0.8483 0.5633 0.5182 0.8007 0.8334 0.8086

φ2 -0.0825 -0.1236 -0.1145 -0.1019 -0.0985 -0.0828

φ3 -0.0736 -0.0285 -0.0087 -0.0793 -0.0778 -0.0773

φ4 -0.1018 -0.0456 -0.0358 -0.0347 -0.0491 -0.0843

C 3.689 12.025 12.754 4.113 3.530 4.351

σ2
A 0.6710 2.3526 0.0279 0.0099 0.0084 0.8398
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Common parameters Parameters that are common to all models *8-*12

Systems: 80001 - 80006

Observation time step: Increments of 0.1

Period: 24 observation time steps

Skill score: Relative Ignorance

Ensemble Size: Nens = 24

Training observations: Blending parameters are based on Ntrain = 25 observa-

tions at each lead time for each of the K = 36, Xk variables. (see Note A below)

Skill Observations: Nperiods = 1184, values available for each of the 24 lead times.

Climatology: Created from Nclim = 210 consecutive observations on the attractor

of variable X1 in each system. Probability forecast created by kernel dressing these

observations using equation 2.37 with a kernel width of σu = 1.0.

Note A: The number of training observations is quite low due to run time con-

straints and this is why the scores for variables other than X1 are included in the

optimisation process. For a given lead time, the skill score is therefore minimised

over the aggregate of the Ntrain = 25 observations and also the K = 36 variables.

Since these variables are equal in distribution this gives 1152 observations at each

lead time. These are not independent due to the slight correlation between X vari-

ables.

Model class *8 Fixed forcing equal to system value

Model ID: Summarised in *8 row of table 3.4

Model: Lorenz System I (equation 3.1)

Forcing parameter - F : Summarised for each model and system in *8 row of

table 3.2
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Model class *9 Fixed forcing equal to average IEF

Model ID: Summarised in *9 row of table 3.4

Model: Lorenz System I (equation 3.1)

Forcing parameter - F : Summarised for each model and system in *9 row of

table 3.2

Model class *10 Fixed forcing equal to consistent low quantile of IEF

Model ID: Summarised in *10 row of table 3.4

Model: Lorenz System I (equation 3.1)

Forcing parameter - F : Summarised for each model and system in *10 row of

table 3.2

Choice of fixed forcing term: Let Φx denote the CDF of the IEF from system

8000xa. In model 10010 the constant forcing parameter F = 8 is chosen arbitrarily to

explore the resulting behaviour. Let q1 = Φ−1
1 (8) be the quantile of the distribution

of IEF in system 80001 that gives a value IEF = 8. For a given system 8000x, let

the fixed forcing term in model *10 for system x (denoted Fx) be defined as

Fx = Φx(q1) (3.7)

In words, the constant forcing term used in models *10 is chosen so that it is the

same quantile of the IEF in each system.

aΦ(x) = P (IEFk < x), where P (A) is the probability of A

Model class *11 Forcing with functional relationship to X variables

Model ID: Summarised in table 3.4

Model: Model L1A2 (equation 3.6, variant 2)

Forcing parameter - F : Functional relationship fs illustrated for each system in

figure 3.18
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Model class *12 Forcing with AR(4) process

Model ID: Summarised in table 3.4

Model: Model L1A1 (equation 3.6, variant 1)

Forcing parameter - F : AR(P) process - where P = 4, Parameters defined for

each system in table 3.3

Table 3.4: Summary of Model IDs defined by System ID (column) and treatment of forcing (row)

System

Definition shorthand 80001 80002 80003 80004 80005 80006

Fmodel = Fsystem ∗8 10008 10108 10208 10308 10408 10508

Fmodel = E(IEFsystem) ∗9 10009 10109 10209 10309 10409 10509

Fmodel = quantile(IEFsystem) ∗10 10010 10110 10210 10310 10409 10509

Fmodel = f(IEFsystem) ∗11 10011 10111 10211 10311 10409 10509

Fmodel = AR(4) ∗12 10012 10112 10212 10312 10409 10509

3.7 Model behaviour for System 80001

This section explores and compares the large scale statistical behaviour of the Xk

variables from the models of system 80001. No assessment is made at this stage of

whether the model values at a given point in time are close to those of the system.

Insurers are interested in probabilities of extreme values and a model which produces

behaviour that is similar to the system can still be useful even if forecast skill is low.

The following samples were created:
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Samples S3.7.x Sample from models of system 80001

Sample names: S3.7.x relates to model 1000x

Models: 10008 - 10012

Number of observations: Nobs = 10241

Observations of each Xk variable are taken in time increments of 0.1. The model is

run from a single initialisation to produce all observations (i.e. these are not split

into periods and reinitialised).

Comparison of system and models under constant forcing Figure 3.19

illustrates the results of using different constant forcing values. The plot shows

four groups of four box plots. Within each group the four boxplots reading from

left to right show (1) system 80001, and then three models: (2) Model 10008 (3)

Model 10009, and (4) Model 10010. The four groups show different percentiles of

observed time series illustrated by boxplots of the value arising from each of the 36

X variables. The percentiles are: Top left: 50%, Top right 60%, Bottom left 90%

and Bottom right 99.5%. The y-axis is truncated to be on the same scale for each

of the models. The figure illustrates that with any constant forcing parameter the

model is not able to match all quantiles of the system. For example at the 50%ile

a forcing value of F = 10 produces median model outputs that are close to those

of the system. At the 60%ile the average forcing value of F = 9.008 has a median

that is closest to the system and at the higher quantiles (90% and 99.5%) the lower

value of F = 8 has a closer median. This suggests that different values of forcing

parameter F could be chosen depending on which part of the distribution a user is

interested in.

Comparison of system and models under time dependent forcing Figure

3.20 shows similar plots for parameterisations 10011 and 10012 where the value of

F varies with time. It is clear that these models do much better in capturing the

observed quantiles from the system. Model 10012 (AR(4) process for F ) doesn’t

perform quite as well at the higher quantiles, however. Model 10011, where F varies

using the functional relationship with X, does very well at all quantiles.
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Figure 3.19: Boxplots of time series quantiles of one system and three models of that system

(boxes show interquartile range). Quantiles of Xk are shown in four blocks of four graphics for

values 50%, 60%, 90% and 99.5%. Each box plot shows the range of quantile values arising for

every value of k. Each block of 4 graphics shows four cases,left to right: (1) system 80001 (2)

model 10008 (3) Model 10009 (4) Model 10010.

165



2.
1

2.
2

2.
3

2.
4

2.
5

2.
6

50 %ile

2.396

system

●

2.
1

2.
2

2.
3

2.
4

2.
5

2.
6

2.356

AR4

2.
1

2.
2

2.
3

2.
4

2.
5

2.
6

2.441

F=IEF(X)

3.
1

3.
2

3.
3

3.
4

3.
5

3.
6

3.
7

3.
8

60 %ile

3.447

system

●

3.
1

3.
2

3.
3

3.
4

3.
5

3.
6

3.
7

3.
8

3.499

AR4

3.
1

3.
2

3.
3

3.
4

3.
5

3.
6

3.
7

3.
8

3.486

F=IEF(X)

7.
0

7.
5

8.
0

8.
5

90 %ile

7.446

system

●

7.
0

7.
5

8.
0

8.
5

7.855

AR4

7.
0

7.
5

8.
0

8.
5

7.405

F=IEF(X)

10
.5

11
.0

11
.5

12
.0

12
.5

13
.0

13
.5

99.5 %ile

10.816

system

10
.5

11
.0

11
.5

12
.0

12
.5

13
.0

13
.5

12.136

AR4

●

10
.5

11
.0

11
.5

12
.0

12
.5

13
.0

13
.5

10.890

F=IEF(X)

Figure 3.20: Boxplots of time series quantiles. Similar to figure 3.19. Comparison of system

quantiles with varying-F models (10012 AR(4) and 10011 F = IEF (X)). Quantiles of Xk are

shown for values 50%, 60%, 90% and 99.5%
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3.8 Climatology Blended Forecasts: 10008

This section describes how climatology blended forecasts are created at each lead

time for system 80001 and model 10008. Chapter 2 showed that under many cir-

cumstances the Ignorance skill score performs better than others. Therefore the

Ignorance will be used as the sole skill score in this and the next chapter. The

following uses a climatology blending as defined in Chapter 2, equation 2.62 where

y = X1 is being forecast and the initial forecast p(y) is created by kernel dressing

the ensemble X̂1
1 , ....X̂

Nens
1 using the method described in equation 2.37.

Illustration of ensemble forecasts in model 10008 Figure 3.21 illustrates

forecast 10008 over four different periods. Time is shown on the x-axis and labelled

as n.q where n is the period number and q is the proportion through the period at

which the observation is made. As described above there are 24 observations per

period and so the values of q are 1
24
, 2

24
, ...24

24
. Period 0 (for example) illustrates a

situation where the error in the observed initial condition is sufficiently large that

the ensemble initial conditions fail to include the true system value. Around a third

of the way through Period 0 the ensemble range is wide and in the last quarter of the

period it is almost as wide as the entire range of possible X values. Nevertheless in

period 0 the ensemble range does include the system values throughout; this is not

the case for period 1 where the system values fall outside of ensemble range for an

interval. Period 2 illustrates that the model ensemble can stay close to the system

for almost half the period. Finally period 3 illustrates relatively close agreement

between the model and system through to time 3.7. Taken as a group the graphics

illustrate the wide range of behaviours an ensemble can show relative to the system.

Figure 3.22 illustrates the five different models described above for the period 0.
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Figure 3.21: Comparison of ensemble values (grey) from model ID=10008, with system values

(red) for various illustrative periods, each containing 24 timesteps of length 0.1
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Figure 3.22: Comparison of system (red) with ensemble values (grey) from models 10008, 10009,

10010, 10011 and 10012
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Determination of climatology blending parameters for forecast 10008

The determination of the blending parameters is carried out in three stages de-

scribed below. The parameters are chosen to be score optimal but restricted to a

discrete set of trial values4. As such the true score optimal values may not be found

but this is not thought to be a constraint given the density of the grid used. When

a parameter is chosen to give the lowest Ignorance score from a one dimensional set

of trial values it will be referred to as the ‘discrete-best’ parameter; when two

parameters are chosen simultaneously from a two dimensional grid of discrete values

they will be referred to as ‘grid-best’ parameters.

• Fixed σ, varying α: Initially choose a fixed value for the kernel dressing

bandwidth σ and calculate the average relative ignorance for different values

of α in equation 2.62. Use this to calculate the discrete-best values α0(t),

which produces blended forecasts r(X) with the lowest Ignorance at each lead

time t.

• Calculating best σ values given α0(t): At each lead time t, use the value

α0(t) defined above in the blending equation 2.62 and try different values for

the kernel dressing bandwidth to find discrete-best values σ0(t) that give the

lowest Ignorance forecast r.

• Jointly best values: Finally, consider a grid of blending parameters centred

on α0(t) and σ0(t) to test whether a better score can be found using different

parameters. Define the ‘blending parameters’ to be the grid-best values α

and σ that therefore have the lowest Ignorance on the grid.

Fixed σ, varying α As an initial exploration the kernel width σ was fixed at 1.0

and α was allowed to vary between zero and one. This was done seperately for each

of the 24 observation times during the period. Figure 3.23 shows an illustrative plot

of the resulting average Ignorance score against α (at observation time 0.833). Note

the discrete-best value of α where the average Ignorance score is lowest. Given the

smoothness of the relationship between α and the average Ignorance score this is

not believed to be a constraint.

The average Ignorance score was created by evaluating 25 periods and also each

4Due to run time constraints optimisation routines were not used in this chapter or the next
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of the (36) X variables in the Lorenz 96 system - giving an average over 1152 scores

for each time value. Due to the slight correlation between the X variables this may

tend to include runs of high or low scores. This feature is not considered further.
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Figure 3.23: Illustration of process to determining the discrete-best blending α parameter for a

fixed kernel bandwidth (σ = 1.0 in this case). This process was repeated for each of the observation

times during the period. The graphic illustrates the relationship between the value of α and the

average Ignorance score when the observation time is 0.833 through the period. The graph is

piecewise linear illustrating the discrete values at which α was tested. The value of α that minimises

the average Ignorance score is 0.65 in this case.

The discrete-best α variables are calculated for each observation time through

the period and these are shown in figure 3.24. Figure 3.21 illustrates that typically

the model ensemble values stay close to the system trajectory quite well initially

but then they diverge in the second part of the period such that they nearly span

the whole range of potential X values. This suggests that in the second half of

the period the ensemble may be little better than a climatology forecast. Figure

3.24 is consistent with this interpretation. For observation times less than 0.5 the

value of α that optimises the Ignorance score is close to 1 meaning that almost full

weight is given to the kernel dressed ensemble. After this time the value of α falls

to a minimum value of 0.55 at the end of the period - i.e. more weight is given to

climatology at this time. Since different values of α are derived at each observation
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time during the period the resulting values will be denoted below as α0(t).
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Figure 3.24: Discrete-best α0 values for each observation time through the period

Calculating best σ values given α0(t) In the previous sub-section σ was held

fixed at a value of 1.0. This sub-section explores whether the average Ignorance

score can be improved further by allowing σ to vary and using the values α0(t) that

were calculated above. Two examples of this are shown in figure 3.25 the left hand

plot shows the average Ignorance when t = 3
24

and the right hand plot looks at a

later time in the period when t = 19
24

. The figure shows that better average scores

can indeed be found when σ is allowed to vary. In the early part of the period a value

for the kernel bandwidth (σ) of less than 1 puts more weight on the ensemble values

leading to a narrower distribution. Conversely, later in the period a better average

score is achieved by letting the kernel bandwidth be greater than 1; this leads to

a wider distribution which avoids poor Ignorance scores when the ensembles have

failed to shadow the system. The discrete-best σ values are therefore determined

given each value of α0(t) these are shown in figure 3.26. Note that for early parts of

the period the values are less than 1 and these are times when the α value is high

(i.e. significant weight given to the ensemble). Figure 3.21 makes this clear - initially

the forecasted values are close to the observed value and so a small bandwidth (σ)

for the kernel smoother gives a lot of weight to the actual ensemble values - and as

the observation is close to these the score will be high.
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Figure 3.25: Discrete-best σ against observation time for locally discrete best α0(t). The left

hand graphic shows the value when the time is 3
24 through a period and the right when it is 19

24

through. The left hand plot shows that a kernel bandwidth of less than 1 gives a lower average

score in the early part of the period; the right hand plot shows that a value greater than 1 is

optimal nearer the end of the period.
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Figure 3.26: Discrete best σ0 values for each value of α0(t)
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Grid-best values The process above keeps one factor fixed for each step of the

optimisation. Better values still may be found if the two parameters are permitted

to vary simultaneously. This is explored in this section. The discrete-best values

α0(t) and σ0(t) values determined above are placed at the centre of a grid of trial

values in each variable. The average score is calculated at each of these trial values

(some higher some lower than the central values). In several cases the best pair is

not at the centre of the grid indicating better value pairs are available than derived

by the one factor approach above. Figure 3.27 shows an example of a contour plot

of α against σ with the grid-best value highlighted.
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Figure 3.27: Contour plot of average Ignorance score for different values of α and σ. Average

score values are calculated at 49 grid points with the one factor best σ(t) and α(t) taken as the

centre of the grid. The values of the average score are shown in grey and plotted at the intersection

of the grid lines. This example illustrates the picture for observations 0.833 through the period.

In this case the grid-best (minimum Ignorance) parameters are in the centre of the grid.

The joint optimisation process described above was carried for each observation

time. Figure 3.29 shows the resulting grid-best parameter values as black circles with

the chosen (smoothed) parameter values as blue lines and dots. Since the forecast

skill gets progressively worse over the period it is appropriate that α (figure (b))
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should monotonically decrease and similarly σ (figure (a)) should increase over the

period. Note, α has been constrained to take a maximum value 97.5% to ensure that

every forecast contains an element of climatology which, in turn, ensures that no

forecast ascribes zero probability to an observed value (unless that value is outside

of the observed climatology). The value of 97.5% is chosen arbitrarily to be very

close to 100%. Figure 3.28 shows the σ and α parameters with the times they

apply to shown as text, this shows an (almost) right angular effect where at the

start of the period the value of σ gradually increases to reflect the widening funnel

of doubt in the forecast - but the value of α remains close to unity because the

forecast still contains lots of information. Roughly half way through the period

the opposite occurs - the kernel bandwidth remains constant and the value of α

falls away consistently as the forecast gets progressively worse and climatology does

better. As noted previously α does not decrease to zero indicating that the kernel

dressed ensemble retains some value later in the period.
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Figure 3.28: σ vs α - where the time that the parameter pairing occurs is shown in the text -

the blue dots show the chosen parameters which fit through the grid-best parameters.
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Figure 3.29: Blending parameters: chosen (manually smoothed) σ (figure (a)) and α (figure

(b)) values (blue lines and dots) for different times through the period; grid-best values (before

smoothing) are shown as black circles.

176



3.9 Climatology Blended Forecasts: 10009-12

Figure 3.30 compares the blending parameters for the other models of system 80001.

These were chosen by using the parameters used for forecast 10008 as a starting point

and then creating a grid of values around these to test for scoring improvements.

The grey shading shows the range of α and σ values that were tested at each time

during the period.

Some conclusions are:

• All models follow similar patterns (α tends to diminish over the period and σ

to increase);

• The grid-best parameters at a given time (dots) show some scatter due, to

sampling error, which has been smoothed away in the final manual selection;

• Models 10008 and 10009 have similar parameters although the weight given

to the kernel dressed ensemble is lower for the latter model;

• Under Model 10010 the value placed on the kernel dressed ensemble falls away

quickly and a high kernel width is applied. This suggests that the model has

low skill and section 3.11 shows that this is indeed the case;

• Model 10011 retains the maximum permissible level of α (i.e. 0.975) suggesting

that the kernel dressed ensemble retains considerable value late into the period.

The kernel width σ also remains much lower than the others but does widen

over the period;

• Model 10012 (F = AR(4)) has a lower value for the α parameter and a higher

value of σ than forecasts 10008 and 10009 - this is despite recreating the

climatology of the system better as shown in figure 3.20. The σ value for this

model has been allowed to reduce below a high point in the middle of the

period because the there were no higher values to support the monotonic rule

in this case.
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Figure 3.30: Chosen blending parameters for the other forecasts. Black line shows the parameters

for forecast 10008. Grey shading shows the range of parameter values tested in the grid. Dots

show the gird-best parameters (i.e. those giving the best score on the grid a particular proportion

through the period); lines show the chosen manually smoothed values.
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3.10 Scoring forecasts - Model 10008

This section illustrates how forecasts produced using model 10008 perform when

scored against out of sample observations with the Ignorance score. As with earlier

time series graphics, figure 3.31 displays the System observations in red; the fore-

cast ensemble values are shown in grey. The Ignorance score values for the given

observation and climatology blended forecast are shown as a black line relative to

a secondary y-axis at the right of each plot. Various periods are illustrated which

were chosen to illustrate periods in which a particularly bad period average score

arises. There are different ways this can happen:

• In period 6 the observed values in the middle of the period fall outside of the

forecast ensemble - on the high side, climatology blending ensures the score

is finite but nevertheless it spikes. A poor score occurs for several values in

succession, this is typical;

• period 316 shows a poor score at time 9
24

- this is interesting because the

observed value falls within the range of ensemble values but mid-way between

two groups of values - the blended score will still be low between the two

probability peaks - the CRPS would have been less sensitive to this forecast

bust based on the work in Chapter 2;

• period 361 shows the opposite case as period 6, i.e. the observed value falls

below the ensemble range;

• period 461 shows a long run of observations that are higher than the ensemble

range.

Figure 3.32 shows how the scores (for forecasts of the variable X1) vary over

the period. The graphic shows that the median score rises from less than -2 to

approximately zero. Scores are shown relative to climatology and so a score of zero

means that the forecast is adding no additional skill at that stage. The coloured

lines show quantiles of the score values and the dots show all values outside of the

interquartile range.

Figure 3.33 shows that the pattern of change in average score for each of the 36

X variables. The behaviour of these variables in the system and for any one model
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Figure 3.31: Comparison of system observations (red) and forecast ensemble for model 10008

(grey dashes and grey bar). The Ignorance score for the given observation and climatology blended

forecast is illustrated with a black line whose values are shown on a secondary y-axis to the right

of the plot.

is equal in distribution. This remains true for the more complex models 10011 and

10012. In the case of 10011 the functional relationship between Xk and Fk is the

same for each k. In the case of 10012 the parameters of the AR(4) process used is

the same for each k. Given the scoring process is also the same for each Xk the plot

of average Ignorance over the period should converge in the limit. Therefore a plot

of the sample average Ignorance for each of the variables illustrates the degree of

uncertainty in the conclusions. The average Ignorance for variable X1 is shown in

black in the plot and the equivalent lines for the other 35 variables are all shown in

grey. Since these all display the same behaviour and are close to the black line it is
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Figure 3.32: Box plots of Ignorance values for forecast 10008 at different times during the period.

Coloured lines show the quantiles of the distributions. Dots show all values outside of interquartile

range.

safe to conclude that the relationship over the period is well described by the black

line and free from material sampling error.

The value of climatology blending for forecast 10008 was explored by comparing

the blended forecast with a kernel dressed forecast using the same kernel width

(but no blending). In the early part of the period the two approaches give very

similar scores, this is to be expected because the α parameter is close to 1 at this

time and the climatology is given very little weight. Towards the end of the period,

however, two things occur (1) the ensemble members typically drift apart and (2)

more weight is put on climatology. This additional climatology weight does lead to

a better scoring forecast (as intended) but the improvement in the Ignorance score

is less than 0.2.
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Figure 3.33: Black line shows average Ignorance at different proportions though the period for

the climatology blended forecast, for forecasts of the variable X1. Grey lines show the average

score for the other 35 variables (X2, ...X36)

The average period score can be created by taking the scores at each discrete

time step during a period and averaging them to create a single score measure for

the period. Whilst the average of proper scores may not be proper this measure

does allow two forecast methods to be compared over a whole period. The top

left graphic in figure 3.34 illustrates (for X1) the probability density of the observed

period scores over the 1184 periods tested. As above the figure shows the climatology

blended case in red and the kernel dressed (only) case in blue. Blending narrows

the distribution leading to less periods with bad forecasts (positive values) but also

less chance of a very good forecast (negative values). The top right graphic shows

that the period-average Ignorance is better (lower) in the blended case. The box

plots are taken over forecasts of all 36 X variables. The grey lines represent the

change in value for each variable between the kernel dressed and blended case and

it should be noted that, whilst the box plots do overlap, each of the grey slopes is

negative so the reduction in mean occurs in every case and the result is robust. The
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bottom graphic in the figure shows the standard deviation of period scores over all

36 variables - again showing that the narrowing of the density illustrated in the top

left plot is a general result.
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Figure 3.34: Average period forecasts, comparison of climatology blended forecast and kernel

dressed (only) forecasts. Top left shows density of average period score over 1184 periods; top

right shows box plots of the mean average period score over 36 X variables; bottom plot shows

the range of standard deviation of the average period score for the same variables. In each of the

box plots and for a given variable Xk a grey line is drawn between the value of the statistic in the

kernel dressed case and in the blended case.

Model 10008 was compared with two sensitivity tests - the first 10008a uses the

same value of σ but uses α values that are 10% lower (i.e. more weight put on

climatology). The second 10008b keeps α the same but sets σ 10% higher. This has

two effects: (1) the full range of scores is slightly narrowed (this is most noticeable

in 10008a where the reduction in really bad scores is much reduced) and (2) the

median score (and mean) is worse - but not much worse. So by giving more weight

to climatology (or using a wider bandwidth) some skill is given up at the mean but
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there are fewer forecast busts.

Examination of whether two forecasts can be blended to further improve

the average score Given two models that provide forecasts over a period of

observation. If there are times during the period when one model does reliably

better than the other, but then other times when the situation is reversed, then

there would be a benefit to blending the forecasts together. This has already been

exploited above where the climatology forecast is blended with those from the models

considered. The pairwise difference between the scores of each model were compared

and in each case one model performed better than the other throughout the entire

period. Hence there is nothing to be gained from blending two of the models together

on this occasion.

3.11 Scoring forecasts - models 10009-12

This section uses the Ignorance score to compare all the models of system 80001

to see which (if any) outperforms the others, over 1184 periods. First the average

scores at each observation time are compared to see if different models do better at

different times through a period. Next, different score quantiles at each observation

time are compared to see whether some models have worst forecast busts than others.

Finally, the period average scores (i.e. the average score over all observation times

within a period) are compared. Insurers typically offer cover over a period rather

than at a point in time and it is therefore important to know whether a model does

well over the whole period rather than just at certain points during the period, for

this reason period average scores are also considered. Model 10011 emerges as the

best model on most measures, consistent with the fact that its blending α parameter

stays higher for longer during the period.

Figure 3.35 shows the mean Ignorance score at different times through the pe-

riod for the 5 forecasts. As expected, forecast 10011 (where F = IEF (X)) scores

considerably better than the others and indeed retains skill relative to climatology

to the end of the period. Forecast 10010 (F = 8) scores worse than the others.

10009 (F = E(IEF )) does slightly better than 10008 for most of the period and

10012 (F = AR(4)) does worse at the start of the period than all the other models.
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Figure 3.36 is similar but compares chosen quantiles of the score at different

points during the period (over 1184 periods). Forecast 10011 does best for the low

quantiles (i.e. when it does well it does really well). The story for high quantiles (i.e.

when the forecasts are doing badly) is more interesting. At the start of the period

all the methods are quite close. At the end of the period, however, forecasts from

models 10008, 10009, 10010 and 10012 all see their worst skill scores diminishing

- this is due to the fact that for each of these forecasts a great deal of weight has

been put on climatology by this point. Conversely when forecast 10011 does badly

it does really badly - because little weight has been put on the climatology.

Figure 3.37 compares the period average scores of the forecasts. The diagonal

shows which row and column a given forecast falls within - and also shows the mean

period average score over all 1184 periods. Despite its occasional very bad scores at

the end of the period, forecasts from model 10011 have considerably better average

scores than the other models. The right hand triangle shows the correlation between

period scores; for example the correlation between the period scores of forecasts

10008 and 10010 is 0.6. The bottom triangle shows scatter plots of the period scores

over all 1184 periods observed. In the scatter plots the x-axis always relates to the

forecast named in the column and the y-axis relates the forecast named in the row.

The line y = x is shown for easy comparison. Forecast 10011 does better than the

others in the majority of periods (since the scatter points are almost all one side of

the line) and 10010 clearly tends to do worse more often than it does better.

The next chapter will explore the forecasts in an insurance setting and will

discover whether the occasional busts of forecasts from model 10011 are serious

impediment or something that can be tolerated given its general out-performance

of the others.
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Figure 3.35: Comparison of scores for models 10008 to 10012. Mean score over 1184 periods - at

different times during the period. Model 10011 outperforms the others and retains skill relative to

climatology through the entire period.
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Figure 3.36: Comparison of skill score quantiles for forecasts from models 10008 to 10012. For

the low quantiles (Top left, top right and mid left graphics) model 10011 performs better than the

others throughout the period. For the high quantiles (mid right, bottom left and bottom right

graphics) model 10011 performs best for the first half of the period but worst for the second half.
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Figure 3.37: Comparison of forecasts 10008 to 10012. Diagonal shows forecast ID and also

the mean of the period average scores over all periods. The lower triangle shows scatter plots

comparing the period average score from each pair of models. Let Model A (x-axis) be defined by

the model label in the column above and model B by the row label to the right, then each point

in the scatter plot is the period average score from model A compared to that of model B; the

line y = x is shown for easy comparison. Model 10011 clearly outperforms the other models since

the scatter points are almost all one side of the line. The top right triangle shows the correlation

coefficient between model A and model B defined by the label in the column below and row to left.

188



3.12 Climatology Blended Forecasts: 80002-6

As described in section 3.9 the ensemble outputs from each model can be kernel

dressed and climatology blended to produce best scoring forecasts. The Ignorance

score continues to be used in all cases. The methodology described earlier is used

except that the parameters for system 80001 are used as the central values of the

grid of parameters tested. The grid size was enlarged, as necessary, to ensure that

the minimum average Ignorance had been found in each case. The grid-best values

of of α and σ are shown in figures 3.38 and 3.39 as empty circles along with the

manually chosen monotonically increasing and decreasing final choices as solid lines;

note that the circles have been jittered slightly in some cases so they do not overlap.

The graphics are plotted on a 3 row and 2 column grid, the phrase ‘position (i,j)’

will be used to refer to the graphic in column j and row i. System 80001 has been

described in detail above and this discussion is not repeated but values for easy

comparison are repeated in plot (1,1). The following observations are made:

System 80002 F = 20, hx = 1 plot (1,2) The α parameter falls faster away

from the best value of 1 than system 80001. It also falls close to zero for forecasts

at the end of the period (for all models but 10111). In tandem the σ parameter

rises quickly to a value above 1.4 showing that a wide kernel dressing bandwidth

is required to improve the skill score. Note that the grid-best values for σ can be

variable at the end of the period due to sampling error. This is not a cause for

concern, however, because this is where significant value is given to climatology and

so the σ parameter plays little role in the forecast. The blending parameters of

model 10111 (i.e. where F = IEF (X)) continue to give more weight to the forecast

than the other models. In summary, system 80002 is less predictable as expected

and the blending parameters cater for this.

System 80003 F = 20, hx = 0.1 plot (2,1) The α parameter follows a similar

pattern as system 80002. For each value observation during the period the value is

less, however, indicating less weight is put on the forecast and more on climatology.

This was not expected as the lower coupling parameter was expected to lead to

better predictability because the closer to zero the coupling parameter is, the less
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affect the Y variables have on the X variables; in the limit when hx is zero the

system and model (with same forcing) converge. Hence models in system 80003

were expected to be ‘closer’ to the system and therefore to give better predictability.

The reason that this is not the case is suggested by the difference between systems

80002 and 80001. In system 80002 the forcing is much larger and this leads to lower

predictability suggesting a general rule that larger effective forcing leads to lower

predictability. The effective forcing of system 80003 is 19.9 compared with 18.9

for system 80002; this is due to the fact that the impact of the Y variables is to

reduce the effective forcing on average (as mentioned above). Hence system 80003

is a higher forcing system and inherently less predictable than 80002. In summary

the effective forcing exerts a much stronger influence on predictability than coupling

which was not anticipated.

System 80004 F = 10, hx = 0.1 plot (2,2) This system was chosen to be the

pair of system 80001, it has the same forcing but lower coupling. Again this was

expected to be more predictable and as with 80003 the opposite is true for similar

reasons.

System 80005 F = 9.1, hx = 0.1 plot (3,1) This system was chosen after it was

discovered that system 80004 was not as predictable as expected. This system is

chosen to have the same effective forcing as system 80001 but, due to the lower cou-

pling parameter, was hoped to be more predictable. The results here are interesting.

For the models *8, *9, *10 and *12 the weight put on the forecast remains higher

for longer and also the kernel dressing bandwidth remains lower for longer, both of

these indicate more predictability as hoped. The blending parameters of Model *11

give lower weight to the forecast than 80001. In system 80001 the α parameter stays

close to 1 for the whole period, in system 80005 this model does retain a higher α for

slightly longer than the other models but falls away from 1 a little under half way

through the period. Model *11 makes use of the strong correspondence between a

value of X and the effective forcing at that time, when the coupling is reduced the

utility of this relationship is also reduced leading to less weight being placed on the

forecast for this model.
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System 80006 F = 11, hx = 1 plot (3,2) The broad trend in the blending

parameters in this system is quite similar to 80001. The stronger coupling than 80005

and greater weight placed on the forecasts from model *11 supports the hypothesis

that a stronger coupling is actually beneficial to predictability in this case. Due to

the higher effective forcing in this system (E(IEF ) = 9.98) the models place less

weight on the forecasts than for 80001, however, and the value of α falls further

indicating more weight being put on climatology. This result is consistent with

expectations.

3.13 Scoring forecasts in systems 80002-80006

Comparison of skill scores for each system and each observation time

Figure 3.40 compares the average score at each observation time through the period

for each of the systems. The same ordering is used as before and the graphics will be

referred to using the same row/column format. System 80001, plot (1,1), has been

described before. For system 80002, plot (1,2) the Ignorance score rises quickly and

by half way through the period is zero indicating there is no skill above climatology.

The same is true for system 80003, plot (2,1) except that the skill falls away quicker

reaching the climatology average by time 0.4 - this is another illustration of the

system that was expected to be more predictable being less so. Systems 80003,

80004 and 80005, each have low coupling of 0.1 and show little difference in average

score at each observation time between the models. Models *11 stand out in each

of the systems where the coupling is larger - for each of the observation times. In

the case of systems 80001 and 80006 skill above climatology is retained to the end

of the period for model *11.
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Figure 3.38: Grid-best α value over the period- lines represent manually smoothed values and

dots represent the best points on the tested grid. The model numbers are shown in the legend of

each plot. The corresponding system can be inferred from these.
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Figure 3.39: Grid-best σ - lines represent manually smoothed values and dots represent the

best points on the tested grid The model numbers are shown in the legend of each plot. The

corresponding system can be inferred from these.
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Figure 3.40: Mean Ignorance score at different proportions through the period 1
24 , ...

24
24 . Com-

parison of all forecasts from all model ensembles in all systems. Model ID is shown in the plot

from which the system can be inferred.
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Period average scores Figure 3.41 illustrates the period average scores for the

various systems and various models described above. As noted above this is not a

proper score but allows the models to be compared over a complete period. The

average score for variable X1 is highlighted by a red bar in each plot. In figure (b) a

box plot of the scores for each of the 36 X variables is also shown in grey to indicate

the variance in the estimate (given as usual that the X variables are identical in

distribution). Figure (b) uses a bootstrap re-sampling approach to illustrates the

uncertainty in the estimate. The different systems are demarcated by vertical grey

lines in the plot. The key results are:

• As the forcing increases the predictability in the system (as measured by the

skill score) decreases;

• Model *11 does best in all systems consistent with the results at each observa-

tion time. This is particularly the case where the coupling parameter is larger

and the benefit diminishes materially when the coupling is small;

• Model *10 performs worst in all systems from this point of view;

• Models *8 and *9 perform similarly in all systems;

• Model *12 performs worse than the simpler model *8 despite its attempt to

replicate the statistical behaviour of the IEF through an AR(4) process; this

suggests that the lack of conformity with the dynamics of the system is a larger

factor in model quality than the closer adherence of one of its parameters to

the ‘correct’ statistical behaviour.
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Figure 3.41: Comparison of period average scores for forecasts from each model. Figure (a)

shows the average score for K=1 (red) compared to a box plot of the average score for the other

35 K variables. Figure (b) shows the average score for K1 (again red) but this time against a box

plot of bootstrap resampled means. 29 samples each of size 29 are taken (with replacement) from

the 1184 period scores available to indicate the uncertainty in the mean value. These resamples

are chosen so that the same periods are chosen for each of the forecasts in each case.

196



3.14 Conclusions

This chapter has introduced six Lorenz 96 systems each with five models. Higher

values of the forcing parameter F in the system lead to lower predictability. Reduced

coupling hx for a given level of forcing was expected to lead to increased predictability

but this did not arise because the effective forcing in the system actually increases

when coupling decreases and this is shown to be the dominant effect. Climatology

blending is used at each forecast lead time over a chosen period of 24 observations.

The blending parameters are observed and their behaviour illustrated and explained.

As expected the weight put on the forecast diminishes as lead time increases and the

kernel width increases; however the fact that these appear to operate in series rather

than parallel was not anticipated. Models with a fixed forcing parameter do not score

as well when compared to a model with a stochastic parameter based on the current

state of the system. An AR(4) model for the instantaneous forcing parameter leads

to observations that broadly match its statistics, but do not produce forecasts that

score well. This shows that the common practice in statistics of matching process

parameters is incomplete in the context of dynamical systems. The Lorenz 96 system

will be used in the next chapter to explore the conditions in which forecasts can be

useful in an insurance context.
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Chapter 4

Predicting the Lorenz system -

with applications to insurance

‘The key question concerning the usefulness of imperfect models, however, is

not whether they will yield nearly optimal policies which could be obtained

only by having perfect knowledge...but whether they can yield policies which

are superior to an inactive policy allowing for no feedback.’

Chow, 1976 [42]

This chapter considers whether forecasts can improve pricing in insurance. Sec-

tion 4.1 describes a general method to create an insurable index from dynamical

system output. This is analogous to various index products currently sold by the

insurance markets today where, for example, the dynamical system can be the at-

mosphere or geological processes [116, 267]. The chapter ultimately seeks to test,

by analogy, whether models of a dynamical system (such as WRF1 or HadCM32)

can add value to insurance, using the Lorenz 96 system and models as a concrete

example.

Before the key insurance question is tackled it is stressed that operational models

only imperfectly describe the systems they are attempting to imitate [166]. For

1The Weather Research and Forecasting model (WRF) [276] is the numerical weather predic-

tion model of the National Centre for Atmospheric Research (NCAR) [181], USA.
2The Hadley centre, Coupled Model 3 (HadCM3) [169] is a coupled ocean and atmospheric

model developed by the Hadley centre in the UK.
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example, figure 3.19 of Chapter 3 shows that the range of target values taken by a

model can be different to reality (system). Operational models, whilst not perfect,

may still be useful [27,42] and section 4.2 introduces a new and general method, using

skill scores, to recover a more useful 1-to-1 relationship between one dimensional

projections of the models and system. Section 4.3 confirms that the method is

successful in a special case when the sample space of the system and model are

discretised in an ideal way; section 4.4 then demonstrates that the method remains

successful when the relationship between the model and system is less idealised.

Section 4.5 gives a translation of the general setting into an insurance setting

to provide a concrete example. The Lorenz system II and structurally imperfect

models of it, described in Chapter 3, provide the basis for an example in section

4.6 showing that the use of the transformed model output in pricing leads both to

improved profitability and to reduced risk of insolvency. Climatology blended pricing

is also developed in this section; it is not as successful as the simpler expectation

adjustment method, for this example. Section 4.7 concludes with a discussion for

future work that could be undertaken using this new framework. The new work in

this chapter is believed to be:

• Introduction of the φ-transformation method described in section 4.2 and the

testing of this method in later sections 4.3 and 4.4;

• Application of the φ-transformation to the Lorenz 96 system in subsection

4.6.1;

• Development of a pseudo-insurance index, in general (4.1) and for the Lorenz 96

system (4.6);

• Use of φ-transformed model outputs in pricing of the Lorenz 96 index, via (1)

updated expectation method and (2) climatology blending in subsection 4.6.2;

• Suggestions for extension of this work in future discussed in section 4.7.

4.1 Definition of an Insurable index

Weather risk transfer is currently a small market for insurers [185]. Traditionally,

risk transfer is achieved by paying for the damage or loss of profitability that has

actually occurred, determined after the fact by experts (loss adjusters), called in-
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demnity insurance [47, 247]. Since the 1990s another form of risk transfer has been

offered where the payouts are determined by agreed relationships between observed

variables and the financial losses they relate to [5, 6, 39, 269]. For example a payout

may be made each time the temperature exceeds 105F at the weekend (‘hot days’);

in this example, summarised in table 4.1, the system is the atmosphere and the par-

ticular variable is temperature. The insurance purchaser may be interested in the

total impact of hot days at multiple locations in Florida over the summer. This

generalises to an interest in multiple transformed variables measured over multiple

times. In order to decide what payout they require for a given variable value the

purchaser or broker would explore the likely impact that could arise; this could be

achieved by a statistical analysis of past events or by using models [53]. The raw

variables may need transforming into a more decision relevant index, for example

the damage from hurricane winds. The following general description is developed

with the above example in mind.

The following describes how an insurable index R may be created from observed

variables of a dynamical system. Consider an arbitrary multidimensional system

with multiple variables X1(t), X2(t), ...,XK(t). Given a vector of such system values

at times t1, ...tP
3 let fk(Xk(ti), θk) represent the transformation from system vari-

ables to decision relevant variables at a particular time ti, where θk refers to a set

of exogenous parameters of the function fk. Suppose the decision maker (e.g. a

risk manager considering the purchase of insurance) is interested in multiple vari-

ables indexed by H ⊂ {1, 2, ...K}). Let a function of system variables be defined as

follows:

R(Xk|k ∈ H) :=
P∑
i=1

∑
k∈H

fk(Xk(ti), θk) (4.1)

Then, R is the decision relevant variable created from transforming various selected

system variables measured at a number of stated times. In the example, R repre-

sents the revenue lost due to extreme temperatures at specified locations during the

summer.

3As with Chapter 3 a sequence of times 1, ..P will be called a ‘period’; which would typically

be a year for an insurance contract but, in theory, be any chosen length of time.
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Table 4.1: Terminology for insurance index showing general terms and a concrete example

General concept Index insurance example

Problem On hot days people may not attend outside venues leading to loss of ticket sales and

other related revenue

Decision Whether to purchase insurance against ‘hot days’ for a stadium operator on critical

business days

System Atmosphere

System variable Temperature

Decision relevant variable Reduction in ticket sales (and other sources of revenue) caused by non-attendance due

to hot days

fk(Xk(ti), θk) Loss of revenue at a given venue and particular day

Period t1, ...tP specified times (weekend dates) over the summer

H = {k1, k2, ..., kn} Locations of chosen venues in Florida

R(Xk|k ∈ H) Total implied revenue impacts at specified locations over the summer

Model WRF (NCAR)

4.2 Relating the system and its models

Model dynamics may not match the system precisely as shown in Chapter 3 where,

for example, the model PDFs were not identical to those of the system. The model

may, however, still have useful information about the system. This section considers

a method whereby the model and system values can be related via a 1-1 relationship

and demonstrates a method to estimate this using skill scores. To emphasise the

difference between model and system the notation X̂k will be used to denote the

model variables, as distinct from system variables Xk.

Let Ω be the range of the function R (equation 4.1) applied to the system. Choose

a partition4 of intervals Aj = (aj−1, aj). Define the indicator function I(Aj, X,H)

as:

I(Aj, X,H) =

1 R(Xk|k ∈ H) ∈ (aj−1, aj)

0 otherwise

(4.2)

As a slight abuse of notation Aj will also be described as an ‘event’ which is deemed

to have occurred if I(Aj, X,H) = 1. I(Aj, X̂,H) is defined similarly for model

variables.

A simple approach to predicting whether the index defined in 4.1 will fall within

a prescribed range (Aj) would be to see whether the model outputs fall within this

range too, i.e. to look for cases when I(Ai, X̂,H) = 1 . This implies, however, that

the thresholds in the system retain their meaning in the model. Chapter 3 showed

4 A partition {Aj}Mj=1 of a set Ω satisfies the following conditions: (1) Ω =
⋃M
j=1Aj and (2)

Aj ∩Ai = φ ∀i 6= j
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that this is not the case in the model for Lorenz 96 where, for example, the 90th

percentile from the model with forcing parameter F = 10 was 13% higher than that

of the system. Note also that the 60th percentile was only 6.5% higher than the

system so the relationship can vary.

A more general approach is to consider a possibly different interval (Bj = (bj−1, bj))

defined to have occurred when I(Bj, X̂,H) = 1 and to test whether the occurrence

of Bj in the model is predictive of the occurrence of Aj in the system. There is no

a priori reason why Aj = Bj, other intervals may give better predictability and this

can be tested. Specifically, choose another partition of intervals {Bi}Mi=1 which cov-

ers the range of R applied to the model outputs (call this Θ , so that Θ =
⋃M
i=1 Bi).

Note that M is the same in both partitions and implicitly defines a set function

φ(Ai) := Bi. The aim of this section is to find a mapping φ so that when Bi occurs

in the model there is a good chance Ai will occur in the system. In creating these

partitions the system and model spaces have been discretised such that there are M

points in each space.

Given an ensemble of forecasts with Nens members, labelled X̂1
k , ...X̂

Nens
k (for a

given k) define the relative frequency (λ) of hitting an interval Bi as follows:

λ(Bi, X̂k) :=

∑Nens
g=1 I(Bi, X̂

g
k)

Nens

. (4.3)

The model ensemble implies a relative frequency that event Bi occurs by counting

the number of ensemble members that give values falling in that interval as described

above. Since, by construction, φ is 1:1 and monotonic this also suggests a categorical

probabilistic forecast p for the event Ai. Specifically,

p(A = Ai) := λ(Bi, X̂k.) (4.4)

Observations determine which event Ai occurs; the indicator functions defined above

will be zero in all cases apart from the one that occurs. For a given forecast and

observation, the skill score can be calculated using any score appropriate for cat-

egorical forecasts. For example, if the Ignorance is used the score is calculated as

follows.

S(p,Ai) = −
∑
i

I(Ai, Xk) log2(λ(Bi, X̂k)). (4.5)

Note that a partition {Bi}Mi=1 is equivalent to an M + 1 dimensional vector

subject to the constraint that bj+1 > bj. Hence using a constrained multivariate
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optimisation routine (such as the Nelder Mead algorithm) a partition {Bi}Mi=1 can

be found to optimise the average score S for a given partition {Ai}Mi=1. This produces

a piecewise linear non-decreasing function φ which relates the model and system, as

sought. The above concept is illustrated in figure 4.1. Call this the ‘Score Optimal

Piecewise Linear Relationship (SOPLR)’ .

φ = argmin(b0, ....bM)S(p, v); bi < bj ∀i, j. (4.6)

Generalisations In the above definition the relative frequency is interpreted as a

forecast probability. In Chapter 3, climatology blending was used to produce a con-

tinuous forecast with a minimal empirical score. Such a forecast defines a predicted

probability density (p) for any value of the system. There are other methods5 to

produce a probabilistic forecast p and given any such a forecast the model probabil-

ity of falling within the chosen interval can be calculated, in which case the relative

frequency in equation 4.5 can be replaced with the value below:

λ′(b1, b2, p) :=

∫ b2

b1

p(x)dx. (4.7)

This is a generalisation of the relative frequency defined above. In fact let p be a

sum of delta functions at the predicted values X̂1
k , ...X̂

Nens
k , each with integral 1

Nens
,

then the two definitions are equivalent.

Given any non-decreasing function φ, the forecast probability density pA(a) of

the system value a being observed can be defined by the probability density pB in

the model as:

pA(a) := pB(φ(a))| d
da
φ(a)| (4.8)

As before a score can then be evaluated S(pA, a). With this definition one would

then seek to optimise the score over all allowable functions φ. In general the data

is not available to achieve this in practice. The piecewise linear method described

above will be used for the rest of this chapter as it is sufficient for our purposes given

the imperfections in the model.

5For example the Kernel Dressing or Climatology Blending of Chapter 2.
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Summary of coming sections Sections 4.3 and 4.4 describe a series of exper-

iments to test the φ-transformation method in idealised conditions. Section 4.3

describes a situation where the sample spaces of the model and system are naturally

discretised into partitions. The derived SOPLR φ closely matches the true relation-

ship φ′ in two tests where the forecasts are of high and low quality respectively.

The true relationship φ′ is almost exactly recovered in a perfect partition example

({Aj} = {A′j}). Section 4.4 tests a less idealised situation where the relationship φ′

is defined by a monotonic continuous function. Again the φ-transformation method

recovers a discrete approximation to the true relationship. The same partition is

considered in two cases with different probability densities, this shows (as expected)

that the φ-transformation method achieves a closer approximation where the data

is plentiful. The overall conclusion is that the method is successful. The reader can

skip to section 4.5 where the method is tested in an insurance context, unless they

wish to see the full details.

4.3 Example C4.1: Naturally discretisable

Consider the situation where the system and model spaces are already partitioned.

Observations are generated along with an ensemble of model outputs that have a

built-in piecewise linear relationship φ′. Deliberate model failures are incorporated,

the frequency and magnitude of which can be controlled to make the quality of the

forecast as good or bad as required. The Score Optimal Piecewise Linear Relation-

ship method will then be used to generate φ (equation 4.6) to test whether this is

close to the true relationship φ′.

System and model partitions The following algorithm defines a process to

create a series of observations and a corresponding ensemble of ‘model’ outputs

from which a forecast can be created. The algorithm allows the quality of the

forecast to be controlled. Let Ω′ = (a′0, a
′
M ′) be an interval which defines the sample

space of the System and {A′j} be a partition of intervals, A′j = (a′j−1, a
′
j), such that

Ω′ =
⋃M ′

j=1 A
′
i. A′1 and A′M ′ are referred to below as ‘boundary’ intervals and

A′j, 1 < j < M ′ are called ‘Interior intervals’. Note that this partition will be

used to define the system, it is not the same as as the partition {Aj} used to define
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the mapping φ (equation 4.6). Let Θ′ = (b′0, b
′
M ′) be an interval which defines the

range of the model and {B′j} be a partition of intervals, B′j = (b′j−1, b
′
j), such that

Θ′ =
⋃M ′

j=1B
′
j.

The following algorithm (see also figure 4.2) results inNobs observations v1, ....vNobs .

For each observation vi an ensemble ofNens model outputs wi,1, ....wi,Nens are created.

Let p1, p2, p3 ≥ 0 be such that
∑
pi = 1, these will be the proportions of ‘Good’,

‘Near Miss’ and ‘Uninformative’ ensemble members, respectively. Let u ∼ U(x, y)

denote a sample from a uniform random variable with lower limit x and upper limit

y, the character Q is used below to denote a random real number between zero and

1 (i.e. Q ∼ U(0, 1)).

Algorithm for examples C4.1.x, for x ∈ 1, 2

• For i = 1, 2, ...Nobs

• Sample j ∈ {1, ...M ′};

• Define Observation: Sample vi ∼ U(a′j−1, a
′
j).

• Create Ensemble: For each integer g = 1, ...Nens Choose from three options

according to specified probabilities:

– If Q1 < p1: ‘High quality ensemble member’ sample wi,g ∼ U(b′j−1, bj);

– If p1 ≤ Q1 < p1 + p2: ‘Near miss ensemble member’

∗ If 1 < j < M ′ (observation is from an interior interval; then choose

ensemble member from one of the intervals either side as follows)

· if Q2 ≤ 0.5: wi,g ∼ U(b′j−2, b
′
j−1);

· if Q2 > 0.5: wi,g ∼ U(b′j, b
′
j+1);

∗ Else if j = 1 sample wi,g ∼ U(b′1, b
′
2) (observation is from left bound-

ary, choose ensemble member from adjacent interval on right)

∗ Else if j = M ′ sample wi,g ∼ U(b′M ′−2, b
′
M ′−1) (observation is from

right boundary, choose ensemble member from adjacent interval on

left)

– If Q1 > p1 + p2: ‘Uninformative ensemble member’ sample an integer

k ∈ {1, ...M ′}, then sample wi,g ∼ U(b′k−1, b
′
k) ;

– Repeat to create Nens ensemble outputs for given observation vi
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Figure 4.1: Discretisation of the system and model sample spaces, with resulting relationship φ.

The top graphic shows the sample space of the system (the interval Σ = (a0, aM ) partitioned into

sub intervals A1, A2, ...AM , these are mapped in 1:1 correspondence to M intervals in the model

sample space Θ = (b0, bM ) partitioned by B1, ...BM . This can be represented by a piecewise linear,

non-decreasing relationship φ :
⋃M
i=1Ai →

⋃M
i=1Bi as shown in the bottom plot.
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Using the above process, the quality of the forecast can be controlled. If the

proportion of uninformative ensemble members (p3) is high, the average quality of

the resulting forecast will be low. If v ∈ A′j then define

φ′(v) := mv + c (4.9)

where m =
max(B′j)−min(B′j)

max(A′j)−min(A′j)
and c = min(B′j)−m.min(A′j). This is illustrated

for a single ensemble member by the blue line in figure 4.4(a) (this figure is an output

from experiment C4.1.1 defined on page 209). Note that, by construction, the model

is not in 1-1 correspondence with the system. The diagonal line in figure 4.3(b) is

the line y = x and it is clear the ensemble values do not fall around this line, they

are typically higher initially so that model values do not retain their meaning in the

system. Nevertheless the model outputs and system are closely related and hence

the forecast should have considerable predictive power. Note that since the intervals

A′j are sampled in an equally likely way the probability density of the observations

can be controlled by the width of the intervals, figure 4.3(a) shows a histogram of

observations for one example.

In order to calculate the Score Optimal Piecewise Linear Relationship (φ) it

is necessary to specify a partition {Aj}. Recall, however, that the partitions A′j

generating the observations of the system or forecasts are assumed to be unknown.

In the absence of any other information it is appropriate to choose a system partition

where each interval has the same number of observations, referred to below as ‘equal

cardinality bins’. Then the regions that are dense with observations will have

a finer grid than those with sparse observations; this allows for a more granular

relationship φ in those regions. The equal cardinality bin method is used below

unless stated otherwise.
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r

Randomly choose a 
partition element A’j

j in {1,..M’}

Determine ensemble 
member quality

High quality 
ensemble member

Sample 
 wi,g ~ U(bj-1, bj)

Randomly choose a 
different partition 

element B’m
 m in {1,..M’}

Near miss 
ensemble member
Sample (see note 6) 
 wi,g ~ U(bj-2, bj-1)

Near miss 
ensemble member
Sample (see note 6) 
wi,g ~ U(bj, bj+1)

Note 4 
Q1 < p1

Note 4 
p1 ≤ Q1 < p1+p2

Uninformative 
ensemble member

Sample 
wi,g ~ U(bm-1, bm)

Note 4 
Q2 ≤ 0.5

YES NO

 YES

NO

NOYES

Save values:  
Observation(i) = vi,  

Model ensemble (i) = {wi,1, …wi,Nens} 

Repeat to 
produce g=1,…Nens 
ensemble members

6. If j = 1, then  wi,g ~ U(a’1, a’2);  If j=M, then wi,g ~ U(a’M’-2,a’M’-1)

5. p1 = P(good quality ensemble member),  p2 = P(near miss ensemble member),  p3 = P(uninformative ensemble member)

1. System state space Ω’ = Uj=1,M’A’j where, A’j = (a’j-1, a’j)

2. Model state space Θ’ = Uj=1,M’B’j where, B’j = (b’j-1, b’j)

3. w ~ U(a,b) means sample from a uniform distribution with minimum value a and maximum b.

Notes:

4. Q ~ U(0,1) is a random number between 0 and 1. In the circles, the notation Q1< p1 (for example) 
means sample a value Q1 and determine whether it is less than p1

i < Nobs ?

Process to create 
ensemble of 
“model” outputs

Sample observation 
from A’j

vi ~ U(aj-1, aj)

 NO

YES

STOP

Figure 4.2: Example C4.1.1: Flowchart describing the observation and forecast ensemble creation

process.
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Experiment C4.1 specifications The following experiments test the φ-transformation

method in various idealised examples: (1) C4.1.1(a) has forecasts of high average

quality, (2) C4.1.1(b) forecasts of low quality; (3) C4.1.1(c) uses fewer equal cardi-

nality bins; (4) C4.1.2 uses a perfect partition in the calculation of φ, to test whether

the method recovers the true relationship φ′.

Example C4.1.1(a) - Forecasts of high average quality.

System and model parameters: Nobs = 212, M ′ = 14, Ω′ = [0, 49], Θ′ = [3, 49],

Nens = 24, p1 = 0.80, p2 = 0.15 and p3 = 0.05. A′j, B
′
j are defined in table 4.2.

SOPLR parameters: M=7, the equal cardinality partition Ω =
⋃M
j=1Aj for φ is

defined in table 4.3.

Table 4.2: Experiment C4.1.1(a) - definition of underlying system and model partitions

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

a′j 0 1 3 4 9 15 16 19 25 36 38 39 42 47 49

b′j 3 6 9 12 17 19 25 30 32 33 34 37 42 45 49

Table 4.3: Experiment C4.1.1(a) - assumed, equal cardinality, partition for φ

j 0 1 2 3 4 5 6 7

aj 0.00 2.84 8.34 15.86 24.05 37.69 41.87 48.99

Example C4.1.1(b) - Forecast with low average quality.

As for C4.1.1(a) but with p1 = 0.25, p2 = 0.25 and p3 = 0.5.

Example C4.1.1(c) - smaller partition size for φ.

As for C4.1.1(a) but with the partition {Aj} chosen to be comprised of four equal

cardinality bins only, specified by the values in table 4.4
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Table 4.4: Experiment C4.1.1(a) - assumed partition for φ

j 0 1 2 3 4

aj 0 6.13 18.41 38.32 48.99

Example C4.1.2 Perfect system partition.

System and model parameters: Nobs = 212, M ′ = 8, Ω′ = [0, 25], Θ′ = [3, 32],

Nens = 24, p1 = 0.80, p2 = 0.15 and p3 = 0.05 (forecasts with high average quality).

A′j, B
′
j are defined in table 4.5.

SOPLR parameters: M = 8, the equal cardinality partition Ω =
⋃M
j=1Aj for φ

is set equal to the true system partition (i.e. aj = a′j, ∀j).

Table 4.5: Experiment C4.1.2 - definition of underlying system and model partitions

j 0 1 2 3 4 5 6 7 8

a′j 0 1 3 4 9 15 16 19 25

b′j 3 6 9 12 17 19 25 30 32

Results for C4.1.1(a) This experiment shows that the SOPLR produces an ap-

propriate discrete approximation to the true relationship; the method is successful.

Figure 4.3(a) shows a histogram of observations with some areas of high and low

density. M = 7 equal cardinality bins are illustrated by the blue tick marks, the

width of the bin follows the density of observations as required. Figure 4.3(b) shows

the observed values versus the model values (for one ensemble member only). The

line y = x is included to illustrate the high bias of model versus system values

less than 30. Figure 4.4(a) shows the initial values (b′j) chosen for the optimisation

routine, these are just evenly spaced points within Θ illustrated by grey horizonal

lines. The intersection of these with the chosen equal cardinality bins (blue tick

marks and grey vertical lines) defines the initial trial relationship φtrial used in the

optimisation routine. Figure 4.4(b) shows the results after the optimisation routine.

The blue line represents the true relationship φ′, the black line represents the Score

Optimal Piecewise Linear Relationship φ and the grey line φtrial. Clearly φ is closer

to φ′ than φtrial suggesting success of the method.
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Figure 4.3: Example C4.1.1: Figure (a) Histogram of pseudo observations of the system. End

points of equal cardinality bins indicated by the blue tick marks), Figure (b) Scatter plot of pseudo

observations of the system (x-axis) with corresponding forecast values (y-axis) for one ensemble

member. The line y = x reveals that the model tends to predict values above the system in some

regions of the distribution.
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Figure 4.4: Example C4.1.1: Figure (a) Blue line shows the true relationship φ between the

system and the model. The blue tick marks show an equal cardinality partition of the system

sample space. The model space is subdivided into equal length intervals and the black line shows

a line drawn between the points the form the intersection between the interval end points and the

equal cardinality partition - this is the relationship that forms the initialisation of the optimisation

routine. Figure (b) the blue line shows the true relationship φ′ and the black line shows the result

of the optimisation routine (i.e. the estimator φ) the SOPLR is closer to the true relationship in

figure (b) than in the initial partition (a).
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Results for C4.1.1(b) This experiment shows that the method remains success-

ful when the forecast quality is lower. Figure 4.5(a) illustrates the results of an

ensemble member of lower average quality compared to the corresponding observa-

tions. The scatter plot has points filling much of the space Ω×Θ due to the chosen

lower ensemble member quality (p3 = 0.5). As before, figure 4.5(b) shows φ′ in blue,

φtrial in grey. The SOPLR φ in black remains close to φ′ suggesting that the method

continues to work when forecast quality is lower.
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Figure 4.5: Example C4.1.1: Left plot show a scatter plot of observations of the system versus

one forecast ensemble member. This is a lower quality forecast than in graphic 4.3 as evidenced

by the greater scatter of points. The right plot shows the true relationship φ (blue line) and the

estimator in black. Despite the poor quality of the forecast the estimator closely aligns with the

true relationship.

Results for example C4.1.1(c) Figure 4.6 shows that the method has again

been successful in approximating the true relationship φ′ although, arguably the fit

from φ at the end points is worse than φtrial.
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Figure 4.6: Example C4.1.2: Coarse partition of the system space with just 4 equal cardinality

bins. The true relationship (blue line) and estimator (black line) are close together indicating

success of the method despite the coarse partition of the model space. The initial trial relationship

φtrial is shown in grey.

Results for example C4.1.2: Perfect system partition This experiment

shows that the true relationship is (almost) recovered when the system partition

is perfect. The system partition used in the optimisation is set to be exactly the

same as the partition used to generate the observations and ensemble values, even

though this would not normally be known in practice. This is to test whether the

SOPLR approach finds the true φ′. Figure 4.7(d) shows that φ is not exactly the

same as φ′ for the last interval but agrees everywhere else. The error occurs in a

region of lower observation density (see histogram 4.7(a)).
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Figure 4.7: Example C4.1.3: Perfect system partition. The optimisation routine doesn’t quite

find the true φ′. The figure types follow those already described in this section. Figure (a) a

histogram of pseudo observations of the system. Figure (b) a scatter plot of system versus observed

values. Figure (c) the initial estimate for the optimisation routine. Figure (d) the result of the

optimisation (φ, black line) versus the true relationship (φ′ blue line) versus the initial trial (φtrial

grey line).
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4.4 Example C4.2 - continuous relationship

In this example the system values are sampled as before - but ensemble values are

then created directly from the observations in a way that mimics initial condition

uncertainty as follows:

System and model partitions Choose system and model partitions as in ex-

ample C4.2.1. Define the true relationship φ′ as in equation 4.9. The following

algorithm (see also figure 4.8) results in Nobs observations v1, ....vNobs . For each

observation vi an ensemble of Nens model outputs wi,1, ....wi,Nens are created. Let

x ∼ N(µ, σ2) denote a sample from a Gaussian distribution with mean µ and vari-

ance σ2. Let σE be the standard deviation of observational error. Let σM be the

standard deviation of ensemble member outputs.

Algorithm for examples C4.2.x, for x ∈ 1, 2

• For i = 1, 2, ...Nobs;

• Sample j ∈ {1, ...M ′};

• Define Observation: Sample vi ∼ U(a′j−1, a
′
j);

• Define an observation-with-error: ve = vi + ε where ε ∼ N(0, σE);

• For g = 1, ...Nens define an ensemble of model values as wi,g ∼ N(φ′(ve), σM);

• Repeat to produce Nobs observations, each with associated model outputs.
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Randomly choose a 
partition element A’j

j in {1,..M’}

Create ensemble member

 wi,g ~ N(φ’(ve), σM
2)

Create Observation 
with Error
ve ~ vi + ε  

ε ~ N(0, σE
2) 

Save values:  
Observation(i) = vi,  

Model ensemble (i) = {wi,1, …wi,Nens} 

Repeat to 
produce g=1,…Nens 
ensemble members

1. System state space Ω’ = Uj=1,M’A’j where, A’j = (a’j-1, a’j)

2. Model state space Θ’ = Uj=1,M’B’j where, B’j = (b’j-1, b’j)

4. w ~ U(a,b) means sample from a uniform distribution with minimum value a and maximum b.

Notes:

i < Nobs

Process to create 
ensemble of 
“model” outputs

Sample observation 
from A’j

vi ~ U(aj-1, aj)

5. x ~ N(μ,σ2) means sample from a Gaussian distribution with mean μ and variance σ2

3. If aj-1 < v < a’j,  then φ’(v) = mv + c where m = (b’j- b’j-1) / (a’j - a’j-1)  and c = b’j-1 - m a’j-1

YES

NO

STOP

Figure 4.8: Example C4.2.1: Flowchart describing the observation and forecast ensemble creation

process.
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Example C4.2.1(a) φ Continuous - equal cardinality bins

System and model parameters: Nobs = 28, M ′ = 7, Ω′ = [0, 100], A′j is defined

in table 4.6. φ′ is a continuous relationship illustrated by the blue line in figure

4.9(b) and defined by choosing 50 values of x and y = φ′(x) which are listed in full

in appendix B.

SOPLR parameters: M=7, the equal cardinality partition Ω =
⋃M
j=1Aj for φ is

defined in table 4.7.

Table 4.6: Experiment C4.2.1 - definition of underlying system partition

j 0 1 2 3 4 5 6 7

a′j 0 10 20 40 80 90 95 100

Table 4.7: Experiment C4.2.1 - assumed, initial equal cardinality, partition for φ

j 0 1 2 3 4 5 6 7

aj 0.15 6.92 20.1 41.54 81.85 90.73 94.52 99.97

Example C4.2.1(b) φ Continuous - with additional end points

System and model parameters: As for 4.2.1(a)

SOPLR parameters: M=9, the partition Ω =
⋃M
j=1Aj for φ is defined in table

4.8 and is created by adjoining two additional points at the ends of the partition.

Table 4.8: Experiment C4.2.1 - assumed, initial equal cardinality, partition for φ plus end points

j 0 1 2 3 4 5 6 7 8 9

aj 0.15 1 6.92 20.1 41.54 81.85 90.73 94.52 98.97 99.98
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Example C4.2.2 - Different observation density.

System and model parameters: Nobs = 28, M ′ = 7, Ω′ = [0, 100], A′j is different

to 4.2.1 and is defined in table 4.9. φ′ is as for example 4.2.1.

SOPLR parameters: M=7, the equal cardinality partition Ω =
⋃M
j=1Aj for φ is

defined in table 4.10. Note due to the different system definition the equal cardinality

bins are also different, end points have also been added as in 4.2.1(b)).

Table 4.9: Experiment C4.2.2 - definition of underlying system partition

j 0 1 2 3 4 5 6 7

a′j 0 30 40 45 50 60 80 100

Table 4.10: Experiment C4.2.2 - assumed, initial equal cardinality, partition for φ plus end points

j 0 1 2 3 4 5 6 7 8 9

aj 0.5 1 32.61 41 44.18 49.26 59.81 79.97 98.81 99.81

Results for example C4.2.1(a) and (b) This experiment shows that the φ-

transformation method continues to work in a less idealised setting and that end-

point corrections produce a better fit at the extremes of the data. Figure 4.9(a)

shows a histogram of observations which illustrates the chosen, equal cardinality

partition with blue tick marks. Figure 4.9(b) plot shows the observations (x-axis)

against model ensemble values on the y-axis (black dots) and also shows the true

relationship φ′ as a blue line. Figure 4.10(a) shows the resulting SOPLR for example

4.2.1(a). The optimisation routine chooses end points that are considerably above

the true relationship (blue line) at the upper end point. By adding additional points

at either end the fit is better as shown in figure 4.10(b) which contains the results

of example 4.2.2(b). This end-point correction method is used in the Lorenz 96

example later in the chapter and also in example 4.2.2.
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Figure 4.9: Example C4.2.1: Left plot, a histogram of observations of the system with equal

cardinality bins shown by the blue tick marks. Right hand plot shows observations plotted against

forecast ensemble values (all ensemble members)
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Figure 4.10: Example C4.2.1: Figure (a) shows the results of the optimisation routine for equal

cardinality bins. Figure (b) shows the result using the same partition but with two additional

points added close to the end points of the first and last intervals - this helps to suppress the

overshoot at the end points.
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Results for example C4.2.2 The experiment shows that the SOPLR will tend

to have a better fit where the density of observations is higher. Example C4.2.2 is

a variation where the relationship φ′ is the same, but where the probability density

of different observation values within the support Ω is different (as shown by the

histogram of observation values in figure Figure 4.11(a)). 4.11(b) shows ensemble

outputs against the observations. Figure 4.11(c) shows the the SOPLR where the

fit is better in the centre of the curve because that is where the highest observation

density occurs. As noted above this may be undesirable if extreme values are im-

portant to the user. Note the use of the Ignorance score will mitigate this partially

because it will score extremes very badly and will tend to reward φ relationships

that mitigate this as far as possible. As noted in Chapter 2, this feature of the

Ignorance score is sometimes criticised (e.g. Selten [224]) but in this setting it is a

benefit.
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Figure 4.11: Example C4.2.2: Figure (a) shows histogram of observations against equal cardi-

nality bins (blue tick marks), note that the density is now highest in the centre of the distribution.

Figure (b) shows the true relationship φ′ as a blue line with a scatter plot of ensemble values versus

system values. Figure (c) shows the true relationship in blue and shows the SOPLR φ in black.

The fit is now closest in the centre where the density of observations is highest.
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4.5 Translations to the challenge of insurance

Section 4.1 described the decision relevant function R which transforms system

variables into more relevant outputs. The values of R over time can be thought of as

an ‘index’. In theory an insurance product could be designed to give coverage that is

triggered by an index from any system, provided the purchaser can demonstrate they

would suffer loss [53], otherwise it counts as gambling [258, 259] or investing [215].

Such products are now offered in practice, such as the El-Nino index insurance

offered by Kalista global [35] which pays out if the index passes a threshold value,

or the weather index products of Nephila Capital [185]. In the following example

the index is defined by equation 4.1; other index definitions have been used in

practice [91,241,247].

Climatology pricing The traditional approach to pricing insurance uses the past

claims history and uses the statistics of this data to derive the price [52]. For exam-

ple a standard distribution might be fitted to the data and the premium calculated

using the expected index value (E(R)) and standard deviation, or an explicit return

on capital. In the language of forecasting such pricing methods use the ‘climatology’

of the insurance losses. In later sections this will therefore be referred to as ‘cli-

matology pricing’ . A simple pricing formula for a premium rate of Wclim which

targets a return (γ) on capital (κ) is as follows. This is broadly based on the method

defined by Kreps [128] which is discussed in more detail in Chapter 5:

Wclim = E(R) + γκ(R) (4.10)

In words Wclim is the premium rate that will cover the expected level of claims E(R)

with a profit margin γκ(R) expressed as a target return on capital held, expenses

are ignored.

Define the ‘quantile’ of a random variable Y which has a return period of τ as

follows:

Qτ (Y ) = {y|P (Y > y) =
1

τ
} (4.11)

The capital requirement κ is defined using the current UK insurance regulatory

requirement which requires that a company be able to survive a large insurance
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claim that could arise with 1 in 200 probability. The premium charged can be

taken into account since this will be ‘reserved’ until the period of risk has expired.

Therefore, in the current example the capital is defined as:

κ = Q200(R)−Wclim (4.12)

This may appear circular since the premium is used in the capital definition and

then the capital is used to define the premium. This is not the case and the premium

can be calculated directly as follows:

Wclim =
E(R) + γQ200(R)

1 + γ
(4.13)

Note that R is the index defined earlier and has been transformed into financial

terms, so although the inputs into R are physical variables (such as windspeed or

temperature) its value is in appropriate currency units.

φ-transformed pricing Earlier sections in this chapter described a method for

transforming model output to the system sample space by deriving a non-decreasing

SOPLR φ. Assume an ensemble {X̂j
k} is given where k denotes variables in the

system as usual and j denotes an ensemble member. A ‘φ-transformed’ forecasted

index value R̂j can be calculated as follows:

R̂j = R(X̂j
k|k ∈ H) := φ(

P∑
i=1

∑
k∈H

fk(X̂
j
k(ti))) (4.14)

The φ-transformed price is then calculated as a function of the entire ensemble (let

this be denoted R̂ = {R̂1, ....R̂Nens}):

Wφ = E(R̂) + γκ(R̂) (4.15)

Where for example the component E(R̂) could be taken as the average of the en-

semble members, or methods such as climatology blending could be used to deriver

a forecast PDF from which this component is calculated. Similarly the quantile

Q200(R̂) underlying the capital requirement κ(R̂) can also be calculated directly

from an ensemble with sufficiently many members - or calculated from a forecast

probability density function using using analytic or numerical methods. In the the

following examples two uses of the φ-transformed price are tested: (1) Updated Ex-

pectation which uses the forecast to update the expected index value in the pricing
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formula, but does not reassess the capital requirement and (2) Full Blending which

uses climatology blending (Chapter 2) to create a probability forecast for the index

such that both the expected claims and capital are recalculated. Defined as follows:

Updated expectation method This method assumes that the capital will not

be recalculated using the forecast. Hence the only part of the price to be updated

relates to the expected claims. Specifically, the expectation in the pricing formula

4.10 is replaced with the average the ensemble of forecasted index values R̂, so that.

WUE = E(R̂) + γκ(R) (4.16)

Where E(R̂) =
∑Nens
j=1 R̂j

Nens
denotes the average value of the forecasted index and κ(R)

is the capital requirement for the climatology price.

Full blending method This method (illustrated in subsection 4.6.3) uses cli-

matology blending, defined by equation 2.62 Chapter 2. Using the notation of that

equation, p is the PDF created by kernel dressing the ensemble ofNens φ-transformed

index values R̂j and fu is the climatology of R. These are trained using the same

past observations that were used to choose the relationship φ. This process produces

a PDF r of index values in the coming year. The expectation in the pricing formula

is replaced with the mean of the forecast distribution E(r). Likewise the capital,

κ(r), is calculated by determining the 1 in 200 value of the forecast distribution al-

lowing for premiums charged. Using this method the actual capital held is assumed

to be increased or decreased according to the forecast.

WBlend = E(r) + γκ(r) (4.17)

In either of the above pricing methods the average premium will be of interest to

policyholders - if it is higher then the insurance is less affordable in the long run.

Hence this metric can be used to compare strategies.

4.6 Example C4.3 Lorenz 96

Recall Lorenz System II defined in Chapter 3, equation 3.2 and also models of this

system defined by equation 3.1. The following section will use the Lorenz 96 X
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variables as a concrete example of a dynamical system from which an index can be

constructed. The key features of the six systems of Chapter 3 are summarised in

table 4.11 below:

Table 4.11: Summary of important features of systems 80001-80006

System Predictability Best Model Worst model Median X1 Range of

X1

Median

IEF

Range IEF

80001 Baseline 10011 10010 Baseline Baseline Baseline Baseline

80002 Low 10011 10010 > 80001 Twice

80001

>> 80001 > 80001

80003 Low Little difference,

10011 just wins

Little difference > 80001 Twice

80001

>> 80001,

> 80002

Very low

80004 Medium As 80003 As 80003 As 80001 As 80001 > 80001 Very low

80005 Medium As 80003 As 80003 As 80001 As 80001 As 80001 Very low

80006 High 10011 10010 As 80001 As 80001 As 80004 As 80001

Notes for table 4.11

1. ‘Predictability’ is high if at least one model has a period average score less than -1.0, is medium if at least one model gives

a period average score less than -0.7 and low otherwise;

2. ‘Best’ and ‘Worst’ models are defined by their skill scores (measured in bits of information) at each time during the period

and also for the period average - since the models behave consistently under each measure there is no ambiguity here; and

3. The descriptions in this figure are intended to give an approximate relationship between systems; phrases like ‘Twice 80001’

are to indicate that the range of values is approximately double that of system 80001 - not to mean that they are exactly

double. >> indicates ‘much greater than’.

It will be demonstrated that forecasts of this system can be used to create robust

insurance pricing. First, the relationship between the Lorenz system values and the

Index R is defined. Parameters are chosen to ‘tune’ the index to be similar in each

of the systems 80001, ... 80006. The SOPLR φ is then determined for the index.

Competition effects are then discussed along with definitions of profitability and

insolvency. The two forecast based pricing methods above are used and insurance

results are shown in detail for one of system/model pair and then selected results

from the other systems and models are discussed.

The following uses terminology common to Catastrophe models of the insurance

industry. The Ground Up Loss (denoted D below) is the total damage (typically to

a building) before the application of any insurance terms and conditions; the Gross

Loss (denoted L below) is the damage after such conditions have been applied (see

below) and is the amount payable by the insurer (often called the ‘claim’ or the

‘loss’).

Definition of Ground up Loss (D) The relationship between a given hazard

index and the damages caused will depend on the hazard. Often the relationship
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follows some sort of power rule - for example, Emmanuel [74] notes that, hurricane

winds tend to cause damage related to the cube of the windspeed. It may be that

damages only start to be caused above a threshold level. With this motivation in

mind, in this chapter the Ground Up Loss (D) is defined as follows:

D(Xtj ,k) := λmax(Xtj ,k − τ, 0)ρ (4.18)

Where: λ is a scalar that allows the losses to be tuned between systems to achieve a

similar index (explained further below); τ is a threshold to ensure that events do not

occur all the time; and ρ is an exponent to enable losses to created with a desired

level of heavy tail.

Definition of Gross Loss (L) Various insurance terms and conditions exist in

practice. It is typical, however, that the payouts only start above a certain level

(the ‘attachment point’) and are often subject to an overall ‘limit’ . Sometimes,

there is no limit, or equivalently the limit is infinite. Motivated by this the Gross

Loss (L) is defined as follows, where ∆ is the attachment point and Λ is the limit.:

L(D) = min(max(D −∆, 0),Λ) (4.19)

Definition of fk(Xk(t), θk) The transformation function from section 4.1 is then

defined as the combination of the D and L as follows:

fk(Xk(tj), θk) = L(D(Xtj ,k)) (4.20)

where θk = (λ, τ, ρ,∆,Λ) are the set of exogenous parameters which define the

Ground up Loss and Gross Loss .

Definition of R(X) The index function R in this concrete example is then defined

using equation 4.1, where H = {1}, so this example considers an index created from

just one Lorenz variable X1, this could be extended to consider multiple Lorenz

variables. In this example P = 24 so that observations are made at times t1, ....t24

and the index is the aggregate index value over these observations.

The following examples are split into two groups. In each example prices are

determined using climatology pricing, updated expectation and full blending:
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Examples 4.3.1.x Various models of system 80001.

These examples consider system 80001 only, and explores the φ-transformed pricing

methods for each of the models explored in Chapter 3 (i.e. 10008, ...10012). Ex-

periments are referred to by the last significant digits of the model ID because the

system is fixed. Each experiment ID in this group has the form 4.3.1.x,

where x ∈ {8, 9, 10, 11, 12};

Examples 4.3.2.y All systems - with single model type.

These examples consider systems 80001, 80002, 80003, 80004, 80005 and 80006.

Models 10011, 10111, 10211, 10311, 10411 and 10511, respectively are used to pro-

duce ensemble outputs for these systems. Collectively these models are referred to

below as model class *11, where the * is a wildcard. Each experiment ID in

this group has the form 4.3.2.y where y ∈ {1, 2, 3, 4, 5, 6} refers to the last

significant digit of the system ID.

In examples 4.3.2.y the other models were not considered because of time constraints;

but these could be explored in future work. Model class *11 was chosen because it

had the highest α values in the blending work described in Chapter 3 and the best

skill scores, as such it is the forecast with the best predictability.
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Tuning the index for different systems Recall from Chapter 3 that six differ-

ent systems were considered each with different levels of forcing and coupling. These

were chosen so that predictability varies. The range of values Xk produced by each

system, however, is different. For example, when F = 20 the extreme Xk values

are larger than when F = 10. As such, if the same parameters were used in each

case, the index described above would be very different in the various systems. In

order to compare the insurance contracts for different levels of predictability, only,

the parameters θk = (λ, τ, ρ,∆,Λ) need to be tuned so that a similar range of index

values arise.

Define the ‘quantile ratio’ (QR) as:

QRRP (Y ) =
QRP (Y )

E(Y )
(4.21)

where E(Y ) denotes the expectation of Y and Q is defined by equation 4.11. This

variable is of interest to insurers since it shows, for high return periods, how extreme

values relate to the average outcome.

In the following examples, first ρ is, arbitrarily, set to 3 in analogy with wind

speed. Then a quantile ratio of 16:1 is sought in each system, by adjusting τ (this

ratio is chosen based on a study of some of the Catastrophe distributions common

to insurers6). Next the indices are scaled using λ so they each have approximately

the same mean. Finally the deductible is set to have a fixed relationship to Q50(D).

The details of this tuning process are as follows, these are assumed to occur in the

order presented. Although H = {1} so that X1 only is involved in the definition of

R, commentary is retained for other values of k to illustrate the sampling error in

the parameter choices.

Choosing ρ This parameter is set equal to 3 in all systems.

Choosing τ Table 4.12 shows the value of τ chosen by trial and error to ap-

proximately achieve the target quantile ratio of 16:1 in each system. Note that

this parameter can be chosen independently from λ which will scale the mean

and Q200 equally (and this scaling therefore cancels out in the ratio). There-

fore this step can be carried out first without affecting the value of λ. Define

6Based on my own experience of Catastrophe Modelling.
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QR200,k = QR200(Xk) as the quantile ratio for the kth Lorenz variable. The table

shows the ‘mean quantile ratio’ defined as:

mean quantile ratio =

∑36
k=1QR200,k

36
(4.22)

and also the range (min(QR200,k)), max(QR200,k)), where the minimum and maxi-

mum are taken over all k variables. In each system the range of observed quantile

ratio is within +/− 10% of the target.

Choosing λ Initially set λ = 1 in the definition of D for each of the systems. Let

µk,sys =

∑Nsim
tj=1 D(Xtj ,k)

Nsim
, be the average Ground Up Loss for variable k in the given

system sys, where Nsim is the number of observations of, Ground Up Loss, D in the

time series and sys ∈ {80001, ....80006}. Let µ80001 =
∑36
k=1 µk,80001

36
be the average

D overall all 36 Lorenz variables for system 80001. Then define λk,sys =
µk,sys
µ80001

and define λsys =
∑36
k=1 λk,sys

36
. Given this definition, λ80001 = 1 and the value for

other systems ensures that the average D will be the same in each system. Table

4.12 shows the chosen values of λ = λsys for each system. The range (min(λk,sys),

max(λk,sys)) is also shown and in each system the range is within +/− 8%.

Choosing ∆ As defined in equation 4.19, the Gross Loss to the insurer is the

Ground Up Loss less any deductible ∆ up to a limit Λ. In the following example

the limit is assumed to be infinite. The target deductible is defined to be ∆k =

1
20
Q50(D(Xk)) so that it bears a consistent relationship to a major loss in each of

the systems; the value of 20 is arbitrary and chosen from personal experience7. Table

4.12 shows the chosen deductible values for each of the systems considered. It is

interesting to note that after normalisation of τ and λ the resulting deductibles are

all quite close together. The value chosen was defined as: ∆ =
∑36
k=1 ∆k

36
, the average

over all 36 Lorenz variables; the range (min(∆k), max(∆k)) is also shown which is

within +/− 12% of the chosen value.

Results of tuning process The distribution of Ground Up Loss, D, in all the

systems is very similar, as intended. Predictability can now be explored in these

7The author has worked in the financial services industry for over 20 years and at Lloyd’s of

London, concentrating on catastrophe modelling, for over 10 years.
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Table 4.12: Insurance index example, chosen parameter values for each Lorenz 96 system

system chosen

values of

τ

mean

quantile

ratio

range of

quantile

ratio

Chosen

values of

λsys

Range of λk,sys

values

Chosen values

of deductible

∆

Range of ∆k

80001 2.50 15.93 14.61 - 17.03 1.00 0.946 - 1.069 18.0 16.6 - 19.2

80002 2.10 16.09 15.10 - 16.76 0.102 0.095 - 0.111 17.7 16.2 - 18.8

80003 1.25 16.00 14.50 - 17.40 0.0655 0.0612 - 0.0720 17.1 15.3 - 18.8

80004 2.00 16.06 15.18 - 17.00 0.441 0.421 - 0.464 17.8 16.6 - 19.0

80005 2.05 16.05 14.63 - 17.42 0.5985 0.5602 - 0.6249 17.9 16.5 - 19.6

80006 2.60 16.03 15.22 - 16.67 0.7273 0.6725 - 0.7600 18.0 16.5 - 19.5

systems and results compared across them (the distributions for Gross Loss, L, are

also similar to one another). As expected (due to symmetry), the behaviour for each

Xi are similar.

4.6.1 Determine φ transformation for Lorenz 96 index

The following derives the SOPLR φ for the index R required by examples 4.3.1.x and

4.3.2.y defined above. Nens = 24 predictions of the insurance index are produced

by each of the models and Nobs = 29 observations of the index are used in the

optimisation routine to determine the SOPLR φ. Figure 4.12 shows a histogram

of observed index values from system 80001 for illustration. The sensitivity of the

SOPLR to the training data is illustrated for example 4.3.1.11, then comments on

the different forms of φ are made separately for example groups 1 and 2.

Illustrating sensitivity to training data Figure 4.13 shows, for example 4.3.1.11,

the SOPLR for five different (non-overlapping) sets of observations with accompany-

ing model outputs (each of size Nobs). These illustrate the sensitivity of the SOPLR

to different training data sets. In the figure the x-axis has been truncated to focus

on the more probable (lower) index values for illustration. The black line relates

to the training data set that is used to define φ for later use, the other illustrative

examples are shown in blue but are not used hereafter. Key points are:

• The partition values (evident from different x-axis positions of the dots in

figure 4.13) are different in each case because the method of equal bin sizes is

used with different observations and this results in different interval endpoints

in each data set, this is more evident for the extreme index values due to their

scarcity;
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Figure 4.12: Example C4.3: Histogram of observed index values from System 80001 - y-axis is

count of observations per bin out of 512 observations. Blue tick marks show the equal cardinality

bins.

• All cases are above the line y = x, reminding us that the model is not the

system and a naive approach to using model outputs for prediction would be

flawed;

• The lines show a broadly similar pattern, but are far from identical, especially

for observations for index values greater than 2000 (not shown) where the

density is low. This indicates sensitivity to the training data set.

Results for Examples 4.3.1.x Figure 4.14 shows the estimated SOPLR φ for

experiments 4.3.1.x. The results are broadly intuitive based on previous findings.

Recall from Chapter 3 that model 10008 (black line) is chosen so that the forcing

parameter is equal to the value in the system (i.e. F = 10), but that this means

that the instantaneous effective forcing in the system is less on average. This causes

model 10008 to produce larger extremes. In other words it tends to overshoot the

system. Hence the relationship φ would be expected to be above the line y = x.

Model 10009 uses the average forcing from the system, but still produces larger
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Figure 4.13: Example 4.3: Various examples of the SOPLR φ for different sets of observations.

System 80001 and model 10011 are illustrated. Black line shows the result for the training data

set. Blue lines show four other non-overlapping observation data sets to illustrate the stability of

the estimator. The relationship is clearly above the red line y = x. The lines are not all identical

indicating the estimator is quite sensitive to the observations, but do show the same pattern.

extremes than the system as shown in Chapter 3. As such, the relationship between

the model and system would be expected to be closer to y = x for 10009 than for

10008. Model 10010 uses a value chosen so that the 1 in 200 value is approximately

equal to the system. As the Ignorance score tends to punish missed extreme values,

model 10010 might be expected to be closer still to the line y = x. This is what

occurs: model 10009 (red line) is closer to the line y = x and 10010 is closer again.

Model 10011 was chosen such that the forcing varies for each variable is dependent

on the value of Xk (recall that it scored best out of all the methods). As such,

the relationship φ might be expected to be closer to the line y = x and this is

the case for observed index values above 600. The least intuitive outcome is model

10012 which did not score so well but appears to have a relationship closer to y = x

than the others, for a portion of the curve it is actually below the line which may

be consistent with the fact that at the 50th percentile it actually undershoots the
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system as shown in Chapter 3.
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Figure 4.14: Example C4.3.1.x: SOPLR φ. The line y = x is shown in solid red for comparison.

Results for examples 4.3.2.y Figure 4.15 compares the SOPLR φ for the sys-

tem/model pairs defined by experiments 4.3.2.y. Given the sensitivity to training

data any conclusions about the relative levels of the the SOPLR is tentative at best.

For systems 80002 and 80003 (where F=20) φ is closer to the line y = x than the

other systems which have lower forcing parameters.
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Figure 4.15: Example C4.3.2.y: SOPLRs φ. The line y=x is shown in solid red for comparison.

Note that φ is above the y = x line in each case.

4.6.2 Competition, profitability and insolvency

The previous section derived the SOPLR φ for each of the Lorenz systems of

Chapter 3, and for model class *11. Each of these models was run with Nens = 24

different initialisations (defined in Chapter 3) to produce an ensemble of forecasts

for each time period. Four different sets of Nobs = 29 observations of the index

were produced (each based on different system data than the training set used to

determine φ) to enable comments to be made on the stability of the results. Each

index observation R is accompanied by Nens forecasts R̂j where j ∈ {1, ...Nens}.

This section uses the SOPLR to derive a φ-transformed index price. As described

above the climatology of the index R is used to determine the climatology price

Wclim. Recall, this is the constant price that, on average, will be sufficient to pay for

expected claims and provide the required return to shareholders based on required

capital.

Competition effects The price arising from pricing models (the amount un-

derwriters would like to charge) is typically referred to as the ‘technical price’
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whereas the price actually charged is the ‘market price’. It is rarely possible to

charge more than the market price for insurance, an issue that will be explored in

Chapter 6. Although there is a degree of loyalty which allows some difference in price

between insurers. In practice, as noted in a discussion with an experienced Lloyd’s

underwriter [179], underwriters tend to operate a dual strategy. If they believe that

their pricing is more accurate (and lower) then they will charge a lower price and

acquire market share from their competitors. Conversely if they believe the market

price is too low they will tend to write less business8 but keep the premium at the

market price. When their technical price is lower than the market price underwrit-

ers may not lower their price fully to the technical price because they can charge

more and still be the cheapest on the market. This pricing approach is defined in

equation 4.23 where the market price is defined to be the climatology price Wclim.

In the case where the technical price is above the market price underwriters often

still write some business to ensure that they retain a presence in the marketplace.

The impact of this approach will be explored using a simple rule which inflates or

deflates the amount of business written depending on the technical price (defined

in equation 4.24). WBlend, WUE and Wclim defined above are all technical prices.

Define W̃m, the market price for a given method m, as follows:

W̃m =

Wm(1 + δ) if Wm < Wclim

(1+δ)

Wclim otherwise

(4.23)

where Wm is the technical price for a given method m. δ is a price inflation factor

which allows the insurer to charge more than the technical price when they know

their competitors are charging even more.

Now assume that the insurer has a rule, β(Wm) (defined in equation 4.24), which

determines the change in business volume they will accept for a given technical price

(assuming 100% as a starting point if Wm = Wclim). This implicitly assumes that the

insurer receives sufficient requests for quotations that they can control the volume

of business; in practice this may not always be the case. The business volume rule

8When insurers speak of ‘business written’ or ‘business volumes’ the are referring to the number

of policies sold. Therefore ‘write less business’ means sell fewer policies or take a smaller share on

any co-insured risks.
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could take various forms but in this example is defined below:

β(Wm) =



βmax if Wm < Wmin

βmax(
Wclim−Wm

Wclim−Wmin
) if Wmin ≤ Wm < Wclim

βmin( Wm−Wclim

Wmax−Wclim
) if Wclim ≤ Wm < Wmax

βmin if Wm ≥ Wmax

(4.24)

Where Wmin and Wmax are threshold prices beyond which the change in business

volume is constant. βmax and βmin are the maximum and minimum volume changes

for each threshold price respectively.

In all the examples below: Wmin = 500, Wmax = 3000, βmin = −0.9 and βmax = 0.75.

This means that for technical premiums equal to or lower than 500 the underwriter

will write 75% more business than if they charged the market price. For technical

premiums greater than 3000 they will choose to write just 10% of the business they

would have done. δ is set at 20% in all examples unless otherwise indicated. These

parameters are purely illustrative.

Profitability The current example uses a simplistic approach which will be ex-

tended in Chapter 6. Profit is simply calculated as the difference between the price

charged and the payment actually made. Positive profits will be made some years

and not others and by counting the years in which this occurs an approximate prob-

ability of positive profitability can be estimated. This is denoted ‘P(+profit)’ in the

results tables below. It is also interesting to look at the average amount of profit

conditional on the fact that it is either positive or negative since some strategies may

protect against large negative profits at the cost of lower positive ones. These are

denoted ‘+ve profit’ and ‘-ve profit’ in the results tables. The level of profitability

indicates whether a strategy is better or worse for the shareholders. Policyholders

are arguably indifferent to this, although profits that are too high might indicate

they are getting poor value for money; conversely profits that are too low might

indicate an insurer that is weakly financed which may therefore fail if large claims

arise. The level of profit will depend on the volume of business sold, controlled by

the rule β defined above. Specifically ‘profit (π)’, for a given period, is defined as:

π = (W̃m −R) ∗ (1 + β(Wm)) (4.25)
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Insolvency As explained in Chapter 1 the strict definition of insolvency is com-

plex. This chapter defines insolvency when the payout in the year exceeds the pre-

mium charged and capital held. Equivalently (in this simple example) if the sum of

profits and capital is less than zero then the company is insolvent. Again, by count-

ing the number of instances an approximate probability of insolvency ‘P(insolvent)’

can be estimated and this can be used to compare strategies. This measure is of

interest to both shareholders and policyholders; the latter particularly because it

indicates how likely the company will be to pay their claims; the former because it

defines the probability that the value of their investment will be lost.

4.6.3 Full Blending pricing - parameter calculation

This section shows (1) how the blending parameters α and σm were chosen in the

Full Blending method for example 4.3.1.11 and (2) the results of using this method

for the remaining examples.

Method to choose blending parameters Figure 4.16 illustrates how the blend-

ing parameters were chosen for example 4.3.1.11. Different values of α and the ker-

nel dressing bandwidth are trialled and the average Ignorance score over Nobs = 29

observations of the index versus the forecast is calculated. The combination of pa-

rameters which lead to the lowest score on this grid is chosen. The process is carried

out in two stages - first a wider grid (α in steps of 0.1 and the bandwidth in steps of

10) - then once a likely region is found the process is repeated around the candidate

value in steps of 0.02 for α and 2 for the bandwidth.

Figure 4.17 gives one example of a forecast probability density function arising

from the blending process. The blue tick marks show the forecast ensemble values.

The blue density line shows the results of kernel dressing these points (note this uses

the same bandwidth as the blended forecast and so has not been chosen to be score-

optimal). The green line shows the PDF of the climatology of the index. Finally

the black line shows the PDF of the blended forecast. In this example the blending

parameter α = 0.8. The two vertical lines show the 1 in 200 (99.5%) quantile values

of the kernel dressed and blended forecasts. This highlights very clearly the role of

blending in retaining extreme values within the forecast; without this the regulatory
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Figure 4.16: Illustration of selection of low scoring parameters for the blending process. Red dot

shows the chosen value and the two sets of contours (of the average score) illustrate the two step

process for choosing it. System 80001 and model 10011.

quantile Q200(R̂) would only be 1179 compared to 3170 with blending; in other words

the assessed capital requirement for kernel dressing only would be one third of the

blended value.

Blending parameter results for all examples Figure 4.18 shows parameters

that result from the blending method. These are chosen to give a low score on a

grid of bandwidths that are separated by a step of size 2 (i.e. 80,82,84 etc) and α

values that are separated by steps of 0.02. As such, they are not necessarily truly

‘optimal’ but are expected to be close to the value an optimisation routine would

chose - the latter option was not used to due run time constraints.

• For system 80001 and the five forecast methods 10008,...10012. Forecast 10011

has the highest α value i.e. high weight to the dressed ensemble; this result

is consistent with those of Chapter 3. Forecast 10010 has a similar α value to

10012 but a thinner kernel width indicating that more emphasis is placed on

the ensemble values in the former case.

• For forecast system *11 the higher predictability systems (80001 and 80006)

have α values that are closer to 1 than the other systems. Systems with
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Figure 4.17: PDF of index distributions: Green = climatology, Blue=Kernel dressed forecast,

Black = Blended forecast

medium predictability (80004 and 80005) have low α but also a reasonably thin

kernel dressing bandwidth which will give considerable weight to the forecast

ensemble but preserve the tail of the climatology. Finally, low predictability

systems (80002 and 80003) have low α and wider bandwidths.

4.6.4 Updated Expectation Results - Example 4.3.1.11

Figure 4.19 shows a histogram of the technical price using the Updated Expectation

method which can vary considerably depending on the forecast. The climatology

price (1088) is shown by the vertical red line.
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Table 4.14 shows a comparison between the climatology price and three variants

of the updated expectation method defined in table 4.13:

Table 4.13: Definition of columns in results tables

Column name Description

Wclim Results when the climatology price is used in all cases

Variant A Assumes the technical price can be charged at all times - business volumes are 100% for each price

(i.e. βmax = βmin = 0 in equation 4.24 and W̃UE = WUE) )

Variant B β is defined by 4.24 as usual, but δ = 0 in equation 4.23

WUE Prices are WUE defined above (i.e. β and δ as defined without adjustment)

As already mentioned it is rarely possible to charge the technical price at all

times. As such, Variant A is largely theoretical. It could arise if all companies in

the market switched to φ-transformed pricing. Key results are:

• Variant A Despite some very large premiums on occasion the average techni-

cal price (1020) is actually lower than the climatology price (1088). The ranges

beneath the figures denote the high and low values from the four distinct ob-

servation data sets. For example, in the case of Variant A the lowest average

price was 978 and the highest 1080. With Variant A no competition effect

is modelled (and when climatology pricing is used there is no competition at

all) therefore the difference in average profit between climatology pricing and

technical pricing is simply the difference between the average premium rate

(since the claims are the same in each case). Variant A is less profitable on

average, but gives a 6% higher chance of making a profit in the year. When

profits are made they tend to be smaller when positive, but also losses are less

extreme. The probability of being insolvent under Variant A is lower than us-

ing the climatology price indicating that the forecast is able to give a warning

against very large index levels allowing adequate prices to be charged in those

years, thereby avoiding insolvency.

• Variant B introduces competition effects but assumes that no uplift is applied

to the technical price (i.e. δ = 0) in this case the average premium is much

lower because the premium is capped at Wclim and the probability of making

a profit is actually lower than for climatology pricing but the probability of

insolvency is much lower.

• Updated expectation WUE This pricing method includes a 20% uplift when-

ever the technical price is more than 20% lower than the market (climatology)
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price. Despite this, the average price (891) remains lower than the climatol-

ogy price. Average profits (444) are higher than those using climatology price

although the probability of a profit in a given year is slightly lower (78.4%

compared to 79.4%). The probability of insolvency remains much lower than

climatology pricing. As such this method is arguably better for all stakehold-

ers: policyholders, shareholders and regulators. In the case of regulators the

supervisor of the individual company will arguably prefer that the company is

less likely to go insolvent; the insurance regulator in total may be less happy

that some other companies will be taking up excess business and are conse-

quently more likely to become insolvent. Such a regulator may take a more

strategic view, however, and believe that in the long term all companies may

adopt the more accurate pricing method; they may even encourage such a

change.

Table 4.14: Example 4.3.1.11 Results for climatology pricing and three variants of updated

expectation

Wclim Variant A Variant B WUE

avg premium 1088 1020 812 891

1088-1088 978-1080 794-823 877 - 897

avg profit 408 339 326 444

330-475 317-384 275 - 391 390-511

avg +ve profit 752 512 587 709

724-769 504-518 560-605 676-727

avg -ve profit -923 -654 -510 -519

-955 - -892 -697 - -633 -570 - - 487 -577 - -491

P(+profit) 0.794 0.853 0.762 0.784

0.750 - 0.832 0.832 - 0.895 0.719 - 0.811 0.740 - 0.824

P(insolvent) 0.00684 0.00244 0.000977 0.000977

0.0039 - 0.0098 0 - 0.0039 0 - 0.00391 0 - 0.00391
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4.6.5 Selected results for all other examples

The following are a series of observations and general statements about the selected

results of the example 4.3. Examples 4.3.1.x and 4.3.2.y are discussed separately.

The example names are shortened to *x and *y below. Recall that *x relates to

model 1000x in system 80001 and *y relates to system 8000y. The text below

therefore sometimes refers to ‘model *x’ and ‘system *y’.

Example 4.3.1.x Tables 4.15, 4.16 and 4.17 show the results for this example

for climatology, Updated Expectation and Full Blending respectively. Climatology

results are the same for each column of table 4.15 because the same system (80001) is

used in each case. The columns are retained for easier comparison with other tables.

• Updated Expectation When comparing the Updated Expectation method

for models *11 and *10 table 4.16 shows that the average premium charged is

the same. Yet *11 is much more profitable (444 vs 393) due to lower negative

profits in bad years despite the fact it makes slightly less profit in good years.

Overall *11 has a higher probability of making a profit than *10. It also

has a much lower probability of insolvency. Model *10 actually does worse

than climatology pricing for the majority of metrics - but does have a lower

probability of insolvency, so on this critical metric model *10 is still adding

value.

• Updated Expectation All of the models in this example lead to a lower

chance of insolvency than climatology pricing despite all charging lower pre-

miums on average.

• Full Blending The Full Blending pricing method results for model *8 versus

*11 are shown in table 4.17. Model *8 leads to a considerably higher average

premium of 953 vs 872, an increase of 81, yet only manages to create increased

profits of 28 with only a very slight increase in probability of making a profit.

In this case the probability of insolvency is the same between the two models.

• Full Blending In general, Full Blended pricing in system 80001 leads to lower

probability of insolvency than climatology pricing; but not as low as using the

simpler Updated Expectation method except for model *12. The fact that Full
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Blending has higher insolvency probability than Updated Expectation may be

due to the fact that the capital held also adjusts according to the forecast so

that funds are not available to survive a major claim when there is a forecast

bust. This issue is discussed further in Chapter 5.

Example 4.3.2.y Tables 4.18, 4.19 and 4.20 for climatology, Updated Expectation

and Full Blending respectively.

• Climatology Using system *2 as an example, table 4.18 shows, that de-

spite creating an index with a similar mean and overall spread, the insurance

statistics between systems can be different - making them difficult to directly

compare. For example the average premium is 1050 compared to 1090 in sys-

tem *1 some 40 lower, yet profits are 96 lower. Perhaps this is to be expected

since system *2 produces more frequent extremes than *1. The probability of

making a profit is lower in this system than *1 for example. However, it is

interesting that the probability of insolvency is actually lower in *2, which is

a surprise.

• Updated Expectation Continuing with system *2 as an example table 4.19

shows that in this case the Updated-expectation method does not lead to

increased profits, or even a decreased probability of insolvency. Similar com-

ments can be made for system *3. This is not a surprise because Chapter 3

showed that the α values in the blending exercise were low from early on in the

period showing that the models quickly loose their predictive power in these

systems. The Updated expectation method produces lower average premiums,

higher profitabilty and lower risk of insolvency for all of the systems *1, *4,

*5 and *6.

• Full Blending The Full Blending pricing method again under-performs the

Updated Expectation method (as shown in table 4.20) in all systems except *6

where it is more profitable - though still more likely to go insolvent. As noted,

the additional insolvencies may be caused when the blending method leads to

a reduction in capital in a year where the actual index is high (i.e a forecast

bust). It would be possible to restrict the change in capital (e.g. apply bounds

to κ(R̂)) to test whether the Blending method is then more robust.
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Table 4.15: Example 4.3.1.x - Prices use Climatology method (Wclim)

4.3.1.8 4.3.1.9 4.3.1.10 4.3.1.11 4.3.1.12

avg premium 1088 1088 1088 1088 1088

1088 - 1088 1088 - 1088 1088 - 1088 1088 - 1088 1088 - 1088

avg profit 407.6 407.6 407.6 407.6 407.6

330.3 - 474.8 330.3 - 474.8 330.3 - 474.8 330.3 - 474.8 330.3 - 474.8

avg +ve profit 752.2 752.2 752.2 752.2 752.2

724.3 - 769.5 724.3 - 769.5 724.3 - 769.5 724.3 - 769.5 724.3 - 769.5

avg -ve profit -922.7 -922.7 -922.7 -922.7 -922.7

-955.1 - -892 -955.1 - -892 -955.1 - -892 -955.1 - -892 -955.1 - -892

P(+profit) 0.7944 0.7944 0.7944 0.7944 0.7944

0.75 - 0.832 0.75 - 0.832 0.75 - 0.832 0.75 - 0.832 0.75 - 0.832

P(insolvent) 0.006836 0.006836 0.006836 0.006836 0.006836

0.003906 - 0.009766 0.003906 - 0.009766 0.003906 - 0.009766 0.003906 - 0.009766 0.003906 - 0.009766

Table 4.16: Example 4.3.1.x - Prices use Updated-expectation method (WUE)

4.3.1.8 4.3.1.9 4.3.1.10 4.3.1.11 4.3.1.12

avg premium 985.2 942.2 890.6 891.3 978.1

976.6 - 989.8 939.8 - 947.8 885.3 - 899.2 877.3 - 897.9 968.8 - 982.6

avg profit 474.1 445.4 392.9 444.1 457.3

426.6 - 526.2 394.1 - 497.3 332.2 - 449 389.8 - 511.3 410.1 - 507.8

avg +ve profit 749.4 732.2 734.4 709.9 737.3

726.2 - 766.2 705 - 744.4 707.2 - 765.4 676 - 727 713.1 - 755.9

avg -ve profit -526.9 -568.1 -718.6 -519.1 -552.2

-563 - -476.8 -621.6 - -508.8 -771.9 - -654.4 -576.6 - -491.3 -591.1 - -524.8

P(+profit) 0.7837 0.7788 0.7642 0.7837 0.7827

0.7422 - 0.8262 0.7383 - 0.8184 0.7227 - 0.8145 0.7402 - 0.8242 0.7363 - 0.8242

P(insolvent) 0.001465 0.001953 0.004395 0.0009766 0.002441

0 - 0.001953 0 - 0.003906 0 - 0.007812 0 - 0.003906 0 - 0.003906

Table 4.17: Example 4.3.1.x - Prices use Full Blending method (WBlend)

4.3.1.8 4.3.1.9 4.3.1.10 4.3.1.11 4.3.1.12

avg premium 952.7 904.1 837.4 872.3 940.5

942.7 - 959.5 899.7 - 910.9 831.4 - 847.7 858 - 880.5 930.4 - 945.3

avg profit 448.7 406.3 326 421.4 425.4

399.8 - 500.8 349.7 - 457.6 263.2 - 383.9 365.3 - 494.8 375.7 - 477.5

avg +ve profit 730.5 704 690.9 722.2 717.8

708.4 - 750.4 677.8 - 723.5 666.4 - 722.4 692.6 - 737.2 691.3 - 737.3

avg -ve profit -557.8 -596.5 -763.6 -637.3 -592.6

-608 - -507.8 -666 - -532.2 -808.2 - -701.1 -692.1 - -610.7 -658 - -563.2

P(+profit) 0.7808 0.7705 0.7485 0.7788 0.7769

0.7402 - 0.8242 0.7305 - 0.8164 0.707 - 0.7988 0.7344 - 0.8223 0.7285 - 0.8164

P(insolvent) 0.001465 0.002441 0.004883 0.001465 0.001953

0 - 0.001953 0 - 0.003906 0 - 0.009766 0 - 0.003906 0 - 0.003906
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Table 4.18: Example 4.3.2.y - Prices use Climatology method (Wclim)

4.3.2.1 4.3.2.2 4.3.2.3 4.3.2.4 4.3.2.5 4.3.2.6

avg premium 1088 1054 969.6 1134 1132 1065

1088 - 1088 1054 - 1054 969.6 - 969.6 1134 - 1134 1132 - 1132 1065 - 1065

avg profit 407.6 312.2 268.7 378.6 396.7 353.7

330.3 - 474.8 264.5 - 339.9 241.4 - 299.9 320.9 - 402.6 366.9 - 411.1 325.9 - 392.8

avg +ve profit 752.2 656.9 597 763.6 775 710.9

724.3 - 769.5 641.8 - 685.2 576.4 - 610.1 756 - 775.3 760.3 - 791.8 685.2 - 723.4

avg -ve profit -922.7 -769.4 -692.6 -971.6 -912.7 -965.5

-955.1 - -892 -784.3 - -747.1 -737.2 - -641.6 -1085 - -852.7 -956.6 - -854.9 -1008 - -930.7

P(+profit) 0.7944 0.7583 0.7456 0.7783 0.7759 0.7866

0.75 - 0.832 0.7344 - 0.7832 0.7305 - 0.7598 0.7637 - 0.793 0.7676 - 0.7812 0.7617 - 0.8125

P(insolvent) 0.006836 0.003906 0.00293 0.005371 0.003906 0.003418

0.003906 -

0.009766

0 - 0.007812 0 - 0.005859 0.003906 -

0.007812

0.001953 -

0.005859

0.001953 -

0.005859

Table 4.19: Example 4.3.2.y - Prices use Updated-expectation method (WUE)

4.3.2.1 4.3.2.2 4.3.2.3 4.3.2.4 4.3.2.5 4.3.2.6

avg premium 891.3 969.5 899.1 996 985.3 869.7

877.3 - 897.9 963.5 - 975.7 895.5 - 905.9 989.4 - 1004 979.4 - 989.7 864.1 - 873.6

avg profit 444.1 324.5 277.6 421.9 421.9 373.2

389.8 - 511.3 279.1 - 361.1 246.4 - 320.6 384 - 457.2 397.8 - 436.1 339 - 413

avg +ve profit 709.9 703 661.1 790.8 787.3 677.6

676 - 727 686.8 - 725.9 643.2 - 674.8 783.8 - 804.8 776.5 - 794.3 656 - 692.7

avg -ve profit -519.1 -734.1 -718.3 -686.4 -719.7 -601.2

-576.6 - -491.3 -772.9 - -689.3 -797.2 - -646.6 -771.8 - -622.5 -866 - -657.6 -645.7 - -555.7

P(+profit) 0.7837 0.7368 0.7222 0.7505 0.7573 0.7622

0.7402 - 0.8242 0.7207 - 0.752 0.707 - 0.7383 0.7324 - 0.7695 0.752 - 0.7617 0.7402 - 0.7852

P(insolvent) 0.0009766 0.005859 0.008301 0.00293 0.002441 0.001953

0 - 0.003906 0.003906 -

0.007812

0.003906 -

0.01172

0 - 0.005859 0 - 0.007812 0 - 0.003906

Table 4.20: Example 4.3.2.y - Prices use Full Blending method (WBlend)

4.3.2.1 4.3.2.2 4.3.2.3 4.3.2.4 4.3.2.5 4.3.2.6

avg premium 872.3 907.6 885.1 950.8 942.3 888.4

858 - 880.5 900.4 - 913.9 882.3 - 892.3 943.1 - 961.2 935.3 - 946.9 883.4 - 891.5

avg profit 421.4 260.2 265.6 376 376.8 391

365.3 - 494.8 212.8 - 303.2 233.1 - 310 339.4 - 412.9 352.7 - 390.5 352.7 - 433.6

avg +ve profit 722.2 686.3 662.4 771.9 765.3 732.1

692.6 - 737.2 669.9 - 701.9 645.8 - 671.8 761.6 - 780.4 755.8 - 778.3 706 - 752.2

avg -ve profit -637.3 -814.4 -742.7 -728.4 -764.4 -707.4

-692.1 - -610.7 -858.5 - -788.2 -835.9 - -661.6 -824.2 - -666.7 -933.8 - -684.6 -746.1 - -640.7

P(+profit) 0.7788 0.7163 0.7178 0.7363 0.7456 0.7632

0.7344 - 0.8223 0.6973 - 0.7344 0.7031 - 0.7324 0.7129 - 0.7559 0.7363 - 0.7559 0.7422 - 0.7891

P(insolvent) 0.001465 0.007812 0.009766 0.00293 0.003906 0.00293

0 - 0.003906 0.005859 -

0.009766

0.003906 -

0.01367

0 - 0.005859 0 - 0.007812 0 - 0.005859
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4.7 Further work

Testing indices comprised of multiple variables The Lorenz 96 example de-

scribed in this chapter was based on an index set H which only contained one

variable. Equation 4.1 allows for an index to be created over multiple variables. To

make easy comparisons between systems it may be helpful to consider a portfolio

with identical expected payouts regardless of the number of variables included. To

achieve this the Ground up losses must be scaled as follows. If there are |H| regions

in the portfolio (say) then, in the notation of section 1:

fk(tj,Θ) =
1

|H|
Ltj ,k (4.26)

Where Θ = {τ, p,∆,Λ}

Extend the results set to other systems Results for the remaining systems

and models considered in Chapter 3 could be created to further test the robustness

of the conclusions. Also, different Lorenz systems could be explored for example

with different forcing values or coupling, or with a trend in the forcing to illustrate

the further difficulties of pricing in a non-stationary system. Finally different ODEs

(such as the Duffing model considered in Chapter 2) could be considered to allow

exploration for systems with different dynamics. Outputs from climate models could

be taken to create indices from those - this would be a step closer to using the

methods in the chapter to create viable insurance indices in practice.

Use insurance industry model The insurance industry model to be developed

in Chapter 6 could be further developed to take claims information from the Lorenz

96 system - then issues such as competition effects could be further explored in this

system as could the use of reinsurance or other risk mitigation tools. The Lorenz 96

system also serves as a useful ‘claims generator’ which other insurance industry

practitioners could use to test their models. Being a dynamical system it arguably

produces more realistic behaviour than standard statistical distributions (such as

runs of high values, waves and physical bounds on the largest values).

Use blended forecasts through the time period The Blended-pricing method

described in this chapter uses the annual index - and then compares the forecast
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ensemble values to the observed index. The work in Chapter 3 created blended

forecasts for each time step during the year (i.e. 24 forecasts). This showed that in

the first part of the time period the forecasts had considerable skill in some cases

- but the latter time periods less so (as evidenced by the reduction in α value and

widening of the kernel dressing bandwidth). It would be possible to develop a pricing

method that made use of the forecast for part of the year only - and then used the

climatology price for the remainder of the year. This would be a good proxy for

the current situation in hurricane pricing where predictability degrades over the

hurricane season.

Putting a value on the forecast If the forecast can be used to improve prof-

itability, increase financial strength or lower average premium rates then it is success-

ful. The question then arises: how much would the company pay for the forecast?

McCarthy [165] notes that it is ‘always a good idea to look at the outcome of an

experiment if it is free’, but what if it isn’t? If the company absorbed the costs itself

then any amount less than the difference in average profitability, between using the

models and not, would leave the sophisticated company better off. In practice, how-

ever, companies would wish to retain some of the additional profits to make it worth

their while to change processes. It would be important to assess the probability of

insolvency to check that this additional cost does not increase it. Alternatively the

company could pass the forecast costs to policyholders whenever the technical price

is sufficiently below the climatology price (in the case where competitors are not

making use of the forecasts). A hybrid strategy, that charged policyholders for the

forecast when possible, but absorbed the costs otherwise, would likely be used in

practice.

4.8 Conclusions

This chapter has used the Lorenz 96 system to explore whether forecasts can be

useful for insurers. First the technique of φ-transformation was introduced which

finds the piecewise linear relationship between the system and a model that has

the highest average skill score. The technique is shown to work in two idealised

situations.
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The Lorenz 96 system is used as a proxy for an atmospheric (or other dynamical)

hazard from which insurance protection may be sought. The system variables are

converted into more decision relevant values (in this case by applying a threshold and

power rule so that higher values are given more weight and then applying insurance

deductibles and limits). A general insurance index is then described which integrates

multiple decision relevant variables over multiple time periods. The index is priced

using traditional climatology techniques and then using two techniques which use φ-

transformed forecasts. The first technique simply adjusts the expected index values

(arising from an ensemble of modelled outputs) in the pricing formula; the second

uses climatology blending. The first technique is shown to be more successful. In

general it is concluded that the forecasts were useful. Specifically they improved

profitability, led to lower premiums on average and also to less chance of insolvency.

As such, all major insurance stakeholders would have increased utility through the

use of forecasts: shareholders, policyholders and regulators.

The models in the Lorenz 96 example are closely related to the system. Although

they regularly diverge from the system they can match it closely for at least part

of the period of insurance. The insurance payout is defined precisely by the system

values and as such where the model is close to the system it will provide a very

good estimate of the payout. The next chapter considers hurricane risk where, it is

argued, there is less correspondence between forecasts and the eventual insurance

payout. The value of forecasting will be assessed in this more challenging setting.
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Chapter 5

The value of forecasting in

hurricane insurance

‘There is an inherent curiosity amongst the general public for any quantitative

information about how active the upcoming [hurricane] season is likely to be,

and we show in this manuscript that this is possible. These models will likely

continue to be modified and improved in the years ahead as additional data

and improved physical insights become available.’

Philip J. Klotzbach and William M. Gray 2009 [126]

‘Under the highly idealized conditions of this experiment, there is a clear ad-

vantage to the hypothetical property insurance firm of using seasonal hurricane

forecasts to adjust the amount of reinsurance it purchases each year ... But

when a more realistic seasonal forecast skill is assumed, the potential value of

forecasts becomes significant only after more than a decade.’

Kerry Emmanuel et al 2012 [75]

The insurance industry exposes itself annually to losses from hurricanes. To date

the most costly year was 2005 when hurricane Katrina cost the industry USD80bn

[248]1. Seasonal weather forecasting methods are becoming more sophisticated [125].

It is likely that the skill and capabilities of these forecasts will increase over the

1This was material when compared to an estimated, total, insurance premium for catastrophe

risks of USD73bn in 2009 [254].
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coming decades [126]. This chapter seeks to investigate the extent to which models

that can make skilful forecasts of some elements of risk, but not others, are useful2

for insurers3. For example, currently the forecasting group ‘Tropical Storm Risk’

based at University College London can forecast [221] the number of Atlantic storms

that make landfall with some skill, but not whether one will hit Miami.

A simple model of insured hurricane losses is created. Basin hurricane counts are

sampled from a Poisson distribution, then successively sub-sampled to create land-

fall numbers and major city hits. The severity of landfalling storms is also simulated

as are insurance losses which are modelled by assuming a simplified 1-1 relationship

between hurricane strength and loss. The parameters to simulate basin number,

landfall proportion and severity are based on the HURDAT4 data set from 1955 to

20105. Various pricing methodologies are then considered which make use of succes-

sively better forecasts. It is shown that simple business volume scaling methods that

react to forecast information can improve expected profitability. More sophisticated

forecasts, if used in pricing, can lead to reduced capital requirements in quiet years,

but would lead to lower profitability unless steps were taken to ensure premium

levels are on average no lower than traditional pricing methods. Where pricing is

changed it is assumed that the whole market have adopted the pricing method; oth-

erwise competition effects would severely restrict their adoption. Finally it is noted

that, given the natural variability of this system, it is very difficult to distinguish

between an underwriter who is good or just lucky. For natural catastrophes it is

easy to be ‘fooled by randomness’ [249]. The original elements of this chapter are

believed to be:

• Development and presentation of a simple statistical hurricane landfall process;

2‘Useful’ forecasts, from an insurance perspective, would be, for example, those that help to

improve profitability or postpone insolvency for longer.
3Summary conclusions from this chapter were presented by the author [163] at an R Met Soc

meeting in London in February 2011 and then in detail at Cass Business School in March 2011 [162].

The work was carried out to support the publication of a Lloyd’s of London report [139] ‘Forecasting

Risk’: The value of long-range forecasting for the insurance industry”.
4Hurricane data from the US National Hurricane Centre is updated annually. The data is

referred to as HURDAT (Hurricane Databases.)
5This work was carried out in 2011. The results of this chapter are discursive and do not depend

on the latest available data set being used.
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• Illustration of efficacy of different quality forecasts using adjusted pricing based

on a standard reinsurance pricing method first proposed by Kreps [128];

• Comparison of a return-on-capital pricing method with the Kreps method;

• Comments on perception of underwriter performance in the context of the

hurricane process.

5.1 Description of simple hurricane landfall model

For a hurricane to cause a major loss the following has to occur: (1) a hurricane

forms; (2) it makes landfall; (3) at landfall it is intense, and finally; (4) the landfall

location occurs where exposure density is high (i.e. it impacts a major urban or

commercial centre). The basic simulation examined in this chapter is as follows (see

also figure 5.3):

• Let NB ∼ Poisson(λ) be the number of hurricanes that form in the North

Atlantic Basin, where λ is the expected number of hurricanes in the year;

• Let the the number of these that make landfall NL|NB ∼ Binomial(NB, q),

where q is the probability that a basin hurricane will make landfall;

• Let NC be the number of these which hit a major city or commercial centre

so that NC |NL ∼ Binomial(NL, c), where c is the proportion of landfalling

hurricanes that are city hits;

• Simulate the Saffir Simpson6 strength of each landfalling storm, according to

their observed frequencies (call these sa1, ...saNL) assume this is independent

to landfall location, uniformly sample NC of these, which are deemed to be

the city hits, assume a 1-1 correspondence between strength of a city hit and

financial loss (Si = S(sai)) distribution;

• Calculate the Premium charged Pj where j denotes the pricing method used

(defined in section 5.2);

• Calculate the profit as π = P −
∑NC

i=1 Si.

6The Saffir Simpson hurricane wind scale [183] is a series of ranges of wind speed split into named

categories: Tropical Storm, plus 1-5 Hurricane strength. These were designed to broadly correlate

with the damage caused, for example: category 1 states that ‘dangerous winds will produce some

damage’ and category 5 that ‘catastrophic damage will occur’.
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The following discussion is not particularly complex; but its implications are

new and give insights into the difficulties of making use of forecasts in an insurance

context.

Number of hurricanes generated NB: NB ∼ Poisson(λ). It is standard to use

a Poisson distribution for catastrophe hazard frequencies [117, 120, 124, 171]. The

variance in average number of hurricanes generated per year since 1955 is 6.9 which

is larger than the mean of 6.1. This is known as ‘over-dispersion’ since with a Poisson

distribution the variance should equal the mean. Allowance for over-dispersion can

be made in various ways such as using a Negative Binomial distribution [66] but here

the Poisson expectation parameter is rounded up to λ = 7. See figure 5.1 which

compares histograms of actual hurricane numbers and a Poisson(7) distribution

sample.

Number of landfalls NL: NL ∼ binomial(NB, q). On the assumption that each

hurricane generated in the Atlantic has an equal probability of making landfall the

total landfall count is the sum of NB Bernoilli trials [101] resulting in a Binomial

distribution. The long term average proportion of landfalling hurricanes from those

generated (based on HURDAT data up to 2010) is q = 24% see figure 5.2. The

assumption of constant landfall proportions is contentious in the literature [46, 48,

55, 120, 161, 242]. This is not a constraint for this chapter, however, because the

hurricane model is deliberately simple to enable clear investigation of the efficacy of

forecasts in insurance pricing.

Number of city hits NC: A simple model of whether a major city is hit is defined

as follows:

• The US east coast is around 3600 miles long [111];

• Assume that the destructive winds from each hurricane falls into a ‘slot’ exactly

90 miles wide - so there are 40 such slots on the US coast;

• Assume there are 10 major population centres on the coast;

• Say that each city is sufficiently far away from the others, so there is a zero

probability of a hurricane hitting two, also assume that each city is in the

middle of a coastline ‘slot’ (defined above);
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Figure 5.1: Histograms of actual hurricane counts per year (left) and simulated from Poisson

distribution (right)

• Assume that a hit on each coastal slot is equally likely, and therefore there is

a probability c = 10
40

that a landfalling storm will hit a major city.

Using the above model the number of city hits is NC |NL ∼ binomial(NL, c).

Equivalently this is NC ∼ Poisson(λqc), where λqc is a product of the three param-

eters described above.

Severity of events The landfall intensity distribution is calculated from the fol-

lowing table (based on HURDAT data from 1955 to 2010). Insurance losses S(sa)

are assumed to be directly related to Saffir Simpson categories as shown in table

5.1. The loss column is not based on an analysis of past costs; it is intended to

reflect the approximate relationship between category and strength7. Clearly one

would expect the cost to increase as the strength of storm increases. In practice

there is a large variation of insurance loss with storm category. ‘Superstorm’ Sandy

was not even intense enough to be categorised as a hurricane at landfall yet led to

an industry loss of USD36bn [248].

7This is based on my own personal experience of catastrophe models and Lloyd’s disaster

scenarios [146].
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Figure 5.2: Hurricane landfall proportion (ratio) by year since the 1950s based on HURDAT

data to 2010. The long term average of 24% is illustrated by the horizontal red line.

Table 5.1: Mapping of Hurricane categories to assumed insurance losses

saffir simpson

(sa)

landfall count

since 1955

proportion loss S(sa)

USDbn

1 31 38.2 % 1

2 20 24.7 % 3

3 23 28.4 % 15

4 5 6.2 % 70

5 2 2.5 % 130

5.2 Kreps’ Pricing using forecasts

The following subsections describe various pricing methods to be investigated. These

are all based on the work of Rodney Kreps [128]. Actual pricing methods used by

individual insurers and reinsurers are likely more sophisticated but the methods

illustrated capture the essence of pricing: to cover expected losses and provide a

return on capital to investors that is consistent with the size of the risk taken on.

Here the standard deviation term in Kreps’ approach is a proxy for riskiness. The

price for a claims process with mean µ and standard deviation σ is defined (see

equation 2.1 in Kreps’ paper) as follows:
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P = µ+Rσ + E (5.1)

Where R is the ‘Reluctance’ a measure of the insurer’s appetite for the given risk

(a high reluctance means a low appetite and consequently a high technical price will

be set) and E are the expenses of the contract, which are ignored in this chapter.

Naive company Let a ‘Naive company’ be defined as one that uses past claims

to estimate future premiums and which does not take account of forecasts that use

a physical or statistical model.

Naive pricing The calculation of the Naive premium P0 is derived as follows.

First recall that the total claims in the year TC arise from a compound Poisson

process:

TC =

NC∑
i=1

Si (5.2)

where NC ∼ Poisson(λqc) and each Si is IID according to table 5.1. Using the

linearity of the expectation operator and the law of total expectation8:

µ = E(TC) = E(NC).E(Si) = λqcE(Si) (5.3)

The variance of the total claims can be found by using the Law of Total Variance9:

V ar(TC) = E(Si)
2V ar(NC) + E(NC)V ar(Si)

= λqcE(S2
i )

(5.4)

The Kreps’ formula for the Naive premium P0 is therefore as follows:

P0 = E(NC)E(Si) +R
(
E(Si)

2V ar(NC) + E(NC)V ar(Si)
)1

2

= λqcE(Si) +R
(
λqcE(S2

i )
)1

2

(5.5)

Control Experiment A sample of Nsmpl claims is produced using the basic sim-

ulation above and using the Naive Price (P0). This will be taken as the ‘control’

experiment against which other pricing methods will be compared.

8E(Y ) = EX(E(Y |X))
9V ar(Y ) = EX(V ar(Y |X)) + V arX(E(Y |X))
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Variant1: Basin frequency known approximately: change business vol-

ume This first variant therefore assumes that the control experiment represents

100% of the company’s planned business and that this will be reduced (by a factor

α2) in a year where basin frequency is forecast to be high and increased (by α1)

when the forecast suggests low frequency. This method could be used in a market

where the majority of companies still use Naive pricing [139]. It is assumed that the

forecaster can say whether the number of Atlantic basin storms are ‘high’, ‘medium’

or ‘low’ compared to an average year (climatology). Define a function f as follows:

f(NB) =


high NB > E(NB) + k.σ(NB)

medium NB ∈ [E(NB)− k.σ(NB), E(NB) + k.σ(NB)]

low NB < E(NB)− k.σ(NB)

(5.6)

Where σ(X) is the standard deviation of the random variable X. f is therefore a

three valued random variable. Then the profit π1 is as follows:

π1 =



1

(1 + α2)
.(P0 −

∑NC
i=1 Si) f(NB) = high

(P0 −
∑NC

i=1 Si) f(NB) = medium

(1 + α1).(P0 −
∑NC

i=1 Si) f(NB) = low

(5.7)

Variant2: Basin frequency known approximately - adjust premium rate

For the rest of the variants in this section (unless otherwise indicated) it is assumed

that the whole market has now adopted annually revised pricing, taking seasonal

forecasts into account. In this case the premium adjustments below would not need

to result in a reduction in business volumes. In this variation the price, P2, is

calculated as:

P2 =


P0(1 + β1) f(B) = high

P0 f(NB) = medium

P0

(1 + β2)
f(NB) = low

(5.8)

Thus if a high frequency season is forecast the technical premium is increased (by a

factor β1); but is reduced (by β2) if the frequency is forecasted low.

257



Variant 3: Frequency in basin known perfectly Here it is assumed that the

NB is known perfectly. In this case NC ∼ binomial(NB, q.c). Therefore the premium

is calculated as:

P3 = q.c.NB.E(S) + 30%
(
E(S)2.q.c.(1− q.c).NB + q.c.NB.V AR(S)

)1
2 (5.9)

Note in this case that P3|NB is a random variable (i.e. varying each year), and

that E(P3|NB) 6= P0. This is illustrated in figure 5.6.

Variant 4: Number of landfalling storms known perfectly In this case

the number of landfalls (NL) is known and therefore NC ∼ binomial(NL, c). The

premium is therefore calculated as:

P4 = c.NL.E(S) + 30%
(
E(S)2.c.(1− c).NL + c.NL.V AR(S)

)1
2 (5.10)

Variant 5: Severity known approximately In this variant it is assumed (as

in variant 4) that the number of landfalling hurricanes is known perfectly. For the

landfalling storms an approximate strength category for each landfalling storm is

produced enabling the forecaster to calculate a potential loss (Lp) (an upper bound

on possible losses assuming all storms are direct hits). From this, three severity

grades are published (‘high’, ‘medium’, ‘low’) as follows:

g(Lp) =


high Lp > Q(Lp, k3)

medium otherwise

low Lp < Q(Lp, k4)

(5.11)

Where Q(Lp, ki) is the kith quantile10 of the potential loss. Given this additional

information the company is assumed to adjust pricing as follows:

P5 =


P4(1 + β3) g(Lp) = high

P4 g(Lp) = medium

P4

(1 + β4)
g(Lp) = low

(5.12)

Note the use of P4 in the above formula, which already allows for the number of

landfalling storms precisely. The additional adjustment allows for the aggregate

10Q(Y, k) = {y|P (Y ≤ y = k}

258



landfall strength in addition. A variant of this approach (call this 5b) could be to

use the additional information by scaling line-size, as in variant 1, as follows:

π5b =



1

(1 + α4)
.(P0 −

∑NC
i=1 Si) g(Lp) = high

(P0 −
∑NC

i=1 Si) g(Lp) = medium

(1 + α3).(P0 −
∑NC

i=1 Si) g(Lp) = low

(5.13)

Note the role played by P0 in this case.
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Figure 5.3: Flow chart for stationary climate experiments
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Experiment C5.1.x Stationary climate

This is a series of experiments where x in 5.1.x denotes the pricing

variant: 0,1,2,3,4,5,5b.

Sample size: Nsmpl = 215

Hurricane generation process: λ = 7, q = 0.24, c = 10
40

. The assumed frequency

of each category of hurricane and the relationship between category and insurance

loss is defined in table 5.1.

Reluctance parameter: Kreps’ [128] suggested that a figure of around 30% was

consistent with reinsurance pricing at the time he published his paper (1990) and

this is used throughout this chapter.

Basin frequency index f : : k = 0.4

Potential severity index g: For this simulation the following assumptions are

made: k3 = 0.66 and k4 = 0.33. These were chosen so there is an equal chance of

each category.

Method 1: : α1 = α2 = 0.1.

Method 2: : β1 = β2 = 0.1.

Method 5: : β3 = β4 = 0.1. There is an argument that β3 should be set higher

than this to reflect the skewed nature of the severity distribution. But this theoretical

consideration has to be offset by the level of premium volatility the market would

bear in practice.

Method 5b: : α3 = α4 = 0.1

5.3 Results: Kreps Pricing

Basin frequency index The choice of k = 0.4 in the definition of the basin

frequency index f (equation 5.6), means that years with less than 6 hurricanes11 are

referred to as ‘low’ frequency years, and years with more than 8 are referred to as

‘high’ frequency. The approach described leads to the following probability table:

116 ≈ 7− 0.4
√

7
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basin frequency index

(x)

P(f=x)

low 30 %

medium 43%

high 27 %

This is roughly symmetric around ‘medium’ and gives similar chance of a high,

medium or low year (it isn’t possible to set k for these to be exactly equal because

the storm count is an integer). This business volume scaling method is similar to

that used by Emmanuel et al [75] who vary the amount of reinsurance purchased

depending on a forecast. In both cases the retained business will vary according to

the risk. Emmanuel et al conclude ‘When the seasonal forecasts are perfect, there

is a clear advantage to using them to adjust the amount of risk retained by the

primary insurer’.

Exceedance Probability (EP) curve A (very) simple industry catastrophe loss

model arises from this process. The simulation of hurricanes through to landfall

and insurance loss generates equally likely years of loss. These can be sorted to

produce Monte-Carlo estimates of the probability of exceeding losses of a given size.

These Exceedance Probability curves (glossary, Chapter 1) are used by the insurance

industry to illustrate the levels of risk being assumed. Figure 5.4 shows the annual

aggregate losses and their associated probabilities from the simple model described

above. Two thirds of years have zero loss (not illustrated). The work presented

allows the relative strength of the various pricing approaches discussed below to

be compared and general conclusions drawn. Future work could extend this simple

model by using a more sophisticated catastrophe model and using a more complex

pricing formula. What is novel in this thesis is the framework itself and this initial

exploration of it.

Sampling method A Where boxplots or confidence intervals are shown in the

following sections they have been created as follows:

1. Given an experiment with a sample of Nsmpl = 215 outputs;
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Figure 5.4: Experiment C5.1.x: Exceedance Probability (EP) curve of hurricane losses generated

from simple landfall model.

2. Create a sub-sample by selecting Nsub = 214 values without replacement (en-

suring that the same simulation numbers are chosen for each pricing variant

to enable comparison);

3. Produce statistics for the sub-sample(s);

4. Repeat from step 2 Nbox = 210 times to produce a set of bootstrap results.

Pricing method 0 (Control) The premium P0 = 10.88 is charged in all years.

The average profit (E(π0) = 5.55) with a 95% confidence interval of (5.36, 5.74) using

sampling method A. Profits, (illustrated in figure 5.5) are made in the majority of

years with a few years with small losses (i.e. negative profits) and a tiny fraction

with losses less than USD50bn arising when major hurricanes are city hits.

Premiums Figure 5.6 shows the various premium levels that arise under the pric-

ing variants (grey). The average premium level is also shown (black). Note that the

average premium for variants 3,4 and 5 are all lower than the control.
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Figure 5.5: Experiment C5.1.0: Histogram of profits π0 from the control experiment; x-axis

shows profit π for pricing method 0 in USDbn.

Explanation why average premiums are lower in some cases The average

premium for variants 3,4 and 5 is lower than the control. Consider for example

variant 3 (variants 4 and 5 are affected similarly) and recall the premium formula

for the control is:

P0 = qcλE(Si) +R
(
qcλE(Si)

2 + qcλV ar(Si)
)1

2 (5.14)

So,

E(P0) = P0 = qcλE(Si) +R
(
qcE(Si)

2 + qcV ar(Si)
)1

2 .λ
1
2 (5.15)

Compare this to,

P3|NB = qcNBE(S) +R
(
qc(1− qc)NBE(Si)

2 + qcNBV ar(Si)
)1

2 (5.16)

So, since E(NB) = λ ,

E(P3) = qcλ.E(Si) +R
(
qc(1− qc)E(Si)

2 + qcV ar(Si)
)1

2 .E(NB

1
2 ) (5.17)

For the chosen parameters the term qcλ.E(Si) = 5.42. This term is the same for

both expectations and the term involving E(Si)
2 is clearly lower for (P3) (due to the
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(1− qc) term). In the specific simulation:

R
(
qcE(Si)

2 + qcV AR(Si)
)1

2 = 2.061 (5.18)

compared to

R
(
qc(1− qc)E(Si)

2 + qcV ar(Si)
)1

2 = 2.047 (5.19)

In the particular simulation E(N
1
2
B ) = 2.59 compared to E(NB)

1
2 = 2.64 but it is

generally true that E(N
1
2
B ) < E(NB)

1
2 due to Jensen’s inequality and the fact that

the square root function is concave. In the particular simulation, therefore:

E(P0) = 5.42 + 2.061 ∗ 2.65 = 10.88 (5.20)

compared to

E(P3) = 5.42 + 2.047 ∗ 2.59 = 10.72 (5.21)

Therefore it is clear that under variant 3 a lower premium is calculated because the

Kreps formula gives credit for the lower standard deviation. The reduced risk is

passed straight to the policyholder. In practice the insurer may wish to retain some

profit to avoid a price that is less than the Naive price.
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Figure 5.6: Experiment C5.1.x: Spread of premium rates arising from the different pricing

methods indicated by the label on the x-axis, values are shown in black with the premium rate in

text plotted at the appropriate level). The mean premium under each method is highlighted in

red with a line joining them (this may not be a premium level that is ever charged). Note that the

average premium rates for variants 4 and 5 are lower than the control.
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Premium relative to the number of basin hurricanes Under some of the

pricing variants the premium will be different depending on the number of basin

hurricanes that are forecasted. Figure 5.7 illustrates how the premium varies. The

key points from this graphic are as follows:

• by construction the control (0) and variants 1 and 5b are all equal and show

a constant premium in all cases;

• variant 2 shows a premium which is higher in a ‘high’ activity year and lower

in a ‘low’ activity year, by design the adjustment level is modest;

• variant 3 shows exactly one premium level for each number of Basin hurricanes;

as expected this increases as the hurricane count increases. Note also that a

premium of zero will be charged if no hurricanes are forecast (recall the forecast

in this variant is deemed to be ‘perfect’);

• variants 4 and 5 produce a wide variation of premium for each number of basin

hurricanes, as they use more information about landfall rates and severity (and

this introduces variability).

Premium relative to the number of landfalling hurricanes Key points from

figure 5.8 are as follows:

• The dots form a triangular shape in the plot for variant 3 with white space

below the hypotenuse. Note, that should a particular number of landfalling

hurricanes occur (nL say) then at least that number of Basin storms must have

occurred (i.e. NB ≥ nL in the pricing formula 5.9). The other terms in the

pricing formula are constants and so the lower bound on NB is also a lower

bound on the premium rate, explaining the white space. There is, however, a

wide spread of premiums for each landfall number because this pricing method

is based on the number of storms generated and the number of landfalls can

still vary significantly;

• variant 4 now shows a 1 to 1 relationship between landfalling hurricane count

and price (by design) - the more landfalling storms the higher the premium.

• variant 5 also shows an increasing premium for landfalling storm count (as ex-

pected), however there is still a spread of premium rates reflecting the variation

in severity each season which this variant allows for.
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Premium relative to the number of city hits Figure 5.9 shows the premium

charged under each of the variants plotted against the number of city hits that arose

in the simulated year. The key points arising from this figure are as follows:

• The graphics illustrate that even the most sophisticated methods (4 and 5)

produce a wide variation of premium levels for a given number of city hits.

The residual uncertainty in the system is still significant and this can lead to a

lower premium being charged than the control in a year with a city hit. When

there are more than 2 city hits, however, the premium charged is never lower

than the control.

• The blank lower right triangles for variants 3,4 and 5 arise because a given

number of city hits places a lower bound on basin hurricane numbers and

landfall numbers - and hence a lower bound on premiums.

Profitability of the variants The boxplot in figure 5.10 shows the mean under-

writing profit, relative to the control, for the variants. Key points from this graphic

are:

• there is still a wide range of profitability from different samples - even when

they are of size 214;

• variants 1 and 5b, are usually more successful than the control. On average

variant 1 gives profits that are 2.7% higher and variant 5b 7.9% higher;

• variant 2 is of broadly equal profitability to the control (with sampling error

of +/- 5%);

• variants 3,4 and 5 are all lower profitability than the control.

The slightly odd outcome noted in the final bullet is explained by the fact that

the premium from variants 3,4 and 5 is lower, on average, than for the control.

Average underwriting profit is: E(πj) = E(Pj −
∑nC

i=1 Si), for variant j. But, using

the additive property of expectations, this is just E(πj) = E(Pj) − ASL where

ASL is the ‘Average Season Loss’ which, crucially, is the same for all variants. So

E(πj) = E(Pj−P0 +P0)−ASL = E(π0) +E(Pj)−E(P0) and since E(Pj) < E(P0)

for variants 3,4 and 5 this explains the effect.
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Figure 5.7: Experiment C5.1.x: Premium rates (y-axis) against number of Atlantic Basin hurri-

canes (x-axis) for each pricing method. The pricing method is indicated by the y-axis label. The

control P0 and variants 1 and 5 charge the same premium rate in all cases (the latter methods

scale the volume of business sold). P1 shows three levels corresponding to the low, medium and

high seasons. P2 by construction has a 1-1 correspondence with the number of basin hurricanes.

Variants 4 and 5 show many different rates against number of basin hurricanes since they take

account of more forecast information.
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Figure 5.8: Experiment C5.1.x: Premium rates (y-axis) against number of landfalling hurricanes

(x-axis) for each pricing method. The pricing method is indicated by the y-axis label. Variant 2

has three premium levels except when the number exceeds 5; in this case it is not possible for the

basin season to have been ‘low’. Variant 3 has many premium rates but the landfalling number

places a lower bound on the basin frequency explaining the white space at the bottom right of the

plot. By construction Variant 4 shows a 1-1 relationship with landfalling number. Variant 5 shows

three rates (low, medium and high season strength) when the landfalling number is 1; for larger

landfalling counts only medium and high strength seasons are possible.
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Figure 5.9: Experiment C5.1.x: Premium rates (y-axis) against number of city hits (x-axis) for

each pricing method. The pricing method is indicated by the y-axis label. The white space in the

bottom right of the figures for variants 3,4 and 5 are caused by the number of city hits placing a

lower bound on the basin and landfalling frequencies respectively. Note that under variant 4, when

there is 1 city hit it is possible for this variant to have charged less than the control premium rate.
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Figure 5.10: Experiment C5.1.x: Boxplot of mean underwriting profit relative to the control

(π0). The mean profit (E(π)) of each resample is calculated for each pricing method and then

divided by E(π0) from the control method. The profitability of variant 4 (π4), where the number

of landfalling storms is known perfectly, is significantly lower than the others despite the additional

information used. The profitability of Variant 5b (π5b) which makes use solely of the season strength

information is significantly higher than the others. Boxplots produced using sampling method A

(taking 210 bootstrap resamples each of size 214 from the 215 underwriting results produced by

simulation).
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Impact on extreme profitability Define ‘extreme conditions’ as negative

profits that arise less frequently than 1 in 200 years (0.5%). Figure 5.11 shows the

insurer’s (negative) profitability, as a proportion of the profitability of the control

experiment, in extreme conditions.
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Figure 5.11: Experiment C5.1.x: Boxplot of 1-in-200 negative profit (Q(π, 0.005)) for each pricing

method relative to the control. The quantile for each pricing method is divided by the value for

the control experiment. Values greater than 1 indicate the 1 in 200 underwriting loss will be worse

under the pricing variant and values less than 1 indicate a better outcome. Each of Variants 4,5 and

5b have significantly lower extreme negative profits than the other methods. Variant 5b (π5b) in

particular achieves a 9% reduction in extreme negative profits relative to the control. Created using

sampling method A (taking 210 bootstrap resamples each of size 214 from the 215 underwriting

results produced by simulation).

Key points from this graphic are:

• Variants 4, 5 and 5b use successively more forecasting information, and have

lower extreme negative profits than the control;

• Variants 1,2 and 3 lead to a similar level of negative profitability to the control

in extreme conditions;
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• Business volume reduction methodology 5b is both more profitable (7.9%)

(figure 5.10) and avoids large extreme negative profits (-9.1%) (figure 5.11).

Impact on capital Assume that the insurer is required to hold sufficient capital

(assets in excess of reserves) to withstand extreme conditions12. Key findings are:

• Control: The company treats each season the same as any other, so holds the

same amount of capital in all cases. Under the control method a premium of

10.9 is charged and held as a reserve. The 1 in 200 claim amount is 130.0 and

hence the required capital is 119.1.

• Variant 1: the company reduces its exposure by 10% in a high frequency year

and increases it by 10% in a low frequency year. It charges the same premium

per risk as the control - but both the total aggregate premium and 1 in 200

claim will scale in the same way. Therefore the total capital required will be

the same as the control in a medium year, it will be 10% lower in a high year

and 10% higher in a low year. The capital per unit of risk is, however, the

same in all cases.

• Variant 2: The company receives a high, medium or low basin activity forecast

and will charge a differential premium in this case (for the same level of expo-

sure as the control experiment). Figure 5.12(a) shows that the 1 in 200 claim is

actually the same in the ‘low’ and ‘medium’ case even though the premium is

not; hence the capital held actually falls in the ‘medium’ case as more premium

is charged. The level of risk has certainly increased in the medium frequency

season, but this doesn’t show up until around the 1 in 500 year event. Clearly

this is an artefact of the particular assumptions made in this chapter, but it

does underscore an important point: whatever regulatory threshold is chosen

it is likely that there will be features that appear anomalous. In this case the

company will hold lower capital in a riskier year.

• Variant 3: The company knows the number of basin storms perfectly. The

regulator requires the capital to flex with the level of risk. Figure 5.12(b)

shows that the 1 in 200 level of claim has regions of stability (e.g. when the

number of basin storms (n) is between 4 and 8 inclusive) - however the pricing

12This is (in essence) the current requirement under the Solvency II framework.
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method is linked to the increasing variance of loss which does increase as n

increases. Hence the required capital actually falls during these stable zones

in line with the increase in premium. After a step up in risk the capital can

still fall if the premium increase is greater than the rise in 1 in 200 claim - but

in other cases it rises when the level of extreme claims outpaces the premiums.

Capital held for NB < 4 is much lower - it is interesting to note that in this

case the company could not survive a single cat 5 storm - at this point the

regulator might step in and override the 1 in 200 rule and require additional

capital to be held.

• Variant 4: The company knows the number of landfalling storms perfectly.

Whenever NL is zero they would hold zero capital. The company will make a

certain profit in the year equal to the premium charged. In practice, however,

if the forecast really were perfect it is likely this would be generally known

and so no insurance would be bought. Figure 5.12(c) illustrates the situation

where the number of landfalls is non-zero. Capital has the typical saw tooth

pattern initially as the the premium charged sometimes increases faster than

the 1 in 200 claim. Eventually the capital increases monotonically in cases

where the number of landfalls is very large (these are very rare) - in this case

the 1 in 200 claim increases by more than the premium - even though the

conditional premium is much higher. Note, however, that the high capital

years are extremely rare; on average capital will be lower for this method as

shown in figure 5.11.

• Variant 5: Figure 5.12(d) illustrates an interesting feature of the conditional

season strength metric chosen. If the number of landfalls is more than 2 but

the season is of medium strength then the forecasted hurricanes can only be

category 1 or 2 since otherwise the loss will exceed the quantile for the function

g. Hence actually the 1 in 200 claim falls even though the number of landfalls

has risen (because the company knows the overall season strength is low or

medium). In this case the company never needs to hold capital in low or

medium years and will make certain profits if the forecast is perfect. Figure

5.12 (e) shows that for this knowledgeable company the capital rises very high

in the rare case of multiple landfalls.
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• Method: 5b Figure 5.12(f) illustrates the results for a company using method

5b. In a low severity season the 1 in 200 loss is 2 units. The premium charged

is based on the control premium however and so exceeds this level, losses would

be made very rarely in this situation. Hence theoretically capital requirements

are negative! In practice the regulator would not allow a company to write

business with no capital held. For a high severity season the capital held is

still lower than the control because the premium charged is higher.

5.4 Pricing to reflect target return on capital

The Kreps’ formula does not directly reference the capital required to write the

business; the σ term is a proxy for this. It is possible (as with equation 4.10) to

adapt the pricing formula to target an expected return on capital directly. Recall,

that the Capital held (κ) is defined as a regulatory claim amount (Qj) less the

premium charged (P̃j) for j ∈ {0, 1, 2, 3, 4, 5, 5b} i.e. κj = Qj− P̃j. Then alternative

premium rates (shown by a tilde), referred to as the ‘target return’ method below,

are defined as:

P̃j = Ej(C) + γκj (5.22)

or equivalently:

P̃j =
Ej(C) + γQj

1 + γ
(5.23)

Where Ej is the expectation allowing for the forecast and similarly Qj is the regu-

latory quantile dependant on the forecast.
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Figure 5.12: Experiment C5.1.2- C5.1.5b: Capital requirements arising under each method.

Red lines show the 1 in 200 annual aggregate claim arising black shows the capital arising after

deduction of the premium charged from the 1 in 200 claim. Figure (b), Variant 3 shows that when

the number of basin hurricanes is 1 or 2 the chances of a category 4 or 5 storm making landfall

as a city hit is beyond a 1 in 200 probability so that capital does not (in theory) need to be held

for this eventuality. Figure (4) Variant 5 shows that if the season strength is medium and there

are more than 3 landfalling storms then no capital is required as the premium rates are more than

sufficient. In practice no insurance would be bought under these conditions on the assumption

that the forecasts are exact.
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Experiment C5.2.x Target return method

All parameters as for experiment C5.1.x except that pricing formula targets a chosen

return on capital.

Target Return on capital: The return on capital is chosen so that the premium

charged by a company using naive methods will be the same. In the situation when

forecasts are not used, the 1 in 200 claim is kept fixed at 130 in each year. Recall

that expected losses are 5.42 and the Naive premium (P0) was 10.88. Hence the

required return on capital to equate the more sophisticated method with the Kreps

method is derived as:

γ =
P0 − E(NC)E(Si)

Q0 − P0

=
10.88− 5.42

130− 10.88
= 4.58% (5.24)

Results for experiment C5.2.x The following series of figures compares the

premium for pricing variant j under the simple Kreps method (Pj) with the tar-

get return method (P̃j). Variants 1,2 and 5b are not shown since (by design) the

premium is the same for the Kreps and Target Return methods. Pricing variants

3,4 and 5 will give different premium rates. Each shows an increasing monotonic

relationship between the premium rates as the relevant storm number (and, where

relevant, storm strength).

• Figure 5.13(a) illustrates variant 3 and shows that when the hurricane storm

count is close to the expected count (i.e. 6,7,8) then the two methods show

similar pricing. This isn’t that surprising since the target return on capital

is forced to give the same premium for the naive pricing method which uses

expectations for each part of the process. For NB > 7 the Kreps method

produces higher premium rates than the Target Return method.

• Figure 5.13(b) illustrates variant 4 and shows that when the landfall number

is close (i.e. 1 and 2) to the expected number (1.7) then the premium rates are

similar for the two methods; for similar reasons noted for variant 3. Above 2

landfalling storms the Kreps method produces a higher price than the target

return method.

• Figure 5.13(c), illustrates variant 5 and shows similar results - for number of

landfalls in excess of two storms the Kreps method shows higher prices. Since
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the price is a multiple of the method 4 prices this is quite obvious.

It is not immediately obvious which of the Kreps and Target Return methods

will be the most profitable. Although the Kreps method gives higher prices when

storm counts are high, such situations are the rarest. In fact in all cases the Kreps

method gives higher profitability and has a lower coefficient of variation13 (CoV) as

shown in the table.

Table 5.2: Comparison of profitability between Kreps and Target Return Methods

Pricing method Kreps

mean

(CoV)

target re-

turn mean

(CoV)

3 5.40 (3.32) 5.37 (3.34)

4 4.68 (3.79) 4.54 (3.90)

5 5.10 (3.47) 4.90 (3.59)

Career performance An underwriter might be thought to have done reasonably

well in their career if they can return the expected level of return on capital, on

average, over its course. Define a career to be 40 years. It is then simple to calculate

the simulated probability of an underwriter achieving this. The method described in

this chapter produces 215 simulated years’ of underwriting profits; hence these can be

split into 819 separate ‘careers’ (with 8 years to spare). Consider two underwriters,

one, underwriter A, that charges the Kreps’ price P0 and another, underwriter B,

which undercharges by 10% due to misstatement of the level of risk (i.e. their

processes are faulty and they have made an error).

For underwriter A there is a 44.2% chance they will achieve a geometric av-

erage return equal to their desired return on capital (γ = 4.58%p.a.) or better.

Underwriter B has a 33.1% chance of achieving such a career average return. Two

situations can therefore occur:

1. an underwriter who is pricing correctly still has a very high probability of

returning a less than average return in their career; and

13The Coefficient of Variation of a random variable X is defined as CoV (X) = sd(X)
E(X)
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2. an underwriter who is pricing incorrectly still has a reasonable probability of

appearing to provide a decent return over their whole career.

In the first case Underwriter A may be considered to have ‘failed’ when they did

nothing wrong; in the second case Underwriter B may be thought to be a highly

successful underwriter when in fact they were underpricing for their entire career.

This finding is similar to that in Emmanuel et al [75] who find it can take 10 years to

differentiate between a company using past claims averages and a more sophisticated

one that uses forecasts, even in the case of a perfect forecast. In practice EP curves

are not as extreme as this simple example but this illustrates the difficulties of

assessing underwriter performance in the presences of fat tailed loss distributions.
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Figure 5.13: Experiment C5.2.3 - C5.2.5. Comparison of premium rates using the Kreps method

(Pj on the y-axis) and the Target Return method (P̃j on the x-axis) for variants j ∈ {3, 4, 5}.

The line y = x is shown in red for easy comparison. Figure (a) The plot character is the number

of basin hurricanes in the year (noting that there will be one premium rate for each forecast of

basin hurricane numbers under variant 3), figure (b) the plot character is the number of landfalling

hurricanes in the year (noting that there will be one premium rate for each level of forecasted

landfalling number under variant 4) and figure (c) shows variant 5 the plot character is the number

of landfalling hurricanes in the year, the plot colour shows the severity strength of the season -

the premium rate is sensitive to both these parameters so there is a unique premium rate for each

combination of landfall number and season strength.
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5.5 Conclusions

The results in this chapter are based on a novel demonstration of a simple yet

informative model with qualitative conclusions that are expected to generalise. The

model is not intended to produce ‘realistic’ prices; rather conclusions about the

efficacy of forecasting methods. The results of the various investigations suggest

that there is value in forecasting information if carefully used.

In the case where the frequency distribution is known perfectly a simple business

volume scaling method (where exposure is reduced in high forecast activity years

and increased in low forecast activity years) is the most successful compared to the

other pricing methods in terms of maximising underwriting profits. Business volume

reduction may be an appropriate method for a sophisticated reinsurer, however, but

does not work for the insurance industry as a whole unless deductibles are also

variable for direct writers14. In this experiment, it is found that an underwriter

who undercharges systematically can still appear successful with 33% probability

showing that mis-pricing can be difficult to detect in the presence of extreme risks.

Pricing variants which vary the premium rates in line with forecast information

produce lower premiums on average in the experiments described and therefore

lead to lower expected profitability. This is because the benefits of reduced variance

(caused by the availability of more information) are passed straight to policyholders.

To preserve average profitability a minimum premium could be set equal to that of

the naive methods; i.e. only charge more premium in high frequency years but

retain the minimum premium in lower frequency years to reflect the high residual

volatility. The variable premium methods tested require a few percentage points

less capital on average. In high frequency years companies recognising the increased

risk would, however, be required to hold more capital, in some cases much more.

Unless this practice were widely adopted this may be hard to justify to investors.

The next chapter addresses the issue of competition directly by introducing a novel

insurance industry model with two competing companies.

14Direct writers are insurers that sell directly to the public or businesses; this contrasts with

Reinsurers that sell to insurers.
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Chapter 6

The insurance industry in-silico

‘With some advice and encouragement from his fellow student and friend Wal-

ter Newlyn ... [Phillips] set about designing a machine in which water flowed

through transparent pipes and/or gathered in reservoirs, to demonstrate the

macro-economy’s properties. He described this machine, and the economic

interpretation of its workings, in his first publication ... Phillips actually built

his machine, and it worked too...’ David Laidler 2000 [130]

The previous chapters have illustrated that forecasting can be useful in an in-

surance context. The insurance setting in each case has, however, been highly over

simplified. This chapter aims to partially redress the balance by describing a model

of an insurance industry with many of the key features present in the real world.

The complexity of computer modelling in the insurance industry has increased over

the past 40 years since models were first used to explore better ways of calculating

solvency risks [61,63,218,219,244]. Such models have tended to focus on single com-

panies [50,195,220], however, and it is far rarer to find analysis of insurance markets

in the literature [250, 277]. This chapter proposes a novel insurance market model

which includes competition between two companies and captures the main processes

in the insurance industry [62,105,198,250]: customer loyalty, premium rating, cap-

ital setting, investment returns, claims payments and dividend payments. Like the

subject of the opening quotation, the MONIAC1 model of the UK economy based on

fluid flow, created by Bill Phillips in 1949 [24,210], the insurance model presented in

this chapter is a simplification of a highly complex industry but one that is intended

1Monetary National Income Analogue Computer
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to give useful insight to insurance relevant questions. As with reality, each company

in the model has a limited claims history from which to estimate premium rates and

capital requirements [53]. The pricing method and underlying assumptions used by

the two companies is specified in advance after which the behaviour and outcomes

emerge from the simulation. The model provides a framework to investigate such

questions as: will the companies survive for as long as specified by the regulatory

test, on average? Does profit sharing (or ‘payback’), which is used in some re-

insurance markets, lead to a better or worse investment for shareholders? Would a

different regulatory method lead to a stronger or weaker industry? Is a company

always better off if it sets premium rates using the same distribution family from

which the claims arise? These questions are answered, sometimes with, initially,

surprising results.

The pricing method used in this chapter is ‘climatology’ pricing similar to that

described in Chapter 4. Future work could combine the methods from Chapters 4

and 5 by introducing exogenous forecasts which the insurers in the model could use.

The original elements of this chapter are believed to be:

• Presentation of a novel, agent based insurance market model, and the use of

the model in the following investigations;

• Quantitative investigation of efficacy of a payback rule, with implications for

profitability and average company lifetime;

• Investigations into the impact of different regulatory regimes on average com-

pany lifetime and other metrics: (1) varying Value at Risk (VaR) thresholds

and (2) the impact of an equivalent TVaR rule (defined in equations 6.6 and

6.7);

• Quantifying the impact of using incorrect pricing distributions on key metrics;

• Investigation of the impact of different claims distributions as a proxy for

different business mix.

6.1 Model Design

This section explains how the competition model has been specified. Ultimately the

aim is to simulate the remaining capital held at the end of a year of trading allowing
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for profits made during the year, any capital injections and dividends paid out. This

quantity affects the amount of business that can be written in the following year

and also determines whether the company is still solvent. The capital at the end

of the year is defined in equation 6.29 and the following variables are introduced to

lead up to that definition.

Each ‘experiment’ runs a specified number Nsims of ‘simulations’ , these are

indexed with the subscript i. Each simulation starts with two companies the ‘main’

company (this company is the main focus of the experiments) and a ‘competitor’.

The simulation continues one year at a time (indexed with t) until the death of

the main company up to a maximum duration Tmax. If the competitor dies it is

re-initialised except that the main company takes a portion (equation 6.15) of the

prior competitor’s market share. In reality, when one company becomes insolvent

others are typically created to take its place and the existing companies grow to

take up the business [99]. In the following, for ease of notation, the formulae do not

show the subscript i except when it is clearer to do so.

Currency For concreteness assume all financial figures are in Great British Pounds

Sterling (GBP).

Unit of risk The insurance market is assumed to have a fixed number (Nmarket) of

‘risk units’. For example each risk unit could be a single factory at a given location.

These are always shared between the main company and competitor. In reality

policyholders face differing levels of risk but here it is assumed each are identical.

In the following descriptions the phrase ‘per unit’ always refers to a unit of risk.

Claims per unit of risk (Cmarket
t ) The claims per unit of risk are a stochastic

variable that is simulated each year from a distribution that will always produce

positive real numbers.

Total claims in the market Cmarket The total claims in the insurance market

are defined as:

Cmarket
t := Cmarket

t Nmarket (6.1)
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Claims initialisation The market level of claims (per unit), prior to time zero,

is available Cmarket
0 , Cmarket

−1 , . . . , Cmarket
−(n−1). This is then divided into claims histories

for the main company and its competitor using equations 6.16 and 6.17. The initial

market share of each company at time zero is an exogenous parameter.

Estimated expected claims per unit The estimated expected claims per unit

is defined as:

Ê(Cmain
t ) =

1

Y main

Ymain∑
j=1

Cmain
t−j (6.2)

Where Y main is the number of years of past claims (Cmain
t ) that the main company

chooses to use in the averaging calculation. Note that claims are available before

time zero. The competitor company uses the same formula but possibly with a

different averaging period Y comp and using its own claims history Ccomp
t .

Premium calculation All risk units are assumed to have the same underlying

risk profile (i.e. the level of risk per 1 unit of sum insured is the same for each

company). In commercial property insurance, for example, this is equivalent to

saying each property is built the same way, in a location that is subject to exactly

the same level of risk. In practice this is never the case: properties have different

designs, different locations and therefore are subject to different levels of hazard,

and respond differently when disaster strikes. This simplification is not a major

shortcoming for the broad conclusions drawn in this chapter. The premium rate

for the main company Pmain and for its competitor, P comp, are calculated using the

same overall methodology; although the specific pricing assumptions (as specified in

the experiment) can be different. The process for the main company is:

Pmain
t = e−µ

(
Ê(Cmain

t ) +M + payback
)

(6.3)

Where,

µ is the risk free continuous interest rate

Ê(Ct) is the estimated expected level of claims (equation 6.2

M is an additional capital load (equivalently ‘profit margin’) which

targets a specified investment return (equation 6.8)

‘payback’ denotes a variety of profit sharing options, defined in

equation 6.5
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Claims excess The ‘Claims Excess’ is defined as:

Claims Excess =
Ct−1

Ê(Cmain
t−1 )

− 1 (6.4)

It is the excess (or shortfall) of actual claims compared with those expected.

Payback Unless otherwise specified the ‘payback’ component of premium is set

to zero. An alternative pricing process is considered in one of the experiments using

the formula below:

payback = Ê(Cmain
t )

(
Ct−1

Ê(Cmain
t−1 )

− 1

)
ψmain (6.5)

Where ψmain is the proportion of the previous years’ Claims Excess (positive or

negative) that is passed on to the policyholder2 in the current year t.

Value at Risk (VaR)) The ‘Value at Risk’ is defined as follows:

VaRb(X) := inf{X|P (x > X) ≤ b} (6.6)

where b is a chosen percentile. This measure is not coherent3 [14].

Tail Value at Risk (TVaR) The ‘Tail Value at Risk’ is defined as:

TVaRb(X) := E(X|X > VaRb(X)) (6.7)

It is the average value of a variable X given that it has exceeded its Value at Risk.

The risk measure is coherent. In insurance this is also known as the Conditional

Tail Expectation (CTE) [1].

2For example, if last years claims were 50% higher than expected last year, and if the share

parameter ψmain was set equal to 50%, then the policyholder will receive a premium loading of

25% of the expected claims this year.
3‘Coherence’ (from Artzner et al [14]) is defined as a risk measure (ρ) satisfying the four axioms

of translation invariance, sub-additivity, positive homogeneity, and monotonicity. The following

notation is particular to this footnote only. ‘Translation invariance’: for all X ∈ G and all real

numbers α, we have ρ(X + α) = ρ(X) − α. ‘Subadditivity’: for all X1, X2 ∈ G, ρ(X1 + X2) ≤

ρ(X1)+ρ(X2) ‘Positive homogeneity’: for all λ ≥ 0 and allX ∈ G, ρ(λX) = λρ(X). ‘Monotonicity’:

for all X,Y ∈ G with X ≤ Y , ρ(Y ) ≤ ρ(X).
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Capital Load (M) The ‘capital load’ is calculated as follows:

M = γmainK̂main (6.8)

Where, γmain is the return on capital required by the shareholders of the main

company and K̂main is the capital requirement per unit of risk required by the

regulator but estimated by the company. This loading therefore ensures that if the

claims are as expected then the premium charged will be enough to pay the claims

and provide the desired return on capital to the shareholders (a standard approach as

described in Taylor [250]). The capital load is calculated using the same method for

the competitor but using a (possibly) different return on capital requirement γcomp

and based on the estimated capital based on their own claims history. This is the

Target Return method discussed in Chapter 5 (equation 5.22). Two definitions for

the capital requirement, K̂main, are considered in this chapter: (1) a VaR measure

(equation 6.6) and (2) a TVaR measure (equation 6.7). As discussed in section 4.5

on page 222 an extreme level of claims is calculated (Qmain):

Qmain := VaRb̃(Ĉ
main
i )) (6.9)

Where b̃ is the desired regulatory percentile.

K̂main :=
Qmain − Ê(Cmain

t )− payback

1 + γmain
(6.10)

where {Ĉmain
t }i are Nmain

sim and N comp
sim simulated claims from the claims distribution

assumed by each company respectively (these may be different). The parameters

for the distribution are estimated from the past claims for the relevant company. As

such, as in the real world, they are estimated from very sparse data; this is one of

the main reasons for mis-pricing both in the model and in reality.

Market share as function of premium (ζ) This section defines how competi-

tion is allowed for in the model. The market share of the main company ζmaint , as

a function of premium rate, is calculated as follows. First, define a relativity factor

αmaint :

αmaint =

(
P comp
t

Pmain
t

)νmaint

(6.11)
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where,

νmaint =

−1 if Pmain
t > P comp

t

1 otherwise

(6.12)

Then define,

δmaint = δ
main

(
min(αmaint , αmain)− 1

αmain − 1

)σmain
(6.13)

Where the ‘customer loyalty’ parameter 0 < σmain < ∞ determines the sensi-

tivity of the market share to the relative premium rates of the two companies. The

‘Maximum relativity’ factor 1 < αmain < ∞ quantifies the level of αmaint at

which the maximum change in market share occurs. When αmaint > αmain we have

δmaint = δ
main

(i.e. the change in market share has reached its maximum permissible

value δ
main

). A graph of δmaint as a function of Pmain is shown in figure 6.1. Finally,

let the ‘Market Share’ be defined as:

ζmaint = min
(
ζmaint−1

(
1 + δmaint

)νmaint , ζ
main

)
(6.14)

Where, ζ
main

is a parameter denoting the maximum market share that the main

company can take. The only exception to the above formula is on the death of the

competitor in which case the main company’s market share is determined in the

following way:

ζmaint = min
(

max
(
ζt−1(1 + δdeath), ζmain

)
, ζ

main
)

(6.15)

Where δdeath is a parameter denoting the growth in market share on competitor

death, subject to the overall maximum share ζ
main

and also subject to a minimum

value ζmain. This jump in share occurs regardless of the new premium rate (which is

likely to have increased) and allows the main company to make supernormal profits

after a major event in which the competitor dies.

The above definition is summarised in words as follows: Except on the death

of the competitor, starting from a given market share the main company will gain

business if its premium rate is lower than the competitor and lose it if higher. The

rate of gain/loss is determined by:

1. the function δ whose shape is adjusted by a parameter σ which reflects the

assumed level of customer loyalty. Higher values of σ reflect greater levels of
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loyalty (to both the main company and competitor) and hence the smaller the

jump in market share.

2. the premium difference α at which the maximum change in market share δ

occurs.

Having calculated a proposed change in market share δt the final market share ζt is

subject to a maximum level ζ but not a minimum. This prevents the main company

from taking all the market share. On competitor death the main company seizes

significant additional market share through a jump of at least δdeath but to no less

than a minimum new market share of ζ though still subject to the overall maximum

share of ζ.
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Figure 6.1: Impact of competition on market share. The graphic shows the change in market

share of a given level of main company premium Pmain relative to a fixed competitor premium

P comp = 10. The Market share change factor δmaint (equation 6.13) is shown as a function of

Pmain. The maximum change in share δ
main

= 0.2 and αmain = 2, the red line illustrates a shape

factor σmain = 1.5, the grey lines show various other values of σmain ranging from 0.5 to 2.5.

Note that when Pmain > P comp the volume of business will fall for the main company as the prior

market share is multiplied by
1

1 + δ
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Number of risk units for each company Nmain and N comp The number of

risk units insured by the main company at time t is:

Nmain
t := ζmaint Nmarket (6.16)

The new competitor is allocated the remaining number of risk units:

N comp
t := Nmarket −Nmain

t (6.17)

Since Nmarket is fixed in all experiments the number of risk units for a given company

is equivalent to its market share and the two terms are used interchangeably below.

The number of risk units for the main company defined above assumes that the

company has enough capital to write all the risks that its premium rate would allow

it to. This may not be the case and this is discussed in more detail in the Written

Premium paragraph on page 292.

Capital at beginning of year (Kt) The capital at the start of the year is the

monetary amount of shareholder assets in excess of any reserves or other liabilities

on the balance sheet. In this model all claims are assumed settled at the end of the

prior year, so reserves are zero. No other liabilities are considered. So the capital

at the start of the year will be the assets carried over from the end of the prior year

(defined in equation 6.29). At the start of the simulation each company is initialised

with an amount of capital Kmain
0 and Kcomp

0 respectively.

Required capital The ‘Required Capital ’ is defined as:

Kmain
t,R = e−µK̂main

t Nmain
t (6.18)

Recall that claims are deemed to occur at the end of the year; the capital invested

at the start of the year will grow at the risk free investment rate (eµ) hence the

amount needed at the start of the year is reduced by the reciprocal of this growth.

Free capital The ‘Free Capital ’ is defined as

Fmaint,R = Kmain
t −Kmain

t,R (6.19)
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Written premium (P) If the capital held (Kmain
t ) is sufficient to write all the

risk units the premium rate would support, the total written premium (Pmaint ) is

calculated as:

Pmaint := Nmain
t Pmain

t (6.20)

This may not be the case, however, since each unit of risk written requires a certain

amount of capital to support it. If the the total amount of Required Capital is

more than the actual capital held (i.e. Kmain
t,R > Kmain

t ) then there are two options

(in practice): (1) the company must reduce the number of risk units it sells or (2)

it must seek additional capital from the investment markets (‘recapitalise’). The

model presented here assumes option 2 is followed in which case the companies will

cover the maximum number of risk units (Nmain) that the premium rates will allow.

The recapitalisation approach is defined as follows:

Recapitalisation (J) If necessary a capital ‘injection’ Jmaint will be made to top

up the required capital as follows:

Jmaint := max(Kmain
t,R −Kmain

t , 0) (6.21)

In words, where the premium rates would permit more business to be written but

the level of capital in the company is not sufficient to write this level of business a

capital injection will be made4.

Claims share as function of market share (η) In practice it is typical that

the proportion of the total market’s claims paid by a given company is not equal

to their market share (ζmaint defined in equation 6.14). This is not modelled here so

that ηmaint = ζmaint .

Total claims for each company The main company’s total claims are calculated

as Cmain
t := ηtCmarket and the competitor’s claims are defined as Ccomp

t := Cmarket
t −

Cmain
t . The claims per unit of risk (Cmain

t ) are then calculated as:

Cmain
t :=

Cmain
t

Nmain
t

(6.22)

4This annual recapitalisation can be thought of as the similar to the annual Lloyd’s business

planning process (‘coming into line’) [143] where names provide sufficient capital to write the

proposed business plan.
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Since ηmaint = ζmaint we have Cmain
t = Cmarket

t , the notation retains the superscript

main to emphasise the company in which the claims occur.

Investment return (I) The company is assumed to invest in risk free investments

only. Premiums and capital injections are assumed to occur at the start of the

year, and claims (for simplicity) are assumed to occur at the end of the year. The

investment return in the year (Imaint ) is then calculated as:

Imaint :=
(
Pmaint + Kmain

t + Jmaint

)
(eµ − 1) (6.23)

In practice a company may have different investment strategies for its capital and

premium funds; this is not modelled here.

Profit (π) The profit in the year is defined as:

πmaint := Pmaint − Cmain
t + Imaint (6.24)

Note that capital injections are not included in the calculation of profit.

Dividends (D) In reality dividend setting involves much human interpretation

and is therefore hard to express mathematically. The following discussion motivates

the dividend calculation proposed below. Dividends to shareholders are paid out

of profits, or possibly from capital if sufficient profits are not available (see Chap-

ter 1). In practice dividends are at the choice of the Directors who seek to meet

many, sometimes conflicting, objectives. A relatively steady dividend stream is often

thought to be a sign of a well run company, so Directors often see the prior years’

dividend level as a starting point for the current year in order to incorporate a de-

gree of ‘smoothing’. Shareholders will typically expect a larger dividend if profits

have been higher than average in the year and will accept a lower dividend if lower

than average. A dividend is limited by total capital. As a final constraint Directors

would not wish the free capital of the company rise too high since this can be seen

as inefficient and subject to high opportunity costs. The Directors are, however,

likely to retain some additional capital as a ‘buffer’ against the risk of regulatory

insolvency as described in Hitchcox et al [105]. In practice any capital thought to be

in excess of a desired buffer would be used to either grow the business by broadening
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into other lines of business (which is not modelled here), or returned to shareholders

as a special dividend (as Royal and Sun Alliance did in the late 1990s, [201]). Let

θmain denote the proportion of last years’ dividend that the Directors would seek to

pay as a minimum dividend in the current year, in line with the comments about

smoothing above. Let ωmain denote the proportion of profits the Directors would

seek to return to shareholders. Recall that the desired return on capital is denoted

by γmain. Finally let εmain denote the additional buffer capital that will be retained

if any special dividend is paid. Then define:

Dmain
t := max(D1maint ,D2maint ) (6.25)

where:

D1maint := max
(
θmainDmain

t−1 ,min
(
ωmainπmaint , γmainKmain

t

))
(6.26)

and D2 is designed to stop the capital growing too fast, as follows:

D2maint :=
(
Kmain
t + πmaint + Jmaint

)
−Kmain

t,R (1 + εmain) (6.27)

Note, in this model it is therefore possible for a special dividend to be paid, only to

find at the beginning of the next year that a capital injection is sought. In practice

Directors would seek to avoid this by considering next years’ business plan and

consequent capital requirements before setting the dividend. The approach adopted

here is due to the model design where next years’ premium is not known at the time

the dividend is set. The timing of these two cashflows are effectively the same in

the model so the present value of the dividend stream (less capital injections) is not

affected.

Company Value (V) In practice, company stock market value is determined

by the market forces of supply and demand. Here, the ‘Present Value5’ of the

dividend stream less capital injections is taken to define the ‘Company Value’.

Note that this excludes the initial capital held by the company which are shareholder

assets and make up part of the value of the company. If any capital injections

are made it is assumed that the same shareholders from the prior year provide all

5For a continuous rate of interest µ, 1 GBP receivable in 1 years time has a ‘present value’(PV)

of PV (1) = e−µ. A series of payments A = {a1, .....an} receivable in years 1, ...n has a present

value PV (A) =
∑n
t=1 ate

−µt. This process is known as ‘discounting’ or ‘deflating’.
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the capital for the next underwriting year. If new shareholders were permitted to

provide a proportion of the capital injection then the share capital of the existing

shareholders would become diluted. The model effectively assumes that new capital,

if required, can be borrowed at the risk free rate. The Company Value (V) is

therefore formally defined as:

V :=
1

Nsims

Nsims∑
i=1

Tmain(i)∑
t=1

(Dmain
t,i − Jmaint,i eµ)e−µt (6.28)

where Tmain(i) = min(Tlifetime(i), Tmax) and Tlifetime(i) is the number of years the

main company lives in simulation i.

Capital at end of year (Kt+1) The capital at the end of the year (which becomes

the capital at the beginning of the following year) is then calculated as follows (noting

that the investment income on any capital injection is included in profits):

Kmain
t+1 = Kmain

t + πmaint + Jmaint − Dmain
t (6.29)

Control Experiment A series of experiments will be described and one of these

is designated the ‘control’ against which the others are compared. See section 6.3.

Importance of various parameters Table 6.1 summarises the importance or

otherwise of the various parameters and distribution assumptions in the model.
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Table 6.1: Importance of various model parameters and distribution assumptions

Assumption

Variable name/choice Importance

Underlying distribution Lognormal etc Not explored here, expected to be im-

portant.

Underlying claims parame-

ters

E(C),var(C) Important, especially the relationship

of the variance parameter to the mean.

(Figure 6.11)

Pricing distribution Lognormal etc Important, may be helpful to choose

heavier tailed pricing distribution than

reality. (Figure 6.9)

Target Return on capital γ Important, lower target returns lead

to shorter company lifetime and lower

Company Value. (Figure 6.3)

Payback proportion ψ Important, use of the payback rule pro-

posed shortens company lifetime. (Fig-

ure 6.6)

Dividend parameters θ, ω, ε Not explored here. Essential in deter-

mination of Company Value.

Regulatory target return pe-

riod

b Important, key determinant of ex-

pected company lifetime. (Figure 6.7)

Regulatory risk measure V aR etc Important, key determinant of ex-

pected company lifetime. (Page 319)

Market share, customer loy-

alty

α, δ, ζ, ζ, δ, σ Not explored here. Expected to be im-

portant.

Past claims included Y Important (fewer years included lead to

shorter company lifetime) - results not

presented but have been tested.
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6.1.1 Some Simplifications

Single Currency The model assumes the insurer operates within a single cur-

rency environment under a single regulatory framework that does not change over

the lifetime of the company.

No investment decision rules The modelled company has a single asset basket

- and no investment decisions are modelled.

No explicit expenses All expenses are assumed to be included within the defi-

nition of a claim.

No tax Tax is not included, a complication that provides no additional insights.

If it were, the premium rate would be adjusted to seek a desired post tax return and

the effect would broadly cancel out.

Short tail business All claims occur and are settled at the end of the year or,

equivalently, ‘Reinsurance To Close’ is purchased annually and included in the claims

cost. In other words there are no ‘long tail’ policies that could further deteriorate or

produce profits so ‘reserve risk’ is not included explicitly (see glossary for definition

of terms)

Zero Inflation Inflation is the tendency for prices to increase over time; this

model assumes zero inflation to avoid difficulties in comparing multiple years.

6.1.2 Possible model extensions:

Alternative Claims processes The claims generation processes used in this

chapter are standard, positive definite statistical distributions: Gamma, Lognormal

and Pareto. The distributions used are common in insurance practice [88,199]. Any

appropriate random process generating claims distributions could be used, however.

For example the Lorenz 96 index from Chapter 4 could be used and this would allow

forecasting to be brought into the pricing method. Similarly the simple hurricane

claim generator described in Chapter 5 could be used.
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Pricing extensions: If the claims process included forecastable elements then

the premium calculation could be adapted to use some of the methods described in

Chapters 4 and 5. The key learning point from Chapters 4 and 5 is that this would

have to be done carefully to avoid passing all benefits to policyholders and retaining

too much insolvency risk as a consequence. For example φ-transformed pricing

methods from Chapter 4 could be used to adjust both the Ê(Cmain
t ) component

(equation 4.15) and also the ‘capital load’ (not considered in this thesis). Business

volume scaling could also be considered (described in both Chapters 4 and 5).

Recapitalisation not permitted: If recapitalisation is not allowed then the

number of risk units will be constrained by the available capital as follows. Let

the number of risk units be denoted Ñmain
t . Then the number of risk units allowing

for capital constraints is calculated as:

Nmain
t = min(

Kmain
t

e−µK̂main
t

, Ñmain
t ) (6.30)

6.2 Plot descriptions

The following describes three types of plot that are used in this chapter. The

‘Quantile Boxplot’, which shows how the mean value of a chosen statistic varies

between experiments, the ‘Time Mean’ plot which shows how the mean of a chosen

statistic varies over time and the ‘Specific Simulation’ plot which shows the results

for a chosen statistic for a specific simulation i.

Quantile boxplots Given a ‘result’ from the simulation (for example the average

lifetime). The ‘Quantile Boxplot’ is used to show how the average result varies

between experiments; but also to illustrate the size of sampling error in the result.

The figure is produced as follows:

• Given results from a number of experiments n ∈ {1, ...Ne}; there is one result

per simulation in each experiment where the total number of simulations is

Nsim.

• For samples j ∈ {1...NJ}
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– Sample NK simulations s1, ....sNK from the Nsim simulations, with re-

placement and calculate the mean result (Ej,n) over these simulations.

• For one of the experiments (n=1 say) determine specified quantiles {Q1
i }
q
i=1 of

Ej,1; for each quantile Q1
i determine which sample j(i) it arose from.

• For the other experiments (n=2,...N) calculate the result for each sample j(i)

and determine what quantiles Qn
i these represent.

• Draw lines (call these ‘Quantile Lines’) between Q1
i , Q

2
i , ...Q

n
i .

• Draw grey boxes around min(Ej,n) and max(Ej,n).

In this chapter Nsim = 210, NK = 29 and NJ = 29. See figure 6.3 for an example

where: Ne = 5, the ‘result’ is the length of lifetime of the main company in each

simulation, n = 3 relates to the control experiment with quantiles Q3
i = i

10
for

i ∈ {0, ...10}. For example the control experiment quantile Q3
2 = 10 relates to the

following quantiles of the other experiments: Q2
1 = 11, Q2

2 = 6, Q4
2 = 8 and Q5

2 = 12:

a red line joins these together.

If the grey boxes in the Quantile boxplots do not overlap significantly then it is

reasonable to conclude there are significant differences between the means arising

from the experiments. However, as with figure 6.3 there may still be a significant

difference even if the boxes do overlap. This is highlighted when Quantile Lines all

show a similar slope and do not overlap very frequently. Such behaviour indicates

that whilst there is sampling error in the value of the mean (shown by the grey box)

- the relative behaviour of different experiments in different simulations is consistent

and hence the difference is significant.

Time mean plot Figure 6.2 is an example of the ‘Time Mean’ plot. The year

is shown on the x-axis; the value of the chosen statistic is shown on the y-axis.

Let a statistic of interest be denoted Xi,t,e where i denotes the simulation number

(i ∈ {1, ...Nsim}), e denotes the experiment type (in this case ‘control’ and ‘known

distribution’) and t denotes the year. As described in the model design section,

each simulation is run until the main company has died. Let I(i, t, e) denote the

status (alive or dead) of the main company at time time t, for simulation i and

experiment e; then I is equal to 1 if the main company is still alive at time t and

equal to 0 if it is dead at this time. Then M(t, e) =
∑J

i=1 I(i, t, e) denotes the
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number of main companies that are still alive by time t out of the Nsim simulations.

The value of M(t, e) may differ between companies (mcontrol(t) and mperfect(t) say)

the labels at the top of the plot show the minimum number of simulations (m(t) =

min(mcontrol(t),mperfect(t))) over which the average is taken. For a given experiment

e the line shown in the plot is defined by L(e, t) =
∑J
i=1 I(i,t,e)Xi,t,e

M(t,e)
, the average value

of the statistic for the main companies that are still alive by time t. The value of

M is shown for particular times at the top of the plot. A 95% confidence interval is

shown around the line based on the Gaussian approximation of the distribution of

the mean.

Specific Simulation Plot Figure 6.4 is a ‘Specific Simulation Plot’ which is a

figure type that is used several times in this chapter. Taking the right hand plot as

an example the x-axis shows the simulation year and the y-axis shows the statistic of

choice. The figure shows a chosen statistic (in this case the premium per unit of risk)

for a set of chosen experiments e (in this case the control experiment and various

different payback levels). The statistics are shown over the maximum lifetime over

all the experiments, in this example the lifetime exceeds 70 years in two of the

experiments but is under 50 for the rest. The left hand plot shows the claims per

unit of risk, the simulated claims history prior to time zero is shown by a dotted

line.

6.3 Choice of control experiment

The following describes how the control experiment was chosen. The two companies

described in section 6.1 are set up so that certain desirable characteristics arise but

other formulations are possible and no less appropriate. The point of the control

experiment is to give a stable point from which the impact of changing assumptions

can be compared. The underlying claims are a sample from a Lognormal distribution

with a mean of 1 and variance of 0.65. The control experiment was chosen so that

the following desirable characteristics arose:

• Assumptions that market practitioners would feel are reasonable, in particular

both companies exhibit realistic looking behaviours;
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• The main company retains a material market share until death i.e. there isn’t

a steady decline (or increase) in market share in each simulation; as this would

suggest an underlying bias;

• The competitor doesn’t die too often before the main company, but nor does

it outlive the main company most of the time;

Initially both companies were chosen to be identical, including their pricing

strategies. In this case the premium rates set by the two companies are always

identical so the market share stays constant at 50% this is a consequence of both

companies having the same underlying claims experience: if this was varied they

would likely set different premium rates. The competitor and main company always

die together in this case and have a mean lifetime of 71.6 years and a 90%ile range

of (70.0, 74.3). The average loss ratio6 for the main company is 79.8% (as for the

competitor in this case as they charge the same premium rate). The behaviour

of this experiment does not look realistic, in particular no interesting competition

effects arise. So this approach was discarded.

In experiment 2 the competitor uses a different distribution for pricing, in this

case Pareto (being a heavier tailed distribution this leads to more expensive premium

rates on average). In this case the main company lives on average for 71.2 years

with a 90% confidence interval of (68.0, 73.7) and the competitor dies just 2.2% of

the time before the main company and 61.4% of the time at the same time. As such,

the competitor is ‘too strong’ in the sense that it is outliving the main company too

often to be a realistic insurance market, given they have the same claims experience.

As the competitor charges higher premiums on average (1.335 vs 1.318), the main

company gets a greater market share (57.6% on average) and an average loss ratio of

79.8% compared to 78.1% for the competitor (lower as expected because it charges

a higher premium on average). To ‘weaken’ the competitor a third experiment

was run where the competitor only uses 9 years of past claims data for pricing

(compared to 15 years for the main company) which tends to make the competitor

‘overreact’ to new claims information. This third variant was used as the control

case and is described in the next paragraph. The use of a shorter claims horizon for

the main company of 5 or 10 years led to shorter lifetimes and premium rates (not

6loss ratio :=
claims

premiums written
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shown). A number of different pre zero claims histories were investigated, the relative

strength of the companies are affected by the initialisation because their pricing

strategies differ, the effects can mainly be explained by premium rate differences.

If a practical and realistic model were ever built, with companies representing their

actual counterparts in the real world, then this feature would not be a constraint

because actual claims histories would be used.

6.4 Experiment descriptions

The following describes the key parameters of all experiments. There are eight

groups of experiments in all: (1) The control, (2) Perfect pricing where the claims

distribution is known, (3) Alternative target returns on capital, (4) Use of various

Payback parameters, (5) Impact of different strengths for the regulatory test, (6) Im-

pact of using TVaR for the regulatory test, (7) Use of imperfect pricing distribution

assumptions and (8) Impact of different underlying claims distributions. Note that

the assumptions for the competitor are kept the same as in the control experiment

unless explicitly noted. It is stressed that the statistics arising in each experiment

allow comparisons between experiments and to explore relationships; the statistics

are useful in a relative sense.
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Experiment C6.1 Control experiment.

Global parameters .

Number of simulations: Nsims = 210 simulations of the company lifetime process

were run, each until either the main company dies or the maximum duration is

reached.

Maximum duration: Tmax = 2000 years

Market size: Nmarket = 10000 risk units.

Initial market shares: ζmain0 = 0.5, ζcomp0 = 0.5

Risk free interest rate: µ = 0.035

Recapitalisation method: Option 2 (annually), both companies.

Initial company capital: K̂main = 10000, K̂main = 10000

Claims parameters

Underlying claims process distribution: Cmarket ∼ Lognormal

Underlying claims process parameters: E(Cmarket) = 1, var(Cmarket) = 0.65

Market share parameters: αmain = 2, δ
main

= 0.2, ζ
main

= 0.75, ζmain = 0.5,

δdeath = 0.2, σmain = 1

Regulatory Parameters .

Risk measure for regulatory test: VaR (Value at Risk) (equation 6.6)

Return period for regulatory test: 200 years (i.e. maximum 0.5% per annum

failure probability)

Pricing parameters .

Assumed claims distribution: Ĉmain ∼ Lognormal, Ĉcomp ∼ Pareto

Past claims used in pricing: Y main = 15, Y main = 9

Target return on capital: γmain = 0.15, γcomp = 0.15

Payback proportion:: ψmain = 0, ψcomp = 0

Number of simulations to determine capital: Nmain
sim = 10000, N comp

sim = 10000.

Dividend parameters .

Target proportion of last years dividend: θmain = 0.5, θcomp = 0.5

Target proportion of profits to return: ωmain = 0.6, ωcomp = 0.6

Max additional capital buffer after dividend: εmain = 0.3, εcomp = 0.3
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Experiment C6.2 Underlying Claims distribution known.

All parameters as for Experiment C6.1, except for:

Ê(Cmain
t ) = 1, the true underlying expected mean claims is used in the calculation

of capital and premium.

ˆvar(Cmain
t ) = 0.65. The true variance is used in in the calculation of capital and

premium.

Experiments C6.3.x Alternative Target Returns on Capital.

All parameters as for Experiment C6.1, except for:

Target return on capital: Four experiments (x ∈ {a, b, c, d}) are carried out

with γmain = {0.05, 0.1, 0.2, 0.25} respectively.

Experiments C6.4.x Use of various Payback parameters.

All parameters as for Experiment C6.1, except for:

Payback proportion: Two experiments (x ∈ {a, b}) are carried out with ψmain =

{0.1, 0.5} respectively.

Experiments C6.5.x Impact of different strengths for the regulatory test.

All parameters as for Experiment C6.1, except for:

Return period for regulatory test: Five experiments (x ∈ {a, b, c, d, e}) are

carried out with Qreg = {50, 100, 150, 250, 500} respectively. Note this applies to

both the main company and the competitor.
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Experiments C6.6 Impact of using TVaR for the regulatory test.

All parameters as for Experiment C6.1, except for:

Risk measure for regulatory test: One experiment is carried out using a TVaR

measure.

Return period for regulatory test: Qreg = 69 chosen so that the same level of

extreme claim arises for the true underlying claims distribution (see derivation on

page 319). Note this applies to both the main company and the competitor.

Experiments C6.7.x Use of incorrect pricing distribution assumptions.

All parameters as for Experiment C6.1, except for:

Assumed claims distribution: Two experiments (x ∈ {a, b}) are carried out

with Ĉmain ∼ {Gamma,Pareto} respectively.

Experiments C6.8.x Impact of different underlying claims distributions.

All parameters as for Experiment C6.1, except for:

Underlying claims process distribution: Two experiments (x ∈ {a, b}) are

carried out with Cmarket ∼ {Gamma,Pareto} respectively. Note the claims affect

both the main company and competitor.

6.5 Results

Control (C6.1) The main company in the control experiment will be referred

to as the ‘Control Company’. The mean lifetime of the Control Company was

72.7 years, an 80% confidence interval7 is (69.1, 76.6) years. The 10% ile lifetime

was 12 years and 90%ile was 160 years. The Company Value is GBP 48,777. This

will be taken to be the value of the Control Company against which others can

7Confidence intervals around the expected lifetime are created by the following process: For

i ∈ {1, ..Nr}, sample the lifetime with replacement from Nb of the Nsims simulations and calculate

the average lifetime Li over those Nb values; calculate quantiles from the set {L1, ....LNr}. In this

chapter Nr = 210 and Nb = 29. An ‘80% confidence interval’ is defined as the interval between the

10th and 90th quantile of L1, ....LNr
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be compared. Company value is relevant to the hypothetical shareholders; another

measure, perhaps more relevant to regulators, is the (deflated) size of the deficit

when the company eventually dies. For the Control Company this is GBP 1,108.

The competitor dies 31% of the time before the main company and 42% of the time

in the same year as the main company, due to a large claim that neither survives,

and hence 27% afterwards. On this measure the strengths of the two companies are

similar.

Underlying Claims distribution known (C6.2) The Control Company does

not know the underlying claims distribution parameters. It is interesting to note

that because of this the mean company lifetime is 72.7 years, even though regulatory

capital requirements are set to give a failure rate of no more frequently than 1 in

200 years. This discrepancy arises because, in the control experiment, the main

company is trying to estimate the VaR0.005 (equation 6.6) of a relatively fat tailed

distribution from a small amount of data.

What would the mean lifetime be if the company did know the underlying claims

distribution8 and its parameters? Call such a company ‘perfect’. The mean lifetime

of the Perfect Company is 392.9 years with an 80% confidence interval of (375.8,

407.0) years. Note, however, that the maximum duration (2000 years) occurs eight

times in the 1024 simulations, so the true mean lifetime would be somewhat greater

than this. The mean lifetime is greater than the regulatory minimum of 200 years

because the company holds capital in excess of the minimum (on average 20.3%

more in this case). Of the 1024 simulations, the 10% ile lifetime is 40 years and

the 90% ile is 926 years, illustrating that even when the underlying distribution is

known perfectly there is significant probability that the company lifetime is short

lived. Regulators are often blamed for company failures [38,213,251,255] but a large

claim within expectations would not illustrate a failure of the regulatory regime, just

the underlying volatility of the claims process. The more capital that companies

are required to hold the larger extreme claims they can survive but the higher

premiums they must charge to provide the target return on capital to shareholders.

The chosen level of regulatory minimum capital (equivalently the return period in

8In Hooker et al [106] this would be equivalent to zero parameter uncertainty and zero specifi-

cation error.
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the VaR calculation) is therefore a political choice that has to balance affordability

with expected solvency. To determine whether a regulator has failed one would have

to show that they did not spot a company that was miscalculating its risks; this is

not determined by one large event that may be within the distribution of expected

outcomes. The Company Value is GBP 57,844, some 18.6% more valuable than the

control; and illustrates the value in a better understanding of the underlying risk (for

example if claims data can be coupled with other predictive exogenous variables).

If, however, only dividends paid up to the time that the Control Company dies

are included (or up to the earlier death of the Perfect Company, which is rare in

this experimental design) then the value is only GBP 47,003 which is actually lower

than the Control Company. So in general, the dividends paid are lower from the

Perfect Company, but, since it lives so much longer, the discounted value of dividends

after the death of the Control Company more than compensate, leading to a higher

company value overall. Ironically, since it would take many years for this to become

apparent, the Control Company would appear (to the media for example) to be the

more profitable and better run company.

The control experiment prior claims levels are samples from the underlying dis-

tribution but are chosen so that the initial mean and variance lead to roughly the

‘right’ price (samples which don’t achieve this are rejected) per unit of risk (1.45)

in year 1, this explains why the red line in figure 6.2 starts at the correct underly-

ing level (which of course the blue perfect company calculates correctly). After this

time, however, in the control experiment, both the main company and its competitor

underprice on average (charging 1.32 and 1.30 respectively). Figure 6.2 shows the

premium rate averaged over all simulations, by year for both the Control Company

and the Perfect Company. The Perfect Company calculates the premium broadly

correctly each year. The residual variance is due to the fact that the Perfect com-

pany still estimates capital requirements by simulating from the claims distribution

- and sampling error remains. The calculated premium by the Perfect Company falls

in the interval (1.42, 1.48) 90% of the time (note figure 6.2 does not display this

level of variance because it shows the premium rate averaged over all simulations,

so sampling error is largely, but not completely, smoothed out).
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The competitor in experiment C6.29 makes the same pricing assumptions as

in the control experiment. The Perfect Company’s market share falls to 27% on

average because it charges a higher premium than Competitor:C6.2. Given the

Perfect Company knows the true claims distribution, it is not surprising that the

Competitor:C6.2 dies 82% of the time before the main company and 14% at the

same time (and just 4% afterwards).

Alternative Target Returns on Capital (C6.3.x) In the control experiment

the shareholders of both companies require a return on capital of 15%. In this

subsection the target return for the main company is varied from 5% to 25%. The

premium rate is lower when the target return on capital is lower due to the pricing

formula; this means that the required capital per unit is higher (it has to compensate

for the fact that the premium provides less protection against losses). As expected

the market share rises as the target return falls due to lower premium rates. The

effect on average lifetime, figure 6.3(left), was not easy to predict in advance. The

premium rate is lower, so one might expect this to imply a shorter lifetime. The

lifetime is shorter, but that is not the reason. Although the premium is lower,

the capital per unit is set to be higher to compensate exactly for this. The lifetime

decreases for lower target returns because the free assets per unit is lower on average

when the target return is lower (figure 6.3(right)) so the company is less likely to

survive shocks in excess of the regulatory minimum.

Figure 6.3(bottom) shows Company Value for the various experiments. Would a

lower target return lead to a higher or lower company value? The lower target return

will make premium rates more competitive increasing the number of policies being

sold; but conversely each policy will be less profitable. Figure 6.3(bottom) shows

that for a target return of 5% and 10% the Company Value is lower than the control.

When the target return is 20% and 25% there is little difference in value relative to

the control suggesting that whilst individual policies under these assumptions are

more profitable the lower market share counteracts this. The difference in behaviour

for low and high target returns shows that the impact in general will be subtle and

dependent on the specific competitive details assumed.

9In general the main company and competitor will be referred to by their experiment number

- so in experiment C6.2 it is referred to as: ‘Competitor:C6.2’.
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Figure 6.2: Experiment 6.2: Time Mean plot showing the average premium rate per unit of risk

for hypothetical Perfect Company (shown in cyan) compared to Control Company (shown in red).

The minimum number of simulations included in the average starts at 1024 (all simulations) and

ends at 160 indicating that in many simulations one or both of the companies is typically dead

before this time. The red region for the Control Company shows a 95% confidence interval around

the mean (black line) based on a Gaussian approximation (P̄ (t) ∼ N(E(P (t)), sd(P (t))√
n(t)

). The Cyan

region is also a 95% confidence interval but is thin because the Perfect Company sets almost the

same premium in each simulation (slight differences arise from sampling error in calculating the

capital requirement K̂). Note that the Control Company’s red confidence interval falls below the

Perfect Company’s cyan region: the underpricing of the former is therefore significant at the 95%

level.
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Figure 6.3: Experiment C6.3.x: Quantile Boxplots showing the mean lifetimes, free asset pro-

portion, and present value of dividends of the main company for different target return on capital

(5-25%). In the mean lifetimes plot the width of the grey boxes illustrate sampling error in the

calculation of the mean. Whilst these grey boxes overlap it is still clear that the increasing trend

in lifetime is robust as the target return increases because the quantile lines almost all show an

increasing trend and do not overlap very frequently. The increase in free asset proportion as target

return increases is clear to see. Note, the Company Value initially increases as the target return

increases but this levels off for target returns in excess of 15%.
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Variation of Payback parameters (C6.4.x) Recall that the premium rule is

defined in equation 6.3. In all the experiments described so far the payback param-

eter is set to zero. The payback rule tested in this subsection is defined in equation

6.5 for ψ ∈ {0.1, ...0.5}. The following series of graphics illustrate the outcome for

simulation number 753 (chosen because it is one of the examples when the lifetimes

of the various payback rates differ). Figure 6.4(left) shows the claims per unit of

risk in the chosen simulation and 6.4(right) the corresponding premiums charged.

Note that the Control Company (red line) with no payback has a much smoother

premium (as expected). As the ψ parameter increases the premium rate gets less

smooth. For most values of ψ, companies using payback die in year 57 (except when

ψ = 10%) following a larger claim relative to low claims in previous years. Note

that the premium rate for companies using payback is low as they are sharing the

profitability in the years running up to year 57, so they are unable to survive the

large claim in year 57. Figure 6.5 zooms into years 25 to 35 to examine behaviour

around year 29 when there is a large claim. The figure shows that after the large

claim the premium rises in all cases in year 30. But, as expected, the higher the ψ

parameter, the greater the price rise in year 30. These are followed by significant

premium reductions in year 31 caused by the very benign loss environment in year

30. The price rise for companies using the payback rule causes them to lose market

share (because their prices are greater than their competitors) whereas the Control

Company grows its market share. Companies using the payback rule pay a large

dividend in year 30, but the Control Company steadily increases its dividends and

is more successful in years 31 to 35.

Figure 6.6(middle left) shows that the premium rate is about the same on average

for all the payback rules. This is to be expected as the payback rule is symmetric

with respect to losses in the prior year. The average number of risk units 6.6(top

left) follows a clear trend, however, the number of risk units increases with ψ. At

first it may appear odd that the premium rate is the same on average, but the

number of risk units is different. In the previous experiments higher premiums have

led to lower market share and vice versa, so one might expect similar premium levels

to lead to a similar market share. Closer investigation, shows that the difference

occurs for the following reason (illustrated when ψ = 0.5):
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Figure 6.4: Experiment C6.4.x: Specific Simulation Plots for the main company claims and

premiums per unit of risk for simulation 753. Results are shown for the control experiment (red)

and several levels of payback percentage (between 10% and 50%)

• When payback is used (ψ 6= 0) the premium rate is less than control experiment

more often than it is greater. For example when ψ = 0.5 the payback premium

(Pp) is typically less than the control (Pc) around q = 59% of the time. The

claims distribution is Lognormal with mean 1 and variance 0.65 and so the

probability of losses falling below the mean is 64%, hence it is more likely that

the payback rule will give a discount to the prior premium rate;

• Let P̄p be the average premium for a company using payback and P̄c be the

average for the Control Company. Let P̄p,G be the average premium for a

company using payback in the cases when Pp > Pc. Similarly P̄c,G is the
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average premium of the control company when Pp > Pc. Let P̄p,L be the

average premium for a company using payback in the cases when Pp ≤ Pc and

define P̄c,L similarly. Let R̄G =
P̄p,G
P̄c,G

and R̄L =
P̄p,L
P̄c,L

. Then, for example, when

ψ = 0.5, R̄G(0.5) = 1.19 and R̄L(0.5) = 1
1.15

.

• Putting this together explains why the average premium is similar (since P̄p
P̄c
≈

1):

P̄p
P̄c
≈ qR̄L + (1− q)R̄G

= 59%× 1

1.15
+ (1− 59%)× 1.19

≈ 1

(6.31)

• The average market share on the other hand varies with ψ (figure 6.6(top

left)). Due to the model design, market share does not change that quickly,

there is ‘loyalty’ so companies using payback do not see sudden reductions in

market share when they impose large premium increases;

• The average number of risk units over all simulations when ψ = 0.5 is 4668

compared to 4311 for the Control Company. Thus the average market share

is around 8% higher when payback is used in this example (i.e. 4688
4211
≈ 1.08

(see also Figure 6.6(Top left))

• The market share of companies using payback is usually higher than the Con-

trol Company (since q = 59%, above) . Loyalty ensures that this is not quickly

eroded when premiums rise after a bad year;

• For example when ψ = 0.5 the proportion of time for which the payback

company number of risk units (Np) is less than the Control Company (Nc) is

just r = 21%.

• Let N̄p be the average number of risk units written by a company using pay-

back (proportional to its market share) and N̄c be the average for the Control

Company. Let N̄p,G be the average number of risk units for a company using

payback in the cases when Np > Nc. Similarly N̄c,G is the average premium

of the control company when Np > Nc. Let N̄p,L be the average premium

for a company using payback in the cases when Np ≤ Nc and define N̄c,L

similarly. Let S̄G =
N̄p,G
N̄c,G

and S̄L =
N̄p,L
N̄c,L

. Then, for example, when ψ = 0.5,

S̄G(0.5) = 1.12 and S̄L(0.5) = 1
1.05

.
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• Putting this together explains why the number of risk units is around 8%

higher when ψ = 0.5

N̄p

N̄c

≈ rS̄L + (1− r)S̄G

= 21%× 1

1.05
+ (1− 21%)× 1.12

≈ 1.08

(6.32)

When ψ = 0.5 the Company Value is around 4% less than the control, but such

a company lives for around 15% less time than the control, on average. At death

companies using payback typically owe more to policyholders than the Control Com-

pany so from a regulatory point of view such companies provides less protection for

policyholders. Arguably the current payback rule is broadly neutral for policyhold-

ers (since premiums on average the same); worse for shareholders and worse for

regulators.

Alternative payback rules are left for future investigations. These include asym-

metric rules that raise premiums after a major loss but do not lower them for low

losses; or time-average-rules that consider a longer period, or only payback when

multi year profits are considerable.
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Figure 6.5: Experiment C6.4.x: Specific Simulation Plots for the main company in simulation

753 zoomed into years 25 to 35. Top left shows claims per unit of risk, top right shows premiums

per unit of risk, bottom left shows the number of risk units sold by the main company by year

and the bottom right shows the dividend paid in each year. Results are shown for the Control

Company (red) and several levels of payback percentage between (10% and 50%).
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Figure 6.6: Experiment C6.4.x: Quantile Boxplots of key statistics (y-axis) for the control (0%

payback) and other values of payback percentage from 10% to 50% shown on the x-axis. Top left

shows the mean number of risk units across all simulations, top right shows average lifetimes, mid

left shows the premium rate per unit of risk and mid right shows the average value of free assets,

the bottom plot shows the present value of dividend payments for different payback rules.
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Impact of different strengths for the regulatory test (C6.5.x) Let the

‘Regulatory Return Period’ (τR) be defined as the reciprocal of the quantile

which defines the regulatory test. For example in the Control experiment τR = 200

years (i.e b = 0.005 in equation 6.6). This subsection investigates the impact of

different Regulatory Return Periods. The experiment assumes the regulator has set

consistent requirements for the whole market so that both the main company and

its competitor are subject to the same rules.

Figure 6.7(top left) shows that, as expected, the lower Regulatory Return Period

(and hence lower capital held), the lower the premium charged. Unsurprisingly, the

less capital held the shorter the company lifetime (6.7(bottom right)). When τR = 50

the average lifetime is around 25 years (or 50% of the Regulatory Return Period of

50 years), whereas when τR = 500 the average lifetime is around 130 (just 25%

of the Regulatory Return Period). This feature reflects the increasing difficulty of

estimating percentiles from a limited set of data points.

The impact on the number of risk units sold (equivalently market share) is less

obvious. One might expect that as the premium increases the market share should

fall. In fact the market share actually rises as the Regulatory Return Period rises

(6.7(bottom left)), apart from when τR = 50 where the opposite occurs. As τR

increases the main company premium rate grows slower than than the competitor

(not shown) due to their different pricing distribution assumptions; therefore the

market share of the main company rises. The atypical behaviour when τR = 50

arises because, in this case, the competitor dies more frequently than the main

company and this leads to regular additions in market share for the main company

(see equation 6.15) which increase the average number of risk units. Figure 6.7

shows that as τR increases the Company Value increases.

317



1.12

1.16

1.21

1.25

 1.3

1.35

1.39

50 100 150
control 

 200 250 500

regulatory return period

pr
em

iu
m

 r
at

e 
(G

B
P

)

0

0

0

0

0

0

13

11

10

10

10

10

16

18

19

20

21

24

22

26

28

30

31

34

32

37

38

40

42

48

48

49

49

50

50

52

61

61

60

60

62

62

70

69

69

70

70

71

85

83

81

80

80

77

92

91

90

90

88

87

100

100

100

100

100

100

23951

33660

43370

53079

62789

72498

82207

50 100 150
control 

 200 250 500

regulatory return period

di
vi

de
nd

s 
(p

re
se

nt
 v

al
ue

 G
B

P
)

21

3

0

0

0

10

7

21

42

10

12

40

31

13

20

20

21

66

65

13

15

30

32

12

18

20

10

40

66

62

92

63

74

50

58

65

55

65

84

60

52

58

63

88

77

70

68

35

13

50

71

80

79

67

24

55

95

90

82

93

98

100

100

100

98

91

4057

4197

4337

4477

4617

4758

4898

50 100 150
control 

 200 250 500

regulatory return period

nu
m

be
r 

of
 r

is
k 

un
its

29

5

0

0

0

2

11

5

12

10

16

19

18

16

15

20

19

5

3

21

16

30

34

30

58

46

59

40

20

38

73

86

71

50

51

36

19

41

53

60

42

21

93

71

63

70

63

70

47

15

68

80

70

28

42

53

86

90

75

82

25

74

100

100

100

96

24.3

  44

63.7

83.4

 103

 123

 142

50 100 150
control 

 200 250 500

regulatory return period

lif
et

im
e 

(y
rs

)

28

3

2

0

3

2

96

42

50

10

17

15

64

28

26

20

15

21

61

6

38

30

54

90

69

53

53

40

52

47

14

30

35

50

33

3

91

92

95

60

66

32

46

37

88

70

56

64

35

18

54

80

88

84

85

68

73

90

63

90

93

98

99

100

95

40

Figure 6.7: Experiment C6.5.x: Quantile Boxplots for main company showing key statistics

for different regulatory capital requirements (VaR levels from 50 years to 500 years). Top left

shows mean premium rate per unit of risk, top right shows the mean present value of dividends

paid, bottom left shows the average number of risk units sold and bottom right shows the average

lifetime.
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Impact of using TVaR for the regulatory test (C6.6) Recall that in the

control experiment the claims process follows a Lognormal distribution with mean 1

and variance 0.65. In order to compare a TVaR risk measure (equation 6.7) with the

VaR measure used in the Control Experiment it is necessary to find which quantile

value (bTV aR) leads to the same capital levels in theory: specifically we wish to solve

TVaRb(X) = VaR0.005(X). A return period of 69 years (i.e. b = 1
69

) was determined

by simulating 1,000,000 claims (call this the ‘VaR/ TVaR Equivalence Calculation’

below). This was repeated 10 times and 7 out of 10 cases led to a return period

between 68.5 and 69. The Regulator is assumed to require this test of the whole

industry so both the main company and its competitor use a TVaR to calculate

capital. Call the main company in this experiment the ‘TVaR Company’.

The average lifetime of the TVaR Company is 71.7 years compared to 72.7 for

the Control Company. Hitchcox et al [105] argue that a TVaR measure is more

stable than a VaR measure so it is a surprise that companies using this approach

actually live for shorter periods. The two companies live for the same amount of

time in almost all experiments (976 out of 1024). When the lifetime is different,

however, the Control Company (using VaR) lives longer in 33 cases and shorter in

just 15 cases. To see why this occurs the following algorithm was run:

TVaR Comparison Algorithm

• For j ∈ {1, ...Nj};

• for each j, simulate 15 years of past claims data from the true underlying

distribution;

• Determine estimated distribution parameters compute the mean (µ̂j)

and variance (σ̂2
j ) from this 15 years;

– for k ∈ {1, ..Nk} (and given j)

– Estimate VaRj,k and TVaRj,k by sampling a further 10,000 values from

the estimated claims distribution (Lognormal with mean µ̂j and variance

σ̂2
j );

– let Ij,k = 1 if VaRj,k > TVaRj,k and zero otherwise.

• Determine the proportion Fj =
∑M
k=1 Ij,k
M

that the estimated VaR exceeds

TVaR.
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The TVaR Comparison Algorithm was run with Nj = 10000 and Nk = 27. Each

coordinate (µ̂j, σ̂
2
j ) is plotted in figure 6.8; the point is coloured purple if Fj < 0.5

and orange if Fj ≥ 0.5. The figure illustrates the joint probability density of the

estimator of the mean and variance of the claims process and shows that even

though the underlying mean is 1 and variance is 0.65 the estimated parameters vary

considerably. Values of 0.5 to above 2.0 are observed for the mean and from just

above 0 to as much as 15 for the variance (NB the value in the graphic for variance

is on a log2 scale). The number of cases for which the VaR exceeds TVaR over 50%

of the time is 7178 out of 10000. Although the VaR and TVaR should be the same,

it is more likely that, with just a 15 years claims history, the estimated parameters

will cause the VaR to be greater than the TVaR due to parameter estimation error.

It was shown (page 317) that when the estimated capital requirement is higher the

company charges more premium and lives longer thus explaining why the Control

Company has a longer average lifetime than the TVaR company. From a regulatory

perspective VaR leads to errors in a more prudent direction.

The average number of risk units of the TVaR Company is 5335 compared to 4496

for the Control Company. This is because the competitor of the TVaR Company

is relatively less competitive than the competitor of the Control Company, for the

following reason. The 69 year return period was chosen to give approximate equiv-

alence between TVaR at that return period and VaR at a 200 year return period.

This relationship is specific to the Lognormal distribution (with mean 1 and variance

0.65). The competitor assumes a Pareto distribution when calculating capital. For

a Pareto distribution with mean 1 and variance 0.65 the VaR /TVaR Equivalence

Calculation leads to bTV aR = 1
56

. By definition TVaR 1
69
> TVaR 1

56
hence the use

of a 69 year return period by the competitor leads them to estimate higher capital

requirements than they would by using the VaR0.005 measure. These higher capital

requirements lead to higher premium rates and therefore lower competitiveness on

average. Consistent with this, the proportion of simulations where the competitor

dies after the main company rises from 26% to 32% due to the additional capital

held by the competitor. The Company Value of the TVaR Company is GBP 52,011

compared to GBP 48,777 for the Control Company due to its higher average number

of risk units, despite its average lifetime being shorter. This result highlights that
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Figure 6.8: Experiment C6.6: Scatter plot showing estimated mean µ̂j (x-axis) and variance σ̂2
j

(y-axis on log2 scale) of claims process from j ∈ {1, ...10, 000} 15 year samples. For each point

(µ̂j ,σ̂2
j ), 128 estimates of the VaR0.005 and TVaR 1

69
are produced by sampling 10000 values from

the Estimated Claims Distribution. The orange dots show the pairs for which the VaR ≥ TVaR

more than 50% of the time and vice versa for purple. In 7178 cases the proportion of VaR estimates

that exceed the TVaR is greater than 50% demonstrating that the capital calculation is more likely

to result in a higher VaR calculation than TVaR in this experiment.

the impact of a regulatory change on a given company depends on how the change

impacts its competitors as well as the effect on itself.

Use of incorrect pricing distribution assumptions (C6.7.x) The Control

Company does not know the true mean and variance of the claims distribution but

does know its true form (Lognormal). In practice the company’s claims analysis

may cause them to choose an incorrect distribution family10; this risk is called

10Where a ‘distribution family’ is taken to mean one of the standard statistical distributions:

Gaussian, Gamma, Pareto etc
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‘specification error’ in Hooker et al [106] . This experiment illustrates the impact

on company lifetime of choosing either a Gamma or Pareto distribution for pricing.

The main companies in these two experiments will be referred to as the Gamma

Company and the Pareto Company. Other parameters are the same as the Control

Experiment, in particular the main company still uses only 15 years of data for

pricing and the competitor’s pricing approach is wholly unchanged. Figure 6.9(top

left) illustrates that using a Gamma distribution shortens the average company

lifetime, and assuming a Pareto distribution lengthens it. Figure 6.9(top right) shows

that average levels of capital in the Pareto Company are lower than the Control

Company and figure 6.9(bottom right) shows higher premium rates on average.

Lower capital, other things equal, would typically lead to a shorter lifetime but this is

offset by higher premium rates. Closer analysis of the capital calculations show that

average levels of capital do not explain the simulation specific behaviour. Recall that

the true mean of the claims process is 1 and its variance is 0.65. Let VaRb,d denote

the Value at Risk for quantile b and distribution d. Then 95% confidence intervals

are: VaR0.005,Lognormal ∈ (4.78, 4.84) and VaR0.005,pareto ∈ (4.69, 4.78) estimated from

a sample of size Na = 220; so with 95% confidence we can say VaR0.005,pareto <

VaR0.005,Lognormal. Recall that the main companies estimate the VaR from 15 years

of data leading to significant sampling error. The following algorithm was used to

assess this:

• for j ∈ {1, ...Nj}

• Sample 15 years of claims data Let C1, ...C15 be a sample from a Lognormal

distribution with mean 1 and variance 0.65.

• Sample claims from pricing distribution For a given pricing distribution

d, with meanEC = 1
15

∑15
k=1 Ck and standard deviation σC =

√
1
14

∑15
k=1(Ck − EC)2

sample 10000 modelled claims Ĉ = {Ĉ1, .....Ĉ10000}.

• Calculate VaR Let Vj = VaR0.005(Ĉ)

This algorithm was run (with Nj = 215) for d = Pareto and d = Lognormal

showing that the capital estimated by the Pareto company is actually larger than

the Lognormal Company 66% of the time even though the mean estimated capital
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is higher from the Lognormal distribution. Since the capital estimate at the start of

the year is independent of the claim arising in the year there is therefore a greater

probability that the Pareto company will have both a higher premium and more

capital to survive a large claim than the Lognormal company. This situation is

illustrated by considering simulation 820 (figure 6.10). Note the relatively large

claims spike at year 25 after a run of below average claims for the previous 7 years.

The Control and Gamma Companies die at this point as they have charged a lower

premium and are holding less capital; the Pareto pricing company just survives.

Note that the claim in year 45 which eventually kills the Pareto pricing company

is much smaller than the claims it survived in year 25. The reason for this is that

there is a really long run of below average claims prior to this; in particular the large

claim in year 25 has been ‘forgotten’ in the 15 year moving average pricing approach.

This illustrates the importance of retaining institutional memory; and also cautions

against assuming that long runs of benign claim years represent a shift in risk. Note

the difference in this setting than the payback example considered previously. In the

payback example although the premium rate differed between companies the total

of capital charged to the policyholder and premium was constant between them -

as the premium went up, the required capital went down. This was because all

the main companies (regardless of payback rule) used the same underlying claims

distribution assumption. Conversely when different assumptions of the underlying

claims are used, the estimated capital requirements will also differ.

Figure 6.9(bottom) illustrates the impact of pricing distribution choice on com-

pany value. The Pareto Company value (GBP 51,776) is greater than the Control

Company (GBP 48,777) despite using the wrong distribution family and writing

less business. This is due to the Pareto Company’s longer lifetime (111.8 years vs

72.6 for the Control Company); the value of discounted dividends from the Pareto

Company up to the point the Control Company dies is GBP 47,756 which is less

than the Control Company.
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Figure 6.9: Experiments C6.7.x: Quantile Boxplots for the main company for different underlying

claims distribution assumptions used in calculating the premium rate. Shown for the control

(Lognormal), Pareto and Gamma distributions. Top left shows average lifetime, top right the

capital held at the end of the year, bottom left shows the number of risk units sold on average and

bottom right shows the premium rate per unit of risk.
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Impact of different underlying claims distributions (C6.8.x) So far the

underlying claims distribution is Lognormal with mean 1 and var 0.65. This section

illustrates the impact of distributions with different variance (specifically var = 0.5

and var=0.8) . For example this would illustrate how different classes of business

might behave. Note that the underlying claims affects both the main company and

the competitor - they both continue to price using the same approach as before.

Figure 6.11 shows that as the variance of the underlying claims increases the

average lifetime decreases. At first look it might seem obvious that a more volatile

claims process will lead to more company deaths . Note, however, that each company

holds capital to survive a 1 in 200 level of risk. For a riskier claims process more

capital will be held. Hence, other things equal there should be no impact on lifetime.

As the variance of the underlying claims increases, however, it becomes more difficult

to estimate the distribution parameters and this explains the difference. Indeed the

probability of the company calculating capital that is too low when the underlying

variance is 0.5 is around 69% compared to 78% when it is 0.65 (the control) and

83% when it is 0.8.

As expected the premium rate rises as the underlying claim variance rises. The

companies may mis-estimate the capital requirement more often when the volatility

increases, but they do estimate higher variance (if not the correct value) and hence

higher capital requirements (and hence higher premiums). Not all profits are paid

out in dividends, some are retained to bolster the free assets - and this is why the

free asset proportion is higher in the high variance case.

The policyholder (and regulatory) perspective is not as positive however. As the

underlying variance rises, the average shortfall at company death (i.e. the amount

by which the company fails to pay 100% of the claim) rises from 19.9% of the claim

to 23.6%.
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Figure 6.11: Experiments C6.7.x: Quantile Boxplots for main company for different levels of

underlying claims variance 50%, 65% (control) and 80%, where distribution is Lognormal with

mean 1 in all cases. Top left shows average lifetime, top right premium rate per unit, middle left

shows the number of risk units sold, middle right the proportion of the company assets that are

free and bottom shows the Company Value
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6.6 Summary and conclusions

This chapter presents a quantitative examination of a qualitative insurance indus-

try model; like the MONIAC, the model presented here is informative but not an

accurate representation of reality. Both the model and the experiments carried out

in this chapter are all believed to be new. Computer modelling within the insurance

industry has increased materially in its complexity and power over the last three

decades [61, 63, 218, 219, 244]. Models used in practice within insurers, however,

are still optimised to answer questions over short time horizons [83], and typically

exclude non-trivial longer term effects and omit competition effects. These lim-

itations constrain the questions that can be asked of current operational models

resulting in misleading impressions of the impact of future strategies. This chapter

describes a simple model of an insurance industry with two competing companies to

address these issues. Competition is defined by a functional relationship of relative

premium rates taking account of loyalty. The simplifying assumptions are made

are not thought to significantly affect the main conclusions and certainly of much

lower importance than the introduction of competition within the model. The main

conclusions are as follows:

1. Even when the Regulatory Return Period is 200 years the control main com-

pany lives for just 73 years on average due to the impact of parameter uncer-

tainty when estimating capital;

2. Even if the true claims process is known by the main company there is still

a wide variance in the central 80% of lifetimes from 40 to 900 years. The

average, however, does exceed 200 years in this case;

3. When the shareholders target return is lower, the average company lifetime is

shorter due to a lower capital buffer being retained;

4. For lower target returns, company value is lower despite attaining a higher

market share. Company value does not appear to increase when the target

return is higher than the control experiment, however, because of reduced

volumes of business sold;
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5. Payback (as defined in equation 6.5) increases premium volatility, leads to

shorter lifetimes and increases market share while lowering company value;

6. For all tested variations in the Regulatory Return Period (50,100,150,200,250

and 500 years) the actual lifetime falls short of the target lifetime. As the

VaR threshold increases lifetimes increase, however, the proportion to target

lifetime decreases;

7. In an equivalent TV aR regulatory regime the company lifetime is shorter than

for V aR. Note that typical industry views [105] are that TV aR is a better

and more resilient metric;

8. When the true claims distribution is not known: the use of a Gamma distri-

bution in pricing leads to a shorter average lifetime and the use of a Pareto

distribution to a longer lifetime;

9. Some classes of insurance business (e.g. reinsurance) typically have a higher

variance than others (e.g. motor insurance). To approximate companies with

different mixes of business different underlying claims variance levels were,

therefore, tested. In each case the companies are subject to the same Reg-

ulatory Return Period and are therefore expected to have a similar average

lifetime; this is not observed, as variance increases the average lifetime de-

creases;

10. If a company uses five years of past data for estimating pricing, its average

lifetime falls to just 14 years compared to 73 years when 15 years of data are

used.

It is noted in conclusion 2 that even in a perfect model situation the company

lifetimes vary dramatically. This is not a failure of the regulatory regime, but may

be perceived so. Criticism of regulators (by politicians or the media for example) is

unjustified if company insolvencies arise from the natural variability of the claims

process.

The asymmetric effect of raising or lowering the target return on capital is noted

in conclusion 4. In the former case premiums rise, business volumes fall and company

value remains broadly constant; in the latter market share rises but annual profits
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fall and in this case the company value falls. This was an interesting competition

effect presumably linked to the fact that under the control experiment the main

company and the competitor are chosen to have similar length of lifetimes.

Several of the effects listed above arise due to poor estimation of parameters

given sparse data, a non-trivial problem for insurers. For example conclusion 7

relates to TV aR a measure that incorporates an estimate of all claims above a

threshold, including in the deep tail of the distribution. Large, low probability

claims are the most uncertain part of the estimated claims distribution. For the

heavy tailed Lognormal distribution it turns out that it is more likely the capital

estimated using a V aR measure will be higher than using TV aR (even though the

capital values should be the same theoretically). This is why companies in the

V aR regime live slightly longer. This was an initially unexpected effect as TV aR

is generally considered to be a good risk measure with desirable coherence [14]

properties. Company lifetime decreases as volatility increases (conclusion 9). For

each level of volatility the company is still operating in the same regulatory regime,

however, and the regulatory aim is that all companies should hold sufficient capital to

achieve the same maximum failure rate (1 in 200 years). Lifetime falls as volatility

increases because of poorly estimated parameters in the capital calculation. The

chance a company understates capital increases with the underlying variance.

This chapter does not include explicit consideration of real options [168] or op-

timal control [41] discussed in section 1.3. The investment model is not the focus

of this chapter and so a fixed investment return is assumed rather than including

state price deflators [12] accompanied by a more typical asset mix of equities, cor-

porate bonds etc. This is not thought to be flaw, particularly because the insurance

payouts are not dependent on the investment returns achieved (i.e. the model con-

siders non-systematic risk rather than systematic risk [43]). This contrasts with

With-Profits life assurance where fair valuation techniques are essential to capture

the embedded option values [118, 235]. Inclusion of stochastic investment returns

is one of several areas in which the model could be extended. Management actions

(such as reviewing prices each year according to incoming claims information) are

implicitly included in the model presented here. Other path dependent [280] man-

agement actions (real options) could be included in the model and the Company
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Value would adjust accordingly. Such methods could be used to assess the value

of potential actions such as: the use of forecasts taking account of their costs, the

value of any policyholder options included in the contract, or the acquisition of new

data to improve understanding of risk, leading to better pricing.

The insurance industry model presented in this chapter assumes that the claims

process is stationary. It would be informative to introduce a non-stationary process

such as a trend or cycle and asses the impact on company lifetime using climatology

pricing. It would then be possible to investigate the impact of a variety of pricing

techniques that made allowance for trends on average lifetimes and profitability.

The first step towards allowing for trends in pricing is detecting them and some

thoughts on trend detection are included in appendix C. Bayesian techniques are

not explored in this thesis and it would also be useful to consider how they can be

incorporated into the insurance workflow; such techniques could also be explored

and quantitatively assessed using the model presented in this chapter.
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Chapter 7

Concluding remarks

This thesis considers a number of statistical topics with particular relevance to

insurance. A primary focus has been extreme risks arising from dynamical systems

and methods to forecast and account for them, to explore whether scientific models

can improve insurance pricing.

The concept of a ‘skill score’ was considered and properties of skill scores were

listed and discussed in an insurance context. The properties of Propriety [274] and

Locality [165] are considered to be important. A number of skill scores have been

suggested in the reviewed literature and those wishing to assess forecast skill have

to choose which ones to use. This thesis suggests that skill scores should be avoided

if they repeatedly give a good score to forecasts that ascribe low probability to

events that actually arise. In the context of insurance such forecasts could lead to

mis-pricing and hence skill scores that penalise them should be used in favour of

scores that do not. A new property, named Feasibility, is introduced to highlight

scores that do not have this perceived flaw. The Ignorance [69, 97, 216], Brier [20] ,

Power Rule [224] and Spherical [86] scores all have the Feasibility property whereas

the commonly used CRPS [82] and Mean Squared Error [82] scores do not. The

thesis concludes that the CRPS score should not be used in an insurance context

and suggests other users should consider whether its lack of Feasibility constrains

its usefulness in their context.

Three experiments were then carried out to quantitatively test different skill

scores and thereby create a ranking in each case. The first experiment sampled

from a known distribution and then used various skill scores to evaluate a family of
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forecasts indexed by a bandwidth parameter and containing the true distribution.

For each score, Optimal Score Estimation [69,94] was used to select the best scoring

forecast which could then be objectively compared with the true distribution. A

ranking amongst scores was then produced by selecting the score that picked a

forecast whose bandwidth was closest to that of the underlying distribution over

multiple samples. In this example the Ignorance score was the highest ranking. The

non-proper scores performed worst with the Mean squared error being shown to fail

systematically. The CRPS score performed worst amongst the Proper scores.

The second experiment considered Gaussian underlying distributions where the

number of observations are sparse. Similar to experiment 1 a limited family of

forecasts was considered one of which is correct and the number of times the skill

scores identify the true forecast is counted and compared. Again the Ignorance score

performed best.

The third experiment uses the Skill Gap (an extension of the Information Deficit

[69, 216] to other scores) to measure how quickly a structurally incorrect forecast

can be ‘rejected’. Rejection does not mean that a given forecast has no useful

information, just that it has been shown to be inconsistent as a representation of

the underlying pdf of outcomes. For a stated level of confidence the time to Reject

a forecast (for a stated level of probability) can be determined. Skill scores can

then be ranked objectively by comparing their rejection times. This experiment

was only carried out for the Spherical, Proper Linear, Naive Linear and Ignorance

scores. Unexpectedly the rejection time for the first three scores was the same and

the reason for this was explained. This experiment showed that the best skill score

was dependent on the underlying distribution, leading to the conclusion that the use

of multiple proper scores to assess forecast skill can be useful rather than relying on

one only.

It is my view that further skill score comparison experiments should be carried

out in future to establish a preferred list of skill scores; such a programme of work

can be used to determine in which situations different skill scores should be used.

It is hoped that the work presented here can add to that overall goal.

Insurance contracts often cover risks arising from dynamical processes including:

floods, large scale windstorms and hurricanes [138,175,248]. Many of these processes
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are forecasted by meteorological offices or other organisations [169,181]. In order to

explore whether such forecasts can be useful in insurance a suitable proxy system,

based on the Lorenz 96 models [155], was explored. Lorenz 96 system II was used

as a proxy for reality (the ‘System’) and then Lorenz 96 system I (with extensions)

was used to produce various ‘Models’. Multiple parameterisations of the Lorenz

system II were considered and in each case five different models were developed. The

models included three examples with fixed forcing terms, one with a deterministic

dynamic functional relationship and one with a stochastic parametrisation [11,129,

239, 271–273]. Reduced coupling for a given level of forcing was expected to lead

to increased predictability but this did not arise because the effective forcing in

the system actually increases when coupling decreases and this is shown to be the

dominant effect. Climatology blending [30] was used to derive the best scoring

blend between the forecast and climatology at each forecast lead time over a chosen

period of 24 observations. The blending parameters are observed and their behaviour

illustrated and explained. As expected the weight put on the forecast diminishes

as lead time increases and the kernel width increases; however the fact that these

appear to operate in series rather than parallel was not anticipated.

Armed with Lorenz 96 as a proxy System, an insurance index [5, 6, 39, 185, 269]

is developed which is then priced using traditional techniques similar to the method

proposed by Kreps [128] which incorporates an expected cost and a return on eq-

uity component. The Models are then used to forecast the index. A best scoring

relationship between the Models and System is developed using a technique, named

φ-transformation, that is thought to be novel. This method uses Optimal Score

Estimation methods to determine the Score Optimal Piecewise Linear Relationship

between observed Index values and Modelled values. φ-transformation is shown to

work in two idealised situations and then used in the Lorenz 96 example. Two

pricing methods then make use of the φ-transformed forecasts to adjust prices pe-

riod by period. The first method updates the expected index value (described as

the ‘Updated Expectation’ method) and the second carries out climatology blend-

ing to update both the expected index and also the return on equity element of

the price. A simple rule is introduced to cater for competition effects and, under

these assumptions, the Updated Expectation method gives a lower price than the
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traditional method, on average, yet leads to fewer company insolvencies and higher

profitability. As such, this shows that the use of forecasts in this example has bene-

fitted Policyholders, through lower average premiums; shareholders, through greater

profits and, arguably; regulators, through a lower risk of insolvency. The method

assumes that the hypothetical company will reduce the amount of insurance sold

when large losses are forecast and, therefore, those companies not using the proposed

method are assumed to take up the excess business. The latter companies will be

more likely to fail as a consequence. Ultimately it would be hoped that many com-

panies would adopt the more sophisticated pricing methods and then competition

effects would not limit the price, in which case the insurance industry as a whole

would be less likely to see insolvencies following major events. The new approach

would lead to increased price volatility, however, but this would provide an annual

indicator of expected risk levels which, it is hoped, may lead to adaptive behaviour

from policyholders which overall is thought to be a positive outcome.

In the Lorenz 96 example the index payouts are closely related to the behaviour

of the system and therefore skillful models can add value. To test the value of

forecasting for insurers in a more challenging setting a simple model of hurricane

losses is created. Basin hurricane counts are sampled from a Poisson distribution,

then successively sub-sampled to create landfall numbers and major city hits. The

severity of landfalling storms is also simulated as are insurance losses which are

modelled by assuming a simplified 1-1 relationship between hurricane strength and

loss. This model is not sophisticated when compared to operational catastrophe

models [211]; but such detail was not deemed necessary to discursively explore the

role of forecasts within pricing in this setting. It is shown that simple business

volume scaling methods that react to forecast information can improve expected

profitability. More sophisticated forecasts, if used in pricing, can lead to reduced

capital requirements in quiet years, but would lead to lower profitability unless steps

were taken to ensure premium levels are on average no lower than traditional pricing

methods. Where pricing is changed it is assumed in this example that the whole

market have adopted the pricing method. Finally it is noted that, given the natural

variability of this system, it is very difficult to distinguish between an underwriter

who is good or just lucky.
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The final chapter of the thesis explores the impacts of competition more thor-

oughly. The complexity of computer modelling in the insurance industry has in-

creased over the past 40 years since models were first used to explore better ways

of calculating solvency risks [61,63,218,219,244]. Such models have tended to focus

on single companies [50,62,195,219,220], however, and it is far rarer to find analysis

of insurance markets in the literature, though some have been carried out [250,277].

This thesis proposes a novel insurance market model which includes competition

between two companies and captures the main processes in the insurance indus-

try [61, 105, 250]: customer loyalty, premium rating, capital setting, investment re-

turns, claims payments and dividend payments. The pricing method and underlying

assumptions used by the two companies is specified in advance after which the be-

haviour and outcomes emerge from the simulation. The model provides a framework

to investigate such questions as: will the companies survive for as long as specified

by the regulatory test, on average? Does profit sharing (or ‘payback’), which is used

in some re-insurance markets, lead to a better or worse investment for sharehold-

ers? Would a different regulatory method lead to a stronger or weaker industry?

Is a company always better off if it sets premium rates using the same distribution

family from which the claims arise? These questions are answered, sometimes with,

initially, surprising results. For example the TV aR measure (equation 6.7) is shown

to reduce expected company lifetime due to estimation difficulties in the presence of

parameter uncertainty, at odds with common industry views [105] that this is a bet-

ter and more resilient metric. A profit sharing or ‘payback’ rule is shown to reduce

expected company lifetime and lowers Company Value. For all tested regulatory re-

turn periods the company lifetime is shorter than the regulatory target lifetime due

to errors in estimating the parameters of the underlying claims distributions. It is

not claimed that these features would be replicated in practice; but the findings sug-

gest that regulators would be advised to invest in the development of comprehensive

insurance market models covering multiple classes of business. Such models would

allow the advance testing of regulatory changes and would enable the resilience of

the insurance industry to systemic threats to be assessed. The model shows, for

the chosen parameters, that companies exposed to more volatile risks are likely to

have shorter lifetimes despite their regulatory targets being the same strength, due
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to a magnification of the effect of parameter uncertainty in such cases. The model

can be developed in future to incorporate the work of earlier chapters to consider

different dynamic claims processes, and also the use of forecasts in a competitive

environment. The impact of trends and cycles could also be considered, following

appropriate trend detection methods as discussed in appendix C. There is no dis-

cussion in this thesis of Bayesian methods and it may be possible to re-express the

work within a Bayesian framework which could be a useful and appropriate setting

for future work.

This thesis concludes that the use of Proper, Feasible skill scores can help in-

surers to use forecasts to improve pricing. But this must be done carefully and, in

particular, model outputs should be transformed to have the highest average skill

when compared to the system.
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Appendix A

CRPS favours median

observations

The following gives a proof that the CRPS score will always give the best score when

an observation arises that is at the median of the distribution of possible outcomes.

The CRPS is defined in equation 2.10. Let P (v) represent the Cumulative Density

Function of the forecast p, so that:

P (v) =

∫ z

−∞
p(t)dt

Then the CRPS is equivalently defined as:

S(p, v) =

∫ ∞
−∞

(P (z)−H(z − v))2dz

The derivative of this with respect to the observation v is defined as:

dS

dv
:= lim

δ→0

S(v + δ)− S(v)

δ

Now,

S(v + δ)− S(v) =

∫ ∞
−∞

(P (z)−H(z − (v + δ)))2dz −
∫ ∞
−∞

(P (z)−H(z − v))2dz

Using the rules of integration the two integrands can be brought within a single

integral with the same limits. Squaring the bracketed terms and cancelling the

repeated P (z) terms and noting that H2(x) = H(x) by definition of the Heaviside

function, the above equation reduces to:
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S(v + δ)− S(v) =

∫ ∞
−∞

(−2P (z) + 1)(H(z − (v + δ))−H(z − v))dz

Note that:

H(z − (v + δ))−H(z − v) =


0 if z < v

−1 if v ≤ z < v + δ

0 if z ≥ v + δ

so that the integrand and limits of integration can be changed as follows:

S(v + δ)− S(v) =

∫ v+δ

v

(2P (z)− 1)dz ≈ (2P (v)− 1)δ

Therefore the derivative of S with respect to the observation v is as follows:

dS

dv
:= lim

δ→0

(2P (v)− 1)δ

δ
= 2P (v)− 1

As noted in the section 2.3.1 this derivative is zero when P (v) = 1
2

i.e. when the

observation v is at the median of the forecast p.
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Appendix B

Experiment C4.1.x φ′ definition

Table A.1: Experiment C4.1.x - definition of φ′

x y = φ′(x) x y = φ′(x) x y = φ′(x)

0.000000 5.403489 34.878013 42.425648 73.429516 69.575231

3.806653 12.807920 36.891898 43.483424 77.457285 71.338191

5.245142 17.039024 38.042689 43.483424 80.909659 73.101151

5.532840 20.917536 39.481178 44.188608 85.225125 75.216703

6.971328 22.680496 40.344271 46.304159 86.088219 76.274479

9.272911 25.148640 42.358156 50.887855 88.102103 78.742623

12.149889 25.853824 42.645854 54.766367 89.252894 80.152990

14.451471 27.264192 44.947436 58.292287 90.115988 82.973726

17.040751 28.674560 48.399809 60.760431 92.417570 86.147054

19.342333 29.379744 50.701391 60.760431 93.856059 89.320382

21.356218 31.142704 54.153765 62.875983 95.294548 90.730750

22.507009 32.553072 57.318440 64.638943 96.733037 92.141118

24.233195 34.668624 59.620023 65.344127 97.020735 94.256670

25.671684 36.078992 62.209303 65.696719 98.459223 96.724814

28.260964 38.547136 63.647792 66.401903 99.610015 97.192958

30.850244 41.015280 67.100165 67.459679 100.000000 98.000000

32.864129 41.720464 70.840236 69.222639
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Appendix C

Trend detection

‘The rapid development of computer speeds and storage capacity should by now

have relegated most of estimation theory to footnotes about numerical approxi-

mations and refocused attention on all of the issues surrounding methodology,

inference, model formulation and equation selection ’ Hendry, 1980 [102]

‘Trends’ are important to the insurance industry and so it is unsurprising that

trend detection algorithms abound [263]. Traditional pricing methods rely on past

claims data [193] and it is useful to know the extent to which these are still relevant

for predicting risk levels in the future in order to maintain profitability and pre-

serve solvency [85]. Increases in price are difficult to introduce into a competitive

marketplace [139], as argued in Chapter 6. Misinterpreting a trend detection algo-

rithm could therefore lead to loss of market share or the acquisition of unprofitable

business. Extrapolation is, however, not discussed in this appendix. This appendix

focusses rather on what it means to say a trend has been observed in a data set.

What is a trend? There are many methods to detect trends, but the concept of

trends has multiple definitions [98,217,225,256,263]. Arguably the simplest method,

discussed by Merriman [167] in 1884 is to use the data to determine some well defined

line, for example one that minimises the squared residuals. A trend might then said

to be ‘detected’ if the slope is non-zero. For any set of observations, however, the

slope will be either positive or negative with probability one, leaving the decision

relevant significance of the analysis not assessed.

At the other extreme, statisticians have constructed general frameworks within

341



which significance is easily determined. Assume, for example [40], that each observa-

tion y(t) is a realisation of a random variable Y (t) with mean µ(t) and ‘innovations’

arising from Additive Observational Noise (typically from an Independent and Iden-

tically Distributed (IID) Gaussian process, N(0, σ2)). For example, a linear model

takes the form Y (t) = mt+ c+ ε where the innovations ε ∼ N(0, σ2). When the

Gauss Markov assumptions (described in section C.1) are satisfied, and provided

the innovations are Gaussian, it is possible to carry out a t-test (described in section

C.2) which then allows for the significance of the slope to be calculated. Within

this framework, a trend is said to be detected if the slope significance exceeds an

arbitrary, pre-chosen, threshold. This and other general frameworks assume a great

deal of machinery and the assessed significance is relevant only conditional on the

assumptions. In many situations relevant to insurance it is clear that these are not

satisfied and it is then inappropriate to use the t-test if the level of assessed signifi-

cance is meaningless. Other approaches exist such as the non-parametric approach

of Theil-Sen [225] or those listed by Gray [98] such as using Kendall’s τ [256] or

Likelihood ratios [217] and differences in detail to the above descriptions may also

arise, these frameworks are not explored further.

This appendix returns to the basic question of whether or not a significant ‘trend’

appears in a time series, quantifying the probability of the observed result if, in fact

the data were drawn from an IID process. This is arguably the original intention

of trend detection. The method, described in section C.3, determines the probabil-

ity that a random resampling of the observations could lead to a time series with

parameters of a fitted trend defining function rarer than those observed. Trend

defining functions include for example monotonic increasing polynomials and expo-

nential functions1. The method is illustrated in this appendix by considering the

least squares regression line where the probability of the observed slope is estimated

and defined as the ‘slope probability’. A time series is then said to have a significant

trend if the slope probability exceeds a stated significance threshold. It is possible

to explore the sub-structure of components of the time series using this method as

the data can be subdivided into small subsets to test whether any significant trends

1For example, in the case of polynomials the ‘parameter’ of interest would be the coefficient of

the highest order variable; in the case of exponentials it would be the value β in ŷ(t) = eβt.
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exist at smaller scales. Three new visual methods are introduced in section C.3

which display the slope probabilities for different subdivisions of the data.

Smith [236] defines ‘Surrogate Data’ as: Non-deterministic time series con-

structed to be similar in appearance to the original data. He then comments

that ‘A common objection to the dynamical systems analysis of data from poorly

understood systems is that the significance of a given result is rarely established....

This objection can be addressed directly by considering a class of non-deterministic

surrogate signals. The significance of a result is then established by comparing it

with the outcome of the same test applied to these surrogate data sets.’ The per-

mutation approach explored here is based on a similar idea, that the significance of

trend can be assessed by considering many surrogate time series, known by construc-

tion to be IID, and determining their slope. Hotelling [107] proposed a permutation

method in 1936 for exploring the degree of rank correlation between two variables

without the need to make assumptions of normality and Efron [72] considered boot-

strap estimates of regression parameters in 1977. The idea presented here, therefore,

is not new, indeed it is implicit in the original idea of what a significant trend is;

this appendix is then a return to basics augmented by new graphical presentations

and arguments for the importance of a return to relevant trend detection (dropping

the t-test along with other needlessly assumption laden tests commonly found in the

literature).

The graphical methods provide complementary views and are used for various

illustrative and actual data sets in the rest of the appendix to illustrate features of the

time series. Section C.4 illustrates the slope probability method in a setting in which

the t-test is appropriate (i.e. data arises from a linear trend with homoskedastic,

non-correlated Gaussian noise). Section C.5 then explores a situation where the

data generating process follows a cosine wave, in this case it is inappropriate to

apply the t-test to a linear fit. Section C.6 considers another non-linear process

whose mean values follow a t1.5 relationship. This type of ‘acceleration’ leads to a

‘wedge’ feature in the graphical plots. Similar features can be expected to arise in

any such convex situation. Sections C.7.1, C.7.2 and C.7.3: (1) consider three real

atmospheric hazard datasets highlighting some interesting features in the data and

(2) criticise a common misapplication to trend detection illustrated by Neumayer
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and Barthel [186], but evident in many other sources2 [10,45,172,192,275]. Section

C.8 illustrates the method for the x time series of the Lorenz 63 model (to be briefly

introduced in this appendix). This shows that a rich structure of slope significance

can be identified by the new graphics. Section C.9 then illustrates the new method

for tide gauge data in New York which shows a wedge feature as described in the t1.5

example earlier, this result prompted a deeper investigation for a collection of tide

gauges around the world producing evidence for accelerating sea level rise. Finally

section C.10 considers sunspot data and the new graphics clearly reveal the long

term behaviour and the shorter term 11 year sunspot cycle.

In summary, this appendix returns to the original intuitive idea [89] of a sig-

nificant trend; it exploits modern compute power to evaluate the chance that any

particular ‘trend statistic’ of interest is significantly larger than would be expected

given independent draws from an identically distributed distribution. The original

elements of this appendix are thought to be as follows:

• The concept of ‘slope probability’;

• Three novel graphical methods of the slope probability to reveal the nature of

any trends in the data;

• Illustration of the new graphics:

1. a perfect Gauss-Markov setting with a linear trend and Gaussian innova-

tions, and;

2. three synthetic examples where the usual t-test assumptions are failed;

3. three real data sources: insurance losses arising from atmospheric haz-

ards, tide gauge data and sunspot data;

• Analysis of global tide gauge data.

C.1 Gauss-Markov assumptions

This section defines notation and gives background information; nothing in this

section is new (see for example Larson [131] or Ramanthan [207]). With linear

2Some of these sources use other trend calculation methods but still show no evidence of testing

for normality or other model assumptions, it is possible such testing was carried out but not

reported.
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models it is assumed that a response variable (Y ) is related to explanatory variables

X1, ...Xn via a linear relationship in the presence of some Additive Observational

Noise εi. Such a model is written over multiple observations i = 1, ...p, where xi,j

denotes the ith observation of the jth explanatory variable:

yi = α + β1xi,1 + ...βnxi,n + εi. (C.1)

This can be written in matrix notation by adjoining a constant explanatory variable

X0 = 1 and denoting β0 = α. In equation C.2, Y is now a column vector of

observations, X is a matrix, β = (β0, ...βn) a vector of parameters and ε a vector of

Additive Observational Noise:

Y = Xβ + ε. (C.2)

Different choices of β lead to different linear models. For a given choice, the

Ŷ (β) = Xβ are a vector of ‘fitted’ values. The residuals are the values ε = Ŷ − Y .

The sum of squared residuals Q =
∑
ε2i =

∑
((Ŷ − Y ))T (Ŷ − Y ) quantifies how

far the observed data is from the mean values assuming the Euclidean norm. This

uses the symbol AT to denote the transpose of the matrix A. The least squares

approach seeks to find the parameter β̂ that will minimise Q and this is known as

least squares regression. Defining β̂ as follows minimises Q [68]:

β̂ = (XTX)−1XTY. (C.3)

Note that the probability distribution of the Additive Observational Noise does

not need to be specified in order to calculate β̂, it is simply the model that minimises

the quantity Q for the observed sample y1, ...yp and x1,j, ...xp,j (for each explanatory

variable j).

Note also that the ordinary least squares estimator β̂ is of the form β̂ =
∑
aiyi,

a linear sum of the response variables. Such an estimator is known as a ‘linear

estimator’. An estimator is ‘unbiased’ if E(β̂) = β. An estimator with a high

variance, even if unbiassed, is quite likely to produce a value far from the true

parameter. For this reason given two unbiassed estimators the one with the lower

variance is preferred. An obvious question is whether there is a linear estimator

that has a lower variance than that produced by the ordinary least squares method.

345



There are conditions under which the answer to this question is ‘no’. These are

called the Gauss-Markov assumptions [207] which require the following:

1. The response is linear in parameters to the explanatory variables (for example

Y = α + αβ2X would fail this requirement);

2. Errors average to zero, E(εi|X) = 0, ∀i;

3. The explanatory variables (Xt) are given and non-random (this implies

cov(Xt, εt) = 0, ∀t);

4. Homoscedasticity, that is var(εi|X) = σ2, ∀i;

5. Serial Independence, that is cov(εi, εj) = 0 ∀i, j;

With these assumptions the Gauss-Markov theorem establishes that the ordinary

least squares estimator has the lowest variance amongst all unbiassed linear estima-

tors and is thus described as BLUE - the Best Linear Unbiassed Estimator [207].

The discussion above relates to any n-dimensional linear model. From now on the

discussion is restricted to time series, and the much simpler case of two dimensions

where Y = α+ βX + ε. For a given time series the derived slope parameter (β̂) will

be nonzero with probability one. A question that arises naturally is whether the

slope β̂ is statistically different from zero.

C.2 The t-test

This section presents the t-test for slope significance which is typically used to

provide evidence for trends; nothing in this section is new and the development

follows standard presentations [121,131,207].

Suppose that x and y are related by the following equation:

Y = α + βX + ε (C.4)

where ε ∼ N(0, σ2) is an Additive Observational Noise term.

Note that such a model would satisfy the Gauss-Markov assumptions; but that an

additional strong assumption on the statistical form of the Additive Observational
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Noise term has been made. The following describes a standard test which determines

whether the sample slope estimator β̂ is actually statistically non-zero. Let

sx =
√

1
n−1

∑
(xi − x̄)2, (C.5)

denote the sample standard deviation of x with the sy defined analogously for y.

Define the sample correlation coefficient r to be:

r2 =

∑
((xi − x̄)(yi − ȳ))2∑

(xi − x̄)2
∑

(yi − ȳ)2
(C.6)

and note that

r = β̂
sx
sy
. (C.7)

Let

sr =

√
1− r2

n− 2
. (C.8)

Let

τ =
r

sr
(C.9)

Then τ ∼ T (n− 2), has a t-distribution with n− 2 degrees of freedom [131]. Let

sβ̂ =
sy
sx

√
1− r2

n− 2
. (C.10)

Substituting equations C.7 and C.10 into C.9 an alternative formula for τ can be

constructed as follows:

τ =
β̂

sβ̂
. (C.11)

The above equations all relate to sample statistics. Analagous to equation C.7 it

is also true for populations (ρ is population correlation, β is slope of relationships

between bivariate normals and σx is the population standard deviation of X).

ρ = β
σx
σy
. (C.12)

Unless X is constant, it is clear that P (ρ 6= 0|β 6= 0) = 1. Putting this together:

• Equation C.12 shows that a test for non-zero correlation is equivalent to a test

for non-zero slope;

• Equation C.9 gives a statistical test for correlation where the derived statistic

τ will have a t-distribution if certain conditions are met;
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• Equation C.11 gives an alternative formula for τ with respect to the sample

slope β̂, this also allows error bars for the slope to be created.

The t-test is not meaningful if the Gauss-Markov assumptions are violated or if

the residuals are not normal. The following describes some standard statistical tests

for these features:

Test for normality There are many tests for normality. Razakit and Wah [187]

shows that the Shapiro-Wilk test [227] has the most power in a series of normalised

monte-carlo tests. This test compares the order statistics from a normal distribution

to the order statistics that are in the data - it creates a test statistic that can be

looked up on test tables to determine the p-value.

Test for homoscedasticity The Breusch-Pagan test [28] tests whether the data

is heteroscedastic by fitting a linear model to the squared residuals as a function of

the explanatory variables and testing whether the parameters are significant.

Test for serial correlation The Breusch-Godfrey [96] test can be used to test

whether the residuals exhibit serial correlation. In this test the residuals are tested to

see if they have an AR(p) p ≥ 1 process using standard methods. If an AR(p) process

is a good model for the residuals then the assumption of zero serial correlation can

be rejected.

This section has listed conditions which must be satisfied in order for the t-test

to be validly applied. As noted already the p-values are sometimes calculated when

this necessary condition is not satisfied which motivates an alternative approach

which might prove more deployable at the cost of being less informative. Such an

approach is suggested in the next section.

C.3 Graphical Methods of Trend Detection

The following subsections illustrate a definition of ‘trend’ which neither requires the

Gauss-Markov assumptions, nor makes any assumptions about the Additive Obser-

vational Noise (see Glossary), (or indeed whether the data conform to a particular
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linear model). To recap, given a time series X = {x1, ...xN} (see Glossary) made at

times T = {t1, ...tN} ({X,T}) a least squares line can be fitted through the data.

The slope of the line will almost always be positive or negative. The question is

whether the size of the slope is a surprise, indicating a trend in some sense.

Definition: Implied Linear Trend Given a time series {X,T} define the ‘Im-

plied Linear Trend’ to be the slope ols(X,T ) of the ordinary least squares line

through the data, as follows:

ols(X,T ) =

∑N
i=1(xi − EX)(ti − ET )∑N

i=1(ti − ET )2
(C.13)

where EX =
∑N
i=1 xi
N

is the average of the values of X and ET is similarly defined for

T . The approach to trend detection below is easily broadened to a ‘trend’ defined

by any monotonic function (e.g. ‘implied exponential trend’).

For example, let series A = {XA, TA} be such that ti = xi = i for i ∈ {1, ...N}.

This has an implied linear trend of 1. Let series B be such that the last two values

are swapped, so the series reads 1, 2, .., N,N−1 then the slope through this data will

be lower (for example if N = 20 the slope would be 0.99850). In fact, series A has

the largest positive slope among all permutations of the values in XA. There are N !

permutations of the first N integers (for N = 20 this is approximately 2.4329∗1018).

Since all other time series in this example have slopes that are less than A it would

be highly significant if A was observed.

For a given time series {X,T} the probability of observing a slope less than

or equal to the Implied Linear Trend ols(X,T ) can be derived. This suggests the

following definition:

Definition of Slope Probability Given a time series {X,T} of length N , let Φ

denote the set of all permutations3 of the set {1, ...N}. Let I(A) be an indicator func-

tion which is zero when A is false and 1 otherwise and let |S| denote the cardinality of

the set S. For φ ∈ Φ let the ‘permuted series’ be denoted Xφ = {xφ(1), ....xφ(N)},

where T is not permuted. Let m = ols(X,T ) and let mφ = ols(Xφ, T ). Define the

3For example the 6 permutations of the numbers {1, 2, 3} are: φ1 = {1, 2, 3} , φ2 = {1, 3, 2},

φ3 = {2, 1, 3}, φ4 = {2, 3, 1}, φ5 = {3, 1, 2} and φ6 = {3, 2, 1}.
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‘slope probability’ ps as:

ps(X,T ) =

∑
φ∈Φ I(mφ < m)

|Φ|
(C.14)

The summation in definition C.14 is finite and therefore in theory the slope

probability can be calculated exactly. In practice, however, for time series with

N > 15 this requires the calculation of more than a trillion slopes and time con-

straints becomes prohibitive. To address this the following Monte Carlo method is

adopted:

Estimate the Slope Probability of the Implied Linear Trend

• STEP 1: Calculate the the implied linear trend m = ols(X,T );

• STEP 2: Sample a permutation φi ∈ Φ where each is equally likely and create

the permuted series {X i, T} (equivalent to sampling N values from X without

replacement and noting that T is unchanged);

• STEP 3: Calculate the implied linear trend mi = ols(X i, T ) from this new

sample;

• STEP 4: Repeat steps 2 and 3 to generate Nsmpl realisations;

• STEP 5: Define the estimated slope probability as p̂s =
∑Nsmpl
i=1 I(mi<m)

Nsmpl
.

0.0 0.2 0.4 0.6 0.8 1.0

Figure C.1: Colour key used for most plots. Y axis shows probability of slope occurring from

random resampling of points

Integer segmentation If a trend is caused by an exogenous driver (for example

increasing CO2 concentrations leading to increasing atmospheric temperatures) then

the trend it is likely to be present if the data is subdivided into shorter intervals,

although sampling error is generally expected to feature more strongly the smaller

the subdivision. Evidence there is such a driver may therefore be found by consid-

ering multiple subdivisions of the data, which can be carried out using the following

method. Where [x] is used to denote the integer part of the real number x:
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Algorithm for Integer Segmentation Plots (see also figure C.3)

• STEP 0: Calculate the slope probability of the full time series (as above)

• STEP 1: Divide the data into two equal sized blocks at the beginning and end

of the data set, discard any residual data in the middle. Specifically, keep the

ordering from the original time series to produce a subdivision 1 = x1, ...x
[
N
2

]

and subdivision 2 = x
N−[

N
2

]
, ...xN . Keep the remaining data point, if any,

separate. Recalculate the implied linear trend in each portion of the data and

calculate the slope probability for each. Choose a colour scale (figure C.1) for

the slope probability and colour the block relating to the data accordingly.

• STEP i: Divide the data into i equal sized blocks, set aside any residual data.

Calculate the slope probability of each sub-series. For the residual data, if

there are less than 4 terms colour the block black, otherwise calculate the

slope probability of the residual data and its corresponding colour.

• Repeat until i = Nmax.

Figure C.1 shows the colour key used in this appendix. Brilliant red (and cyan)

is reserved for slopes that have a slope probability of greater than 99% (or less than

1%) respectively. Dark red (and dark blue) shows slopes that have slope probability

between 90% and 99% (or between 1% and 10%) respectively. The number of

permutations is always even and any permutation leading to positive slope has a

mirror image with negative slope. Since the colour scale chosen is also in symmetric

bands either side of the 0.5 probability we can say that red colours correspond to

positive slopes and blue to negative.

Running Windows The choice to consider the first half and last half of the data

(or any other subdivision) in the integer segmentation plot is arbitrary. It is possible

to take blocks of a chosen size from anywhere within the data set. The following

suggests this as a complementary graphical method. A ‘window’ of size M is

defined as a series xj, ....xj+M−1 of data points from the original time series occurring

at times tj, ....tj+M−1.
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i = Nsmpl?

Sample a 
permutation φi

(note 3) 

 YES

NO

Create permuted time 
series

Xi = {Xφi(1), …Xφi(N)} 
T is not permuted

Given time series:
T = {t1, …..tN} 
X = {x1, …..xN}

Notes:

Calculate Implied 
Linear Trend

(note 1) 
m = ols(X,T)

Estimate 
slope probability (ŝp) 

(note 4)
ps = Σi 𝗜(mi < m)/ Nsmpl

1.Define the Implied Linear Trend as:  ols(X,T) 
=  Σi(xi - EX)(ti - ET) / Σ(ti-ET)2  
where EX and ET are the average of the values 
in sets X and T respectively.

3.There are N! permutations of the 
numbers 1,…N.  Sample one permutation 
where each is equally likely.

Calculate Implied 
Linear Trend for 

permuted time series
mi = ols(Xi, T) 

(note 2) 
For i ∈ {1, …Nsmpl}

4. 𝗜(A) is an indicator function which 
takes the value 1 when A is true and 0 
otherwise

2.Nsmpl is the number of permutations 
that will be sampled without replacement 
to estimate the slope probability.

Figure C.2: Flow chart for the calculation of the slope probability.
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n = Nmax?

 YES

NO

For n ∈ {1,…Nmax}

Notes:

Divide Time Series into n  equal 
sub-series
(notes 1,2) 

X = D ⋃  ⋃Xi 

where i = 1,…n,  |Xi| = [N/n]

Create integer 
segmentation plot using:

p1,1 
p2,1,  p2,2 

p3,1,  p3,,2, p3,3 
etc

1.For example. X1 = {x1,…x[N/Nmax]} 
where [k] denotes the integer part of k.   

Calculate Implied Trend 
(mn,i) and Estimate slope 

probability
pn,i = ps(Xi,Ti)

Given time series:
T = {t1, …..tN} 
X = {x1, …..xN}

For i ∈ {1,…Nmax}

i = Nmax?NO

 YES
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Figure C.3: Flow chart for Integer Segmentation Plot. Right hand column illustrates the steps

for n=1,2, and 9 and also shows the resulting plot in the case of a linear trend. Data set is C7.1.3

for illustration.
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Algorithm for Running Window plots (illustrated in figure C.4)

• For a given time series {X,T} and chosen window sizes {Mi}Rwndi=0 , such that

M0 = N ;

• For i ∈ {0, ...Rwnd}

– For chosen window positions j ∈ {ji,1, ....ji,W}

– Define the sub-series X i,j = {xj, ...xj+Mi−1} and T i,j = {tj, ...tj+Mi−1}

– Calculate the Implied Linear Trend mi,j = ols(X i,j, T i,j) and estimate

the slope probability p̂i,j.

Two plots have been created using the running window method. The first will

be referred to as a ‘triangle plot’ and the second as a ‘stacked square’ plot.

These are described in more detail as follows.

Running window - triangle If the full time series has N data points then the

triangle plot displays the slope probability in the case where Mi = N − i. There are

i+ 1 positions of Mi in this case as the window runs over the full data in increments

of one data points at a time. The resulting slope probabilities are colour coded as

before and plotted in a triangle of cells (illustrated in figure C.4). The result for the

full data is shown as a single cell at the top of the plot at the apex of the triangle,

the next two results (where the window is of length N − 1 and either starts at the

first data point or the second) plotted as the two cells below the top one; and so on

3,4,5 etc. Note, therefore, that when the window is of length N − i this can occupy

i + 1 positions - and the total number of slope probabilities is N(N+1)
2

the sum of

the first N integers. As such, the number of calculations is o(N2) which can take

a long time to run. Due to the run-time constraints the graphic has been limited

to N ≤ 50 in the longer data sets so only part of the data is illustrated which is a

shortcoming of this method. Another (possible) behavioural bias with this graphic

is that arguably the most important row is the first one where the slope probability

of the full data set is shown - yet this has just one cell. Smaller window sizes are

afforded more ink and the overall colour could be misinterpreted.

Running window - stacked square The stacked square plot addresses two of

the shortcomings of the triangle plot (1) The behavioural colour-bias towards less
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significant subsets of the data and (2) the runtime issues when data sets are large.

For each window size Mi there are N −Mi + 1 potential positions for the window -

this is the source of the runtime issues mentioned above. Let W equal the maximum

number of windows that will be considered for each window size. The first and last

windows are fixed to cover the first and last Mi data points; the rest are chosen to

jump through the data in approximately equal increments. Note if N−Mi+1 < W ,

the windows are incremented in steps of 1 data point at a time. In this case the

height of the strip is adjusted to fit a fixed block height. In summary, this plot (also

illustrated in figure C.4) displays the selected strips for each window size choice

within a block of a fixed height, the height is the same in each case. This reduces the

behavioural colour-bias in the triangle plot because each window group is afforded

the same about of plot space. The full data (i.e. where no data is removed) is

therefore a single strip which takes up one complete block. Run times are reduced

by restricting the size of K and D.
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Mi = Mwnd?

 YES

NO

Define window sizes
For Mi ∈ {M0,…MRwnd} 

M0 = N

Notes:

Define window positions 
(note 1)

For j ∈ {ji,1,…ji,W}

Create running window
 plots using:

p1,1 
p2,1,  p2,2 

p3,1,  p3,,2, p3,3 
etc

1. If N/Mi < D then j ∈ {j1,…j[N/Mi]} where 
[x] is the integer part of x.

Calculate Implied Trend (mi,j) and
Estimate slope probability

pi,j = sp(Xi,j, Ti,j)

Given time series:
T = {t1, …..tN} 
X = {x1, …..xN}

Define sub-series
Xi,j = {xj,….xj+Mi -1} 

Ti,j = {tj,….tj+Mi -1}

j = jW?
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Figure C.4: Flow chart of Running Window plots: Graphics in middle column illustrates the

Running Window Triangle and the right hand column illustrates the Stacked Square method in

the case of a linear trend. Data set is C7.5.1 (Convective events in the USA) for illustration.
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C.4 Perfect Guass-Markov examples

In order to illustrate the concept of Slope Probability described above the following

well behaved examples have been produced. Examples C7.1.x and C7.2.x described

below, all satisfy the Gauss-Markov assumptions. The mean of the Additive Obser-

vational Noise term is chosen so that in examples C7.1.x and examples C7.2.x all

have the same mean in expectation. These are illustrated in a series of figures as

follows. Most figures in this appendix retain this format: Top left is the time series

and statistical test results, top right shows the Integer Segmentation Plot, Bottom

left the running window stacked square and bottom right the triangle.

Example C7.1.x: Gaussian Additive Observational Noise about a line with

slope 1
N

Time series yt = t
N

+ εt, where εt ∼ N(0, σ) for t = 1, ...N

• Case C7.1.1: σ = 0.01, N = 27

• Case C7.1.2: σ = 0.1, N = 27

• Case C7.1.3: σ = 1.0, N = 27

7.2.x Gaussian Additive Observational Noise about a line with zero slope

Time series yt = εt, εt ∼ N(0.5, σ), for t = 1, ...N

• Case 7.2.1: σ = 0.01, N = 27

• Case 7.2.2: σ = 0.1, N = 27

• Case 7.2.3: σ = 1.0, N = 27

Figure C.5 shows the results for one realisation of example C7.1.1. The time series

plot includes (in red text) the results of the various standard tests. The Shapiro-

Wilk test is carried out against a p-value of 5% and also 1% and the normality

of the residuals is not rejected. The Breusch-Godfrey test is carried out on the

residuals and as expected does not reject the assumption of zero serial correlation.
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The Breusch-Pagan test does not reject homoscedasticity, again as expected. The

t-test is carried out and, unsurprisingly the slope parameter is found to be significant

so zero slope is rejected. The data has been shown to have a trend, using the the

standard statistical definition of this term.

The Integer Segmentation Plot within C.5 shows that the least squares slope

in the data occurs less frequently than 1% of the time from random resamples

of the data. The data can therefore be said to contain a trend according to the

definition proposed in this appendix. In general, in this appendix, a slope will be

described as ‘significantly positive’ if it has a slope probability of less than 10%4

(or ‘significantly negative’ if greater than 90%), this significance threshold is

arbitrary. This first and last half of the data set also includes such a significant

slope and this is the case for each subdivision until the data is divided into 13ths

when one of the segments has between a 10% and 1% chance of occurring from a

random sample. As the data continues to be divided the slopes lose their significance

although it is notable that the entire plot is some shade of red. Duplicate rows can

arise due to the treatment of excess data after subdivision. For example there are

128 data points in the current plot. Divide by 15 and you get 15 blocks of 8 -

with the remainder also 8 - so 16 blocks of 8. As an alterative example, division by

16 goes exactly into the 128 data points with no remainder and so 16 blocks of 8

arise. Therefore rows 15 and 16 in the plot (numbered on the left of the plot) are

duplicated.

The apex of the Running Window Triangle plot within figure C.5 is, by con-

struction, the same colour as the top row of the Integer Segementation Plot (i.e. the

whole data set). The two blocks below the apex refer to the data set with the last

point removed (first block) and first point removed (second block). The next three

blocks on the third row show the result for a block of size N − 2, the first block on

this row includes all but the last two points, the second block excludes the first and

last point and the third excludes the first two data points. And so on. Clearly the

slope is significant for all windows even with the removal of 50 data points. The

Running Window Stacked Square plot within figure C.5 shows a similar story where

4The phrase ‘highly significant’ will be reserved for Slope Probabilities greater than or equal

to 99% or less than or equal to 1%
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the slope is seen to be significant at all illustrated window sizes.

Figure C.6 shows the result for example C7.1.2. The t-test again rejects zero

slope. The top row of the Integer Segmentation Plot shows a significant slope and

this is retained up to when the data is quartered. The running window triangle plot

shows that the trend is present in all data windows down to 78 = 128− 50.

Figure C.7 shows the result for example C7.1.3. In this case the Additive Obser-

vational Noise term has a standard deviation of 1.0 leading to errors that are larger

than the span of the trend itself. The t-test still finds the slope to be significant.

The Integer Segmentation Plot shows that the full data has a significant slope - but

the first half of the data does not have a significant slope. Thereafter no subdivision

shows a significant slope. The Running Window Triangle shows that the slope is

significant even when up to 22 data points are removed, for all windows; down to

the removal of 37 data points the triangle graphic all slopes are either significant or

highly significant. Below this, the early part of the time series is not significant.

Figure C.8 shows the results for example C7.2.1. The whole data set has a

slope that is not significant as shown by the light blue bar at the top of the Integer

Segmentation Plot. This plot shows some patches of significant slopes (for example

the two bright red first segments of rows 4 and 5. These would be expected to arise

randomly and it is notable that the segments adjacent to these are blue. Overall

there is no strong pattern in the Integer Segmentation Plot consistent with the

process generating the data. The Running Window Triangle plot has regions of

significant slopes (dark blue) surrounded by larger regions of insignificant slope

(light blue, grey and light red). The majority of the windows illustrated in the

Running Window Stacked Square plot are not significant.

Figures for examples C7.2.2 and C7.2.3 are not shown. The features are similar

to C7.2.1. The slope is not significant in either case using either the standard

statistical definition or the new definition using the Slope Probability.
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Figure C.5: Example C7.1.1: Perfect Gauss-Markov: σ = 0.01, slope = 1
128 . The Stacked Square

and Triangle plots show highly significant slopes for all illustrated window sizes. The Integer

Segmentation plot shows highly significant trends down to subdivision of the data into 1
14 ths.
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Figure C.6: Example C7.1.2: Perfect Gauss-Markov: σ = 0.1, slope = 1
128 . As with figure C.5

the Stacked Square and Triangle plots show highly significant slopes for all illustrated window

sizes. The Integer Segmentation Plot shows highly significant slopes only up to when the data is

divided into fifths (consistent with a higher variance (σ = 0.1 > 0.01) of the Gaussian Noise term),

positive trends with mixed significance are evident until the data is subdivided by a factor of 9

after which there is no discernible pattern in the colours.
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Figure C.7: Example C7.1.3: Perfect Gauss-Markov: σ = 1.0, slope = 1
128 . The variance term in

time series underlying this series of graphics is much larger than in figure C.5 and C.6. Consistent

with this, in the Integer Segmentation Plot the trend is only highly significant for the data set as

a whole. The Triangle plot shows that this degree of high significance is retained for all windows

with up to 22 points removed and the trend remains significant up to the removal of 37 points.

The Integer Segmentation Plot shows that once the data is halved high significance is only evident

in the second half of the data after which there is no discernible pattern in the colours.
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Figure C.8: Example C7.2.1: Perfect Gauss-Markov: σ = 0.01, slope = 0. The Integer Seg-

mentation plot shows that whilst the slope of the ordinary least squares line is negative it is not

significant. By construction the time series has no long term trend and any observed trend is an

artefact of the sampled Gaussian Noise. The Triangle plot and Stacked Square plots show that that

the sign of the slope (negative) is retained and even becomes significant for some smaller window

sizes in some locations. The Integer Segmentation Plot, however, shows no discernible pattern in

the colours.
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C.5 Cosine with Gaussian Noise

Example C7.3 Cosine with Gaussian Additive Observational Noise

Time series xi = cos(ti) + εi, εi ∼ N(0, σ) , ti = −π(1− i−1
N−1

)

Parameters σ = 0.2 and N = 27.

Figure C.9 (top plot) shows a sample with the cosine expectation shown in blue

and a least squares regression line shown in red. The text in the plot shows the

results of various standard statistical tests:

1. The Shapiro-Wilk tests for IID normality of the residuals and does not even

reject this at the 5% level; this is despite the fact that the residuals (from the

regression line) are not normal;

2. The Breusch-Godfrey test does reject the the independence of the residuals,

however. This is sufficient to invalidate the use of the t-test as a method to

determine the significance of any trend;

3. The Breush - Pagan test doesn’t reject homoscedisticity because there is no

linear relationship between the residuals and the time variables and that is

what this test looks for. The bottom plot of figure C.9 shows the least squares

regression line (red) for the residuals and this is clearly flat. The green line

in that plot is a kernel smoother through the data which clearly follows the

expected pattern in the residuals. The residuals clearly aren’t independent by

construction - hence the t-test hypotheses are not met.

Figure C.10 shows the results. The Integer Segmentation Plot shows that the

Implied Linear Trend is significant for all segments up to division of the data by 7

and highly significant up to division by 4. The stacked square plot is completely red

indicating high significance for all illustrated windows, as does the running window

triangle. This illustrates a key utility of the new plots - they do not rely on the

applicability of the t-test but can still clearly demonstrate that an Implied Linear

Trend is present.
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Figure C.9: Example C7.3, Cosine with Gaussian Additive Observational Noise : Sample from

times series whose mean values vary with the cosine of time. Top plot shows a sample from the

distribution, with the underlying mean values shown in blue and the fitted least-squares regression

line in red. Lower plot shows the residuals from the linear model with a kernel smoother (green)

through the data and also a linear trendline (red)

365



<

32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10

9
8
7
6
5
4
3
2
1

Integer Segmentation Plot

32

64

71

79

86

94

101

109

116

124

128

window 
 size

number of data in time series: 128

Running Window Stacked Square

50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

Running Window Triangle

Figure C.10: Example C7.3, Cosine with Gaussian Additive Observational Noise: By construc-

tion in this time series the Gauss-Markov assumptions do not apply and so the t-test may not be

used. The Integer Segmentation plot clearly shows a highly significant trend in the data down

to division of the data by 4 - and a significant trend to division by 7. The Stacked Square and

Triangle plots show highly significant trends for all window sizes considered.

366



C.6 t1.5 with Gaussian noise

The following gives another example where the mean values of the data generat-

ing process follows a time dependent function but not a linear one. Consider the

following time series:

Example C7.4.x t1.5 with Gaussian Additive Observational Noise

Time series xi = t1.5i + εi, εi ∼ N(0, σ) , ti = 1.3( i−1
N−1

), where i = 1, ...N

Parameters

• C7.4.1: σ = 0.1, N = 25

• C7.4.2: σ = 0.1, N = 26

• C7.4.3: σ = 0.1, N = 27

• C7.4.4: σ = 0.1, N = 28

• C7.4.5: σ = 0.3, N = 28

• C7.4.6: σ = 0.6, N = 28

• C7.4.7: σ = 0.9, N = 28

As with the cosine example above the residuals (not shown) show a clear func-

tional relationship with time and so the conditions of the t-test are not met.

Experiment A, cases C7.4.1, C7.4.2, C7.4.3, C7.4.4 Figure C.11 shows that

the Breusch-Godfrey test does not reject independence of residuals when there are

only 25 data points (C7.4.1), nor does it for 26 (C7.4.2). When N = 27 (C7.4.3)

independence is rejected at the 5% level but not at the 1% level and when N = 28

(C7.4.4) independence is also rejected at the 1% level. Normality of residuals is not

rejected by the Shapiro-Wilk test despite the fact that by construction they are not

Gaussian. The Running Window plots (not shown) show significant trends for all

data size. Figure C.12 shows the Integer Segmentation Plots for each case. Each plot

shows that the Implied Linear Trend is significant for the whole data set. For case

C7.4.1 the significance survives until the data is quartered; with case C7.4.2 until it
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is divided into 5. With case C7.4.3 the significance survives for even more divisions

which illustrates that there is sampling error. It seems reasonable to conclude,

however, that the data show what would be expected: the more data points in the

series the more significant the trend can be shown to be (if it is there). The true

slope in the data increases with time so that the significance should be higher for

later windows than earlier ones, this is evident in all the plots but particularly in

case C7.4.4 where the bright red cells go deeper on the right than on the left. This

is referred to as a ‘wedge’.

Experiment B: cases C7.4.4, C7.4.5, C7.4.6 and C7.4.7 Figure C.13 il-

lustrates the four time series as the Additive Observational Noise increases. It is

notable that the Breusch-Godfrey test only finds serial correlation when the stan-

dard deviation is 0.1 (C7.4.4) but this is hidden as the noise level increases (C7.4.5,

C7.4.6 and C7.4.7), as such the use of the t-test may not be rejected in the noisier

plots which might lead to erroneous conclusions. Figure C.14 shows that the slope is

shown by the Integer Segmentation Plot to be highly significant for the full data set

in all cases. When the data is divided into 2,3+ segments, however, the prevalence

of highly significant (bright red) segments reduces in the noisier plots. Arguably

the wedge shape described above is retained in the plots apart from high Additive

Observational Noise case C7.4.7.

Likelihood of observing a wedge shape Figures C.15 and C.16 illustrate that

a right handed wedge shape is likely to arise for a time series of type C7.4.5. In these

figures 210 time series are created from the same data generation process C7.4.5. For

each time series the 4th and 8th rows of the Integer Segmentation Plots are created.

Figure C.15 shows the log(density) of observing different slope probabilities in each

segment. The colour equivalent of these values is shown in the bar at the top of the

plot for easy reference. The figures are cropped at y = −1. Looking at the highly

significant (bright red) end of the plot it is clear that it is more likely that the

4th quarter (and 8th eighths) will be more highly significant than the first. Figure

C.16 tests the strength of this finding by bootstrap resampling the 1024 time series

into 1024 groups of 512 (with replacement). The boxplots illustrate the variation

of probability of observing high signficance in each segment. It is clear that the
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probability does rise as the segment number increases from 1 to 8. Therefore it is

concluded that a wedge shape is highly likely to arise for a time series of form C7.4.5.

Such a wedge may arise in other convex situations though whether this is detectable

is likely to depend on the degree of curvature and level of Additive Observational

Noise.
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Figure C.11: Examples C7.4.1-4 Time Series plots: x = t1.5 example, cases C7.4.1 (top left),

C7.4.2 (top right), C7.4.3 (bottom left) and C7.4.4(bottom right). By construction the Gauss-

Markov assumptions do not apply, it is therefore notable that the Shapiro-Wilk, Breusch-Godfrey

and Breusch-Pagan tests do not reject Guassian, independent or homoskedastic residuals respec-

tively in the top left and top right time series. In the bottom left and right plots the length of the

time series is greater and the Breusch-Godfrey test rejects independence.
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Figure C.12: Examples C7.4.1-4: Integer Segmentation Plots: x = t1.5 example, cases C7.4.1

(top left), C7.4.2 (top right), C7.4.3 (bottom left) and C7.4.4(bottom right) Each of the Integer

Segmentation plots shows that the trend is significant at least up to where the data is split into

thirds. The bottom right plot shows a ‘wedge’ shape in the bright red coloured segments; consistent

with the accelerating slope of a t1.5 line.
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Figure C.13: Examples C7.4.4-7 Time Series plots: x = t1.5 example, cases C7.4.4 (top left),

C7.4.5 (top right), C7.4.6 (bottom left) and C7.4.7 (bottom right) In this series of plots the length

of the time series is 128 but the variance of the Gaussian Noise term increases. It is notable that

apart from the lowest variance plot (top left) the Breush-Godfrey test does not reject independence

of residuals, as with figure C.11 it would appear that the t-test can be used despite this not being

the case by construction.
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Figure C.14: Examples C7.4.4-7: Integer Segmentation Plots: x = t1.5 example, cases C7.4.4

(top left), C7.4.5 (top right), C7.4.6 (bottom left) and C7.4.7 (bottom right). The row numbers

are difficult to read at this scale but run form 1 to 64. Each plot shows a highly significant trend

in the full data set and a significant trend when the data is halved. The wedge shape described in

figure C.12 is arguably retained in the top right and bottom left figures here.
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Figure C.15: Figure to illustrate that a time series of type C7.4.5 (t1.5) is likely to lead to a right

handed wedge in the Integer Segmentation Plot. Figure shows (y-axis) Log(Density) of simulations

that have a given slope probability (x-axis), based on 1024 simulations. The colour key is shown

as a strip at the top of the graphic for easy comparison. The top figure shows the results when the

data set is quartered, the bottom figure shows the results when it is divided into 8.
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Figure C.16: These Box plots reflect the frequency with which high slope probability is detected

in a sub segment, as a function of where that sub segment lies in the time series. The clear

increase in frequency reflects the fact that detection in later segments is much more likely than

in earlier segments; the trend supports the expectation that a right-handed wedge is very likely.

The boxplots show results of bootstrap resampling of slope probabilities; 1024 resamples of 512

subsamples from 1024 time series. The frequency of occurrence of a slope probability that exceeds

0.99 is shown (the probability of observing a bright red segment). Conclusion: the 8th segment

is more likely to be bright red than the 1st: a right handed wedge is very likely for time series of

type Examples C7.4.5.
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C.7 Atmospheric extreme events

The examples shown in the following three subsections use data taken from Neu-

mayer and Barthel [186]. Using data from Munich Re, they explore the normalised

(equation C.15) insurance losses (damages) arising from various atmospheric ex-

treme events using the t-test, without discussion of its appropriateness. All finan-

cial values are in billions of US Dollars (USD bn). The purpose of this section is

to compare conclusions from the slope probability method with those of the t-test,

not to criticise the normalisation methods discussed in their paper. In the context

of insurance, trends in atmospheric extreme events might indicate the pricing based

on past claims is in danger of understating premiums.

Losses are normalised because reported losses at different times in the past may

not be comparable. Past storms may have hit when population density was low so

the damage caused is less than it would be today. Wealth levels were different in the

past and so the likelihood of high value contents being damaged was lower. Also,

general monetary values (proxied by the Gross Domestic Product5, GDP) were lower

- so a dollar 50 years ago was worth more than it is today (inflation). Neumeyer

and Barthel [186] note there are a number of normalisation methods6 used in the

literature, the following being introduced by Pielke and Landsea in 1998 [200] for

events that occur at time t, as follows:

NDs
t = Dt

Gs

Gt

Ps
Pt

Ws

Wt

(C.15)

where, NDs
t is the Normalised damage (insurance losses) to time s from time t; Dt

is the reported damages at time t; Gt is the GDP (inflation) deflator at time t; Pt

represents population density at time t; Wt is the wealth per capita at time t.

5GDP - a measure of the value of total goods and services produced by a country in a given

yaer
6Neumeyer and Barthel argue that if frequency of events (alone) increases or severity of the

events (alone) increases then the loss levels in recent times would be certain to increase, but, they

state, this is not the case with equation C.15. Part of their work is to propose an alternative

approach which aims to improve the normalisation method. Their new method is not presented

here since the purpose of this section is mostly to establish that the t-test is misused and then

consider the Slope Probability approach.
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The following three examples are considered:

Example C7.5.x Atmospheric extreme events

C7.5.1 Convective events USA

C7.5.2 Convective events Western EU

C7.5.3 Normalised hurricanes losses in USA

Table C.1 compares the slope significance results from Neumayer and Barthel

with the new Slope Probability method. The table shows that the traditional and

slope probability methods do not always agree. For example, the slope probability

method finds a significant trend in US hurricanes where Neumayer and Barthel do

not. The table also shows that the conditions required for the use of the t-test are

not met in any of the data sets.

Table C.1: Comparison of slope significance results between Neumayer and Barthel and Slope

Probability

Time series t-test appli-

cable?

Neumayer and

Barthel

Slope Probability

Convective events USA No Significant Highly significant

Convective events W.EU No Not significant Not significant

US Hurricanes No Not significant Significant

C.7.1 Example C7.5.1: Convective events USA

This subsection considers convective events in the USA. Data is that underlying

Figure 7a of Neumayer and Barthel which is titled ‘Disaster losses from convective

events in the United States normalized with conventional approach’. The Normalised

losses are based on 1,771 disasters including damages from flash floods, hail storms,

tempest storms, tornados, and lightning. To determine whether the time series has

a trend they use a t-test with a 10% significance level but they do not state whether

the necessary conditions to use the t-test are met.
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Whilst the residuals appear normally distributed according to the Shapiro-Wilk

test they do not pass the Breusch-Pagan test for homoscedasticity - nor do they

pass the Breusch-Godfrey test for serial correlation -therefore the conditions of the

t-test do not apply.

The Integer Segmentation Plot in figure C.17 shows the slope is highly significant.

When the data is halved only the first half of the data retains a highly significant

slope. This agrees with intuition by looking at the time series graphic which contains

material low values in the second half of the time series. When broken into thirds

the strongest (and highly significant) slope is in the middle third; again with the

weakest slope to the right of this.

The Running Window Triangle shows a similar result within figure C.17. The

slope remains highly significant when up to 7 data points are removed. The slope is

also significant when more points are removed for the left hand portions of the data

- but less so for the right. This might call into question continuation of the trend in

the future.

377



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1970 1980 1990 2000 2010

2
4

6
8

10
12

14
16

time series and t−test results

time

pi
el

ke
_n

or
m

_l
os

s_
20

09
_b

n

Shapiro−Wilk test does NOT reject normality of residuals (5%)
Shapiro−Wilk test does NOT reject normality of residuals (1%)
Breusch−Godfrey test does NOT reject independence of residuals (5%)
Breusch−Godfrey test does NOT reject independence of residuals (1%)
Breusch−Pagan test rejects homoscedasticity of residuals (5%)
Breusch−Pagan test rejects homoscedasticity of residuals (1%)
p value =  0.00004
t−test rejects zero slope (5%)
t−test rejects zero slope (1%)

10

9

8

7

6

5

4

3

2

1

Integer Segmentation Plot

10

24

25

27

28

30

31

33

34

36

40

window 
 size

number of data in time series: 40

Running Window Stacked Square

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

Running Window Triangle

Figure C.17: Example C7.5.1: Convective events in the USA. The Integer Segmentation Plot and

the Running Window Triangle plots clearly show that, whilst the full time series shows a highly

significant trend, this level of significance is only retained in the first half of the data set when the

data is subdivided. The Stacked Square plot, however, shows that the positive trend is significant

for windows to size 30 and is retained in many windows to size 24.

C.7.2 Example C7.5.2: Convective events Western EU

This subsection considers convective events in Western Europe and uses the data

underlying Neumayer and Barthel’s Figure 7b which is described as ‘Disaster losses

from convective events in Western Europe normalized with conventional approach’.

The losses are based on 1,296 disasters including damages from flash floods, hail

storms, tempest storms, tornados, and lightning.

The Breusch-Godfrey test does not reject independence of residuals and the

Breusch-Pagan tests do not reject homoscedasticity. The Shapiro-Wilk test, how-

ever, does reject normality of the residuals and so the conditions for use of the t-test
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are not met.

The Integer Segmentation Plot shown in figure C.18 shows that random resam-

ples of the data produce slopes that are more steep over 10% of the time. Hence

this trend is not significant. It is significant in the second half of the data set since

this is not affected by the large events in the first half of the data.
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Figure C.18: Example C7.5.2: Convective events in the EU. The trend line in the top left plot is

shown not to be significant in the Integer Segmentation Plot although there is a highly significant

trend in the second half of the data set.

C.7.3 Example C7.5.3: Hurricane losses in USA

This subsection considers losses from hurricane events in the United States. Data

is that underlying figure 7c of Neumayer and Barthel. Their plot is titled ‘Disaster

losses from hurricanes in the United States normalized with conventional approach’.

The data is based on based on 118 disasters.

The Breusch-Godfrey test does not reject independence of residuals and the

Breusch-Pagan test does not reject homoscedasticity of residuals. The Shapiro-wilk
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test, however, does reject normality of the residuals and so the t-test should not

be used. The Integer Segmentation plot in figure C.19 suggests a significant trend

(1-10%) for the full data set, but this not significant for any other data subdivision.

It appears that the large events in the second half of the time series are the main

cause of the trend.
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Figure C.19: Example C7.5.3: Normalised hurricane losses - USA. The Integer Segmentation

plot shows a significant trend in normalised hurricane losses over the period. The Stacked Square

and Triangle plots show that some windows of size 31-36 are highly significant.

C.8 Lorenz 63

The Lorenz 63 system was introduced in 1963 [152] to examine the feasibility of long

range weather prediction. The equations are as follows:
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dx

dt
= σ(y − x)

dy

dt
= x(ρ− z)− y (C.16)

dz

dt
= xy − βz

Example C7.6 Lorenz 63

Lorenz originally illustrated the case when σ = 10, ρ = 28 and β = 8
3

- those values

are also used here. A sample of Nobs = 626 values for the x variable are taken from

the system - observations are made every at time values in steps of 0.04.

The data is suggestive of a two level process consistent with trajectories that

alternate between the two ‘lobes’ of the attractor figure C.20(top) . This system

exhibits deterministic chaos for some values of the parameters [59]. The Shapiro-

Wilk test rejects normality and the Breusch-Pagan test rejects independence so the

t-test does not apply. The Integer Segmentation Plot within figure C.21 shows

that the slope of the regression line through the full data, whilst positive, does

not have a significant Slope Probability. Despite this there are many sub-segments

which are significant (and indeed highly so). This first appears when the data is

quartered. When the data is divided into six segments there are three (second,

third and fourth) which have highly significant alternating negative and positive

trends. These coincide with trajectories that are in one lobe for half the segment

and then jump to the other lobe for the other half. The last third of the data shows

more frequent transitions between lobes and so no trends show up when the data is

segmented into sixths in this region. When the data is divided into 125 segments

alternating bands significant blue and red arise, these identify the trajectories around

the approximately circular regions within a given lobe which appear as cycles when

projected onto the x dimension.
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Figure C.20: Sample of values from Lorenz 63 system. The right hand plot shows the trajectory

of x against time with the sampled values shown in red; the left hand plot shows the trajectory in

xyz phase space - again with the sampled values highlighted in red.
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Figure C.21: Example C7.6: Lorenz 63 sample of x values. The Integer Segmentation, Triangle

and Stacked Square plots all show that whilst there is a positive slope in the data this is not

significant. The Integer Segmentation Plot has considerable structure, consistent with trajectories

which alternate between the lobes of the Lorenz 63 attractor and also higher frequency cycles

evident when the colours alternate between red and blue when the data is divided into more than

125 segments.
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C.9 Tide Gauge Data - New York Battery

The Permanent Service for Mean Sea Level (PSMSL), based in Liverpool UK, was

established in 1933 [197]. It collects sea level data from tide gauges around the

world. Each gauge is given a unique GLOSS number (Global Sea Level Observing

System). This section illustrates the sea level rise observed at the New York Battery.

Example C7.7 Tide Gauge Data - New York Battery

Data from Holgate et al., 2013 [197] extracted on 19 May 2015 from PSMSL website

http://www.psmsl.org/data/obtaining/.

Figure C.22 shows the location of the tide gauge. Figure C.23 shows the time se-

ries itself, the Integer Segmentation Plot and the Running Window graphics. There

is a gap in the data set just prior to 1900; this is not a problem since the set of

time points as the original data is always held fixed, with the observations randomly

allocated to those times. The Running Window Plots find a significant slope at all

observed windows.

There is a suggestion of a right handed wedge (the concept described in section

C.6) in the Integer Segmentation Plot of figure C.23. The slope is significant on the

far right of the plot for all segments down to division of the data by 12, whereas

on the left the significance on survives to subdivision into sixths. As suggested in

section C.6 such wedges may arise in a convex (accelerating) situation though this

is not proven in general. If sea level rise is accelerating this may explain the wedge

shape in the Integer Segmentation Plot.

Testing whether there is a wedge in other gauge data There are 1414 gauges

as at May 2015 in the PSMSL data set, these are illustrated in figure C.24. The slope

probability is calculated for each of these data sets (full data) and a dot is plotted

on the map at the location of the gauge; the colour of the dot is the corresponding

slope probability on the usual scale. 1042 tide gauges show an increasing trend.

When testing for a wedge in the data it will be necessary to subdivide the
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Figure C.22: Example C7.7: Tide Gauge Data: Location of NewYork gauge - number 12, denoted

by green arrow.

data into equal sized segments. Of the 1414 gauges, 705 have less than 25 data

points which is arguably not long enough to subdivide7, these are removed from the

analysis below and are highlighted with a black dot at the centre of the coloured

plot character. This leaves 709 gauges with more than 25 data points. Some of

the remaining gauges (165 of them) have negative slope; these are removed from

analysis because the analysis below is conditional on the slope being positive. The

negative slope cases are discussed further below. The remaining 544 gauges have

more than 25 data points and a positive Implied Linear Trend and are referred to

as the ‘restricted set’ below.

The following analysis is carried out to asses whether the wedge shape suggested

in the New York gauge data can be detected in the restricted set. Given time

constraints (but also data length constraints) this was only assessed for row 4 of the

Integer Segmentation Plot. The data was quartered for each of the gauges and the

implied linear trend calculated for each (if the data series does not divide perfectly

into 4 the residual data is discarded). The slope probability is also calculated in each

case. Therefore, for each gauge (i), there are two derived series: (1) The slopes of the

data quarters si,1, ...si,4 and (2) The slope probabilities for each quarter pi,1, ...pi,4.

The implied linear trend is calculated for each of the derived series (i.e. calculate

7Houston and Dean [109] suggest that any tide gauge less data set than 75 years should not be

analysed due to natural cycles and other exogenous factors, I have chosen to retain shorter time

series in this analysis.
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the trend for the four data points si,1, ..si,4 and again for probabilities p), call this

the ‘4-block trend’ below. For the slopes s a positive trend is indicative of

accelerating sea level rise (or at least relative rise) and for the probabilities p a

positive trend is indicative of either (1) an accelerating rise, as with the t1.5 example,

or (2) decreasing size of error terms. If the 4-block trend is positive for both the

slopes and slope probabilities it is arguable that acceleration is the most likely cause.

Of the 544 gauges in the restricted set some 67% have a positive trend in their

sub-slopes s.,j and 62% have a positive trend in their slope probabilities p.,j. The

correlation between s and p is 67%. This is depressed due to several outliers amongst

the slopes. If these are removed the correlation increases to 78%. The outliers are

plotted red in figure C.25.

It is not immediately obvious whether the proportion of gauges with positive

trends in their sub-slopes (or slope probabilities) is significant. It is possible that

such proportions could occur randomly with high likelihood. To assess the signifi-

cance of these proportions the following approach is taken:

• For each gauge (yi) in the restricted set of gauges (y1, ...y544); determine a

linear model through the data using least squares ŷi(t) = ai + bit

• For gauge (yi) create j = 1, ...G pseudo gauge data sets (ỹj,i) by adding random

errors to the fitted values, i.e. ỹj,i(t) = ŷi(t) + εi(t) , where εi(t) ∼ N(0, σi)

and σi is the standard deviation of the residuals (yi − ŷi). If the linear model

above describes the process underlying the generation of the gauge data then

each of these pseudo data sets could have arisen in theory.

• For each pseudo gauge ỹj,i subdivide the data into four blocks (discarding

remaining data as above) and calculate the implied linear trend for each block

sj,i,1, ...sj,i,4 and also the slope probability pj,i,1, ...pj,i,4. As for the true gauge

data calculate the 4-block trend for the sj,i and pj,i. Determine whether these

are positive, creating indicator variables ŝj,i and p̂j,i which is 1 if the 4-block

trend is positive and 0 if not.

• For each gauge in the restricted set, randomly choose a number (j(i)) between

1 and G such that each choice is equally likely. Let fp =
∑544
i=1 p̂j(i),i

544
, the fraction

of gauges that have a positive trend in their slope probability and define fs

similarly for positive trends in the slopes themselves.
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• Repeat the above step M times with different random selections j(i).

• In this analysis G = 27 and M = 215.

Based on the above method, confidence intervals for the proportion of gauges

with a positive 4-block trend in slopes and slope probabilities can be estimated by

taking quantiles of the above results. These suggest that if a linear trend with

(gauge dependent) Gaussian noise is an appropriate model for the gauge data then

the proportion of 4-block trends for the slopes that are positive has a symmetric

99.9% confidence interval of (43.0% 56.8%) with a median of 50.0%; and for the

slope probability a 99.9% symmetric confidence interval of (42.3% 55.9%) with a

median of 49.1%. As such, the calculated values of 62% and 67% are materially

outside the confidence intervals and suggest that the hypothesis of a linear model

with Gaussian noise should be rejected. The IPCC fifth assessment report series

argues that sea level rise is faster in the 20th century than the 19th [114] and also

that the rate is likely to increase further this century [115]. There is, however, an

active debate on whether acceleration has been detected [263]: some authors find

evidence for acceleration(for example [25, 206, 275]), whilst others find evidence for

none or even deceleration (for example [108, 265]). The analysis in this appendix

supports the evidence for accelerating sea level rise but does not claim to be definitive

and uses only one technique which the results are dependent on.

The gauges with negative slope have also been analysed. In their case the ques-

tion is whether a decelerating negative slope can be detected. This would be consis-

tent with two opposing forces (1) the force causing the observed sea level to decrease

(such as glacial rebound) and (2) Sea level rise due to warming water. This anal-

ysis has been carried out using the same method as above to estimate confidence

intervals of the observed 4-block trends in slope and slope probabilities. In this case

the proportion of 4-block trends for the slopes that are positive has a symmetric

99.9% confidence interval of (38.1% 63.6%) with a median of 50.1%; and for the

slope probability a 99.9% symmetric confidence interval of (38.8% 63.6%) with a

median of 50.1%. As such, the observed values of 46.1% and 48.5%, respectively are

not significant and a there is no evidence for a decelerating negative slope.
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Figure C.23: Example C7.7: Tide Gauge Data: NewYork - number 12. The Triangle and

Stacked Square plots show a highly significant trend for all window sizes considered. The Integer

Segmentation plot shows that the trend remains significant up to when the data is divided into

5. There is some evidence of a ‘wedge’ shape (similar to that of figure C.12) where the significant

segments appear more on the right of the plot than the left down to where the data is divided

by 12.
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Figure C.24: All tide gauges plotted at their geographical location. Colour indicates slope

probability as per colour key. Red shades arise when sea level is rising at the given location and

blue for falling levels. A black dot within the plot character indicates a gauge with a short time

series (less than 25 data points).
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Figure C.25: Tide gauge data, restricted set. 4-block slopes versus, 4-block slope probabilities.

Outliers highlighted with a red cross. Data indicates 67% correlation between the slopes and slope

probabilities which rises to 78% with the outliers removed.
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C.10 Sunspots (ISSN)

The data is described by SILSO Royal Observatory of Belgium, Brussels as ‘Yearly

mean total sunspot number obtained by taking a simple arithmetic mean of the

daily total sunspot number over all days of each year.’ [228] . They note that the

yearly data is produced by averaging daily data which will give a different figure

to averaging the monthly data that is also supplied. Furthermore they note that

there are some differences in observation methods over the time range and some

interpolation was used prior to 1849 when the counts were not available every day.

Originally, the observations were collected by Rudolph Wolf and so the data is

sometimes referred to as ‘Wolf Sunspot Numbers’.

Example C7.8 Sunspot data

Data extracted on 19 May 2015 from SILSO website

http://www.sidc.be/silso/datafiles. Data includes annual sunspot numbers

from 1700 to 2014.

The Shapiro-Wilk test rejects normality of residuals, Breusch-Godfrey rejects

independence of residuals and the Breusch-Pagan test rejects their homoscedasticity

hence the t-test is not meaningful. The Running Window Triangle within figure

C.26 shows a significant upward trend in the whole data set which is retained in

the majority of windows with up to 50 points removed. The trend is not significant

in the first half of the data but retained in the second half. When the data is

subdivided into four or more groups the start to be significant and even highly

significant negative trends. The Integer Segmentation Plot’s bands of alternating

bright red/cyan (or sometimes dark red/ dark blue) become evident when the data

is divided into ∼40 segments and pronounced when the data is divided into 50+

groups. Similar to the Lorenz 63 example before this is suggestive of cycles in the

data. Given there are around 300 data points this would lead to 6 observations per

segment. Hence each red/blue couple spans around 11-12 years which ties in with

the approximately 11 year solar cycle [95].
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Figure C.26: Example C7.8: Sunspot numbers: SIDC. Annual mean. All plots show a highly

significant trend in the full data set. The Integer Segmentation Plot has considerable structure

and alternating bands of red and blue are consistent with the 11 year solar cycle when the data is

subdivided into 50+ groups.
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C.11 Conclusions

This appendix has discussed trend detection and proposes a permutation method to

define the significance of calculated slope parameters. There are multiple definitions

for trends [98,217,225,256,263] and trend detection [98,207], many requiring strong

assumptions on the behaviour and distribution of the residual8 terms. Similar to

other non-parametric approaches [225, 256] the Slope Probability method proposed

here does not require these assumptions. As such, the Slope Probability method can

be used in many situations where parametric methods are invalid. This appendix

explores multiple synthetic and real data sets through the use of three novel graphical

methods (Integer Segmentation, Running Window Stacked Square and Running

Window Triangle) each using the Slope Probability to test significance of trends

for different subdivisions of the data. These graphical methods are complementary

illustrating different features of the time series analysed. For example the Integer

Segmentation plot suggested a new way to characterise accelerating sea level rise;

this was explored and the results support evidence that sea level rise is positive and

accelerating at multiple locations around the world. The use of modern computing

power here enables a return to the basic concept of a trend as a series of observations,

with increasing or decreasing tendency, whose ordering would be rare based on a

prior assumption of independence. The methods are therefore in line with Hendry’s

comments [102] made over three decades ago.

8i.e. the difference between the observed values and the fitted trend
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