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Abstract

This thesis studies hierarchical models for the joint density fX of a random vector

X = (X1, ..., Xd), i.e. models characterised by the fact that interaction within a

set of variables implies interaction within any of its subsets. A hierarchical model

on a simplicial complex S can be written in exponential form as

fX(x) = exp

{∑
J∈S

hJ(xJ)

}
.

The statistical implications of the choice of S are studied. Associated to a sim-

plicial complex S is its Stanley-Reisner ideal IS . Hence, hierarchical models can

be identi�ed uniquely with monomial ideals. This isomorphism bridges the �elds

of statistics and commutative algebra. Simplicial complexes holding sets with at

most two elements can be illustrated with graphs, thus leading to graphical mod-

els. The missing edges of a graph represent two-element sets excluded from S

implying conditional independence. It is shown that sets excluded from S imply

di�erential conditions on the log-density and that these di�erentials arise naturally

as cumulants in an in�nitesimally small neighbourhood around a given x0 ∈ Rd.

A new bootstrap test for conditional independence is constructed based on the

notion that certain di�erential cumulants are zero everywhere under conditional

independence.
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Chapter 1

Introduction

The primary object studied in this thesis is the class of hierarchical models for

the joint density fX of a random vector X = (X1, ..., Xd). Hierarchical models

are characterised by the fact that interaction within a set of variables implies

interaction within any of its subsets. By contraposition, a lack of interaction in a

set implies the lack of interactions in all sets it is contained in.

Let S be a simplicial complex on [d] = {1, ..., d}, i.e. a collection of subsets of [d]

closed under taking subsets. Assuming, as we do throughout, that fX is strictly

positive everywhere, we may model fX in exponential form as

fX(x) = exp

{∑
J∈S

hJ(xJ)

}
,

where each function hJ is operating on xJ , the subset of indeterminates indexed

by J .

Much of this thesis is about the choice of S and its statistical implications.

Typically, the sets excluded from S induce interesting statistical structures. For

instance, the exclusion of a two-element subset {i, j} from S implies that no

function hJ must be a function of both xi and xj. Consequently, fX factorises and

we obtain conditional independence of Xi and Xj given the remaining variables.

A natural place to start with is a simplicial complex which holds only sets with

one or two elements or sets which are entirely determined by the two-element sets

via additional restrictions. Such a complex can be associated to a graph, whose

vertices represent the random variables X1, ..., Xd and whose edges represent pair-

wise interactions. This makes the statistical problem accessible to graph-theoretic
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considerations. For instance, it is well known that the graph-theoretic concept of

decomposability leads to models with closed form maximum likelihood estimators

(Lauritzen, 1996). The corresponding subclass of models is referred to as graphical

models.

As sets with more than two elements are allowed into S an algebraic treatment

becomes essential. The link between statistics and commutative algebra has been

investigated primarily for discrete probability models (Pistone et al., 2001; Geiger

et al., 2006). One of the key contributions of this thesis is to bridge the two �elds

in the continuous case. Associated to a simplicial complex S is its Stanley-Reisner

ideal in the polynomial ring k[x1, ..., xd]. This is the ideal generated by the minimal

sets which are excluded from S allowing us to uniquely identify hierarchical models

with monomial ideals.

Another key observation is that a function hJ is excluded from the model as the

derivative of the log-density with respect to the indeterminates xJ is set to zero

everywhere. For this reason the di�erentials of the log-density have been called

mixed interaction terms (Whittaker, 1990). By showing that these di�erentials

arise naturally as cumulants in an in�nitesimally small neighbourhood around

a given x ∈ Rd, we o�er a new interpretation of mixed interaction terms as

di�erential cumulants.

Di�erential cumulants with respect to two variables Xi and Xj take the form

∂2 log fX(x)

∂xi∂xj
. (1.1)

As mentioned, setting these to zero everywhere annihilates associated hJ functions

and expresses conditional independence of Xi and Xj given the remaining d − 2

variables. Di�erential cumulants are estimable using kernel estimators for fX and

its �rst two derivatives. Thus, we can construct a bootstrap hypotheses test for

conditional independence.

Summarising, this thesis deals with hierarchical models which are, to a large
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extent, identi�ed through what they do not have: interaction between subsets of

variables and, equivalently, edges or faces in the associated graphs or simplicial

complexes. Phrased positively, they do have di�erential cumulants which vanish

everywhere and they do have generators in their Stanley-Reisner ideals. In the

case that they do not have interaction between just a pair of variables they also

have conditional independence structures attached to them. Explaining all these

links carefully is the challenge that lies ahead.

Chapter 2 starts with the problem of expressing moments in terms of cumu-

lants and vice versa. Based on a multivariate chain rule, a formula is provided

which makes the combinatorial aspects explicit. The second part of the chap-

ter introduces local analogues to moments and cumulants. Local moments will

be de�ned as the conditional moment in a su�ciently small neighbourhood of a

point x ∈ Rd. Local cumulants are de�ned in terms of local moments through

the ex-log-relationship induced by their generating functions. The limiting pro-

cess is considered and the remarkably simple forms of di�erential moments and

cumulants are derived.

Chapter 3 explains the relations between sets of zero-cumulants, conditional in-

dependence statements and hierarchical models. Naturally, many of the results

linking graphical models to conditional independence associations are well estab-

lished. The novelty of this chapter is to demonstrate how particular model classes

can be obtained through imposing restrictions on di�erential cumulants.

Chapter 4 investigates the link between hierarchical models based on a simplicial

complex S and the algebra via monomial ideals. The subclass of decomposable

models is characterised through algebraic properties of the Stanley-Reisner ideal

of S. Furthermore, models derived from the so called Ferrer ideals are presented

as an example of how the algebra can lead us to interesting classes of statistical

models. Finally, the algebraic concept of shellability is introduced, which is closely

related to decomposability.
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Chapter 5 develops a nonparametric hypothesis test for conditional indepen-

dence. As this is equivalent to certain di�erential cumulants vanishing everywhere,

a squared version of them, integrated over Rd, should be close to zero under con-

ditional independence. The density fX and its derivatives are estimated through

kernel estimators. The test statistic is based on an expansion of (1.1). It takes

the form ∫
Rd

(
1

f̂(x)

∂2f̂(x)

∂xi∂xj
− 1

f̂ 2(x)

∂f̂(x)

∂xi

∂f̂(x)

∂xj

)2

dx.

We suggest a bootstrap hypotheses test and demonstrate its validity through

simulations.

Chapter 6 describes the estimation of a functional of local moments. It is based

on Chapter 2 and is not related to intermediate chapters. Local moments are

functions of the density fX and its derivative. The key idea of this chapter is to

demonstrate two alternative views on how to exploit this relation for estimation.

The �rst view takes sample analogues to local moments and uses them to estimate

densities. The second view takes density estimators and uses them to estimate

local moments.

Finally, we give conclusions and list some topics which might naturally have

been included or which are thought to be promising future research topics.



Chapter 2

Di�erential moments and cumulants

2.1 Introduction

This chapter investigates the relationship between multivariate moments and cu-

mulants and their localised counterparts. The �rst part is devoted to the ex-log

relationship through which moments can be expressed as functions of cumulants

and vice versa.

A well established approach to computing cumulants from moments is to com-

pare the coe�cients in the formal power series expansions of the moment and

cumulant generating functions. This leads to a formula for moments in terms of

cumulants. A subsequent application of a Möbius inversion yields an expression

for cumulants in terms of moments (Barndor�-Nielsen and Cox, 1989).

Higher order cumulants can be calculated as we identify formerly distinct ran-

dom variables. An example: In fairly standard notation, which is also explained

below, the cumulant κ120 can be treated similarly to the cumulant κ111 as we

identify X2 with X3. This identi�cation introduces extra factors, which are not

always particularly easy to calculate (Speed, 1983). Other contributions come

from McCullagh (1984) and Stuart and Ord (1994).

An alternative to coe�cient comparison is to compute cumulants directly as

derivatives of the logarithm of the moment generating function evaluated at the

origin. This approach requires us to consider higher order derivatives of com-

posite functions, where the inner function is multivariate. Once such a formula
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is established, multivariate cumulants of arbitrary order can be computed read-

ily. We refer to the combinatorial quantity which explicitly accounts for multiple

identi�cations as the collapse number of a partition.

Whilst this particular multivariate extension of the chain rule has been provided

by Hardy (2006), it has, to the best of our knowledge, not been applied to the

statistical problem of expressing cumulants through moments. The �rst part

of this chapter thus explains the combinatorics of this identi�cation carefully.

Numerous examples are provided.

The second part of the chapter introduces local analogues of moments and cu-

mulants. A local moment will be de�ned as a conditional moment in a su�ciently

small neighbourhood of a point ξ ∈ Rd. Local cumulants are de�ned in terms of

local moments through the ex-log-relationship discussed in the �rst part of the

chapter. The limiting process is considered and the remarkably simple forms of

di�erential moments and cumulants are derived.

Of particular interest throughout the thesis are square-free cumulants, i.e. cu-

mulants of binary order. A uniquely characterising property of square-free cumu-

lants is proved before the chapter is concluded.

2.2 Moments and cumulants

Let X = (Xi)1≤i≤d be a random vector whose components are de�ned on some

probability space (Ω,A,P). For the most part, we consider the cases d = 2 or

d = 3, which make the exposition and notation tractable whilst allowing us to

illustrate multivariate phenomena. We assume that X is real-valued and its distri-

bution function FX is absolutely continuous and allows a d+1 times continuously

di�erentiable density fX which is strictly positive everywhere. We further require

X to have at least the �rst two moments.

De�nition 1 (Monomial). Let x ∈ Rd. A monomial in x1, ..., xd is a product
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∏d
i=1 x

ki
i for some k ∈ Nd

0. We set xk :=
∏d

i=1 x
ki
i .

Monomials naturally occur in de�ning moments of X. Since we deal with non-

central moments, moments will be denoted by m. Let E denote the expectation

operator. We use the following indexing convention:

mk1...kd = E(Xk) = E
( d∏

i=1

Xki
i

)
.

Example 1. For X ∈ R3 the non-centralised moment of order (0, 2, 1) is given

by E
(
X2

2X3

)
. It is denoted by m021.

Let ei denote the i-th unit vector. The �rst moment of Xi is thus represented

by mei and the covariance matrix of X can be expressed as

cov (X) = (mei+ej)1≤i,j≤d −meim
′
ej
,

where we use the notation (aij)1≤i≤m
1≤j≤n

to denote an m by n matrix with (i, j)-th

entry aij.

Example 2. The covariance between two random variables is given by m11 −

m10m01.

An alternative tensor representation is suggested by McCullagh (1984), which

may generalise better in higher dimensions.

Let MX : Rd −→ R denote the moment generating function of X:

MX(t) := E(et
′X) =

∫
Rd
e
∑d
i=1 tixidFX(x).

The moment generating function exists, whenever the integral on the right hand

side is absolutely convergent. The existence of moments of all orders is not a

su�cient condition for this to be the case, as can be demonstrated through the

lognormal distribution. The moment generating function derives its name from

the fact that its derivatives evaluated at the origin correspond to the moments of

X.
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Let the cumulant generating function KX(t) : Rd −→ R be de�ned as the

natural logarithm of the moment generating function KX(t) := log(MX(t)). We

may surpress the subscript X where no ambiguity is expected. Provided that

KX(t) has a Taylor representation about the origin, we can write

KX(t) := 1 + κ′1t+
1

2!
t′κ2t+ ...,

where

κ1 := (κei)1≤i≤d, κ2 := (κei+ej)1≤i,j≤d etc.

The coe�cients of this representation de�ne the cumulants. Note that κk ∈

Rdk . Cumulants are of considerable theoretical interest for, in the words of Speed

(1983),

`In a sense which is hard to make precise, all of the important aspects

of (joint) distributions seem to be simpler functions of cumulants than

of anything else.'

The de�nition of the cumulant generating function as the logarithm of the mo-

ment generating function implicitly de�nes a bijective mapping from moments to

cumulants. This mapping can be recovered by a coe�cient comparision of the

respective Taylor expansions (see for instance Stuart and Ord, 1994).

Example 3. Table 2.1 lists the �rst few cumulants in terms of moments for the

case d = 3.

An alternative to coe�cient comparison is to compute the cumulants via di�er-

entiation of KX . This is demonstrated through a univariate example.

Example 4. To �nd the cumulant κ2 consider the second derivative of K(t):

d2K(t)

dt2
=

d

dt

{
d log(M(t))

dM(t)

dM(t)

dt

}
=
d2 log(M(t))

dM(t)2

(dM(t)

dt

)2

+
d log(M(t))

dM(t)

d2M(t)

dt2
.
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Cumulants Moments

κ100 m100

κ200 m200 −m2
100

κ110 m110 −m100m010

κ300 m300 − 3m200m100 + 2m3
100

κ210 m210 −m200m010 − 2m100m110 + 2m2
100m010

κ111 m111 −m110m001 −m101m010 −m011m100 + 2m100m010m001

Table 2.1 � Cumulants in terms of moments.

Evaluated at the origin, the di�erentials of M are the moments:

dM(t)

dt

∣∣∣∣∣
t=0

= m1 and
d2M(t)

dt2

∣∣∣∣∣
t=0

= m2.

Evaluating the di�erentials of K = logM(t) at the origin yields d log(M(t))
dM(t)

=

1
M(t)

= 1 and d2 log(M(t))
dM(t)2

= d
dt

1
M(t)

= − 1
M(t)2

= −1 since M(0) = 1. This identi�es

the cumulant κ2 as the variance:

κ2 =
d2K(t)

dt2

∣∣∣∣∣
t=0

= m2 −m2
1.

Extending Example 4 to univariate higher order cumulants is achieved via Faa

Di Bruno's formula for higher order derivatives of composite functions (di Bruno,

1855). It states that, for two functions g and h from R to R, it holds that

dk

dxk
g(h(x)) =

∑ k!

m1!1!m1m2!2!m2 · · · mk!k!mk
g(m1+ ···+mk)(h)

n∏
j=1

(
h(j)(x)

)mj
,

where the summation is over all k-tuples (m1, ...,mk) of non-negative integers

satisfying the constraint
∑k

i=1mi i = k.

Example 5. We consider the third derivative of K(t). The three m-tuples satis-
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fying the above constraint are given by (3, 0, 0), (1, 1, 0) and (0, 0, 1). Hence,

d3

dt3
log(M(t)) = K(3)(M) M ′(t)

+ 3K(2)(M) M (2)(t)M ′(t)

+K ′(M) M (3)(t),

from which we infer that κ3 = 2m1 − 3m1m2 +m3.

Multivariate cumulants can also be obtained through di�erentiating the cumu-

lant generating function, as Example 6 illustrates.

Example 6. The covariance between two random variables is given by the cu-

mulant of order (1, 1) since

κ11 =
∂2KX(t)

∂t1∂t2

∣∣∣∣∣
t=0

=

(
∂2MX(t)

∂t1∂t2
− ∂MX(t)

∂t1

∂MX(t)

∂t2

)∣∣∣∣∣
t=0

= m11 −m10m01.

Similarly to the univariate case, we seek a formula which allows us to compute

higher order cumulants directly. In order to extend Example 5 to multivariate

random variables we need a generalisation of Faa di Bruno's formula for computing

arbitrary derivatives of composite functions, where the inner function maps from

Rd to R. To the best of our knowledge, this formula was �rst derived by Hardy

in a way that makes the combinatorial aspects explicit. Much of the following is

based on Hardy (2006).

Before we can state the multivariate chain rule, we need to introduce some no-

tation and set-related quantities such as multisets, partitions of them and collapse

numbers. The collapse number of a partition is a combinatorial quantity which,

roughly speaking, counts the number of partitions which become indistinguishable

as elements of a set become indistinguishable. The collapse number will turn out

to play a key role in the multivariate chain rule. We provide numerous examples

following the de�nitions.
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De�nition 2 (Multiset, multiplicity, size). A multiset M is a set which may hold

multiple copies of its elements. The population set of a multiset is the set of

elements M can hold copies of. The multiplicity of an element is the number of

occurrences of that element in the multiset. The multiplicity of a multiset is the

vector of multiplicities of its elements, denoted by νM . The total number of not

necessarily distinct elements |M | in M is the size of M . A multiset which is a

set is called degenerate, i.e. degenerate multisets hold exactly one copy of each

element.

Example 7 (Multiset). The multiset M1 = {x1, x3, x3} holds one copy of x1,

no copy of x2 and two copies of x3. The multiplicity is νM1 = (1, 0, 2). The set

M2 = {x1, x2, x3} is a degenerate multiset since no element occurs more than

once.

Multisets are hybrids between vectors and sets since, like vectors, multiple oc-

curences of a member are regarded as di�erent entities whereas, like sets, the

order of elements does not matter. Multisets with same multiplicity are isomor-

phic. Hence, we may choose a multiset to hold integers since its properties are

not a�ected by the names of the elements.

As in Example 7, we will not explicitly mention the population set, which typi-

cally consists of the set of variates {x1, ..., xd} or the set of integers {1, ..., d}. The

population set only a�ects the zeros in the multiplicity of a multiset, which do

not a�ect our results.

De�nition 3 (Partition of a multiset). Let I be some index set. A partition π

of a multiset M is a multiset of multisets {(Mi)i∈I} such that νM =
∑

i∈I νMi
,

where (νMi
)i∈I is the family of multiplicities associated with π. We denote the

multiplicity of π by νπ and adopt the shorthand notation π = {M1|M2| · · · |M|I|}.

A partition of a multiset is a regrouping into smaller multisets such that every

copy of every element is put inside exactly one of the smaller multisets. Being a
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multiset itself, a partition can hold multiple copies of one or more multisets.

Example 8 (Partition of a multiset). The multiset π =

{{x1, x3}, {x1, x3}, {x3}} = {x1x3|x1, x3|x3} has the associated family of multi-

plicities
(
(1, 0, 1), (1, 0, 1), (0, 0, 1)

)
. It is a partition of M = {x1, x1, x3, x3, x3}

since (1, 0, 1) + (1, 0, 1) + (0, 0, 1) = (2, 0, 3) = νM . The multiplicity of π is (2, 1),

as π holds two copies of {x1, x3} and one copy of {x3}.

We use multisets in the current context as we can identify orders of derivatives

with them. For a vector α ∈ Nd
0 we set

Dαf(x) :=
∂|α|∏d
i=1 ∂x

αi
i

f(x),

where |α| :=
∑n

i=1 αi. By convention D0f(x) := f(x). We refer to α as the order

of derivative and |α| as the total degree. The D-operator notation makes the close

link between multisets and derivatives obvious since the order of the derivative

operator is identical to the multiplicity of the associated multiset. Again, this is

best illustrated with an example.

Example 9 (Partial derivative and multiset). Given the partial derivative D102 =

∂3

∂x1∂x23
f(x) the di�erentiation is once with respect to x1 and twice with respect to

x3. This di�erential operation can be associated with the multiset {1, 3, 3} with

multiplicity (1, 0, 2).

The following formula provides a generalisation of the chain rule for composite

functions, when the inner function is from Rd to R and the outer function is from

R to R. Suitable di�erentiability conditions are assumed.

D(1 ··· 1)g(h(x)) =
∑

π∈Π(k)

d |π|g(h)

dh |π|

|π|∏
j=1

DνMjh(x), (2.1)

where Π(k) is the set of all partitions of a multiset with multiplicity k and Mj is

the j-th multiset in the partition π. It can be proved by induction on the number

of variates.
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Formula (2.1) allows us to compute higher order derivatives of composite func-

tions when the di�erentiation is taken with respect to each variable once. What

we seek is a generalisation to derivatives of arbitrary order. The key insight is that

repeated di�erentiation with respect to one variable can be treated as a special

case of di�erentiation with respect to several variables, where some of them are in-

distinguishable. For instance, D(42)g(h(x1, x2)) can be thought of as a special case

of D(111111)g(h(x1, ..., x6)), where x1 = x2 = x3 = x4 and x5 = x6. As we identify

derivative operators with multisets, the combinatorics of multiset partitions need

to be taken into account.

2

3

5

6

4

1 1

1

1

2

1

MS

u

2

Figure 2.1 � The diagram shows the collapsing mapping u.

For a multiset M with size |M |, de�ne S := {1, 2, ...,|M |}. The set S is the

equivalent of the di�erential operator without repeated di�erentiation; or D111111

in the above example. By choice of S, M and S are of same size. We consider

the class of surjective mappings u : S −→ M , such that every element of M

has a pre-image under u. As will become clear below, all mappings of this kind

induce the same collapse number and there is no need to specify the details of the

mapping u.

If M is non-degenerate, i.e. M holds multiple copies of at least one if its ele-

ments, thenM holds fewer distinct elements than S. Hence, some of the elements
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Figure 2.2 � The diagram shows the partitions of S which get mapped onto partition

{112|112} of M under the collapsing mapping uP .

of S become indistinguishable under u. We say that S collapses onto M .

Example 10 (Collapsing mapping of a multiset). Consider the multiset M =

{1, 1, 1, 1, 2, 2}. We set S := {1, 2, 3, 4, 5, 6}. A collapsing mapping is de�ned

through

u : S →M

u(1) = u(2) = u(3) = u(4) = 1 and u(5) = u(6) = 2,

as depicted in Figure 2.1.

The collapsing mapping u induces a canonical mapping uP from the set of

partitions of S into the set of partitions of M . The pre-image of a partition π of

a multiset M under uP is the set of all partitions of S, which are mapped on to

π.

Example 11 (Collapsing of partitions). Consider again the multiset M =

{1, 1, 1, 1, 2, 2} with partition π = {112|112} and collapsing mapping u as de�ned
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in Example 10. The pre-image of π under uP is given by the six partitions

{125|346}, {135|246}, {145|236}, {235|146}, {245|136}, {345|126}

since each of them gets mapped onto π under uP . For instance,

uP ({125|346}) = {u(1)u(2)u(5)|u(3)u(4)u(6)}

= {112|112}

= π.

This collapsing of the partitions is illustrated in Figure 2.2.

Of particular interest is the number of elements in the pre-image, the collapse

number.

De�nition 4 (Collapse number of a partition). The collapse number c(π) is the

size of the pre-image of π under uP .

The collapse number of a partition π can be interpreted as the number of par-

titions that would exist if multiple copies of elements of M were distinguishable.

Let the factorial sign following a vector denote the product of its entries, i.e. for

x ∈ Nd
0 we set x! :=

∏d
i=1 xi. Lemma 1 states a formula for computing collapse

numbers. Note that the collapse number only depends on the multiplicities of

the multiset M , the multiplicity of the partition π and the family of multiplicities

associated with π.

Lemma 1 (Collapse number of a partition). Let π = {(Mi)i∈I} be a partition of

a multiset M . Let νπ, (νMi
)i∈I and νM denote the multiplicities of π, (Mi)i∈I and

M respectively. Then the collapse number c(π) is given by

c(π) :=
νM !∏

i∈I νMi
!νπ!

. (2.2)
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Proof. The numerator in (2.2) is a count of the permutations of copies of the

elements of M , all of which correspond to the same partition once collapsed but

to di�erent partitions prior to collapsing. This number needs to be quali�ed by∏
i∈I νMi

!, the number of permutations within partition blocks, and (νπ!), the

number of permutations of partition blocks.

Example 12 (Collapse number of a partition). Consider the multiset M =

{1, 1, 1, 1, 2, 2} with partition π = {112|112} from previous examples. In order

to apply Lemma 1, we note that νM = (4, 2), νM1 = νM2 = (2, 1) and νπ = 2. The

collapse number is given by

c(π) :=
4!2!

2!2!2!
= 6,

as was verifed before in Example 11 by counting sets.

The next theorem states a formula for higher order derivatives. We will refer to

it as Hardy's Theorem.

Theorem 1 (Higher order derivative of chain functions). Let k ∈ Nd
0 be an order

of a derivative and g and h be functions from R to R and Rd to R respectively

which are at least |k| times di�erentiable in x. Then it holds for the k−th derivative

of the composite function that

Dkg(h(x)) =
∑

π∈Π(k)

c(π)
d |π|g(h)

dh |π|

|π|∏
j=1

DνMjh(x),

where Π(k) is the set of all partitions of a multiset with multiplicity k and Mj is

the j-th multiset in the partition π.

Proof. The core of the proof is the identi�cation of derivatives with multisets,

equation (2.1) and the notion that repeated di�erentation with respect to one

variable can be treated as a special case of (2.1) with some variables being in-

distinguishable. All we are required to establish is the number of di�erentials
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that become indistinguishable for a given partition. This, however, is exactly the

collapse number as the derivative operator collapses from D

|k|︷ ︸︸ ︷
1 . . . 1 to Dk.

As a corollary, we obtain a general formula for computing multivariate cumulants

from moments.

Corollary 1 (Cumulants as functions of moments). Let κk be the k-th cumulant.

Then

κk =
∑

π∈Π(k)

c(π)(−1)(|π|−1)(|π| − 1)!

|π|∏
j=1

mνMj
, (2.3)

where Π(k) is the set of all partitions of a multiset with multiplicity k, Mj is

the j−th multiset in partition π with associated multiplicity νMj
and mνMj

is the

moment of order νMj
.

Proof. Set g(h) = log(h) and h(t) = MX(t) = Eet′X , apply Hardy's Theorem and

evaluate at the origin. Note that MX(0) = 1. Hence, neither MX(t) nor any of

its powers appear in (2.3).

Example 13 (Higher order cumulants). Consider the partial derivative

∂3

∂x∂z2
g(h(x, y, z))

from Example 9. The associated multiset {1, 3, 3} has partitions {133}, {13|3},

{1|33}, {1|3|3}. By Hardy's Theorem,

D102g(h(x, y, z)) = DgD102h

+ 2D2gD101hD001h

+D2gD100hD002h

+D3gD100h(D001h)2,

where function arguments have been supressed to avoid a cluttered notation. For

the particular case that g(·) = log(·) and h(t) = MX(t) we obtain: d logMX(t)
dMX(t)

∣∣∣∣∣
t=0

=
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1 , d
2 logMX(t)
dMX(t)2

∣∣∣∣∣
t=0

= −1 and d3 logMX(t)
dMX(t)3

∣∣∣∣∣
t=0

= 2 . We may conclude that

κ102 = m102 − 2m101m001 −m100m002 + 2m100m
2
001,

as claimed in Table 2.1 up to relabelling of the variables.

If the index vector k is binary the multiset associated with k is degenerate and

c(π) = 1. Equation (2.3) simpli�es to

κk =
∑

π∈Π(k)

(−1)(|π|−1)(|π| − 1)!

|π|∏
j=1

mνMj
.

Example 14 (Square free cumulants). Consider the cumulants in Table 2.1 with

binary index vector: κ100, κ110 and κ111.

2.3 Di�erential moments and di�erential cumu-

lants

This section investigates properties of moments and cumulants in local neighbour-

hoods. One reason for studying localised properties of random variables is that

global measures do not exist or, if existent, give a misleading picture. A prime

example is the linear correlation between two variables which have a non-linear

dependence globally.

Another reason is that one may only be interested in particular events rather

than the whole distribution or some global measure of it like the expectation of

a random variable. Insurance contracts, for instance, typically specify that one

party receives tail risks in exchange for regular payments contingent on tail events

not happening. Insurers take a natural interest in the tails of distributions and,

in particular, in the local dependence of several tail events.

Local moments have been suggested by Mueller and Yan (2001) who also con-

sider a local covariance. They provide formulae for moments, when the order
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vector k holds no more than two odd components. We extend their approach to

multivariate moments and cumulants of any order. Formulae for local moments

and cumulants are derived and a Taylor expansion of the local moment generating

function is given provided its global counterpart exists.

The key quantity we derive are di�erential cumulants at a speci�c point ξ ∈ Rd.

In the bivariate case, d = 2, they take the form

∂2 log f(x, y)

∂x∂y
.

This quantity was �rst investigated by Holland and Wang (1987). Later, Jones

et al. (1996) referred to it as the local dependence function. The local dependence

function has some remarkable properties. It vanishes if and only if X and Y are

independent, it is constant if f is the bivariate normal density, and it is margin-

free in a sense that multiplying f by the ratio of one marginal density over another

marginal density leaves the local dependence function una�ected.

For a strictly positive edge length ε ∈ R, let A(ξ, ε) :=
∏d

i=1[ξi− ε
2
, ξi+

ε
2
] denote

the hyper cube centralised at ξ. Let |A| = εd denote its volume. The density of a

random variable X ∈ Rd conditional on being in A is given by

fAX(x) =
fX(x)11A(x)

P (X ∈ A)
.

We de�ne local moments as moments of X conditional on X being in A:

De�nition 5 (Local moment). Given a point ξ ∈ Rd with neighbourhood A, the

local moment mA
k1...kd

of order k is de�ned as

mA
k1...kd

= E
( d∏

i=1

(Xi − ξi)ki
∣∣∣X ∈ A).

The centralisation about ξ implies that the local moment captures the direction

of near data rather than their absolute value. This is necessary since we are

ultimately interested in the limiting process as the size of the window A approaches
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zero. Without the centralisation the conditional density would collapse to the

Dirac measure with all probability mass at the trivial local moment ξ.

Let N denote the integers strictly greater than zero and 2N := {n ∈ N}| ∃m ∈

N : n = 2m} and 2N+1 := {n ∈ N| ∃m ∈ N : n = 2m+ 1} the set of positive even

and odd integers respectively. Note that zero is excluded from the even integer

set 2N.

For symmetry reasons, even and odd elements of the order vector k have di�erent

e�ects on local moments. This motivates the following de�nition:

|α|+ := |α|+
d∑
i=1

11 (αi ∈ 2N+ 1).

The operator |·|+ increments the total sum of the components of a vector by one

for each odd component.

It will be a useful convention, to de�ne the product over an empty set as 1. For

instance,
d∏

i=1,
ki∈2N

1

ki + 1
= 1

if k holds odd order terms only.

Theorem 2 (Local moments). Let X ∈ Rd be an absolutely continuous random

vector with density fX which is d times di�erentiable in ξ ∈ Rd. Let k ∈ Nd

determine the order of moment. Then, for |A| su�ciently small, X has local

moment

mA
k1...kd

= r(ε, k)

(
DαfX(ξ)

fX(ξ)
+O(ε2)

)
(2.4)

where r(ε, k) := ε|k|
+

d∏
i=1,
ki∈2N

1
ki+1

d∏
i=1,

ki∈2N+1

1
ki+2

and α :=
d∑

i=1,
ki∈2N+1

ei .

Proof. Consider

mA
k1...kd

=

∫
A

∏d
i=1(xi − ξi)kifX(x)dx∫

A
fX(x)dx

. (2.5)
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Since fX is d times di�erentiable in ξ, it has a Taylor expansion of order d about

ξ:

fX(x) = fX(ξ) +
d∑
i=1

(xi − ξi)
∂fX(x)

∂xi

∣∣∣∣∣
x=ξ

+
d∑
i=1

d∑
j>i

(xi − ξi)(xj − ξj)
∂2fX(x)

∂xi∂xj

∣∣∣∣∣
x=ξ

+
1

2

d∑
i=1

(xi − ξi)2 ∂
2fX(x)

∂x2
i

∣∣∣∣∣
x=ξ

+ ...+ o(|ε|d).

Hence, we may expand fX in (2.5) and change the order of summation and in-

tegration. A term involving an odd order in at least one component is point

symmetric in that component about the origin, so that the integral vanishes.

The smallest non-vanishinig order term in the expansion of fX is DαfX(ξ) since

xkii is multiplied by xi whenever ki is odd, and x
ki
i is multiplied by one whenever

ki is even. The expression for r(ε, k) follows from polynomial integration. Thus,

the numerator of (2.5) can be written as:( d∏
i=1,
ki∈2N

1

ki + 1

d∏
i=1,

ki∈2N+1

1

ki + 2

)
εdε|k|

+

(DαfX(x) +O(ε2)).

The denominator of (2.5) can be interpreted as the particular moment with k =

0 ∈ Nd
0. It simpli�es to εd(fX(ξ) +O(ε2)), which completes the proof.

Example 15 (Local moment m120). Consider a trivariate random variable X

with local moment mA
120 = E((X1− ξ1)(X2− ξ2)2|X ∈ A). Then r(ε, k) = ε4

9
, α :=

(1, 0, 0)′ and we obtain

mA
120 =

ε4

9

∂f(x1,x2,x3)
∂x1

f(x1, x2, x3)

∣∣∣∣∣
x=ξ

+O(ε6).

A natural way to extend the concept of a local moment is to consider the limiting

case that |A| → 0. Meaningful convergence occurs only if the limiting process is

rate adjusted. This leads to the de�nition of a di�erential moment.
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De�nition 6 (Di�erential moment). The di�erential moment of an absolutely

continuous random vector X ∈ Rd at ξ is de�ned as:

mξ
k1...kd

:= lim
ε→0

mA
k1...kd

r(ε, k)
,

where r(ε, k) as de�ned in (2.4).

This de�nition of a di�erential moment coincides with the quantity Mueller and

Yan (2001) term a local moment up to the normalising constant

d∏
i=1,
ki∈2N

1

ki + 1

d∏
i=1,

ki∈2N+1

1

ki + 2
.

The next corollary is an immediate consequence of Theorem 2. It shows the

remarkably simple form of di�erential moments.

Corollary 2 (Di�erential moment). For the di�erential moment of order k ∈ Nd

at ξ ∈ Rd, it holds that

mξ
k1...kd

=
DαfX(ξ)

fX(ξ)
.

Proof. According to Theorem 2, the local moment mA
k1...kd

can be written as

mA
k1...kd

= r(ε, k)

(
DαfX(ξ)

fX(ξ)
+O(ε2)

)
.

The di�erential moment was de�ned, so that the r(ε, k) terms disappear:

mξ
k1...kd

:= lim
ε→0

mA
k1...kd

r(ε, k)
= lim

ε→0

(
DαfX(ξ)

fX(ξ)
+O(ε2).

)
The remainder term of order O(ε2) disappears as ε, the edge length of the window

A, approaches zero.

Remark 1 (Interpretation of di�erential moments). Corollary 2 entails an inter-

esting interpretation of the di�erential moment, based on elementary calculus: It
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is the relative change of the density fX as variables change about ξ. The di�eren-

tial moment tells us how the relative probability mass changes near ξ. If mξ
k1...kd

is positive (negative), then relatively more probability mass can be found in the

(opposite) direction of the changing variables. If mξ
k1...kd

is high (low) in absolute

value, then the probability mass changes more rapidly (slowly).

From (2.4) it is clear that the choice α in the derivative DαfX depends only

on the pattern of odd and even components of the moment. To be precise, α

holds a one corresponding to odd components and a zero corresponding to even

components. Consequently, the di�erential moment mξ
k1...kd

depends on k only in

as much as the pattern of odd and even in k is concerned.

This suggests de�ning an equivalence relation meaning same di�erential moment

on Nd × Nd: For u, k ∈ Nd set

u ∼m k ⇐⇒ mu1···ud = mk1···kd .

The relation ∼m partitions the product space Nd ×Nd into 2d equivalence classes

of same di�erential moments. The graph corresponding to ∼m in the bivariate

case is depicted in Figure 2.3. The axes show the order of the moments. Each

equivalence class is depicted with a di�erent symbol. For instance, (2, 2) ∼m (4, 2)

since mξ
22 = mξ

42. Note that u ∼m k ⇐⇒ |u− k| ∈ 2N.

We can de�ne a local moment generating function as

MA
X(t) := E(et

′X |X ∈ A).

As an integral of a continuous function over a closed hypercubed the local moment
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Figure 2.3 � The diagram shows the graph of the equivalence relation ∼m for the

bivariate case.

generating function always exists. We have the following expansion:

MA
X(t) =

1

P (X ∈ A)

∫
A

e
∑d
i=1 tixifX(x)dx

=
1

P (X ∈ A)

∫
A

( ∞∑
j=0

(
∑d

i=1 tixi)
j

j!

)
(
fX(ξ) +

d∑
i=1

(xi − ξi)
∂fX(x)

∂xi

∣∣∣∣∣
x=ξ

+
d∑
i=1

d∑
j>i

(xi − ξi)(xj − ξj)
∂2fX(x)

∂xi∂xj

∣∣∣∣∣
x=ξ

+
1

2

d∑
i=1

(xi − ξi)2 ∂
2fX(x)

∂x2
i

∣∣∣∣∣
x=ξ

+ ...+O(εd)

)
dx

= 1 +
d∑
i=1

ti
∂fX(x)

∂xi

∣∣∣∣∣
x=ξ

(
ε2

3fX(ξ)
+O(ε4)

)

+
d∑
i=1

t2i
∂2fX(x)

∂x2
i

∣∣∣∣∣
x=ξ

(
ε2

6fX(ξ)
+O(ε4)

)

+
d∑
i=1

d∑
j>i

titj
∂2fX(x)

∂xi∂xj

∣∣∣∣∣
x=ξ

(
ε4

9fX(ξ)
+O(ε6)

)
+O(ε4

∣∣t3∣∣).
The local moments can be computed from the local moment generating function
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via di�erentiation to appropriate order and evaluation at t = 0 as was demon-

strated in Example 15. The natural logarithm of the local moment generating

function de�nes the local cumulant generating function KA
X(t) : Rd −→ R:

KA
X(t) := log(MA

X(t)).

Corollary 3 (Local cumulants). Under the conditions of Theorem 2, it holds for

the local cumulants that

κAk =
∑

π∈Π(k)

c(π)(−1)(|π|−1)(|π| − 1)!

|π|∏
j=1

mA
νMj

,

Proof. The proof is the same as in Corollary 1.

We next de�ne di�erential cumulants at ξ. There are two natural ways of doing

this. We may de�ne a di�erential cumulant as the limiting quantity of a local cu-

mulant as the size of the conditioning window A approaches zero. Alternatively,

we may take a series of di�erential moments and require that the ex-log-relation

between moments and cumulants is preserved in the di�erential case. As is demon-

strated in Theorem 4, the limiting local cumulant is in general not equal to the

ex-log relation induced counterpart of the di�erential moments. They coincide

exactly in the square-free case. In order to maintain the de�ning relation between

cumulants and moments, we de�ne di�erential cumulants in terms of di�erential

moments.

De�nition 7 (Di�erential cumulant). For an index vector k ∈ Nd, the di�erential

cumulant at ξ ∈ Rd is de�ned as

κξk :=
∑

π∈Π(k)

c(π)(−1)(|π|−1)(|π| − 1)!

|π|∏
j=1

mξ
νMj

.

The next theorem shows the remarkably simple form of the di�erential cumu-

lants.
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Theorem 3 (Di�erential cumulant). For a di�erential cumulant at ξ ∈ Rd of

order k ∈ Nd it holds that

κξk1...kd = Dα log(fX(ξ)).

Proof. By Hardy's formula

Dα log(fX(ξ)) =
∑

π∈Π(k)

c(π)(−1)(|π|−1)(|π| − 1)!
1

f
(|π|)
X (ξ)

|π|∏
j=1

DνMj fX(ξ)

=
∑

π∈Π(k)

c(π)(−1)(|π|−1)(|π| − 1)!

|π|∏
j=1

DνMj fX(ξ)

fX(ξ)

=
∑

π∈Π(k)

c(π)(−1)(|π|−1)(|π| − 1)!

|π|∏
j=1

mξ
νMj

= κξk1...kd .

Note that, in the �rst line, f
(|π|)
X (ξ) denotes fX(ξ) raised to the power of |π| rather

than the derivative of order |π|.

The next theorem relates a di�erential cumulant to the limit of a local cumulant.

Theorem 4 (Di�erential and limiting local cumulant). A di�erential cumulant

κξk is the limit of the local cumulant limε→0
1

r(ε,k)
κAk if and only if k is binary, i.e.

κk is a square-free cumulant.

Proof. First, let k ∈ {0, 1}d. Let π be a partition of the lattice corresponding to

k. The key is to show that the contribution from π converges at the same rate as

the local cumulant, i.e r(ε, k) =
∏|π|

j=1 r(ε, νMj
).

Since k is binary, so is the family of multiplicities (νMj
)1≤j≤|π| corresponding to

π. Since π is a partition, k =
∑|π|

j=1 νMj
. Hence,

ki = 1⇔ there exists exactly one j such that νMj
(i) = 1. (2.6)
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Let M :=
∑d

i=1 11(ki = 1) be the number of odd components in k. By (2.6)

M =
∑|π|

j=1

∑d
i=1 11(νMj

(i) = 1), that is, the total number of odd components is

not changed through a partition of a binary vector. This allows us to write

|k|+ =

∣∣∣∣∣∣
|π|∑
j=1

νMj

∣∣∣∣∣∣
+

=

∣∣∣∣∣∣
|π|∑
j=1

νMj

∣∣∣∣∣∣+
d∑
i=1

11

(( |π|∑
j=1

νMj

)
i

= 1

)

=

|π|∑
j=1

∣∣νMj

∣∣+M =

|π|∑
j=1

∣∣νMj

∣∣+ . (2.7)

Similarly,

d∏
i=1,
ki=0

1

ki + 1

d∏
i=1,
ki=1

1

ki + 2
= 3−M

=

|π|∏
j=1

( d∏
i=1,∑|π|

j=1 νMj (i)=0

1∑|π|
j=1 νMj

(i) + 1

d∏
i=1,∑|π|

j=1 νMj (i)=1

1∑|π|
j=1 νMj

(i) + 2

)

(2.8)

Together, (2.7) and (2.8) imply that r(ε, k) =
∏|π|

j=1 r(ε, νMj
). We thus have

1

r(ε, k)
κAk =

1

r(ε, k)

∑
π∈Π(k)

c(π)(−1)(|π|−1)(|π| − 1)!

|π|∏
j=1,
Mj∈π

r(ε, νMj
)

(
DνMj fX(ξ)

fX(ξ)
+O(ε2)

)

=
∑

π∈Π(k)

(−1)(|π|−1)(|π| − 1)!

|π|∏
j=1,
Mj∈π

DνMj fX(ξ)

fX(ξ)
+O(ε2).

(2.9)

Now take limits as ε→ 0 to obtain

lim
ε→0

1

r(ε, k)
κAk =

∑
π∈Π(k)

c(π)(−1)(|π|−1)(|π| − 1)!

|π|∏
j=1

mξ
νMj

= κξk,

which shows that the local cumulant κAk converges to the di�erential cumulant κξk

if k is binary.
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Conversly, suppose k is not binary. We show that 1
r(ε,k)

κAk converges to a quantity

which is not a linear combination of products of di�erential moments. First note

that di�erential moments are proportional to DαfX(ξ) for some binary α. Take

π to be the degenerate partition, i.e. |π| = 1. Then π holds only one set with

multiplicity b = k. The associated quantity with this partition in (2.9) converges

to cD
bfX(ξ)
fX(ξ)

for some constant c ∈ R. The multiplicity b not being binary, this

cannot be a local moment.

Example 16 (Square-free di�erential cumulant). Consider the square-free

di�erential cumulant κξ11011 and take, for illustration purposes, the parti-

tion {10001|01000|00010}. Table 2.2 shows the computation of r(ε, k) and∏3
j=1 r(ε, νMj

), where M1 = {x1, x5},M2 = {x2},M3 = {x4}. Since k is bi-

nary, the associated multiset M = {x1, x2, x4, x5} is degenerate and each variable

in M appears exactly once in either M1,M2 or M3. This implies that each one

in k corresponds to exactly one unity in νM1 , νM2 or νM3 . Simple calculations

show that r(ε, k) = ε8

81
=
∏3

j=1 r(ε, νMj
). Incidentally, this partition adds the

term 2m10001m01000m00010 to κ11011. Summing over all partitions of M in similar

manner, the expression for κ11011 is readily veri�ed as:

κξ11011 = mξ
11011

−mξ
11010m

ξ
00001 −m

ξ
11001m

ξ
00010 −m

ξ
10011m

ξ
01000 −m

ξ
01011m

ξ
10000

−mξ
11000m

ξ
00011 −m

ξ
10010m

ξ
01001 −m

ξ
10001m

ξ
01010

+ 2(mξ
11000m

ξ
00010m

ξ
00001 +mξ

10010m
ξ
01000m

ξ
00001 +mξ

10001m
ξ
01000m

ξ
00010

+mξ
01010m

ξ
10000m

ξ
00001 +mξ

01001m
ξ
10000m

ξ
00010 +mξ

00011m
ξ
10000m

ξ
01000)

− 6mξ
10000m

ξ
01000m

ξ
00010m

ξ
00001.
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Multiplicity x1 x2 x3 x4 x5 |·|+
d∏

i=1,
ki∈2N

1
ki+1

d∏
i=1,
ki=1

1
ki+2 r(ε, ·)

k 1 1 0 1 1 8 1
3

4 ε8

81

νM1 1 0 0 0 1 4 1
3

2

νM2
0 1 0 0 0 2 1

3
ε8

81

νM3
0 0 0 1 0 2 1

3

Table 2.2 � Convergence rates of a binary di�erential cumulant.

2.4 Conclusion

This chapter shed some light on the relation between moments and cumulants. A

multivariate higher order derivative chain function was introduced which allows

us to calculate multivariate cumulants of any order from moments. Di�erential

cumulants were de�ned via di�erential moments. It was shown that the di�erential

cumulant of order k at ξ takes the form

κξk = Dk log fX(ξ).

It is the single most important quantity of this thesis. The next chapter shows

that conditional independence statements can be captured through pairwise zero-

cumulants, binary di�erential cumulants which hold exactly two ones and vanish

everywhere.



Chapter 3

Conditional independence and

hierarchical models

3.1 Introduction

In the previous chapter the concept of di�erential cumulants was introduced. This

chapter explains the relations between sets of zero-cumulants, conditional inde-

pendence statements and hierarchical models, a subclass of which is the class of

graphical models. The �rst part of the chapter covers a brief introduction to

conditional independence and graphical models. Naturally, many of the results,

or similar versions of them, are well established. Textbook references are Whit-

taker (1990) and Lauritzen (1996). The second part of the chapter covers novel

ideas. It is dedicated to speci�c model classes which are identi�ed via sets of

zero-cumulants.

Pairwise zero-cumulants are binary di�erential cumulants which hold exactly

two ones and vanish everywhere. Section 3.2 relates pairwise zero-cumulants to

conditional independence statements. Lemma 3 shows that a vanishing pairwise

cumulant implies the factorisation of the density and vice versa. To the best of our

knowledge, this link has not yet been exploited for nonparametric estimation of

conditional independence as we suggest in Chapter 5. It is even more powerful as

arbitrary conditional independence structures can be expressed via sets of pairwise

zero-cumulants, as Lemma 4 demonstrates.
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Conditional independence statements are well known to underlie the theory of

graphical models which are introduced in Section 3.3. Graphical models incorpo-

rate conditional independence statements via Markov properties of the density.

This ensures that graph separation is isomorphic to conditional independence

statements. This thesis only deals with undirected graphs. Conditional indepen-

dence models in directed graphs have, for instance, been investigated by Spiegel-

halter et al. (1993) and Settimi and Smith (2000).

Graphical models have been most studied in the continuous case when the den-

sity is multivariate normal. In the normal case the entire conditional independence

structure is captured in the inverse covariance matrix. Consequently, continuous

graphical models have been termed covariance selection models (Dempster, 1972).

In contrast, our approach makes no speci�c distribution assumption. As a result,

we are not concerned with parameter estimation and our only goal is to model

the interaction between random variables.

Graphical models form a subclass of the class of hierarchical models. Hierar-

chical models are characterised by the fact that interaction at lower levels implies

interaction at higher levels. They are explained in Section 3.4. It is shown how

particular model classes can be obtained through imposing restrictions on the

di�erential cumulants.

3.2 Conditional independence

Conditional independence is a statistical concept applicable to a minimum of three

variables. As in Chapter 2, we assume that the d−variate random variable X has

a density fX which is strictly positive everywhere. Let the integer sets I, J and

K partition [d] := {1, ..., d}. We write

XI ⊥⊥ XJ |XK
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to denote that XI is independent of XJ for any given value that XK may take.

We may express conditional independence in terms of densities through

fXI |XJ ,XK = fXI |XK , (3.1)

where the equality is understood to hold for any value x ∈ Rd. Intuitively, (3.1)

says that, once XK is �xed, the density of XI is independent of XJ . Hence, the

probabilty of XI falling into a measurable set is the same for all values of XJ given

XK .

The importance of modelling conditional associations can be demonstrated

through Simpson's paradox. Simpson's paradox prevails in situations where cor-

relations between a random variable Y and two subgroups X1 and X2 are reversed

when X1 and X2 are combined. A classic example is the Berkeley admission para-

dox (Bickel et al., 1975). It is so instructive that we reproduce the key data and

�ndings in Example 17.

Example 17 (Simpson's paradox). Admission numbers to Berkeley Graduate

School in 1973 were 8442 and 4321 for males and females respectively. These cor-

responded to admission rates of 44 per cent for male applicants and 35 per cent for

female applicants. Given the sample sizes a statistically signi�cant discrimination

based on gender seems apparent.

The admission rates, however, di�er greatly between di�erent departments in-

dependent of gender. Indeed, the apparent discrimination is reversed at the de-

partmental level with females having statistically signi�cantly better chances of

admission in many departments.

Table 3.1 shows the admission rates and number of applicants for the six largest

departments. The paradox can be resolved when the number of applications to

di�erent departments is taken into account. A much higher proportion of male

candidates applied to departments with high admission rates. This resulted in

a higher overall admission rate for males compared to females. The e�ect could
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Department
Male Female

Applicants Admitted Applicants Admitted

A 825 62% 108 82%

B 560 63% 25 68%

C 325 37% 593 34%

D 417 33% 375 35%

E 191 28% 393 24%

F 272 6 % 341 7 %

Table 3.1 � Admission rates to the Berkeley Graduate School (1973) for the six

largest departments.

have occured even if male admission rates had been lower than female admission

rates in every single department.

Simpson's paradox illustrates how modelling conditional associations can reveal

relations that are hidden in marginal observations. In the example, females seem

to have higher admission rates conditional on considering some particular depart-

ments. The marginalisation process of summing up admission numbers across all

departments results in a misleading picture of a gender bias in favour of male

applicants.

In this section, we connect the theory of di�erential cumulants with conditional

independence structures. It is a key observation that setting pairwise di�erential

cumulants equal to zero everywhere allows us to express conditional and uncon-

ditional dependency structures.

De�nition 8 (Pairwise cumulant). A cumulant κk is pairwise if k is binary and

holds exactly two ones, i.e. pairwise cumulants take the form κk, k = ei + ej for

some (i, j) ∈ [d]× [d], i 6= j.

De�nition 9 (Zero cumulant). A zero-cumulant is a di�erential cumulant which

vanishes everywhere.
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Lemma 2 (Independence in the bivariate case). Let X ∈ R2. Then X1 ⊥⊥

X2 ⇐⇒ κx11 = 0, ∀x ∈ R2.

Proof. The proof follows from straightforward integration:

0 = κx11 =
∂2

∂x1∂x2

log(fX1,X2(x1, x2)) ⇐⇒ fX1,X2(x1, x2) = eh1(x1)+h2(x2)

for some functions h1, h2 : R→ R.

In the multivariate case we can express pairwise conditional independence given

the remaining variables through setting the associated pairwise di�erential cumu-

lants equal to zero everywhere.

Lemma 3 (Conditional independence of two random variables). Let X ∈ Rd.

Then

Xi ⊥⊥ Xj|X−ij ⇐⇒ κxei+ej = 0, ∀x ∈ Rd,

where

X−ij := (X1, ..., Xi−1, Xi+1, ..., Xj−1, Xj+1, ..., Xd).

Proof. The proof proceeds in analogy to the bivariate case and is omitted.

Setting several pairwise di�erential cumulants to zero simultaneously allows us

to express arbitrary conditional independence statements.

Lemma 4 (Multivariate conditional independence). Given three index sets I, J,K

which partition [d], let S = {ei + ej, i ∈ I, j ∈ J}. Then

XI ⊥⊥ XJ |XK ⇐⇒ κxk = 0 for all k ∈ S and for all x ∈ Rd.

Proof. From Lemma 3 it is clear, that this is equivalent to the conditional inde-

pendence statement

XI ⊥⊥ XJ |XK ⇐⇒ Xi ⊥⊥ Xj|X−ij ∀(i, j) ∈ I × J.
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Su�ciency (⇒) and necessity (⇐) are semi-graphoid and graphoid axioms referred

to as weak union and intersection respectively. Both hold true for strictly positive

densities (see for instance Cozman and Walley, 2005).

Example 18. Consider the random variables X1, X2, X3 and X4. Let I =

{1, 2}, J = {4}, K = {3}. Lemma 4 states that

(X1, X2) ⊥⊥ X4|X3 ⇐⇒ κx1001 = 0 and κx0101 = 0 everywhere.

By Lemma 3

κx1001 = 0, for all x ∈ R4 ⇐⇒ X1 ⊥⊥ X4|(X2, X3)

and

κx0101 = 0, for all x ∈ R4 ⇐⇒ X2 ⊥⊥ X4|(X1, X3).

The weak union property of conditional independence states that

(X1, X2) ⊥⊥ X4|X3 =⇒ X1 ⊥⊥ X4|(X2, X3)

and, by symmetry,

(X1, X2) ⊥⊥ X4|X3 =⇒ X2 ⊥⊥ X4|(X1, X3).

which proves su�ciency. The intersection property states that

X2 ⊥⊥ X4|(X1, X3) and X1 ⊥⊥ X4|(X2, X3) =⇒ (X1, X2) ⊥⊥ X4|X3, (3.2)

proving necessity.

We prove the intersection property directly for this example. The left hand side

of (3.2) can be translated into the density statements

f1234

f134

=
f123

f13

and
f1234

f234

=
f123

f13

. (3.3)
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By equating the two expressions and integrating out X2, we obtain f134
f34

= f13
f3
.

Substituting this expression back into (3.3) yields

f1234

f123

=
f34

f3

, or (X1, X2) ⊥⊥ X4|X3

as required. The key insight of the proof is that the intersection property depends

on the positivity assumption of the density.

Lemma 4 allows us to reduce complex conditional independence statements to

a joint set of pairwise zero-cumulants. This reduction of complexity plays an

important role in the estimation of conditional independence structures. Chapter

5 illustrates how nonparametric estimation techniques can be used to estimate

conditional independence pairwise. Lemma 4 shows that this is su�cient in order

to estimate arbitrary conditional independence statements.

The next theorem shows that the random variables X1, ..., Xd are independent if

and only if pairwise conditional independence holds for every pair. Put di�erently,

independence holds if and only if any permutation of k = (1, 1, 0, ..., 0) leads to a

zero-cumulant κk.

Theorem 5 (All-pairwise conditional independence if and only if independence).

The random variables X1, ..., Xd are independent if and only if κxei+ej = 0, for all

(i, j) ∈ [d]2, i 6= j, and for all x ∈ Rd.

Proof. Su�ciency (⇒) follows from di�erentiation of the log-density. Necessity

(⇐) can be proved by induction on the number of variables n. The statement is

true for n = 2 by Lemma 2. Let the statement be true for n and let the
(
n+1

2

)
di�erential cumulants κxei+ej vanish everywhere, where ei and ej are unit vectors

in Rn+1. We show that X2 is independent of X−2. This completes the proof since

the variables X−2 are independent by induction assumption.

Consider κe1+e2 = 0. Integration with respect to x1 and x2 yields

fX1,...,Xn+1(x1, ..., xn+1) = eh1(x−1)+h2(x−2) (3.4)
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for some functions h1 : Rn −→ R and h2 : Rn −→ R. Now integrate again with

respect to x1 to obtain

fX−1(x−1) = eh1(x−1)

∫
R
eh2(x−2)dx1.

The left hand side is a n-dimensional marginal density which factorises into n

marginals by induction assumption: fX−1(x−1) =
∏n+1

i=2 fXi(xi). Thus, h1(x−1)

can be split into a sum of two functions, g1 : Rn−1 −→ R and g2 : R −→ R, where

the latter is a function of x2 only, i.e. h1(x−1) = g1(x−12) + g2(x2). Considering

(3.4) again, we see that the density fX1,...,Xn+1 factorises since

fX1,...,Xn+1(x1, ..., xn+1) = eg2(x2)+g1(x−12)+h2(x−2).

Hence X2 ⊥⊥ X−2 as required.

3.3 Graphical models

The analysis of the last section makes clear that pairwise zero-cumulants are

equivalent to independence or conditional independence statements. Conditional

independence structures can be represented through graphical models. This sec-

tion investigates the link between sets of zero-cumulants and graphical models.

De�nition 10 (Graph and graph related concepts). A graph G = (V,E) is a pair

of a vertex set V and a set of undirected edges E. The vertices represent random

variables and the edges represent interactions. A graph is complete if all vertices

are mutually connected by an edge. A clique is a subset of vertices which induces

a complete subgraph, i.e. all vertices are mutually connected by an edge. A clique

is maximal if no further vertex can be added such that the extended set is still a

clique.

We restrict our attention to �nite, simple graphs. In particular, we do not allow

multiple edges between two vertices or an edge between a vertex and itself.
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2

3

4
1

5

Figure 3.1 � Probabilistic graphical model with three conditional independencies.

Example 19. The graph shown in Figure 3.1 has maximal cliques

{12, 245, 345, 13}. Note that some authors require maximality in their de�nition

of a clique.

A graphical model combines a graph and a collection of random variables in such

a way that graph separation corresponds to conditional independence. This can

be expressed formally through the global Markov property : If a triple (I, J,K)

of disjoint subsets of V is such that K separates I from J in G, then it must

hold that XI ⊥⊥ XJ |XK . Separation means that any path from I to J passes

through K. We sometimes use the short notation I ⊥⊥ J |K. We assume for any

density/graph pair (fX ,G) that fX has the global Markov property with respect

to G. An important theorem due to Hammersley and Cli�ord says that fX , which

is assumed to be strictly positive everywhere, factorises over the maximal cliques

of G if it has the global Markov property with respect to G. In that case it can

be written as

fX(x) =
∏
J∈C

hJ(xJ),

where C denotes the set of maximal cliques of S.

Example 20 (Probabilistic graphical model). Consider a normally distributed

random vector X ∈ R5 with covariance matrix Σ. It can be shown that Xi ⊥⊥

Xj|X−ij if and only if Σ−1
ij = 0. The matrix Σ−1 is referred to as precision or
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in�uence matrix. Suppose Σ−1 is given by

Σ−1 =



∗ ∗ ∗ 0 0

∗ ∗ 0 ∗ ∗

∗ 0 ∗ ∗ ∗

0 ∗ ∗ ∗ ∗

0 ∗ ∗ ∗ ∗


,

where a star denotes a non-zero entry. This in�uence matrix entails three condi-

tional independence statements:

X1 ⊥⊥ X5|(X2, X3, X4),

X1 ⊥⊥ X4|(X2, X3, X5), (3.5)

X2 ⊥⊥ X3|(X1, X4, X5).

The corresponding graph is depicted in Figure 3.1.

At the core of a graphical model is the edge structure of its graph G. Edges

de�ne the set of maximal cliques C, and fX factorises over the maximal cliques

by the Hammersley-Cli�ord Theorem. In order to expand the class of permissible

densities, the next section introduces the concept of a hierarchical model.

3.4 Hierarchical models

3.4.1 Introduction

The class of hierarchical models derives its name from the fact that interaction

within a set of random variables implies interaction in any subset, implying a hi-

erarchical interaction structure. For example, a model for three random variables

X1, X2, X3 which speci�es an interaction between X1, X2 and X3 is hierarchical,

if it also has all two way interactions X1 −X2, X1 −X3, X2 −X3.
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The key theorem of this section shows that the class of hierarchical models is

isomorph to certain sets of zero-cumulants. By the nature of isomorphisms, this

allows a two-fold interpretation. On the one hand, we may take an arbitrary set

of zero-cumulants and investigate the hierarchical model implied by them. On

the other hand, we may take a hierarchical model and represent it in terms of

zero-cumulants.

The full virtue of this isomorphism unfolds in the next chapter. There, we

identify the ideal generated by zero-cumulants with the ideal generated through

monomials. Together this gives a bijective representation of hierarchical models

through monomial ideals. This bijection bridges the gap between statistics and

commutative algebra for continuous densities.

3.4.2 The duality with zero di�erential cumulants

Let [d] be the vertex set representing the random variables X1, ..., Xd. Hierar-

chical models were loosely characterised by the fact that interaction within a set

of variables implies interaction in any of its subsets. Graphs can only express

whether or not two variables are conditionally independent. In order to express

higher order interactions, we need to generalise the concept of a graph to abstract

simplicial complexes.

De�nition 11 (Abstract simplicial complex). A collection of subsets of [d] is an

abstract simplicial complex S if it is closed under taking subsets, i.e. if J ∈ S and

K ⊆ J then K ∈ S.

De�nition 12 (Hierarchical model). Given a simplicial complex S over an index

set [d], a hierarchical model for the joint distribution function fX(x) takes the

form

fX(x) = exp

∑
J∈S

hJ(xJ)

 , (3.6)
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where hJ : RJ −→ R and xJ ∈ RJ is the canonical projection of x ∈ Rd onto the

subspace associated with the index set J .

Let g(x) := log fX(x) denote the log-density. The hierarchical model for fX is

equivalent to a quasi-additive model for g(x) =
∑

J∈S hJ(xJ), and we also refer

to this model for g as being hierarchical.

We introduce a few more quantities related to simplicial complexes. Some of

them will only be needed in Chapter 4.

De�nition 13 (Face, nonface, facet). The elements of a simplicial complex S on

[d] are called faces. Nonfaces are subsets of [d] which are not in S. The set of

nonfaces is denoted by S̄. Maximal faces under inclusion are called facets.

De�nition 14 (Dimension of a face). The dimension of a face F ∈ S is the

number of elements of F minus one:

dimF := |F | − 1.

De�nition 15 (Dimension of a simplicial complex). The dimension of a simplical

complex S is the maximum of the dimensions of its faces:

dimS := max{dimF |F ∈ S}.

De�nition 16 (Flag simplicial complex). A simplicial complex S is �ag if every

minimal nonface of S is a 2-elements subset of [d].

De�nition 17 (Pure simplicial complex). A simplicial complex S is pure if all

facets are of the same dimension.

Example 21 (Simplicial complex and related quantities). Consider the simplicial

complex shown in Figure 3.2. The shading indicates that the face {1, 2, 3} is

included in S. The full simplicial complex is given by

S = {{1}, {2}, {3}, {4}, {1, 2}, {2, 3}, {1, 3}, {3, 4}, {1, 2, 3}}. (3.7)
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2

1 3 4

Figure 3.2 � A simplicial complex.

The faces of S are the elements of S listed above. Since S is closed under taking

subsets, (3.7) holds redundancies. The generators of S are the maximal cliques,

or facets, {1, 2, 3} and {3,4}. The de�nition of a simplicial complex implies that

it is completely characterised by its facets.

To simplify the notation, we use {123, 34} instead of {{1, 2, 3}, {3, 4}} whenever

we have a collection of at least two sets. Furthermore, we write S = {123, 34}

to mean that S is the simplicial complex with facets {1, 2, 3} and {3, 4}. No

ambiguity should arise from this convention since S always denotes a simplicial

complex. By de�nition it holds all subsets of its facets and so the notation cannot

be mistaken with a collection of the two sets {1, 2, 3} and {3, 4}.

Vertices have dimension zero, edges have dimension one and the face {1, 2, 3} has

dimension two. The dimension of S is two since the facet {1, 2, 3} has dimension

two which is maximal. The set of nonfaces of S is given by

S̄ = {1234, 234, 134, 124, 14, 24}. (3.8)

Note immediately that S̄ is closed under unions. The minimal nonfaces are {1, 4}

and {2, 4} since every nonface contains either {1, 4} or {2, 4} or both. These

particular minimal nonfaces have two elements each, implying that S is �ag.

Similarly to writing a simplicial complex S in terms of its facets, we will write S̄ in

terms of the minimal nonfaces only. It is understood that S̄ holds all subsets of [d]

of which at least one nonface is a subset. For instance, if d = 4 then S̄ = {14, 24}
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implies that any set from (3.8) is also contained in S̄. If the set {1, 2, 3} was

excluded from S, then it would be a minimal nonface and the resulting complex

would no longer be �ag.

Flag complexes are completely characterised by the 2-element subsets which are

excluded. This is because the de�nition of �agness implies that no set must be

excluded from the complex unless at least one of its subsets with two elements is

also excluded. This allows us to uniquely identify �ag complexes with graphs. To

be precise, a simplicial complex S is �ag if and only if there exists a graph G such

that the faces of S are the cliques of G. In that case S is referred to as the clique

complex of G and often written as ∆(G).

not flag flag

not hierarchical hierarchical

Figure 3.3 � Illustration of hierarchical models and �ag simplicial complexes.

Flag simplicial complexes are important from a statistical viewpoint because

they naturally lead us to the class of graphical interaction models.

De�nition 18 (Graphical interaction model). A graphical interaction model is a

hierarchical model based on a �ag simplicial complex.

Graphical interaction models are formed exclusively from the unique set of max-

imal cliques of a graph. Thus, unlike most hierarchical models, they can be fully
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described by a graph. They will play an important role in Chapter 4.

Figure 3.3 illustrates the de�nitions of a hierarchical model and of a �ag com-

plex: Hierarchical models cannot have higher order interaction terms unless lower

order interaction terms are included. Models based on �ag complexes (graphical

interaction models) specify that cliques must have all interaction terms. Note

that �agness is an additional requirement further to being a simplicial complex,

so that graphical interaction models are necessarily hierarchical.

We now turn to the main idea of this section which is to relate hierarchical

models to sets of square free zero-cumulants. Associated to an index set K ⊆ [d] is

a di�erential operator Dk, where k is the multiplicity of K. Recall from De�nition

2 that the multiplicity of a set indicates which elements are in the set. We may

write k =
∑

i∈K ei ∈ {0, 1}d. Then k holds ones for every member of K and zeros

otherwise. In the following, we overload the di�erential operator by allowing it

to be superscripted by a set or by a vector. Thus, for an index set K we set

DK := Dk and similarly κxK := κxk. DK returns the di�erential cumulant κxK ,

when applied to g(x).

Example 22. Let K = {2, 4, 6}. We obtain k = (0, 1, 0, 1, 0, 1) and DKg(x) =

κxK = κxk = ∂3

∂x2∂x4∂x6
g(x).

It is a main point of this section that there is a duality between setting collections

of mixed di�erential cumulants equal to zero and a general hierarchical model:

Theorem 6. Given a simplicial complex S on an index set [d], a model g is hierar-

chical, based on S if and only if all di�erential cumulants on S̄ vanish everywhere

that is

κxK = 0, for all x ∈ Rd and for all K ∈ S̄.

Proof. First, let g be hierarchical with respect to S, that is g is a log-density with

representation g(x) =
∑

J∈S hJ(xJ). Then, for K ∈ S̄, the associated di�erential

operator DK annihilates any term hJ in g, since K 6⊆ J for any J ∈ S.
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Conversely, suppose κxK = 0 for all x ∈ Rd and for all K ∈ S̄. Then, by Lemma

4, fX is pairwise Markov with respect to S and hence factorises over maximal

cliques of S by the Hammersley-Cli�ord Theorem.

3.4.3 Special model classes

The terms hJ(xJ) which appear in the de�nition of a hierarchical model have not

been given any special form. Certain classes of hierarchical models can however be

obtained by imposing further di�erential conditions. The following lemma shows

that the log-density is polynomial if we impose univariate derivative restrictions.

Lemma 5. If in addition to the di�erential conditions in Theorem 6 we impose

conditions of the form

∂ni

∂xnii
g(x) = 0, ni ∈ N, for all 1 ≤ i ≤ d, (3.9)

then the h functions in the corresponding hierarchical model are polynomials in

which the degree of xi does not exceed ni − 1, for all 1 ≤ i ≤ d.

Proof. Repeated integration with respect to xi shows that g is indeed a polynomial

in xi of degree less than ni, when the other variable are �xed. Since this holds for

all 1 ≤ i ≤ d, the result follows.

The simultaneous inclusions of derivative operators with respect to one inde-

terminate in (3.9) constitutes an algebraic operation known as Artinian closure

(Sáenz-De-Cabezón Irigaray, 2008).

3.4.3.1 The multivariate conditional exponential distribution

Perhaps the simplest case of obtaining polynomials in the h functions is to force all

second order terms in one variable to zero. This yields the so called multivariate
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conditional exponential distribution. We start with the bivariate case. Thus,

suppose X is bivariate and we impose the symmetric conditions

∂2

∂x2
i

g(x1, x2) = 0, for i = 1, 2.

Then integration yields

g(x1, x2) = x1h1(x2) + h2(x2)

and

g(x1, x2) = x2h3(x1) + h4(x1).

A comparison of these functionals identi�es h1(x2) = a3x2 + a1, h2(x2) = a0 +

a2x2, h3(x1) = a3x1 + a2, h4(x1) = a1x+ a0, for some ai ∈ R for all 0 ≤ i ≤ 3, so

that g(x1, x2) can be written as

g(x1, x2) = a0 + a1x1 + a2x2 + a3x1x2. (3.10)

It can be shown that X1 is distributed exponentially conditional on X2 = x2 for

all x2 > 0 and vice versa (Arnold and Strauss, 1988). A distributions with this

property is called bivariate exponential conditionals (BEC) distribution. BEC

distributions are completely described by g in the sense that any BEC density is

of the form (3.10). In particular, the independence case is included if we force

a3 = 0 by imposing the additional restriction

∂2

∂x1x2

g(x1, x2) = 0.

This also con�rms Lemma 2 for this particular example.

The example extends readily into higher dimension. We call a distribution

multivariate exponential conditionals (MEC) distribution if Xj is distributed ex-

ponentially conditional on X−j = x−j for all 1 ≤ j ≤ d. We capture the extension

to the d-dimensional case in the following lemma:
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Lemma 6 (MEC distributions and Artinian closure). The following statements

are equivalent:

1. A distribution belongs to the class of MEC distributions.

2. The log-density g is multi-linear, i.e there exist 2d indices as ∈ R such that

g =
∑

s∈ζ asx
s, where ζ = {0, 1}d denotes the set of d-dimensional binary

vectors.

3. ∂2

∂x2i
g(x) = 0, for all 1 ≤ i ≤ d.

Proof. For a proof of (1) ⇐⇒ (2) see Arnold and Strauss (1988). The proof of

(2) ⇐⇒ (3) follows the lines of the example.

3.4.3.2 The multivariate normal distribution

Another case of considerable interest is the Gaussian distribution. Here the max-

imal cliques are of degree two. The latter condition is partly obtained with an

Artinian closure with ni = 3, i = 1, . . . , p. However, more is required. We can

guess, from the fact that for a normal distribution all (ordinary) cumulants of

degree three and above are zero that if we impose all degree three di�erential

cumulant to be zero we have polynomial terms of maximum degree 2. This is, in

fact, the correct set of conditions to make the model's terms of degree at most

two. In the α-notation the conditions are

Dαg = 0, for all α ∈ Nd with |α| = 3.

This includes the Artinian closure conditions. The corresponding ideal is gener-

ated by all polynomials of degree three. For a non-singular multivariate Gaussian,

we also require non-negative de�niteness of the degree two part of the model, con-

sidered as a quadratic form.
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The hierarchical model is given by additional restrictions which are equivalent

to removing certain terms of the form xixj, i 6= j. This is the same as setting the

corresponding (i, j)-th entry in the in�uence matrix equal to zero.

3.4.3.3 The multivariate von Mises distribution

The von Mises distribution is used to model angular variables. In the univariate

case it is supported on the unit circle [0, 2π] and has density:

f(x, κ) =
eκ cos(x−µ)

2πI0(θ)
, x ∈ [0, 2π],

where µ and θ are location and scale parameters and I0(θ) is the Bessel function

or order θ.

Singh et al. (2002) and Mardia et al. (2008) generalise the distribution to the

bivariate and multivariate case respectively and, in a research report, Razavian

et al. (2011), introduce an undirected von Mises graphical model. Similarly, we

will generalise the univariate distribution to various forms of multivariate distri-

butions, taking into account the principles of this chapter.

The natural Fourier expansion in one dimension takes the form

g(x) = θ0 +
∞∑
j=1

θj sin(jx) + φj cos(jx).

If we truncate at j = 1 we obtain for the exponentiated model

f(x) = exp(θ0 + θ1 sin(x) + φ1 cos(x)).

Setting θ0 = − log{2πI0(θ)}, θ1 = κ sin(µ) and φ1 = κ cos(µ) shows that the

univariate von Mises distribution is just a �rst order Fourier exponential family:

f(x, κ) =
eκ cos(x−µ)

2πI0(θ)

= exp{κ(cos(x) cos(µ) + sin(x) sin(µ)− log{2πI0(θ)}}

= exp{θ0 + θ1 sin(x) + φ1 cos(x)},



3.4. Hierarchical models 59

where the second line follows from the angle di�erence identity

cos(x− µ) = cos(x) cos(µ) + sin(x) sin(µ).

A two-dimensional version which is supported on the torus [0, 2π]2 starts, nat-

urally,

g(x1, x2) = θ00 + θ10 sin(x1) + φ10 cos(x1) + θ01 sin(x2) + φ01 cos(x2). (3.11)

This is clearly represented as two independent von Mises distributions.

The �rst di�culty in two dimensions is how to obtain a correlated case. Our

approach uses the natural two-dimensional Fourier series, but with higher order

terms. We include terms in

sin(x1 + x2), cos(x1 + x2), sin(x1 − x2), cos(x1 − x2).

Thus, let

g(x1, x2) = θ0 + θ1 sin(x1) + φ1 cos(x1) + θ2 sin(x2) + φ2 cos(x2) (3.12)

+ θ12 sin(x1 + x2) + φ12 cos(x1 + x2) (3.13)

+ θ′12 sin(x1 − x2) + φ′1,2 cos(x1 − x2). (3.14)

Note that this does not include frequency two terms in x1 or x2. We can convert

this model to actual multilinear terms in sin and cos using the angle sum and

di�erence identities such as

sin(a+ b) = sin(a) sin(b)− cos(a) cos(b).

Other bivariate von Mises distributions in the literature take this form, but it

seems easier to integrate our form with the ideas of this chapter.

Given that we have de�ned the interaction terms for two variables above, it is

straightforward to write down a general multivariate von Mises distribution using
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only �rst order interactions: f(x1, . . . , xd) = exp{g(x1, . . . , xd)}, where:

g(x) = θ0 +
d∑
i=1

θi sin(xi) +
d∑
i=1

φi cos(xi)

+
d∑
i=1

d∑
j>i

(
θij sin(xi + xj) + φij cos(xi + xj)

)
+

d∑
i=1

d∑
j>i

(
θ′ij sin(xi − xj) + φ′ij cos(xi − xj)

)
.

(3.15)

The obvious extension to the three-dimensional case is to include the eight terms:

sin(x1 ± x2 ± x3) and cos(x1 ± x2 ± x3).

Recall, from De�nition 12, the general form of a hierarchical model

fX(x) = exp

∑
J∈S

hJ(xJ)

 .

In order to generate hierarchical models of von Mises type, we set the hJ functions

as sin and cos functions. The arguments of the trigonometric functions are sums

and di�erences in the set of variables {xj|j ∈ J}.

The base model, corresponding to the independence case (3.11), has a constant

term plus sin and cos terms in all variables x1, ..., xd, one at a time. The von

Mises base model is similar to including only main e�ects in log-linear models.

The associated graph is a set of vertices without edges.

The following steps outline how to build increasingly complex hierarchical mod-

els based on von Mises distributions supported on [0, 2π]d:

1. Start with the independence case.

2. Corresponding to the edges of a graph, any hJ is modelled by all two-at-

a-time terms, as explained in equation (3.15), for all i, j in J . Unless the

graph has no cliques of length greater than two, this model is not a graphical

interaction model.



3.4. Hierarchical models 61

3. As above, but also including all degree 2 terms

sin(2xi), cos(2xi), i ∈ J.

4. Include all `multilinear' terms:

sin(xi ± xj ± xk ± . . .), cos(xi ± xj ± xk ± . . .), i < j < k ∈ J.

5. Include all degree J terms

sin

 ∑
i∈J :

∑
ni≤|J |

±nixi)

 , cos

 ∑
i∈J :

∑
ni≤|J |

±nixi

 .

There is redundancy of terms in part 4 which we have ignored. Thus we have some

ways to express hierarchical models in suitable generalised von Mises distribution.

As an example we write down a simple conditional independence model, X1 ⊥⊥

X2|X3:

g(x1, x2, x3) = θ0 + θ1 sin(x1) + φ1 cos(x1) + θ2 sin(x2) + φ2 cos(x2)

+θ3 sin(x3) + φ3 cos(x3)

+θ13 sin(x1 + x3) + φ13 cos(x1 + x3)

+θ′13 sin(x1 − x3) + φ′13 cos(x1 − x3)

+θ23 sin(x2 + x3) + φ23 cos(x2 + x3)

+θ′23 sin(x2 − x3) + φ′23 cos(x2 − x3).

Unlike in the MEC and Gaussian case, the multivariate von Mises distribution

cannot be embedded easily into a pure framework of di�erential cumulants. In

each case square-free cumulants can achieve a hierarchical model structure. Being

exponentials of polynomials, the MEC and Gaussian distributions can be fully

described through the imposition of further constraints on higher order cumulants.

Such a simple embedding fails for the von Mises distribution. Consider the uni-

variate case �rst:

g(x) = θ1 sin(x) + φ1 cos(x).
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The natural di�erential condition associated to this model is

(D2 + 1)g(x) = 0, (3.16)

that is the model cannot be expressed in terms of vanishing di�erential cumulants.

Another complication becomes apparent as we move from the homogenous to the

inhomogenous case where the right hand side of (3.16) is not zero. The simplest

case arises as we include a constant term θ0,

g(x) = θ0 + θ1 sin(x) + φ1 cos(x)

which leads to

(D2 + 1)g(x) = θ0.

Expressing multivariate models in di�erential form does not introduce conceptual

di�erences. For instance, the bivariate model g described in (3.14) has associated

di�erential form:

(D20 +D02 +D22 + 1)g(x) = θ0.

It is now clear that the di�culties do not lie in expressing the model g in

di�erential form but rather in the increasingly complex interpretation in terms of

di�erential cumulants. Furthermore, unlike in the Gaussian or the MEC case, the

di�erential conditions of the von Mises distribution cannot be mapped easily to

the ideal theory explained in the next chapter. There, sets of zero cumulants are

mapped to monomial ideals. The ideals generated by the von Mises distribution

are generated by polynomials rather than monomials. For instance, x2 + y2 +

x2y2 + 1 is the generator associated to the homogenous version of (3.14). In order

to analyse the von Mises distribution, polynomial ideal theory needs to be invoked

which is beyond the scope of this thesis.
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3.5 Conclusion

This chapter provided the theoretical foundation underlying our statistical mod-

elling approach. It was shown how graphical models can be used to represent con-

ditional independence statements. Furthermore, hierarchical models and graphical

interaction models were introduced.

This chapter revealed that arbitrary conditional indendence statements can be

expressed in terms of pairwise zero-cumulants. This result allows us to describe

and estimate the structure of graphical models without explicit reference to the

covariance matrix. Hence, the need for a Gaussian distribution assumption is

eliminated.

Conditional independence is obtained through setting pairwise binary di�eren-

tial cumulants to zero. The imposition of further di�erential conditions leads to

speci�c model classes. The multivariate exponential conditional, the multivariate

normal and the mulitvariate von Mises distribution are three examples considered.

Exploring further such model classes remains for future research.



Chapter 4

Hierarchical models and monomial

ideals

4.1 Introduction

The growing area of algebraic statistics makes use of computational commutative

algebra particularly for discrete probability models, notably poisson and multino-

mial log-linear models. Diaconis and Sturmfels (1998) constructed Markov chain

algorithms for the discrete case conditional on a su�cient statistic. Other notable

contributions are Pistone and Wynn (1996, 1999, 2006). A textbook reference

is Pistone et al. (2001) and Riccomagno (2009) gives a brief overview of recent

developments in the �eld. Work connecting the algebraic methods to continuous

probability models is sparser although considerable process has been made in the

Gaussian case (Drton and Xiao, 2009; Drton et al., 2009).

Section 4.2 explains our link to the algebra via monomial ideals. The previous

chapter de�ned a hierarchical model in terms of a quasi-additive model of the log-

density g over a simplicial complex S. One-to-one associated to S is its so called

Stanley-Reisner ideal IS which will turn out to be the most important quantity

of this chapter.

Section 4.3 investigates the class of decomposable models, which is a subclass of

the graphical interaction models, also introduced in the previous chapter. Decom-

posable models are very well studied in the statistical literature (Lauritzen and
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Wermuth, 1989; Lauritzen, 1996). They allow for exact computations of max-

imum likelihood estimators and facilitate causal inference. Our aim is to help

characterise them from an algebraic viewpoint.

Section 4.4 gives an example of how the link between the algebra and statistics

can be exploited. The example is based on the so called Ferrer ideal, a well

studied algebraic quantity. We show how Ferrer ideals naturally lend themselves to

modelling data which is characterised by two subgroups within which all variables

interact mutually. Section 4.5 introduces the algebraic concept of shellability,

which is similar to the statistical concept of decomposability.

4.2 The duality with monomial ideals

A monomial in x1, ..., xd is a product of the form xα =
∏d

j=1 x
αj
j , where α ∈ Nd.

A monomial ideal I is a subset of a polynomial ring k[x1, ..., xd] such that any

m ∈ I can be written as a �nite polynomial combination m =
∑

k∈K hkx
αk , where

hk ∈ k[x1, ..., xd] and αk ∈ Nd for all k ∈ K. We write I =< xα1 , ..., xαK > to

express that I is generated by the family of monomials (xαk)k∈K .

The full set M of monomials contained in the monomial ideal I has the hierar-

chical structure:

xα ∈M ⇒ xα+γ ∈M, (4.1)

for any index set γ ∈ Nd. A monomial ideal is square-free if its generators

(xαk)1≤k≤K are square free, i.e. αk ∈ {0, 1}d for all 1 ≤ k ≤ K.

The following discussion, which is one of the main developments in this thesis,

shows that there is complete duality between the structure of square-free monomial

ideals and hierarchical models. One-to-one associated with a simplicial complex

S is its Stanley-Reisner ideal IS . This is the ideal generated by all square-free

monomials in S̄:
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De�nition 19 (Stanley-Reisner ideal). For a face K ∈ S̄ let mK(x) :=
∏

k∈K xk

denote the associated square-free monomial. Then

IS :=< (mK)K∈S̄ > .

As an example, the Stanley-Reisner ideal IS associated to the simplicial complex

shown in Figure 3.2 is the ideal < 14, 24 > generated by the minimal nonfaces

corresponding to the missing one-dimensional faces. Table 4.1 lists several more

examples of simplicial complexes and their Stanley-Reisner ideals. We will en-

counter them further below.

Facets of S Stanley-Reisner ideal IS Figure Page

Model 1 {12, 34, 34, 14} < 13, 24 > Figure 4.2 68

Model 2 {123, 234, 345} < 14, 15, 25 > Figure 4.3 70

Model 3 {125, 235, 345, 145} < 13, 24 > Figure 4.16 88

Model 4 {123, 124, 134, 234, 235, 15} < 45, 125, 135, 1234 > Figure 4.5 76

Model 5 {123, 234, 345, 456} < 14, 15, 16, 25, 26, 36 > Figure 4.7 78

Table 4.1 � Facets of S and generators IS for some example models.

Having linked a simplicial complex S to its Stanley-Reisner ideal IS , the second

step is to associate the di�erential operator DK with the monomial mK(x). We

need only con�rm that the hierarchical structure implied by (4.1) is consistent

with di�erential conditions of Theorem 6. Without loss of generality include all

di�erential operators which are obtained by continued di�erentiation. Then, (4.1)

is mapped exactly to

Dαg(x) = 0, for all x ∈ Rd ⇒ Dα+γg(x) = 0, for all x ∈ Rd and for all γ ∈ Nd.

simply by continued di�erentiation. This bijective mapping from monomial ideals

into di�erential operators is sometimes referred to as a polarity and di�erential

ideal theory has its origins in Seidenberg's di�erential nullstellensatz (Seidenberg,
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Figure 4.1 � Isomorphisms relating Chapters 2, 3 and 4.

1956). It allows us to map sets of zero-cumulants to monomial ideals. It is beyond

this thesis to explore this link rigorously, but we note that for the simplicial

complex S of a hierarchical model the Stanley-Reisner ideal is generated by all

monomial terms arising from the polarity. This is the formal Stanley-Reisner ideal

IS of S (Miller and Sturmfels, 2005).

The above discussion makes clear that sets of pairwise zero-cumulants are iso-

morphic to �ag simplicial complexes and their Stanley-Reisner ideals. These two

links close the pentagon of ideas upon which this thesis is built. Figure 4.1 shows

the isomorphisms between sets of zero-cumulants, conditional independence state-

ments, graphical interaction models, �ag simplicial complexes and their Stanley-

Reisner ideals. The previous two chapters discussed the top of Figure 4.1. The

rest of this chapter is primarily concerned with the links between the top and
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the bottom. It can be considered as a prelude to a wider study of the implica-

tions of the equivalences and in particular of algebraic concepts which may lead

to interesting statistical properties.

4.3 Decomposable models

4.3.1 Graph-theoretic characterisation of decomposable

models

One of the main conditions discussed in the theory of hierarchical models in statis-

tics is the decomposability of a joint density function into a product of certain

marginal probabilities. Simple conditional probability is a canonical case. Thus

with p = 3 the conditional independence X1 ⊥⊥ X2|X3 is represented by the graph

1 − 3 − 2. In this case the graph has the model complex: S = {13, 23}. The

Stanley-Reisner ideal is < x1x2 >. There is a factorisation:

fX1,X2,X3(x1, x2, x3) =
fX1,X3(x1, x3)fX2,X3(x2, x3)

fX3(x3)
.

Decomposable graphical models, discussed below, are a generalisation of this sim-

ple case. There are other cases, however, where one or more factorisations are

associated with the same simplicial complex. An example is the 4-cycle shown in

Figure 4.2: S = {12, 23, 34, 41}. Any hierarchical model of the form

g = h1,2 + h2,3 + h3,4 + h4,1

has a factorisation representing the four-cycle. The h functions do not, however,

represent marginal densities. The Stanley-Reisner ideal of the four-cycle is given

by IS =< x1x3, x2x4 >. Although this ideal is rather simple from an algebraic

point of view, the four-cycle from a statistical point of view is rather complex

(Whittaker, 1990; Drton et al., 2009).
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4 3

21

Figure 4.2 � Graph of model 1, the four-cycle. No factorisation is possible which

re�ects all conditional independencies.

Furthermore, the structure of S may suggest factorisations even when they are

not natural from a statistical viewpoint. Perhaps the �rst such case is the 3-cycle:

S = {12, 13, 23}. The Stanley-Reisner ideal is < x1x2x3 >. The maximal clique

log-density representation has no three-way interaction:

g(x1, x2, x3) = h12(x1, x2) + h13(x1, x3) + h14(x1, x4).

This might suggest the factorisation

fX1,X2,X3(x1, x2, x3) =
fX1,X2(x1, x2)fX1,X3(x1, x3)fX2,X3(x2, x3)

fX1(x1)fX2(x2)fX3(x3)
. (4.2)

A factorisation of this kind is the continuous analogue to a perfect three-

dimensional table in the discrete case (Darroch, 1962). However, except when

X1, X2, X3 are independent we have not been able to provide a density for which

(4.2) holds.

As mentioned, one class of models with particular nice properties is the class of

decomposable models. This class of models is graphical in a sense of being fully

described by a graph. Whether or not a model is decomposable depends on the

associated graph.

De�nition 20 (Decomposition of a graph). A partition (I, J,K) of the vertex V

of a graph G decomposes G if

1. K separates I from J , i.e. any path from I to J must pass through K.
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2. K is a clique of G.

We can now de�ne a decomposable graph recursively:

De�nition 21 (Decomposable graphs). A graph G is decomposable if it is com-

plete or if there exists a decomposition (I, J,K) into decomposable subgraphs

GI∪K and GJ∪K .

Consider the left diagram of Figure 4.3. The graph G has maximal cliques

{123, 234, 345}. The partition I = {1, 2}, J = {5} and K = {3, 4} of G induces

the subgraphs G1234 and G345. The subgraph G345 is complete since all vertices are

mutually connected. The subgraph G1234 decomposes into two complete subgraphs

G123 and G234. Hence, G is decomposable.

De�nition 22 (Decomposable simplicial complex and decomposable model). A

simplicial complex S is decomposable if it is the simplicial complex of a decompos-

able graph or if it is the clique complex of a decomposable graph. A hierarchical

model over a decomposable complex S is decomposable.

If S represents a decomposable graph G, then it is necessarily one-dimensional

and does not include any interaction terms beyond the edges of G.

Decomposable models have a factorisation

fV (xV ) =

∏
J∈C fJ(xJ)∏
K∈S fK(XK)

,

where the numerator on the right hand side corresponds to maximal cliques and

the denominator to separators which arise in the continued factorisation under the

de�nition. This factorisation does not depend on the order in which the graph is

decomposed recursively. Consider again the example shown in Figure 4.3. Taking

K = {2, 3} gives the factorisation

f12345 =
f123f2345

f23
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Figure 4.3 � Repeated factorisation and marginalisation of a hierarchical model

based on a decomposable graph.

and, using K = {3, 4} as the separating set for the induced subgraph G2345, we

obtain

f12345 =
f123f234f345

f23f34

.

The same factorisation would have been achieved with a �rst stage separation

through K = {3, 4}, followed by a second stage separation through K = {2, 3}.

It is important to realise that in order to proceed with the factorisation at each

stage a marginalisation is required. This is clear from the exponential expression

of the model:

f12345 = exp
{
h123(x1, x2, x3) + h234(x2, x3, x4) + h345(x3, x4, x5)

}
.

Integrating with respect to x1 we obtain a hierarchical model for the marginal

joint distribution of (X2, X3, X4, X5). This marginalisation is possible because x1

appears only in the single clique {1, 2, 3}.

The marginalisation has implications for the polynomial rings of which the as-

sociated Stanley-Reisner ideals are subsets of. The Stanley-Reisner ideal of the

model, < x1x4, x1x5, x2x5 >, is a subset of k[x1, x2, x3, x4, x5]. The factorisa-

tion of f2345 is, however, mapped into the monomial ideal < x2x5 >, a subset of

k[x2, x3, x4, x5]. A marginalisation has allowed us to drop from �ve dimensions to

four. Here we have an interesting relationship between the statistical and algebraic
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formulation: in order to reduce the dimensionality and obtain the Stanley-Reisner

ideal for a reduced set of variables, we must �rst perform a marginalisation, which

is a non-algebraic operation in the sense of polynomial ideal theory. We capture

this in the following lemma:

Lemma 7 (Marginalisation of rest-graphs). Suppose the graph G with vertex set

[d] is not complete and has vertex subsets J and K such that J ∪K is a maximal

clique and K separates J ∪ K from [d] \ (J ∪ K). Then the marginal model

for [d] \ J is based on the subgraph G[d]\J . Moreover, the monomial ideal for the

marginal representation is obtained by deleting any generators containing elements

of J and is in the ring in x[d]\J .

Proof. This follows the lines of the example. The exponential expression for the

density will hold a unique term exp(hJ∪K(xJ∪K)) in which xJ appears. Integrating

with respect to xJ to obtain the marginal distribution for X[d]\J gives the reduced

model. The monomial ideal representation follows accordingly.

An important class of graphs are the triangulated or chordal graphs.

De�nition 23 (Chordal graph). A triangulated or chordal graph is a graph with

the property that every cycle of length greater than three possesses a chord, i.e.

two non-consecutive vertices that are neighbours.

Lemma 8 (Triangulated graphs are decomposable). A graph is decomposable if

and only if it is triangulated.

Proof. This is a standard result, see for instance Lauritzen (1996).

The smallest graph which is non-chordal is the four-cycle shown in Figure 4.2.

In practice, it is often easier to check triangulation than to check decomposability

from �rst principles. Remarkably, the concept of a chordless graph and the links

to various algebraic conditions is known in the algebraic literature. We now sketch

these.
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4.3.2 Algebraic characterisations of decomposable models

The aim of this section is to give two equivalent algebraic characterisations of a

decomposable graph. Dirac's Theorem, see page 81, relates decomposability to

properties of the minimal free resolution of the Stanley-Reisner ideal IS and to

the projective dimension of the Stanley-Reisner ideal of the Alexander dual S? of

a simplicial complex S. The following introduces the concepts of a minimal free

resolution and Alexander duality. We follow Cox et al. (2005) and He (2006).

4.3.2.1 Minimal free resolution

Recall from De�nition 19 that the Stanley-Reisner ideal IS is the square-free

monomial ideal generated by the monomials corresponding to the nonfaces of

S. An important homological object through which IS can be studied is its free

resolution. Heuristically, the free resolution can be thought of as a sequence of

matrices determined by the generators of IS with the de�ning property that the

product of any two consecutive matrices is zero. In order to construct and de�ne

the free resolution formally, it is necessary to introduce a minimum of algebraic

topology.

Consider a sequence of R-modules and homomorphisms

0 −−→Ml
ϕl−−→ · · · −−→Mi+1

ϕi+1−−→Mi
ϕi−−→ · · · ϕ1−−→M0 −−→ 0. (4.3)

In this notation, the homomorphism ϕi+1 maps from Mi+1 to Mi, ϕi maps from

Mi to Mi−1 etc. The �rst homomorphism, 0 −−→ Ml, maps 0 to the additive

identity of Ml. The last homomorphism, M0 −−→ 0, maps any element in M0 to

0. Let im(ϕ) and ker(ϕ) denote the image and the kernel of ϕ respectively. The

sequence (4.3) is exact, if im(ϕi+1) = ker(ϕi) for all i = 1, ..., l.

It is the R-moduleM0 which determines the family of homomorphisms (ϕi)1≤i≤l

and the family of modules (Mi)1≤i≤l. This is the reason why some authors reverse

the above chain and put M0 to the front. Let f1, ..., ft denote the generators of
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M0. In our context, R will be the polynomial ring in x1, ..., xd over some �eld K,

M0 will be the Stanley-Reisner ideal IS and f1, ..., ft will be the generators of IS ,

i.e. the missing edges of the associated graph. De�ne a homomorphism

ϕ1 : Rt −→ M0

ei 7−→ fi
, (4.4)

where ei denotes the i-th standard vector in Rt. One can think of ϕ1 as the inner

product operator between its argument and the vector of generators (f1, ..., ft).

A homomorphism ϕ : M −→ N is surjective if and only if the sequence

M
ϕ−−→ N −−→ 0

is exact since then im(ϕ) = ker(N −−→ 0) = N .

The homomorphism ϕ1 de�ned in (4.4) can be shown to be surjective. Hence,

we can identify the generators f1, ..., ft of IS with the exact sequence

Rt ϕ1−−→M0 −−→ 0.

Moreover, the kernel of ϕ1 can be shown to be a �nitely generated R-submodule.

Since ker(ϕ) has a �nite set of generators, we can repeat the above procedure which

started with a set of generators, de�ned the homomorphism ϕ1 and considered

its kernel ker(ϕ1). This results in a new homomorphism ϕ2 with kernel ker(ϕ2).

Unlike ϕ1 the homomorphism ϕ2 will in general be a matrix since the image is

t-dimensional.

We can continue the procedure repeatedly. The Hilbert Syzygy Theorem guar-

antees that, dealing with the polynomial ring k[x1, ..., xd], we only have to do this

�nitely many times. The process stops with the �rst injective homomorphism.

Figure 4.4 shows a �ow chart of the algorithm which determines the sequence of

homomorphisms and R-modules. We can now de�ne the free resolution formally:
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De�ne ϕ0 as null homomorphism

Set M0 to IS

Set i equal 1

De�ne ϕi as in (4.4)

Set Mi to ker(ϕi−1)

Is Mi

equal to

zero?

Increment i

stop

no

yes

Figure 4.4 � Flow chart of the algorithm for constructing the free resolution of IS .

De�nition 24 (Free resolution in polynomial rings). Let R = k[x1, ..., xd] and M

be a R-module. A free resolution of M is an exact sequence of the form

0 −−→MI
ϕI−−→ · · · −−→Mi+1

ϕi+1−−→Mi
ϕi−−→ · · · ϕ1−−→M0 −−→ 0. (4.5)

The length of a free resolution is given by the number of homomorphisms I in (4.5).

A free resolution with shortest length is minimal. The length of the minimal free

resolution is the projective dimension, projdim(M). A free resolution is k-linear

if its associated matrices are linear forms and all generators of M have degree k.

From the construction outlined above it is clear that, in general, the free res-

olution of a module contains more information than the set of its generators. It

is beyond the scope of this thesis to go into the details of the extra information

gained. We will, however, sketch one interesting interpretation of the minimal
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free resolution of IS as a sequence of lowest common multiple operations on the

generators of IS .

Example 23 (Minimal free resolution). Consider model 4 from Table 4.1, which

is essentially Example 1.14 of Miller and Sturmfels (2005). The simplicial complex

is shown in Figure 4.5. This model is not a graphical interaction model since the

Stanley-Reisner ideal holds generators with more than two elements. This implies

that the model is not decomposable. The free resolution is given by the three

matrices:

A′ =


45

125

135

1234


, B =


0 −12 −13 −123

3 4 0 0

−2 0 4 0

0 0 0 5


, C =


−4

4

−2

0


.

In the interest of readibility, we have displayed only the integer subscripts and we

will continue to do so. We keep in mind that 45, for instance, is short for x4x5.

The free resolution is written

0 −−→ S
C−−→ S4 B−−→ S4 A−−→ S −−→ 0.

It is easily checked that

AB =

[
0 0 0 0

]
and (BC)′ =

[
0 0 0 0

]
,

con�rming the exactness property of the free resolution. Note that the matrices

A and B are not linear for they hold products of indeterminates.

As mentioned, free resolutions are related to repeated lowest common multiple

operations on the generators of IS . The aim is to construct a new simplicial

complex based on IS . Take the generators as vertices. Edges are obtained using

the lowest common multiple (LCM) of vertices.
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Figure 4.5 � The simplicial complex of model 4 in Table 4.1.

Returning to the example, x1x2x3 and x1x3x5 belong to the set of generators

of IS . Let the symbol ∧ represents the LCM operator. Then x1x2x3x5 forms the

edge between the vertices x1x2x3 and x1x3x5 since

x1x2x3 ∧ x1x3x5 = x1x2x3x5.

Continuing this way and joining the edges to form two dimensional faces we con-

struct the entire simplicial complex from LCM operations. It is shown in Figure

4.6. The free resolution captures the mapping between successive levels of the

complex as we progress from

{x4x5, x1x2x5, x1x3x5, x1x2x3x4} to {x1x2x3x4x5}.

To �nd out which vertices are joined by edges, the matrix multiplication in the

resolution has to be taken into account. For instance, the �rst column of B holds

two non-zero entries in the second and third row. This allows us to conclude

that the vertices {1, 2, 5} and {1, 3, 5} will be joined through an edge since they

are in the second and third column of A. The edge itself is given by either of

the products. For instance, {1, 2, 5} is multiplied into 3, so that the edge will

represent the face {1, 2, 3, 5}.

We next consider the decomposable model 5 shown in Figure 4.7. It has facets

{123, 234, 345, 456} and Stanley-Reisner ideal < 14, 15, 16, 25, 26, 36 > . Using the

resolution function of the commutative algebra package CoCoA (CoCoATeam,
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1245

1235

135

1345

45
12345

125

123412345

Figure 4.6 � Simplicial complex of the Stanley-Reisner ideal IS . Vertices are ideal

generators, edges are obtained through the lowest common multiple operation on

the vertices.

2 64

31 5

Figure 4.7 � Simplicial complex of model 5.

2004) we have the matrices

A′ =



14

15

16

25

26

36


, B =



0 0 −6 0 0 0 −5 0

0 −6 0 0 0 0 4 −2

0 5 4 0 −3 −2 0 0

−6 0 0 0 0 0 0 1

5 0 0 −3 0 1 0 0

0 0 0 2 1 0 0 0


, C =



0 −1 0

−4 2 0

5 0 0

0 0 −1

0 0 2

0 5 −3

−6 0 0

0 −6 0



.

The matrices A,B and C are linear in the indeterminates. Again, the simplical

complex shown in Figure 4.8 can be constructed from the resolution. An impor-
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Figure 4.8 � Simplicial complex of IS for model 5.

tant point is that we do not at this point continue to build the complex up to

{x1x2x3x4x5x6}. This point is somewhat beyond the remit we have adopted for

this thesis. A heuristic reason is that a full description of the complexity of the

ideal is given and going deeper inside the ideal does not achieve a �ner description.

There is a nice interpretation in terms of inclusion-exclusion. The set of monomi-

als in the Stanley-Reisner ideal IS is the union of sets generated by the individual

generators of IS :

< x1x4, x1x5, x1x6, x2x5, x2x6, x3x6 >=< x1x4 > ∪ · · · ∪ < x3x6 > .

A natural way to express this is via inclusion-exclusion where

< x1x4 > ∩ < x1x5 > = < x1x4 ∧ x1x5 > = < x1x4x5 >

etc. This is illustrated in Figure 4.9. Suppose we are given a Stanley-Reisner ideal

IS =< x4
1, x

2
1x

2
2, x

3
2 > and we are to obtain all monomials outside the Stanley-

Reisner ideal represented by the shaded area. Black dots represent monomials

outside the Stanley-Reisner ideal. They can be counted as the sums and di�erences

of elements in shifted orthants. Roman numbers indicate how many times an
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orthant gets added and subtracted. We start with the entire positive orthant.

Next we subtract all monomials inside the Stanley-Reisner ideal < x4
1 >, inside

the Stanley-Reisner ideal < x2
1x

2
2 > and inside the Stanley-Reisner ideal < x3

2 >.

This subtracts some monomials in the shaded area more than once, so we need

to add back the monomials inside the Stanley-Reisner ideals < x4
1 > ∩ < x2

1x
2
2 >,

< x4
1 > ∩ < x3

2 > and < x2
1x

2
2 > ∩ < x3

2 >. Finally subtract the interjection of all

three prime ideals, < x4
1x

3
2 >.

The standard inclusion-exclusion procedure adds and subtracts many terms

which cancel. The minimal free resolution gives, in some sense, the shortest

identity of inclusion-exclusion type typically without needing to perform LCM to

the deepest possible level. In the example above, one can proceed to add further

terms leading to x1x2x3x4x5x6 but the resolution would no longer be minimal.

(2,2)

(4,0)

x

 

I

(0,3)

I II

IV

y

I II

Figure 4.9 � Inclusion-exclusion interpretation of the free resolution.

4.3.2.2 Alexander duality

The second quantity of interest is the Alexander dual of a simplicial complex S

(Miller and Sturmfels, 2005, De�nition 1.35). Recall that S̄ holds the nonfaces of

S.

De�nition 25 (Alexander dual). The Alexander dual of a simplicial complex S
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on [d] is de�ned as the collection of set compliments of the nonfaces of S:

S? := {[d] \ F : F ∈ S̄}.

Example 24. Consider the model complex on d = [4] formed by the cliques

{123, 234}. Then S̄ is generated by the nonfaces {14, 124, 134, 1234}. The collec-

tion of compliments of S̄ is the Alexander dual S? = {23, 3, 2, ∅}.

4.3.2.3 Dirac's Theorem

De�nition 24 introduced the minimal free resolution, the projective dimension and

the concept of k-linearity of a minimal free resolution. Section 4.3.2.2 explained

the Alexander dual of a simplicial complex S. We can now relate decomposable

models to algebraic properties of the Stanley Reisner ideals of S and S̄. The

following is referred to as Dirac's Theorem.

Theorem 7 (Algebraic characterisation of decomposability). Given a �nite, non-

complete graph G on d vertices with clique complex S the following are equivalent:

1. G is chordal.

2. IS has a 2-linear resolution.

3. The projective dimension of IS? is 1.

Proof. See Herzog and Hibi (2011, Theorem 9.2.12). Note that the authors only

give linearity of IS as their second equivalent condition. The fact that IS is indeed

2-linear is, however, implied from their �fth condition stating that S is a quasi-

forest and hence �ag. A di�erent proof for 2-linearity is provided by Petrovic and

Stokes (2010).
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y_4y_3

Figure 4.10 � Ferrer graph.

4.4 Ferrer ideals

This subsection gives a particular example that illustrates the research potential

that the duality between hierarchical models and monomial ideals o�ers. The

example starts in the algebraic space. It takes a particular class of ideals, the

Ferrer ideals, and shows that this ideal class corresponds to statistical models

which are decomposable. Models generated by Ferrer ideals, to be de�ned below,

are appropriate if subgroups of variables can be identi�ed which have either no

interaction amongst themselves or complete mutual interaction. Ferrer ideals are

based on Ferrer graphs, a special class of bipartite graphs.

De�nition 26. A bipartite graph G on [d] is characterised by a partition [d] =

V1 ∪ V2 such that every edge of G is of the form {i, j} where i ∈ V1 and j ∈ V2.

Figure 4.10 shows a bipartite graph. It has no edges between vertices of the

same vertex set.

De�nition 27. A Ferrer graph is a bipartite graph on two distinct vertex sets

X = {x1, ..., xn} and Y = {y1, ..., ym} such that if (xi, yj) is an edge of G, then so

is (xp, yq) for all 1 ≤ p ≤ i and for all 1 ≤ q ≤ j. In addition, (x1, ym) and (xn, y1)

are required to be edges of G.

Bipartite graphs are characterised by the lack of edges within each vertex set.

Ferrer graphs impose an extra restriction regarding the edges between the sub-
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y_1 y_2 y_3 y_4

x_5

x_4

x_1

x_2

x_3

Figure 4.11 � Ferrer tableau exhibiting the characteristic staircase. The bold bound-

ary is su�cient to describe a Ferrer graph.

groups. For this reason, a Ferrer graph can be written in a Ferrer tableau which

exhibits an inverse staircase structure. This is shown in Figure 4.11.

Models based directly on Ferrer graphs are applicable when two subgroups of

variables exists which have zero interaction within either. Perhaps more likely are

scenarios where the interaction within a subgroup is complete. In such a case we

should reverse the so far adopted convention that edges of the graph correspond

to interaction. Instead, edges should indicate missing interactions and, unlike

graphs we have seen before, the Ferrer graph does no longer correspond to the

model complex.

The apparent advantage of this reversed approach is a much more e�cient en-

coding of information. If all variables within a subgroup interact, there is no need

for a large amount of edges expressing exactly that. In fact, doing so may hide

otherwise visible structure. Comparing Figure 4.12 with Figure 4.10 illustrates

this point.

In the following we assume that edges of the Ferrer graph G give missing in-

teractions in the model. This leads us to study the edge ideal I(G). It is, as the

name suggests, generated by the edges of G and it is the ideal which we refer to

as the Ferrer ideal. Of course, the Ferrer ideal is still the Stanley-Reisner ideal of
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y_3

y_2

y_1

Figure 4.12 � The model complex where edges indicate interaction.

the model simplicial complex S. However, having started with the Ferrer graph,

S is still unkwown to us. Whilst we can retrieve it from S̄ there is no particular

reason why we should do so.

Example 25 (Ferrer ideal). As an example consider the graph G shown in Figure

4.10. The edge ideal I(G) is subset of k[x1, ..., x5, y1, ..., y4] and is generated by

the edges of G. These correspond to the shaded squares in Figure 4.11:

I(G) =< x1y1, x1y2, x1y3, x1y4, x2y1, x2y2, x2y3, x3y1, x3y2, x4y1, x5y1 > .

Corso and Nagel (2009) show that Ferrer ideals have 2-linear resolutions which,

by Theorem 7, makes the associated model decomposable. It is straightforward

to exhibit the decomposition directly, following Lemma 7. Since we use shaded

areas to imply interaction, we consider the complement staircase shown in Figure

4.13. Importantly, both vertex sets are now fully connected inside.

We start with the top row of the complement staircase and note that x1 has no

connection to any y-variable. This identi�es {x1, ..., x5} as the �rst maximal clique

and the only maximal clique to contain x1. We may integrate out x1. x2 interacts

with y4 and hence so do x3, x4 and x5 by the de�ning property of the Ferrer ideal.

x2 does not interact with y3 so the next maximal clique, {x2, ..., x5, y4} is found.
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y_1 y_2 y_3 y_4
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x_4

x_1

x_2

x_3

Figure 4.13 � The complement tableau allows us to associate shaded squares to

variable interaction. Furthermore, all variables within a vertex set interact.

We continue this process along the boundary of the shaded area in the complement

staircase of Figure 4.13. The set of maximal cliques is given by

{x1x2x3x4x5, x2x3x4x5y4, x3x4x5y4y3, x4x5y4y3y2, y1y2y3y4}.

The set of separators is

{x2x3x4x5, x3x4x5y4, x4x5y4y3, y4y3y2}.

This procedure con�rms, without invoking the more general Theorem 7, that

hierarchical models generated by Ferrer ideals are decomposable.

4.5 Shellability

As implied by the sections above a test of whether the algebraic representation

yields new ideas for hierarchical models is where new structures are contributed.

We have seen this to some extent with the Ferrer ideals, as yielding a nice subclass

of decomposable models.

An important algebraic structure is that of a shellable simplicial complex. It is

similar, though not identical, to the graph-theoretical concept of decomposability.
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We shall see (i) that the concepts overlap, but one does not imply the other, (ii)

that being shellable has several algebraic consequences and (iii) that shellability

leads to factorisations of the associated density.

We found the lecture notes by He (2006) and the timely book by Herzog and

Hibi (2011) and Björner (1995) particularly useful.

Given a set of faces {G1, ..., Gs} of S, we denote by < G1, ..., Gs > the subcom-

plex of S consisting of those faces of S which are contained in some Gi, 1 ≤ i ≤ s.

For instance, S =< F1, ..., Fm > if F1, ..., Fm are the facets of S.

De�nition 28 (Boundary of a facet). The boundary δ(F ) of a facet F is the

union of subsets of F which have one vertex less than F . Formally,

δ(F ) := {f ⊂ F | dim(f) = dim(F )− 1}.

For instance, the boundary of the facet {1, 2, 3} representing a triangle is the

set of edges {12, 13, 23}.

De�nition 29 (Shellable complex). A simplicial complex S is shellable if its facets

can be ordered F1, F2, ..., Fm such that, for all 2 ≤ j ≤ m, the subcomplex

< δ(Fj) ∩ ∪j−1
k=1δ(Fk) > (4.6)

is pure of dimension dimFj − 1. An order of the facets satisfying these conditions

is called a shelling order. To say that F1, ..., Fm is a shelling order of S is equivalent

to saying that for all i and all j < i, there exists l ∈ Fi \ Fj and k < i such that

Fi \ Fk = {l}.

The subcomplex in (4.6) is generated by the intersection of boundaries of facet

Fj and the union of facets F1, ..., Fj−1. The requirement that it has dimension

Fj − 1 says that, as a new facet it added to the union of facets already considered

under the shelling order, it must contribute exactly one new vertex. Hence, in a

non-technical sense, the facets of a shellable simplicial complex can be ordered so

that they are dense.
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Figure 4.14 � A decomposable graph which complex is not shellable.

F_1
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F_3

2 4

3
1 5

Figure 4.15 � A shellable and decomposable simplicial complex.

We now give a few examples to illustrate the concept and, at the same time,

distinguish it from decomposability.

Example 26 (Decomposable complex which is not shellable). Consider the com-

plex depicted in Figure 4.14. It is the clique complex of a triangulated graph and

hence decomposable. The associated complex is not shellable since the intersec-

tion of F1 and F2 is the set {3}, which contains just a single vertex. The vertex

{3} has dimension zero whereas dimF2 = 2. For a clique complex based on a

triangulated graph to be shellable, it is necessary that every triangle shares at

least one common edge with one other triangle.

Example 27 (Decomposable complex with shellable complex). The simplicial

complex depicted in Figure 4.15. is a clique complex of a triangulated graph and

hence decomposable. It is also shellable: we can build up by attaching each new

triangle by an edge.

Example 28 (Non-decomposable, shellable complex). The four-cycle shown in

Figure 4.2 is the prime example of a non-decomposable complex. The cliques
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1
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Figure 4.16 � A shellable and non-decomposable simplicial complex.

are formed by the edges. With the ordering F1 = {12}, F2 = {23}, F3 = {34}

and F4 = {14} the relevant intersections are all zero-dimensional. Hence, the

four-cycle is shellable.

Building on the four-cycle, we can create an example in dimension 2. The

simplicial complex depicted in Figure 4.16 includes the four-cycle {1234} so it

is non-decomposable. It is generated by {125, 145, 235, 345}. As each of the

two-dimensional facets shares two of its edges with other facets, the complex is

shellable.

Good intuition for shellability is to think of playing simplicial childrens' bricks

with the rule that any new brick must be placed with its maximal faces lying

along the maximal face of one or more already placed brick. The de�nition of

shellability and its intuitive representation leads naturally to a class of conditional

independence statements.

Lemma 9. Consider a simplicial complex with vertex set V . Let F1 ≤ · · · ≤ Fn

be its ordered facets. For 1 < k < n de�ne three sets of vertices:

K = {v : v ∈ (∪ki=1δ(Fi) ∩ ∪ni=k+1δ(Fi))}

I = {v : v ∈ ∪ki=1Fi}

J = {v : v ∈ ∪ni=k+1Fi}.

Assume that I \K and J \K are non-empty. Then

XI\K ⊥⊥ XJ\K |XK .
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Figure 4.17 � The shellable complex is not decomposable, but the associated model

includes conditional independence relations.

Proof. This follows because K is easily seen to separate I \K from J \K.

Example 29 (Conditional independence implied by shellability). Consider the

graph shown in Figure 4.17. For k = 4 the partitioning sets are K = {1, 4, 6}, I =

{2, 3} and J = {5} leading to

(X2, X3) ⊥⊥ X5|(X1, X4, X6).

Decomposable models can be characterized uniquely through the running inter-

section property (Lauritzen, 1996). Whilst the running intersection property may

look similar at �rst sight, the two concepts have important di�erences. As one

lists the cliques or facets in a shelling order, a new facet must contain exactly one

new vertex not contained in the previous facet for the complex to be shellable.

Thus, shellability is primarily about the dimension of the intersection. The run-

ning intersection property intersects a new clique with the union of cliques lower

in the order and tests whether the intersection is fully contained in one clique.

Rather than with the number of vertices added outside existing cliques, the run-

ning intersection property is concerned with where in the union of existing cliques

old vertices are placed. Given that, in general, shellable simplicial complexes do

not necessarily correspond to decomposable models and vice versa, no concept

can be interpreted as the weakening or strengthening of the other.
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4.6 Conclusion

This chapter has linked hierarchical models to monomial ideals and has demon-

strated some of the potential of bringing together the worlds of algebra and statis-

tics. Models based on decomposable graphs were shown to be particularly well

suited for algebraic analysis.

There are various ways forward. These include models based on geometric con-

structions where abstract complexes are determined by d-dimensional balls centred

about the vertices. Further algebraic quantities such as the Krull dimension or

the projective dimension can be linked to hierarchical models. The aim of this

chapter has been to demonstrate the large potential of linking the algebra and

statistics.



Chapter 5

Nonparametric estimation of

conditional independence relations

5.1 Introduction

In previous chapters, the mixed partial derivatives of the log-density were identi-

�ed as di�erential cumulants and their intrinsic relation to conditional indepen-

dence structures was described. This chapter develops a nonparametric hypothesis

test for conditional independence based on this condition.

The test is partially based on Proposition 4 of Chapter 3 which suggests that

two sets of random variables XI and XJ are conditionally independent of a third

set XK if and only if all pairwise di�erential cumulants betweenXI and XJ vanish.

Graphically, no vertex in I must be joined with any vertex in J for XI and XJ to

be conditionally independent.

By de�nition, a di�erential cumulant takes the form

κxei+ej =
1

f(x)

∂2f(x)

∂xi∂xj
− 1

f 2(x)

∂f(x)

∂xi

∂f(x)

∂xj

for some d−dimensional unit vectors ei and ej. A plug-in estimator κ̂xei+ej replaces

densities and their derivatives with kernel estimators. Conditional independence

is linked to di�erential cumulants vanishing everywhere. Hence, we focus on the

squared integrated version of κ2
ei+ej

(x), which we denote by θei+ej :

θei+ej :=

∫
Rd
κ2
ei+ej

(x)dx.
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Section 5.2 describes an estimator θ̂ei+ej based on numerical integration of

κ̂2
ei+ej

(x).

Kernel estimators are subject to the choice of a smoothing parameter. As the

multivariate density fX , its gradient and its Hessian matrix need to be estimated,

the smoothing parameter takes the form of three bandwidth matrices. Their

choice is discussed in Section 5.3, where we argue for a su�ciently �exible choice

derived via the so called normal reference rule.

Section 5.4 describes a bootstrap test for the null hypothesis H0 : θei+ej = 0

against the alternative H1 : θei+ej > 0. The validity of the test is demonstrated

through simulations in Section 5.5. Section 5.6 discusses the choice of the band-

width matrices when just a single di�erential cumulant needs to be estimated.

5.2 Description of the estimator

Let (X1, . . . , Xd) be a d-variate sample. The curse of dimensionality makes higher-

dimensional nonparametric estimation di�cult (Silverman, 1986, page 91). In

practice, the methodology we propose would be best applicable to the case d ≤ 4.

We maintain the notation from Chapter 2 and denote by κxk the di�erential

cumulant in x ∈ Rd of order k. In Chapter 2 we considered the entire class of

square-free cumulants. Here we consider pairwise cumulants only. They corre-

spond to the edges of the graphical model. Hence, k is restricted to hold exactly

2 ones and d− 2 zeros. Thus,

κxk :=
∂2

∂xi∂xj
log f(x),

for some (i, j) in [d]× [d], i 6= j, k = ei + ej. Consider κ
x
ei+ej

in expanded form:

κxei+ej =
∂2 log f(x)

∂xi∂xj
=

1

f(x)

∂2f(x)

∂xi∂xj
− 1

f 2(x)

∂f(x)

∂xi

∂f(x)

∂xj

= f(x)−1Dei+ejf(x)− f(x)−2Deif(x)Dejf(x).

(5.1)
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A plug-in estimator replaces each term in (5.1) by kernel estimators.

The quantities we are ultimately interested in are the integrated squared di�er-

ential cumulants:

θk :=

∫
Rd
κ2
k(x)dx (5.2)

since zero-cumulants of order k have vanishing θk.

This section describes a nonparametric estimator of di�erential cumulants,

which we denote by κ̂xk. Given κ̂
x
k we can estimate θk as

θ̂k :=

∫
Rd
κ̂2
k(x)dx.

We suggest a plug-in estimator for θ̂k, which numerically integrates the squared

estimates of κxk over a bounded region in Rd. Since no asssumption is placed on the

distribution of X1, ..., Xd, the distribution of this estimator cannot be obtained.

This is why the hypothesis test described in Section 5.4 is based on the bootstrap

approach.

In order to estimate κxei+ej via its representation in (5.1) we require estimators of

f(x), Deif(x), Dejf(x) and Dei+ejf(x). Since our aim is to estimate all conditional

independence relations pairwise, a total of d(d−1)
2

estimators θ̂k need to be tested

for zeros. Consequently, estimators of the density fX , its entire gradient and the

upper-diagonal entries of its Hessian are required.

Example 30. Suppose the data is three-dimensional. Three pairwise cumulants

exist: κx110, κ
x
101 and κx011. Table 5.1 shows the individual quantities these cumu-

lants are composed of: The density fX , the gradient∇fX = (D100f,D010f,D001f)′

and the upper-diagonal entries of the Hessian matrix: D110f,D101f and D011f .

In order to estimate fX and its derivatives, we apply a multivariate kernel

density approach. Our description follows Wand and Jones (1995), Chacón et al.

(2011) and Chacón and Duong (2010). Chacón and Duong (2010) have introduced

a vectorised treatment of higher order derivatives based on Kronecker products.
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Hessian Gradient Density

κ110 D110f D100f D010f f

κ101 D101f D100f D101f f

κ011 D011f D010f D001f f

Table 5.1 � Composition of pairwise cumulants in terms of fX , its derivatives and

its Hessian.

The elegance of their notation becomes apparent when the choice of bandwidth

matrices is discussed.

What follows is an exact reproduction of the notational introduction of Chacón

et al. (2011): For a matrix A let

A⊗r := ⊗ r
i=1A = A⊗ · · · ⊗ A

denote the r-th Kronecker power of A. If A ∈ Mm×n, then A
⊗r ∈ Mmr×nr , with

the conventions A⊗1 = A and A⊗0 = 1 ∈ R. Let D⊗rf(x) ∈ Rdr be the vector

containing the partial derivatives of order r of f at x, arranged so that

D⊗rf =
∂f

(∂x)⊗r
∈ Rdr .

Thus, we write the r-th derivative of f as a vector of length dr, and not as an

r-fold tensor. Each entry of D⊗rf is a partial derivative Dαf , where |α| = r.

We haveD(D⊗rf) = D⊗(r+1)f . The gradient and the vectorised Hessian of f can

be written as ∇f = D⊗1f and vec( ∂2f
∂x∂x′

) = D⊗2f respectively. The isomorphic

operator vec converts a matrix A into a column vector vec(A). Speci�cally, if

A =


a11 · · · a1n

...
. . .

...

am1 · · · amn


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then vec′(A) = (a11, . . . , am1, . . . , a1n, . . . , amn) . We can express the di�erential

cumulant κxei+ej as

κxei+ej =
e′i+(j−1)dD

⊗2f(x)

f(x)
− e′iD

⊗1f(x)

f(x)

e′jD
⊗1f(x)

f(x)
.

Remark 2. The vector ei+(j−1)d represents a unit vector in Rd2 . It selects the

(i + (j − 1)d)-th element of D⊗2fX corresponding to the (i, j)-th entry of the

Hessian matrix. The vectors ei and ej are d-dimensional unit vectors. For the

inner product to be well de�ned, the dimension of a unit vector needs to match

the dimension of the Kronecker derivative being multiplied. Hence, there is no

ambiguity regarding the dimensionality of unit vectors and no additional indexing

is necessary.

LetK(u) : Rd −→ R be a kernel, i.e. a non-negative function which is symmetric

about the origin and integrates to one over its domain. Let H be a generic

notation denoting a symmetric and positive de�nite bandwidth matrix in Rd×d.

The notation is generic in the following sense: In general, distinct multivariate

kernel density estimators will have distinct bandwidth matrices attached to it. For

instance, (5.3) below de�nes a kernel density estimator and (5.4) de�nes several

kernel density derivative estimators, one for each order of derivative. Each of

these estimators has a di�erent bandwidth matrix attached to it. All of them will

be denoted by H since the context will make it clear which estimator they belong

to. Furthermore, H will normally be considered to be a function of n, the size of

the data. Again, we surpress this dependence to avoid too many iterated indices.

Setting KH(u) := |H|−
1
2 K(H−

1
2u), an estimator for the density fX(x) is given

by

f̂(x;H) = n−1

n∑
i=1

KH(x−Xi), (5.3)

where x ∈ Rd and Xi ∈ Rd for all i = 1, ..., d.
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Derivatives of fX(x) can be estimated via a derivative kernel:

D̂⊗rf(x;H) = D⊗rf̂(x;H)

= n−1

n∑
i=1

D⊗rKH(x−Xi)

= n−1(H−
1
2 )⊗r

n∑
i=1

(D⊗rK)H(x−Xi)

= n−1|H|−
1
2 (H−

1
2 )⊗r

n∑
i=1

D⊗rK(H−
1
2 (x−Xi)). (5.4)

Equations (5.3) and (5.4) provide all estimators required. We can now express

the estimator for κxei+ej as

κ̂xei+ej =
e′i+(j−1)dD

⊗2f̂(x)

f̂(x)
− e′iD

⊗1f̂(x)

f̂(x)

e′jD
⊗1f̂(x)

f̂(x)
. (5.5)

As Example 30 illustrates, it is necessary to estimate the density, the gradient and

the Hessian matrix of fX . Each of these estimators requires its own bandwidth

matrix. Their choice will be discussed in the following section.

5.3 Choice of the bandwidth matrices

The choice of the bandwidth parameter h in the univariate setting has been studied

by various authors. Notable contributions include Sheather and Jones (1991), Hall

and Marron (1991) and Hall et al. (1991). Jones et al. (1996) present a literature

survey.

Less progress has been made in the multivariate case. Early work (see e.g. Härdle

et al., 1990) concentrated on the rather restricted version of the bandwidth matrix,

requiring that H can be written as H = h2Id. Only one bandwidth parameter is

chosen for all variates and associated kernels are spherically symmetric. Whilst

being as parsimonious as possible, it might be overly restrictive for densities with

high curvatures (Wand and Jones, 1993).
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(a) (b) (c)

Figure 5.1 � Contour plots of bivariate kernels for di�erent bandwidth matrices:

spherical (a), elliptical (b), rotated elliptical (c).

.

A more �exible approach allows independent smoothing in each principal direc-

tion. In that case H belongs to the class of diagonal bandwidth matrices, i.e. it

can be written as H = diag(h2
1, . . . , h

2
d) for some (h1, ..., hd) ∈ Rd. This allows the

kernel to take elliptical contours along the principal axes.

In the most general version, which we adopt, H is only required to be symmetric

and positive de�nite. It allows the shape of the kernel to stretch independently

into any direction. The added �exibility comes at the price of d2 − d additional

parameters compared to the diagonal case. Figure 5.1 shows contour plots of

kernels parametrised by the three types of bandwidth matrices. The theory for

unconstrained multivariate bandwidth matrices has been progressing quickly in

recent years. We draw on Chacón (2009), Chacón et al. (2011) and Chacón and

Duong (2010).

Various methods have been proposed for estimating the bandwidth matrix H.

Common to most of them is a loss-function which is to be minimised. We restrict

our attention to the asymptotic mean integrated squared error (AMISE).

For an estimator θ̂ of a vector θ the mean square error (MSE) of θ̂ is a measure

of estimator quality. The MSE is de�ned as

MSE(θ̂) = E
∥∥∥θ̂ − θ∥∥∥2

,
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where ‖·‖ denotes the Euclidean norm. It can be shown that the multivariate

bias-variance decomposition of the mean-square-error holds:

MSE(θ̂) = B2(θ̂) + V (θ̂),

where B2(θ̂) =
∥∥∥Eθ̂ − θ∥∥∥2

and V (θ̂) = E
∥∥∥θ̂ − Eθ̂

∥∥∥2

. A global measure for the

quality of a density estimators is the asymptotic mean integrated squared error:

AMISE := lim
n−→∞

E
(∫

Rd

∥∥∥f̂(x)− f(x)
∥∥∥2

dx

)
.

AMISE can be interpreted as a function of the bandwidth matrix H and the

second derivative of the unknown density fX (see Wand and Jones, 1995). Hence,

we would need to know fX in order to estimate H and H in order to estimate fX .

Various methods have been suggested to overcome this apparent dilemma.

The so-called `rule-of-thumb' estimators replace fX by an arbitrary pilot density

in order to determine H. Typically, the pilot density is multivariate Gaussian and

the procedure is referred to as the normal reference rule. The bandwidth matrixH

can then be used to estimate fX . The normal reference rule is easy to implement

and works well for smooth densities. It is the method by which we estimate

H. Other selection methods include plug-in bandwidth selection (Duong and

Hazelton, 2003), cross-validation or biased cross validation (Duong and Hazelton,

2005).

Chacón et al. (2011, Theorem 6) determine the AMISE optimal bandwidth

matrix according to the normal reference rule. As this is the estimation method

we employ, we state their result here for completeness.

Theorem 8 (Normal reference bandwidth matrix). Assume that H is a symmetric

and positive de�nite bandwidth matrix, and such that every element of H −→ 0

and n−1|H|−
1
2 (H−1)⊗r −→ 0 as n −→ ∞. Further assume that fX is a normal

density with variance Σ and K is the normal kernel. Then, the bandwidth which
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minimises AMISE{D̂⊗rf} is given by:

H =

(
4

d+ 2r + 2

) 2
d+2r+4

Σn
−2

d+2r+4 .

Proof. See Chacón et al. (2011).

5.4 A bootstrap hypotheses test

Given the variables, Xi, ..., Xd, the goal of this section is to identify all partitions

(I, J,K) of {1, ..., d} such that XI ⊥⊥ XJ |XK . These conditional independence

relations can be of interest in their own right. They can also be used to determine

the interaction terms to be excluded from a hierarchical model. We describe a

hypotheses test for conditional dependence based on a nonparametric bootstrap

approach (Hall and Wilson, 1991; Davison and Hinkley, 1997; Efron and Tibshi-

rani, 1994).

Lemma 4 showed that XI ⊥⊥ XJ |XK if and only if Xi ⊥⊥ Xj|XK for all i ∈ I

and j ∈ J . The importance of this result becomes clear now, as it allows us to

restrict our attention to estimating conditional independence pairwise.

Recall the de�nition of θei+ej from (5.2):

θei+ej :=

∫
Rd
κ2
ei+ej

(x)dx.

Conditional independence of Xi and Xj implies θei+ej = 0. An estimator θ̂ei+ej

can be constructed by replacing κxei+ej by κ̂
x
ei+ej

for various values of x, squaring

and numerically integrating. The distribution of θ̂ei+ej , however, is unavailable

since no distribution assumption for the random variables X1, ..., Xd is made. The

nonparametric bootstrap approach is suitable since it does not assume anything

about FX other than its existence.

The key idea behind the bootstrap is to resample the original data set with

replacement in order to gain information about the variability of an estimator. If
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the data are independently and identically distributed, any bootstrap replication

X∗1 , ..., X
∗
d of the data set could have arisen under FX . This provides an intuitive

justi�cation for the bootstrap approach.

In the following, we �x i and j and use the generic expression θ instead of θei+ej .

Set θ0 = 0. A natural null hypothesis is

H0 : θ = θ0

against the alternative

H1 : θ > θ0.

By the design of the test, we conclude that Xi and Xj are not conditionally

independent if θ̂ di�ers signi�cantly from zero. What exactly it means to be `sig-

ni�cantly di�erent from zero' is determined by the following bootstrap procedure:

First choose a signi�cance level α. Then draw R bootstrap replications X∗1 , ..., X
∗
d

with replacement. For each of them compute the di�erence between the bootstrap

estimator θ̂∗ and θ̂. The critial value t̂ is chosen such that

P

(
θ̂∗ − θ̂ > t̂

)
= α,

where the probability distribution is obtained from the bootstrap replications.

Finally, reject H0 if θ̂ − θ0 > t̂.

5.5 Simulation results

This section illustrates the nonparametric method for estimating conditional in-

dependence described in this chapter through a simulation of three Gaussian dis-

tributed random variables. Thus, let the true data generating system be

X ∼ N (0,Σ),
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where the covariance and the precision matrix are respectively given by

Σ =


1 −1 −1

2

−1 4
3

2
3

−1
2

2
3

7
12
.

 and Σ−1 =


4 3 0

3 4 −2

0 −2 4

 . (5.6)

The (1, 3) entry of Σ−1 is zero. Hence, X1 is conditionally independent of X3

given X2.

Let ρi,j denote the correlation coe�cient between Xi and Xj. Di�erentiation of

the log-density shows that

κ110 = − −ρ1,3ρ2,3 + ρ1,2

σ1σ2(−2 ρ1,3ρ1,2ρ2,3 + ρ1,3
2 + ρ1,2

2 − 1 + ρ2,3
2)
, (5.7)

κ101 =
ρ1,2ρ2,3 − ρ1,3

σ1σ3(−2 ρ1,3ρ1,2ρ2,3 + ρ1,3
2 + ρ1,2

2 − 1 + ρ2,3
2)
,

and

κ011 =
−ρ2,3 + ρ1,3ρ1,2

σ2σ3(−2 ρ1,3ρ1,2ρ2,3 + ρ1,3
2 + ρ1,2

2 − 1 + ρ2,3
2)
.

The multivariate normal density holds a quadratic form x′Σ−1x in the exponent.

The second derivative of the quadratic form with respect to xi and xj is the (i, j)-

th entry of Σ−1. Di�erential cumulants can be evaluated as the di�erentials of

the log-density. Hence, in the Gaussian case, they are equal to the negative of the

entries of the precision matrix.

Applied to the current case with covariance matrix Σ as in (5.6) the di�erential

cumulants take the values

κ110 = −3,

κ101 = 0

and

κ011 = 2.

Figure 5.2 shows the pairwise scatterplots of X2 against X1, X3 against X1 and

X3 against X2 in that order. Note that, just by looking at the marginal associa-

tions, the conditional independence between X1 and X3 is completely hidden.
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Figure 5.2 � Pairwise scatterplots of normally distributed random variables.

The simulation and estimation proceeds as follows:

1. Simulation of n instances of the random vector (X1, X2, X3)′.

2. Estimation of κx110, κ
x
101 and κx011 for a given x ∈ R3.

3. Numerical integration over R3 of κ̂2
110(x), κ̂2

101(x) and κ̂2
011(x).

4. Bootstrapping of the procedure through repeated sampling of the data with

replacement.

The �rst two steps are straightforward. Steps three and four deserve further

attention. In order to establish conditional independence, we would have to show

that the di�erential cumulant κx101 vanishes everywhere. This task, however, is

impossible with �nite data, since the variance of the estimator is unbounded in

regions where the data is sparse. In order to overcome sparsity issues, we bound

the region of integration.

Our approach to this problem is pragmatic. Since the multivariate normal

distribution is unimodal, we integrate over the ellipsoid about the sample mean

which holds the closest (γ × 100) per cent of the data. The metric we apply is

the Mahalanobis distance. Informally, the Mahalanobis distance between a point

x0 and a data set corresponds to the Euclidean distance between the mean of the

data and x0, once the co-ordinate system has been rotated and scaled according to
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Figure 5.3 � Three dimensional scatterplot of the simulated data (+) and estimation

grid points (•). The uniformly drawn grid points are close in Mahalanobis distance

to the centroid of the data.

the eigendecomposition of the sample covariance matrix of the data. Formally, for

a vector x0 ∈ Rd and a data set X with sample covariance matrix S and sample

mean vector X̄, the Mahalanobis distance is de�ned as

DM(x0) =
√

(x0 − X̄)′S−1(x0 − X̄).

No optimizing criteria for the choice of γ have been investigated. A more com-

plex simulation study could explore the trade-o� between discarding information

(lowering γ) and deterioration in estimator performance due to the curse of di-

mensionality (increasing γ).

Figure 5.3 shows a three-dimensional scatterplot of a simulated data set (n =

300, γ = 0.5). The data is depicted through pluses. The colour encodes the dis-

tance to the mean, where warmer colours represent larger Mahalanobis distances.

Outliers have warm colours even if they are close to the centroid in Euclidean

distance. We draw N grid points randomly from a uniform distribution over the
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γ-ellipsoid. The Mahalanobis distance corresponding to γ = 0.5 is 2.4, which acts

as a cut-o� value. This corresponds to a dark blue in the colour bar, which is

re�ected in the colour of the grid points.

If the data is known to be Gaussian, the di�erential cumulants can be shown

to be constant. It is then meaningful to compare the histogram of κ̂2
101 with

histograms of κ̂2
110 and κ̂2

011.

Figure 5.4 � Histogram of squared di�erential cumulants. The empirical distribution

of κ2
101 is more concentrated near the origin than the distributions of κ2

110 and κ2
011.

Figure 5.4 shows the histogram of the three squared di�erential cumulants κ̂2
101,

κ̂2
110 and κ̂

2
011 across N = 100 randomly chosen grid points (n = 500, γ = 0.5). The

grid point distribution of κ2
101 is clearly left of the grid point distribution of the

other di�erential cumulants. This methodology is only sensible in the Gaussian

case and it is used primarily for demonstration purposes.

Figure 5.5 plots κ̂2
101 integrated over small cubes. The colour of a cube represents

the value that the integrated estimator of κ2
101 takes in the cube. The centre of

the ellipsoid is predominantly blue, whereas both warm and cold colours can be
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Figure 5.5 � Estimates of
∫
κ2

101 over small cubes.
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found near the edges. This re�ects the increased variability of the estimator in

regions with sparse data. Both �gures show exactly the same experiment from

di�erent angles.

Figure 5.6 shows a comparison between the bootstrap density of θ̂ (dashed) and

the density obtained from κ̂2 computed at randomly sampled points from the γ-

ellipsoid (solid). These are rather di�erent concepts. θ̂ represent the integrated

version and its density is obtained from bootstrap replications. κ̂2 is not inte-

grated. Furthermore, its distribution is obtained from computing estimates at the

N random grid points without bootstrap replications. As mentioned, this is only

meaningful in the Gaussian case where the di�erential cumulants are constant

over R3. We can clearly see the integration e�ect which moves the mode of the

bootstrap distribution further outside compared to the grid point density. At the

same time the tail is signi�cantly shortened. Figure 5.7 shows the corresponding

cumulative distribution function.
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Figure 5.6 � Smoothed bootstrap density of κ̂2
101 (n = 1024, γ = 0.7).
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shows the 5-percentile.
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Finally, we present the outcome of the bootstrap hypothesis test. We draw

1000 instances from the multivariate normal model with precision matrix Σ−1 as

in (5.6). θ is estimated over an γ-ellipsoid which holds 70 per cent of the data.

The number of bootstrap replication is set to 200. The vector of estimates of θ110,

θ101 and θ011 is

θ̂′ =

(
6.73 0.64 1.95

)
.

At a signi�cance level of �ve per cent, the vector of critical values for the bootstrap

distributions is

t̂′ =

(
3.52 1.63 1.68

)
. (5.8)

This leads us to reject X1 ⊥⊥ X2|X3 and X2 ⊥⊥ X3|X1, whilst failing to reject

X1 ⊥⊥ X3|X2.

If the data is known to be normal, one can employ a maximal likelood test

for conditional independence (Edwards, 2000). Let |Σ̂0| denote the maximum

likelihood estimate of the covariance matrix under the restriction that its inverse

has a zero as appropriate entry. Let |Σ̂| be the unrestricted maximum likelihood

estimate. It can be shown that the deviance test statistic d = n log
( |Σ̂0|
|Σ̂|

)
is

asymptotically Chi-squared distributed on 1 degrees of freedom under the null

hypotheses that the restricted model is valid (Hojsgaard et al., 2012). For the

above data, Table 5.2 reports the results from the maximum likelihood test. The p-

values suggest to reject X ⊥⊥ Y |Z and Y ⊥⊥ Z|X whilst failing to reject X ⊥⊥ Z|Y.

Null hypotheses d p-value

X ⊥⊥ Y |Z 867.266 0.0000

X ⊥⊥ Z|Y 0.181 0.6709

Y ⊥⊥ Z|X 287.057 0.0000

Table 5.2 � Deviance and p-values from maximmum likelihood test.
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5.6 Choice of H in a single zero-cumulant test

This section discusses the choice of the bandwidth matrix when the aim is to

estimate a single kei+ej as opposed to the total d(d−1)
2

pairs. Without loss of

generality, we may take i = 1 and j = 2. We reproduce the estimator for κxe1+e2

from (5.5) for convenience:

κ̂xe1+e2
=
e′2D

⊗2f̂(x)

f̂(x)
− e′1D

⊗1f̂(x)

f̂(x)

e′2D
⊗1f̂(x)

f̂(x)
,

where f̂ and D⊗rf̂ as de�ned in (5.3) and (5.4) respectively.

In the preceeding sections the target was to estimate all pairs of cumulants.

This rendered it necessary to estimate the entire gradient of fX as well as the

o�-diagonal elements of the Hessian. The bandwidth matrices were chosen to

minimise the AMISE of the vector valued estimators D⊗1f̂ and D⊗2f̂ .

This optimisation criterion may be a poor choice when we are only interested in

one or two entries of the vector valued estimator. As an example, D⊗2f̂ holds d2

entries. The second of these entries corresponds to the (1, 2)-entry of the Hessian

and is the only entry of D⊗2f̂ used to estimate κ̂xe1+e2
. The bandwidth matrix

which minimises the AMISE of the estimator of the entire Hessian may be a poor

choice when d is large and when the smoothness of the second derivative varies

greatly across di�erent dimensions.

In this section we derive the AMISE of those parts of the estimator which are

used to estimate κ̂xe1+e2
. No minimising bandwidth matrix could be obtained.

Hence, no equivalent to the normal reference rule of Theorem 8 can be given.

In practice, one would have to resort to numerical minimisation of the AMISE

expressions provided below.

As before, we propose to estimate three separate bandwidth matrices: one for

f̂ , one jointly for e′1D
⊗1f̂ and e′2D

⊗1f̂ and one for e′2D
⊗2f̂ . Accordingly, the three

bandwidth matrices should be chosen to minimise AMISE(f̂), AMISE(e′1D
⊗1f̂)+

AMISE(e′2D
⊗1f̂) and AMISE(e′2D

⊗2f̂) respectively.
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The AMISE of the kernel density estimator described in (5.3) is well known

(Wand and Jones, 1995). We present a more general theorem due to Chacón et al.

(2011) which speci�es the AMISE of an estimator of a derivative of arbitrary order

r as described in (5.4). Setting r equal to zero includes the density estimator.

Theorem 9 (AMISE{D̂⊗rf(x;H)}). Assume that H is a symmetric and pos-

itive de�nite bandwidth matrix, and such that every element of H −→ 0 and

n−1|H|−
1
2 (H−1)⊗r −→ 0 as n −→ ∞. Let fX be a density with square integrable

partial derivatives up to order r and square integrable, bounded and continuous

partial derivatives up to order (r + 2). Let K be a square integrable kernel with

square integrable derivatives of order r. Then it holds that

AMISE{D̂⊗rf(x;H)} = n−1|H|−
1
2 tr

(
(H−1)⊗rR(D⊗rK)

)
+
µ2(K)2

4
tr

(
(Idr ⊗ vec′H)R(D⊗(r+2)f)(Idr ⊗ vecH)

)
,

where µj(K) :=
∫
R z

jK(z)dz and, for a function g : Rd −→ Rd, R(g) is de�ned

as

R(g) :=

∫
Rd
g(x)g(x)′dx ∈ Rd×d. (5.9)

Proof. See Chacón et al. (2011). Some details omitted in their proof appear in

the appendix.

We can apply Theorem 9 to obtain the AMISE(f̂(x;H)) as we set r to zero:

AMISE{f̂(x;H)} =
µ2

2(K)

4
vec′HR(D⊗2f) vecH + n−1|H|−

1
2 R(K). (5.10)

Using the fact that for two real matrices A,B of same dimensions it holds that

tr(A′B) = vec′A vecB,

(5.10) can be equally expressed as

AMISE{f̂(x;H)} =
µ2

2(K)

4

∫
Rd

tr2{HD2f(x)}dx+ n−1|H|−
1
2 R(K),
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which coincides with Wand and Jones (1995, page 97).

The next theorem gives an expression for the AMISE of a single component of

D̂⊗rf . Without loss of generality, we may take this to be the �rst component. It

turns out that AMISE{D̂⊗rf(x;H)} and AMISE( ̂e′1D⊗rf) di�er in that the latter

replaces trace expressions by the �rst component of the respective traces.

Theorem 10 ( AMISE( ̂e′1D⊗rf) ). Under the conditions of Theorem 9 it holds

that

AMISE( ̂e′1D⊗rf(x;H)) = AIB2( ̂e′1D⊗rf) + AIV( ̂e′1D⊗rf),

where

AIB2( ̂e′1D⊗rf) :=
µ2

2(K)

4
e′1(Idr ⊗ vec′H)R(D⊗(r+2)f)(Idr ⊗ vecH)e1,

AIV( ̂e′1D⊗rf) := n−1|H|−
1
2 e′1(H−

1
2 )⊗rR(D⊗rK)(H−

1
2 )⊗re1,

and R(·) as de�ned in (5.9).

Proof. The proof is deferred to Appendix 5.A.2.

As corollaries we obtain the desired AMISE expressions:

Corollary 4 ( AMISE(e′1D
⊗1f̂) + AMISE(e′2D

⊗1f̂) ). Under the conditions of

Theorem 9 it holds that

AMISE(e′1D
⊗1f̂) + AMISE(e′2D

⊗1f̂) =
2∑
i=1

AIB2(e′iD
⊗1f̂) +

2∑
i=1

AIV(e′iD
⊗1f̂),

where

AIB2(e′iD
⊗1f̂) =

µ2
2(K)

4
e′i(Id ⊗ vec′H)R(D⊗3f)(Id ⊗ vecH)ei

and

AIV(e′iD
⊗1f̂) = n−1|H|−

1
2 e′iH

− 1
2R(∇K)H−

1
2 ei.
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Corollary 5 ( AMISE(e′2D
⊗2f̂) ). Under the conditions of Theorem 9 it holds

that

AMISE(e′2D
⊗2f̂) = AIB2(e′2D

⊗2f̂) + AIV(e′2D
⊗2f̂),

where

AIB2(e′2D
⊗2f̂) =

µ2
2(K)

4
e′2(Id2 ⊗ vec′H)R(D⊗4f)(Id2 ⊗ vecH)e2 (5.11)

and

AIV(e′2D
⊗2f̂) = n−1|H|−

1
2 e′2(H−

1
2 )⊗2R(D⊗2K)(H−

1
2 )⊗2e2. (5.12)

The next two theorems provide explicit AMISE expression for estimating a

normal density with a normal kernel. Without loss of generality, we may assume

that the random variables X1, ..., Xd have zero mean. Denote by φΣ the density

of a d-variate normal distribution with zero mean and covariance matrix Σ. If Σ

is surpressed, φ denotes the density of a d-variate standard normal distribution.

In short, we assume that fX = φΣ and K = φ.

De�ne the matrix I
[β]
α as an α by α diagonal matrix which holds ones on the

diagonal up to row β and zeroes otherwise. Formally, I
[β]
α = (aij), where aij = 1

if 1 ≤ i = j ≤ β and aij = 0 otherwise:

I [β]
α :=

(
Iβ 0

0 0

)α.

If multiplied from the right, I
[β]
α leaves the �rst β columns of a matrix unchanged

whilst sending the others to zero. If multiplied from the left, I
[β]
α leaves the �rst

β rows of a matrix unchanged whilst sending the others to zero.

Theorem 11 ( AMISE( ̂e′1D⊗1φΣ) + AMISE( ̂e′2D⊗1φΣ) ). Assume that the condi-

tions of Theorem 8 are met. De�ne the auxilliary matrices B = Σ−
1
2HΣ−

1
2 , C =
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2−(d+1)π−
d
2 and D = Σ−

1
2 I

[2]
d Σ−

1
2 . It then holds that

AMISE( ̂e′1D⊗1φΣ) + AMISE( ̂e′2D⊗1φΣ) =
2∑
i=1

AIB2(e′iD
⊗1f̂) +

2∑
i=1

AIV(e′iD
⊗1f̂),

(5.13)

where
2∑
i=1

AIV(e′iD
⊗1f̂) = n−1|H|−

1
2 C(H−1

11 +H−1
22 )

and

2∑
i=1

AIB2(e′iD
⊗1f̂) =

1

16
C|Σ|−

1
2

[
tr(D) tr2(B) + 2

(
tr(D) tr(B2)

+ 2 tr(B) tr(DB)
)

+ 8 tr(DB2)
]
.

Proof. The proof is deferred to Appendix 5.A.3.

Theorem 12 ( AMISE( ̂e′2D⊗2φΣ) ). Assume that the conditions of Theorem 8

are met. It then holds that

AMISE( ̂e′2D⊗2φΣ) = AIB2(e′2D
⊗2f̂) + AIV(e′2D

⊗2f̂),

where

AIV(e′2D
⊗2f̂) = C(4n)−1|H|−

1
2

[
H−1

11 H
−1
22 + 2H−1

21 H
−1
12

]
,

AIB2(e′2D
⊗2f̂) = C

{
2−5|Σ|−

1
2

[
tr(F ) tr(G) tr2(B)

+ 2
(

tr(F ) tr(G) tr(B2) + 2 tr(F ) tr(B) tr(BG)

+ 2 tr(G) tr(B) tr(FB) + tr(FG) tr2(B)
)

+ 8
(

tr(F ) tr(GB2) + tr(G) tr(FB2) + 2 tr(B) tr(FBG)
)

+ 4
(

tr(FG) tr(B2) + 2 tr(FB) tr(BG)
)

+ 16
(
2 tr(FGB2) + tr(FBGB)

)]}
,

C = 2−(d+1)π−
d
2 , F = Σ−

1
2 I1
dΣ−

1
2 , G = Σ−

1
2 I2
dΣ−

1
2 and B = Σ−

1
2HΣ−

1
2 .
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Proof. The proof is deferred to Appendix 5.A.4.

5.7 Conclusion

This chapter demonstrated how conditional dependency structures can be de-

tected through a nonparametric bootstrap test on pairwise di�erential cumulants.

Simulation results from the normal distribution indicated that the methodology

works. The research can be extended in several ways. One interesting character-

istic of a hypothesis test is its power, i.e. the probability to correctly reject the

null hypothesis when it is false. It can be assessed through numerical simulation.

In the Gaussian case, the procedure is straighforward since a closed form solution

of the di�erential cumulants is known. From (5.7)

κ110 = − −ρ1,3ρ2,3 + ρ1,2

σ1σ2(−2 ρ1,3ρ1,2ρ2,3 + ρ1,3
2 + ρ1,2

2 − 1 + ρ2,3
2)
. (5.14)

We may, for instance, set ρ1,3 = ρ2,3 = 0 and σ1 = σ2 = 1 so that the di�erential

cumulant simpli�es to

κ110 =
ρ1,2

1− ρ2
1,2

. (5.15)

This is a quadratic equation in the correlation coe�cient ρ1,2. Any desired level of

κ110 can hence be epressed in terms of ρ1,2 and the power of the test be evaluated

through Monte-Carlo simulations, where the test is carried out repeatedly and the

power is estimated as the fraction of replications for which the test rejected the

null hypothesis. Similarly the size of the test can be estimated as the fraction of

replications where the test rejected the null hypothesis when the test is carried out

repeatedly for a precision matrix which holds a zero in the appropriate position.

The maximum likelihood and nonparametric bootstrap test can then be compared

in terms of their size and power for di�erent sample sizes.

When the true distribution is not Gaussian, the analysis of the test complicates.

We may, however, exploit the fact that di�erential cumulants are invariant under
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marginal transformation (Jones et al., 1996) in order to study special cases. In

particular, the Gaussian copula allows us to investigate power and size of the

bootstrap test for random variables which are distributed uniformly on a unit hy-

percube. Since the di�erential cumulants are una�ected by marginal transforms,

they can indeed be set through the precision matrix as in the Gaussian case and

the study would proceed along the same lines.

The properties of the bootstrap test are harder to study for arbitrary multivari-

ate distributions. The challenge lies in the fact, that the di�erential cumulants

are not necessarily simple functions of the parameters that allow to systematically

sample from the distribution for a given di�erential cumulant. A non-systematic

approach is however feasible where the parameters are changed, the di�erential

cumulant is computed, the data sampled and the test carried out. The power of

the test can then be approximated over bins as the fraction of tests which rejected

the null hypothesis.

Once the power and the size are estimated a natural extension is to investigate

how they change with the sample size, the choice of grid points or the numerical

integration procedure. The approach adopted here is to numerically integrate

through simple averaging over hypercubes where no particular attention is paid

to the choice of grid points and the weighting is uniform. More sophisticated

approaches such as Gaussian quadrature optimize the choice of grid points and

the weighting associated to them in some optimal way. Investigating how the

numerical integration scheme and the sample size a�ect the power of the test

remains for future research. Finally, a challenge is to apply the hypotheses test

to real data sets.
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5.A Proofs

5.A.1 Preliminaries

We state, without proof, two standard results from multivariate calculus, a useful

property of the convolution operator and a fact relating the vec operator to the

Kronecker product.

Lemma 10 (Multivariate integration by substitution for a linear change of vari-

ables). Let A be invertible and g be a real-valued function with compact support.

Then it holds that ∫
R
g(y)dy = |A|

∫
R
g(Ax)dx.

Proof. The proof follows from the fundamental theorem of calculus and is omitted.

Lemma 11 (Multivariate Taylor expansion using Kronecker notation). Let f :

Rd −→ Rp have the property that every entry of D⊗rf(x) is piecewise continuous.

Then f has Taylor expansion:

f(x+ h) =

q∑
r=0

1

r!
[Ip ⊗ (h′)⊗r]D⊗rf(x) + o(‖h‖q)1p, x, h ∈ Rd.

Proof. See Baxandall and Liebeck (1986).

Let ∗ denote the convolution operator, i.e.

(g ∗ f)(x) :=

∫
g(y)f(x− y)dy.

We make use of the fact that

(D⊗rg ∗ f)(x) = (g ∗D⊗rf)(x).

Finally, the following relation between the vec operator and the Kronecker product

shall be useful:

vec(ABC) = (C ′ ⊗ A) vecB. (5.16)
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Setting B = Id shows that it holds for a column vector x ∈ Rd that

x⊗ x = vec(xx′).

5.A.2 Proof of Theorem 10

The proof of Theorem 10 is a modi�ed version of Theorem 2 of Chacón et al.

(2011). As mentioned, Chacón et al. (2011) derive the AMISE of the full deriva-

tive D⊗rf̂ which naturally leads them to consider Euclidean norms. They derive

expressions for the norms in terms of traces of matrices through the relationship

‖X‖2 = tr(XX ′).We show the equivalent result for the single component of the r-

th derivative. The proof idea is standard in nonparametric asymptotic theory: It

decomposes the AMISE into a bias and a variance term, applies Taylor expansions

and shows that the remainder terms are of vanishing order.

Without loss of generality, we derive the AMISE of the �rst component of the

r-th derivative. Our aim is to show that

AMISE( ̂e′1D⊗rf(x;H)) = n−1|H|−
1
2 e′1(H−

1
2 )⊗rR(D⊗rK)(H−

1
2 )⊗re1

+
µ2

2(K)

4
e′1(Idr ⊗ vec′H)R(D⊗(r+2)f)(Idr ⊗ vecH)e1.

We consider �rst MISE(e′1D
⊗rf̂(x)) before taking limits:

MISE(e′1D
⊗rf̂(x)) =

∫
Rd

[
e′1
(
ED̂⊗rf(x)−D⊗rf(x)

)]2︸ ︷︷ ︸
B2(e′1D

⊗r f̂(x))

+ E(e′1D̂
⊗rf(x))2 −

(
Ee′1D̂⊗rf(x)

)2︸ ︷︷ ︸
var(e′1D̂

⊗rf(x))

dx, (5.17)

where e1 ∈ Rd. We consider the squared bias component �rst. Applying Lemma
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10 we may write

E
(
D̂⊗rf(x)

)
= E

(
n−1

n∑
i=1

D⊗rKH(x−Xi)
)

= E
(
D⊗rKH(x−X1)(x)

)
=

∫
Rd
D⊗rKH(x− u)f(u)du

=

∫
Rd
KH(x− u)D⊗rf(u)du

=

∫
Rd
K(z)D⊗rf(x−H−

1
2 z)dz.

An application of a Lemma 11 yields:

D⊗rf(x−H−
1
2 z) = D⊗rf(x)− [Idr ⊗ (z′H

1
2 )]D⊗r+1f(x)

+
1

2
[Idr ⊗ (z′H

1
2 )⊗2]D⊗(r+2)f(x) + o(trH)1dr .

Since K is symmetric about the origin, the bias is of second order:

E
(
D̂⊗rf(x)

)
−D⊗rf(x) =

∫
Rd
K(z)

1

2
[Idr ⊗ (z′H

1
2 )⊗2]D⊗(r+2)f(x) + o(trH)1drdz

=
1

2

∫
Rd
K(z)[Idr ⊗ vec′(H

1
2 zz′H

1
2 )]D⊗(r+2)f(x) + o(trH)1drdz

=
1

2

∫
Rd
K(z)[Idr ⊗ vec′(zz′)(H

1
2 )⊗2]D⊗(r+2)f(x) + o(trH)1drdz

=
1

2
Idr ⊗

∫
Rd
K(z)[vec′(zz′)dz(H

1
2 )⊗2]D⊗(r+2)f(x) + o(trH)1dr

=
µ2(K)

2
Idr ⊗ [vec′(Id)(H

1
2 )⊗2]D⊗(r+2)f(x) + o(trH)1dr

=
µ2(K)

2
(Idr ⊗ vec′H)D⊗(r+2)f(x) + o(trH)1dr .

Thus, for the squared bias component of the MISE it holds that∫
Rd
B2(e′1D

⊗rf̂(x))dx =
µ2

2(K)

4
e′1(Idr ⊗ vec′H)R(D⊗(r+2)f(x))(Idr ⊗ vecH)e1 + o(tr2{H})

where R(D⊗(r+2)f(x)) :=
∫
Rd D

⊗(r+2)f(x)(D⊗(r+2)f(x))′dx.

Consider next the integrated variance term in (5.17):∫
Rd

var(e′1D̂
⊗rf(x))dx =

∫
Rd

E(e′1D̂
⊗rf(x))2 −

(
Ee′1D̂⊗rf(x)

)2
dx.
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For the second moment term it holds that∫
Rd

E(e′1D̂
⊗rf(x))2dx = n−1

∫
Rd
E(e′1D

⊗rKH(x−X1))2dx

= n−1

∫
Rd

∫
Rd

(e′1D
⊗rKH(x− y))2f(y)dxdy

= n−1

∫
Rd

(e′1D
⊗rKH(x))2dx

= n−1

∫
Rd

(e′1|H|
− 1

2 (H−
1
2 )⊗rD⊗rK(H−

1
2x))2dx

= n−1|H|
1
2

∫
Rd

(e′1|H|
− 1

2 (H−
1
2 )⊗rD⊗rK(z))2dz

= n−1|H|−
1
2 e′1(H−

1
2 )⊗r

∫
Rd
D⊗rK(z)(D⊗rK(z))′dz(H−

1
2 )⊗re1

= n−1|H|−
1
2 e′1(H−

1
2 )⊗rR(D⊗rK)(H−

1
2 )⊗re1.

A Taylor expansion shows that the squared moment term
∫
Rd
(
Ee′1D̂⊗rf(x)

)2
dx

is of order O(n−1), so that the integrated variance term can be written as:∫
Rd

var(e′1D̂
⊗rf(x))dx = n−1|H|−

1
2 e′1(H−

1
2 )⊗rR(D⊗rK)(H−

1
2 )⊗re1 + o(n−1|H|−

1
2 ).

This completes the proof as one considers the limit as n goes to in�nity.

5.A.3 Proof of Theorem 11

Theorem 11 is a particular case of Corollary 4, where fX = φΣ and K = φ. We

need to proof that

AMISE( ̂e′1D⊗1φΣ) + AMISE( ̂e′2D⊗1φΣ) =
2∑
i=1

AIB2(e′iD
⊗1f̂) +

2∑
i=1

AIV(e′iD
⊗1f̂),

where

2∑
i=1

AIV(e′iD
⊗1f̂) = n−1|H|−

1
2 C(H−1

11 +H−1
22 )
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and

2∑
i=1

AIB2(e′iD
⊗1f̂) =

1

16
C|Σ|−

1
2
[

tr(D) tr2(B) + 2
(

tr(D) tr(B2)

+ 2 tr(B) tr(DB)
)

+ 8 tr(DB2)
]
.

Furthermore, the auxilliary matrices were de�ned as B = Σ−
1
2HΣ−

1
2 , C =

2−(d+1)π−
d
2 and D = Σ−

1
2 I

[2]
d Σ−

1
2 .

We compute expressions for the asymptotic integrated variance and squared

bias terms separately. We employ the fact that for any positive integer r it holds

that

R(D⊗rφΣ) = 2−(d+r)π−
d
2 |Σ|−

1
2 (Σ−

1
2E(zz′)Σ−

1
2 )⊗r, (5.18)

where R(·) as de�ned in (5.9) (Chacón et al., 2011).

In order to compute the expression for the squared bias in (5.13) we make use

of (5.16) and (5.18).



5.A. Proofs 121

The squared bias expression
∑2

i=1 AIB2(e′iD
⊗1f̂) is given by

tr
[
I

[2]
d (Id ⊗ vec′H)R(D⊗2φΣ)(Id ⊗ vecH)

]
=

1

16
|Σ|−

1
2 C tr

[
I

[2]
d

(
Id ⊗ vec′H

)
(Σ−

1
2 )⊗3E[(zz′)⊗2](Σ−

1
2 )⊗3

(
Id ⊗ vecH

)]
=

1

16
|Σ|−

1
2 C tr

[
(Σ−

1
2 )⊗3

(
Id ⊗ vecH

)
I

[2]
d

(
Id ⊗ vec′H

)
(Σ−

1
2 )⊗3E[(zz′)⊗3]

]
=

1

16
|Σ|−

1
2 C tr

[
(Σ−

1
2 )⊗ ((Σ−

1
2 )⊗2 vecH)I

[2]
d (Σ−

1
2 )⊗ (vec′H(Σ−

1
2 )⊗2)E[(zz′)⊗3]

]
=

1

16
|Σ|−

1
2 C tr

[
(Σ−

1
2 )I

[2]
d (Σ−

1
2 )⊗ (Σ−

1
2 )⊗2 vecH vec′H(Σ−

1
2 )⊗2E[(zz′)⊗3]

]
=

1

16
|Σ|−

1
2 C tr

[
(Σ−

1
2 )I

[2]
d (Σ−

1
2 )⊗ vecB vec′BE[(zz′)⊗3]

]
=

1

16
|Σ|−

1
2 CE

(
tr
[
(Σ−

1
2 )I

[2]
d (Σ−

1
2 )(zz′)⊗ vecB vec′B(zz′)⊗2

])
=

1

16
|Σ|−

1
2 CE

(
tr
[
(Σ−

1
2 )I

[2]
d (Σ−

1
2 )(zz′)

]
tr
[

vecB(vec′BE[(zz′)⊗2])
])

=
1

16
|Σ|−

1
2 CE

(
(z′Σ−

1
2 I

[2]
d Σ−

1
2 z) tr

[
vecB vec′(zz′Bzz′)

])
=

1

16
|Σ|−

1
2 CE

(
(z′Dz)

[
vec′(zz′Bzz′) vecB

])
=

1

16
|Σ|−

1
2 CE

(
(z′Dz)

[∑
i

∑
j

∑
k

∑
l

zizjzkzlBijBkl

])
=

1

16
|Σ|−

1
2 CE

(
(z′Dz)(z′Bz)2

)
=

1

16
|Σ|−

1
2 C

(
tr(D) tr2(B) + 2

(
tr(D) tr(B2) + 2 tr(B) tr(DB)

)
+ 8 tr(DB2)

)
where B = Σ−

1
2HΣ−

1
2 , C = 2−(d+1)π−

d
2 and D = Σ−

1
2 I

[2]
d Σ−

1
2 .
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Reproducing from Corollary 4

2∑
i=1

AIV(e′iD
⊗1f̂) =

2∑
i=1

n−1|H|−
1
2 e′iH

− 1
2R(∇K)H−

1
2 ei. (5.19)

By setting r = 1 and Σ = Id in (5.18) we obtain

2∑
i=1

e′i(H
− 1

2 )R(∇φ)H−
1
2 ei = tr

(
I

[2]
d H

− 1
2R(∇φ)H−

1
2

)
= CE

(
tr
(
I

[2]
d H

− 1
2 zz′H−

1
2

))
= CE

(
z′H−

1
2 I

[2]
d H

− 1
2 z

)
= C tr

(
H−

1
2 I

[2]
d H

− 1
2

)
= C tr

(
I

[2]
d H

−1
)

= C(H−1
11 +H−1

22 ), (5.20)

where C = 2−(d+1)π−
d
2 and H−1

ij is the (i, j)-th element of the inverse bandwidth

matrix H−1. Substituting (5.20) into (5.19) we obtain

2∑
i=1

AIV(e′iD
⊗1f̂) = n−1|H|−

1
2 C(H−1

11 +H−1
22 ).

5.A.4 Proof of Theorem 12

We are interested in the AMISE expression for the cross derivative with respect

to the �rst two variables, which is the second entry of D̂⊗2f . This leads us to

consider the second contribution of the trace expressions, rather than the whole

traces - both in the variance and in the squared bias part.

De�ne the matrix Iβα as an α by α elementary matrix which holds a one as the

β's diagonal entry and zeroes otherwise. Formally, Iβα = (aij), where aij = 1 if

i = j = β and aij = 0 otherwise. It holds that I2
d2 = I1

d
⊗ I2

d . The Iβα matrix

allows us to pick an arbitrary diagonal entry of a matrix A by computing the trace
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of the product of Iβα and A: aββ = tr(IβαA). Recall from (5.11)

AIB2(e′2D
⊗2f̂) =

µ2
2(K)

4
e′2(Id2 ⊗ vec′H)R(D⊗4f)(Id2 ⊗ vecH)e2.

Substituting for f and K, the squared bias expressions becomes:

AIB2( ̂e′2D⊗2φΣ)

= tr
[
I2
d2(Id2 ⊗ vec′H)R(D⊗4φΣ)(Id2 ⊗ vecH)

]
= 2−5|Σ|−

1
2 C tr

[
(I1
d ⊗ I2

d)
(
Id2 ⊗ vec′H

)
(Σ−

1
2 )⊗4E[(zz′)⊗4](Σ−

1
2 )⊗4

(
Id2 ⊗ vecH

)]
= 2−5|Σ|−

1
2 C tr

[
(Σ−

1
2 )⊗4

(
Id2 ⊗ vecH

)
(I1
d ⊗ I2

d)
(
Id2 ⊗ vec′H

)
(Σ−

1
2 )⊗4E[(zz′)⊗4]

]
= 2−5|Σ|−

1
2 C tr

[
(Σ−

1
2 )⊗2 ⊗ (Σ−

1
2 )⊗2 vecH(I1

d ⊗ I2
d)(Σ−

1
2 )⊗2 ⊗ vec′H(Σ−

1
2 )⊗2E[(zz′)⊗4]

]
= 2−5|Σ|−

1
2 C tr

[
(Σ−

1
2 )⊗2(I1

d ⊗ I2
d)(Σ−

1
2 )⊗2 ⊗ (Σ−

1
2 )⊗2 vecH vec′H(Σ−

1
2 )⊗2E[(zz′)⊗4]

]
= 2−5|Σ|−

1
2 C tr

[
(Σ−

1
2 )⊗2(I1

d ⊗ I2
d)(Σ−

1
2 )⊗2 ⊗ vecF vec′ FE[(zz′)⊗4]

]
= 2−5|Σ|−

1
2 CE tr

[
(Σ−

1
2 )⊗2(I1

d ⊗ I2
d)(Σ−

1
2 )⊗2[(zz′)⊗2]⊗ vecF vec′ F [(zz′)⊗2]

]
= 2−5|Σ|−

1
2 CE

(
tr
[
(I1
d ⊗ I2

d)(Σ−
1
2 (zz′)Σ−

1
2 )⊗2

]
(z′Fz)2

])
= 2−5|Σ|−

1
2 CE

(
(z′Fz)(z′Gz)(z′Bz)2

)
,

where F = Σ−
1
2 I1
dΣ−

1
2 , G = Σ−

1
2 I2
dΣ−

1
2 and B = Σ−

1
2HΣ−

1
2 .

The last expression can be computed explicitly by an application of Theorem

5.1 of Magnus (1978):

AIB2( ̂e′2D⊗2φΣ) = 2−5|Σ|−
1
2 C

(
tr(F ) tr(G) tr2(B)

+ 2
[

tr(F ) tr(G) tr(B2) + 2 tr(F ) tr(B) tr(BG)

+ 2 tr(G) tr(B) tr(FB) + tr(FG) tr2(B)
]

+ 8
[

tr(F ) tr(GB2) + tr(G) tr(FB2) + 2 tr(B) tr(FBG)
]

+ 4
[

tr(FG) tr(B2) + 2 tr(FB) tr(BG)
]

+ 16
[
2 tr(FGB2) + tr(FBGB)

])
.
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For the aymptotic variance term we obtain the expression

AIV(e′2D
⊗2f̂) = n−1|H|−

1
2 e′2(H−

1
2 )⊗2R(D⊗2φ)(H−

1
2 )⊗2e2

= tr
(
I2
d2(H

− 1
2 )⊗2R(D⊗2(φ))(H−

1
2 )⊗2

)
=

1

4
CE
(

tr
(
I2
d2(H

− 1
2 zz′H−

1
2 )⊗2

))
=

1

4
CE
(

tr
(
I1
d ⊗ I2

d(H−
1
2 zz′H−

1
2 )⊗2

))
=

1

4
CE
(

tr
(
(I1
dH
− 1

2 zz′H−
1
2 )⊗ (I2

dH
− 1

2 zz′H−
1
2 )
))

=
1

4
CE
(

tr
(
I1
dH
− 1

2 zz′H−
1
2

)
tr
(
I2
dH
− 1

2 zz′H−
1
2

))
=

1

4
CE
(

tr
(
I1
dH
− 1

2 zz′H−
1
2

)
tr
(
I2
dH
− 1

2 zz′H−
1
2

))
=

1

4
CE
(
(z′Dz)(z′Ez)

)
=

1

4
C
(

tr(D) tr(E) + 2 tr(DE)
)

=
1

4
C
(
H−1

11 H
−1
22 + 2H−1

21 H
−1
12

)
,

where C = 2−(d+1)π−
d
2 , D = H−1I1

d and E = H−1I2
d . The second to last line can

be computed by hand or, more elegantly, by Theorem 5.1 in Magnus (1978).



Chapter 6

Estimation of a functional of

di�erential moments

6.1 Introduction

This chapter describes the estimation of a functional of local moments. It is

built on Chapter 2 and is not related to intermediate chapters. Informally, we

investigate by how much a di�erential moment changes as additional information

through a related variable is taken into account. Does the inclusion of an associ-

ated variable Y signi�cantly change our prediction for where, in a given interval,

X is likely to fall?

Suppose we are interested in the local moment of a random variable X given

that X falls in a certain intervall AX := [x0± ε]. From Remark 1 in Chapter 2 we

know that the local moment tells us how the probability mass changes in a local

environment of x0. For instance, if mA
1 is positive, we expect to see more of the

realisations in the intervall [x0, x0 + ε] than in the interval [x0 − ε, x0].

Suppose further that another variable Y exists which is not independent of X.

By how much does the conditional mean of X change as we further condition on

Y falling into the intervall AY := [y0 ± ε]? Formally, we would like to quantify

the di�erence between the di�erential moment of X given that both X and Y are

in A := AX × AY and the expected value of X given that X is in AX and Y is

anywhere.
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Let Z denote the quantity of interest. We will refer to Z as the `information

gain in X through Y ' or just `information gain'. Z can be written as

Z := lim
ε→0

3

ε2

[
E(X − x0|(X, Y ) ∈ A)− E(X − x0|X ∈ AX)

]
. (6.1)

We suggest a histogram-type estimator based on the sample counterparts of the

population moments and a local regression estimator. Asymptotic results are

derived.

6.2 The local sample moment approach

The local sample moment approach has been studied in some detail by Mueller and

Yan (2001). They show that local sample moments converge to their population

counterparts in probability and that the limiting distribution is normal provided

some regularity conditions are met. For the sake of completeness, we state their

main results regarding the limiting distribution and the AMSE optimal choice of

the window size.

One of their suggested applications is to estimate densities and derivatives

through local sample moments. In contrast, we employ density and density deriva-

tive estimators in order to estimate a functional of local moments.

Given a sample (x1, y1), ..., (yn, yn), a naive estimator of Z can be constructed

from (6.1) by replacing population with sample moments. The di�erential moment

of order k at ξ was de�ned in De�nition 6 as

mξ
k1...kd

= lim
ε→0

1

r(ε, k)
E
( d∏

j=1

(Xj − ξj)kj
∣∣∣X ∈ A),

where r(ε, k) was de�ned as r(ε, k) = ε|k|
+

d∏
i=1,
ki∈2N

1
ki+1

d∏
i=1,

ki∈2N+1

1
ki+2

.

Their sample counterparts are:

m̂ξ
k1...kd

=
1

r(ε, k)

∑n
i=1

∏d
j=1(xi,j − ξj)kj 11(xi ∈ A)∑n

i=1 11(xi ∈ A)
.
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In order to estimate Z we only need the sample moments

m̂
(x0,y0)
10 =

3

ε2

∑n
i=1(xi − x0) 11((xi, yi) ∈ A)∑n

i=1 11((xi, yi) ∈ A)

and

m̂x0
1 =

3

ε2

∑n
i=1(xi − x0) 11(xi ∈ AX)∑n

i=1 11(xi ∈ AX)
.

The naive estimator is then given by

ẐN = m̂
(x0,y0)
10 − m̂x0

1 , (6.2)

where the subscript N is chosen to indicate that this is the naive estimator. It

computes the sample average of the x-values for which the pair (xi, yi) is in A and

subtracts the sample average of x-values for which xi is in AX .

We state two specialised versions of Theorem 3.1 of Mueller and Yan (2001).

Let
D−→ and

P−→ denote convergence in distribution and in probability respectively.

Theorem 13 (Convergence of local sample moments).

1. Univariate case: Assume that fX is twice continuously di�erentiable in x0,

that nε3 →∞ and nε7 → 0 as n→∞ then

√
nε

3
2 (m̂x0

1 −mx0
1 )

D−→ N
(

0,
1

6fX(x0)

)
and hence m̂x0

1
P−→ mx0

1 .

2. Bivariate case: Assume that fX,Y is twice continuously di�erentiable in

(x0, y0), that nε4 →∞ and nε8 → 0 as n→∞ then

√
nε2(m̂

(x0,y0)
10 −m(x0,y0)

10 )
D−→ N

(
0,

1

12fX,Y (x0, y0)

)
and hence m̂

(x0,y0)
10

P−→ m
(x0,y0)
10 .

Proof. This is Theorem 3.1 of Mueller and Yan (2001).
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Corollary 6 (Asymptotic distribution of ZN). Assume that fX,Y is twice contin-

uously di�erentiable in (x0, y0), that nε4 →∞ and nε7 → 0 as n→∞.

Then ZN is consistent and

√
nε2(ẐN − Z)

D−→ N
(

0,
1

12fX,Y (x0, y0)

)
.

Proof. According to (6.2), ẐN can be written as ẐN = m̂
(x0,y0)
10 −m̂x0

1 . Since m̂
(x0,y0)
10

converges slower than m̂x0
1 it dominates the asymptotic behaviour of ẐN and the

result follows.

6.3 The conditional density approach

6.3.1 Introduction

A local polynomial estimator makes use of a di�erent representation of Z in terms

of conditional densities. Using Corrolary 2, we may write Z as

Z =
∂
∂x
fX,Y (x, y)

fX,Y (x, y)
−

d
dx
fX(x)

fX(x)

=
∂
∂x
fY |X(y|x)

fY |X(y|x)
. (6.3)

Fan et al. (1996b) show how conditional densities and their derivatives with re-

spect to the conditioning variable can be estimated through local polynomial

regression. This section shows how an estimator of Z can be based on their ap-

proach. Asymptotic normality is proved for a joint estimator of information gains

in X through Y and Y through X.

6.3.2 Motivation and description of the estimator

The description of the estimator is rather technical, so we �rst give an overview.

We then present the estimator for the information gain of X through Y . The

estimator for the information gain of Y through X is symmetric. We spend the
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last part of this subsection on this reverse regression in order to introduce the

necessary notation.

Recall from (6.3) that Z can be written as

Z =
∂
∂x
fY |X(y|x)

fY |X(y|x)
.

A conditional density estimator of Z estimates the conditional density of Y given

X and its derivative with respect to x and divides the latter by the former. Hence,

the aim is to estimate f
(j)
Y |X(y|x) for j = 0 and j = 1, where di�erentiation is with

respect to the conditioning variable.

In general, local polynomial regression assumes a regression relation

g(Yi) = m(Xi) + σ(Xi)εi, ∀ 1 ≤ i ≤ n,

where g and m are functions from R to R, E(εi) = 0, V ar(εi) = 1 and εi is

independent of Xi for all 1 ≤ i ≤ n. There are two key ideas to the approach.

The �rst idea is to choose an appropriate function for g which approximately

turns the dependent variable into the conditional density f(y|x). The second

idea is to choose the regression function m to be a polynomial in x. This is

because the coe�cent of a polynomial are multiples of its derivatives, e.g. if

y = a0 + a1x + ... + apx
p then aj = 1

j!
djy
dxj

. The coe�cients of the polynomial,

however, are exactly what is estimated through least square regression.

In ordinary least square regression the explanation and prediction of the depen-

dent variable is often the primary goal and the least square estimators are useful

tools to achieve this aim. In local polynomial regression the estimation of the

coe�cients is the �nal target.

Let W be a kernel function. We maintain the standard notation Wh(·) :=

1
h
W ( ·

h
). For polynomial regression of order p, the quanity to be minimised as a

function of b ∈ Rp+1 takes the form:
n∑
i=1

(
g(Yi)−

p∑
j=0

bj(Xi − x)j
)2

WhX (Xi − x).
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Setting g(Yi) := KhY (Yi − y) allows us to estimate conditional densities and their

derivatives. A Taylor expansion and a change of variable show that

E{KhY (Y − y)|X = x} = fY |X(y|x) +
1

2
h2
Y µ̃2

∂2

∂y2
fY |X(y|x) + o(h2

Y ), (6.4)

where µ̃j :=
∫
zjK(z)dz denotes the j-th central moment of the kernel function

K. From this it follows that E{KhY (Y − y)|X = x} P−→ f(y|x) as hY → 0, which

makes it suitable as a regression target. A Taylor expansion of fY |X(y|X) about

x shows that the target is linear in the polynomials of (x−X):

fY |X(y|X) = fY |X(y|x) +

p∑
j=1

f
(j)
Y |X(y|x)

j!
(X − x)j + oP{(X − x)p}, (6.5)

where f
(j)
Y |X(y|x) := ∂j

∂xj
fY |X(y|x) is the j-th derivative of the conditional density

fY |X with respect to the conditioning variable.

It is convenient to de�ne the following quantities: Let Xx ∈ Rn×(p+1) be the

design matrix:

Xx =


1 (X1 − x) · · · (X1 − x)p

...
. . .

...

1 (Xn − x) · · · (Xn − x)p

 . (6.6)

Let W ∈ Rn×n = diag(WhX (x−Xi)1≤i≤n) be a diagonal matrix such that

Wi,j =


WhX (Xi − x) if i = j ,

0 otherwise.

(6.7)

Furthermore, de�ne Y := (KhY (Yi − y))1≤i≤n. Using these de�nition, the esti-

mator of

(
f
(j)
Y |X(y|x)

j!

)
0≤j≤p

is given by

β̂ = argminb(Y −Xxb)
′W(Y −Xxb).

We assume that X ′xWXx is of full rank. Then, we can write

β̂ = (X ′xWXx)
−1X ′xWY . (6.8)
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It is common to start indexing β̂ at zero. An estimator of the conditional density

fY |X(y|x) is given by β̂0. The j-th derivative of fY |X(y|x) with respect to the

conditioning variable can be estimated through j!β̂j.

Remark 3. The estimator β̂ is biased from two di�erent sources: The kernel es-

timation introduces a bias of order h2
Y as seen in (6.4) and the polynomial ap-

proximation introduces a bias of order sup1≤i≤n{(Xi − x)} as seen in (6.5). How

well the approximation (6.4) holds, depends in particular on the local smooth-

ness of fY |X , for smooth functions are characterised by small second derivatives

in absolute value.

Fan et al. (1996a) investigate the bias / variance trade-o� for di�erent orders

of polynomial �t. Let j be the order of derivative being estimated and p be the

order of polynomial �t. The order of the �t shall be de�ned as p− j. In general,

a larger p is associated with a smaller asymptotic bias and a larger asymptotic

variance. Yet, when passing from an even order �t to the consecutive odd order

�t, the asymptotic variance does not increase. Odd order �ts are hence superior.

It is recommended to choose the parsimonious p = j + 1 (Fan and Yao, 2003).

Remark 4. The above approach includes the famous Rosenblatt estimator if p = 0

(Rosenblatt, 1969). The local-linear estimator (p = 1) was, for instance, investi-

gated by Fan (1993). Whilst it has the advantage of a smaller bias compared to

the Rosenblatt estimator, the estimated density function is neither restricted to

be non-negative nor to integrate to 1.

With β1 and β0 as de�ned in (6.8) a conditional density estimator of Z is given

by

ẐCD =
β1

β0

.

The subscript CD stands for conditional density. As we estimate �rst derivatives,

we consider a local quadratic estimator, i.e. we set p = 2 in (6.6). Given Remark

3 this is bias e�cient compared to a local linear estimator.
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We are interested in jointly estimating the information gain in X through Y

and Y through X and denote the latter by Z̃CD. The rest of this subsection is

devoted to the reverse estimation of WhX (X − x) on (Y − y).

For simplicity, we consider the independent case, i.e. Xi is independent of Xj

and Yj whenever i 6= j and similarly for Y . We assume that the same bandwidth

parameter hX is used in both regressions and equally for hY .

Some additional notation is needed for the weighted regression of WhX (X − x)

on polynomials in (Y −y): Let Yy ∈ Rn×3 and K ∈ Rn×n be de�ned analogously to

(6.6) and (6.7) as the design matrix for the regression of X := (WhX (Xi−x))1≤i≤n

on (Y − y)

Yy =


1 (Y1 − y) (Y1 − y)2

...
...

...

1 (Yn − y) (Yn − y)2


and the diagonal kernel matrix K = diag(KhY (y − Yi)1≤i≤n). A tilde version of

a variable de�ned in the regression setting for KhY (Y − y) on (X − x) denotes

its equivalent in the regression of WhX (X − x) on (Y − y). Hence, assuming full

rank of YyKYy, the local polynomial estimator for the regression of WhX (X − x)

on (Y − y) is given by:

ˆ̃β = (YyKYy)−1YyKX . (6.9)

With β̂ and ˆ̃β as de�ned in equations (6.8) and (6.9) respectively, we can de�ne

the vectors θ and θ̂ ∈ R4 which hold the four quantities of interest and their

estimators respectively:

θ =


f(y|x)

∂f(y|x)
∂x

f(x|y)

∂f(x|y)
∂y


θ̂ =


β̂0

β̂1

ˆ̃β0

ˆ̃β1


. (6.10)
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The vector of information gains can be expressed as ẐCD
ˆ̃ZCD

 =

 θ̂2
θ̂1

θ̂4
θ̂3

 .

To avoid a cluttered notation, we write Ẑ1 := (ẐCD,
ˆ̃ZCD) and de�ne the function

g : R4 → R2

g(θ) =

 θ2
θ1

θ4
θ3

 , (6.11)

so that Ẑ1 = g(θ̂). The Jacobian matrix of g is given by

Jg(θ) =

 − θ2
θ21

1
θ1

0 0

0 0 − θ4
θ23

1
θ3

 . (6.12)

It will be needed at a later stage, when we infer the asymptotic distribution of Ẑ1

from the asymptotic distribution of θ̂.

6.3.3 Asymptotic properties

This section deals with the properties of Ẑ1 when the sample size n goes to in-

�nity and the associated bandwidth processes hX and hY go to zero. A standard

assumption in univariate kernel density estimation is to require that

nh −→∞ as n −→∞ and h −→ 0

for some bandwidth process h. Similarly, we need to specify the rate at which hX

and hY converge to zero. This turns out to be a rather important determinant of

the exact asymptotic distribution of Z1. We will assume throughout that

nh3
XhY −→∞, nhXh

3
Y −→∞, hX , hY −→ 0

and that there exists a C ∈ R such that
hX
hY
−→ C.
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The last condition ensures that neither bandwidth process dominates the other.

Under suitable further regularity conditions, Fan and Gijbels (1996) prove that

local polynomial estimators for conditional densities and their derivatives are con-

sistent. We can get some �rst insight into the asymptotics of Ẑ1 by the continuous

mapping theorem:

Theorem 14 (Continuous mapping theorem). Let g : Rk → Rl be a continuous

function and {Xn} be a sequence of random variables taking values in Rk. Then

it holds that

Xn
D−→ X =⇒ g(Xn)

D−→ g(X).

Xn
P−→ X =⇒ g(Xn)

P−→ g(X).

Proof. See for instance White (2000).

The function g, as de�ned in (6.11), is continuous everywhere since densities are

assumed to be strictly positive. Consequently, Ẑ1 is consistent. We devote the

rest of this subsection to the asymptotic distribution of Ẑ1. Similarly to Fan and

Yao (2003), we proof joint asymptotic normality of (β̂, ˆ̃β)′. Since our results di�er

with respect to the expression for the asymptotic variance, and, since we have an

extended covariance matrix to compute, we provide a rather detailed proof. As

an immediate consequence we obtain the asymptotic distribution of θ̂.

We then employ the `Delta-method', which allows us to derive the asymptotic

distribution of an estimator which can be expressed as a continuous transformation

of an estimator with known asymptotic distribution. It is based on a Taylor

expansion of g coupled with an application of the continuous mapping theorem

for weak convergence and Slutsky's lemma.

Finally, we state, without proof, the asympotic distribution of θ̂ when the local

linear �t is employed instead of the local quadratic �t. This corresponds to setting

p = 1 in (6.6). The bias of θ̂ will be shown to increase compared to the quadratic

�t, as is expected given the discussion in Remark 3.
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Regression KhY (Y − y) on X Regression WhX (X − x) on Y

µj :=
∫
zjW (z)dz µ̃j :=

∫
zjK(z)dz

νj :=
∫
zjW 2(z)dz ν̃j :=

∫
zjK2(z)dz

S := (µj+l)0≤j,l≤p ∈ R3×3 S̃ := (µ̃j+l)0≤j,l≤p ∈ R3×3

S? := (νj+l)0≤j,l≤p ∈ R3×3 S̃? := (ν̃j+l)0≤j,l≤p ∈ R3×3

HX := diag(1, hX , h
2
X) ∈ R3×3 HY := diag(1, hY , h

2
Y ) ∈ R3×3

m(x, y) := E{Khy(Y − y)|X = x} ∈ R m̃(x, y) := E{WhX (X − x)|Y = y} ∈ R

mj(x, y) :=


m(x, y) j = 0

1
j!
∂j

∂xj
m(x, y) j = 1, 2

m̃j(x, y) :=


m̃(x, y) j = 0

1
j!
∂j

∂xj
m̃(x, y) j = 1, 2

β := (mj(x, y))0≤j≤2 ∈ R3 β̃ := (m̃j(x, y))0≤j≤2 ∈ R3

Table 6.1 � De�nitions of quantities appearing in the asymptotic expression of Ẑ1,

the joint conditional density estimator of prediction gains.

Table 6.1 de�nes various quantities that appear in the expression of the asymp-

totic distribution of Ẑ1. We further need the diagonal matrix HX,Y ∈ R6×6 :

HX,Y :=

(
HX 0

0 HY

)
.

Finally, let rn :=
√
nhXhY .

In this section we refer to the following two assumptions as the standard regu-

larity conditions:

1. The kernel functions K and W are symmetric with bounded support.

2. The conditional densities fX|Y and fY |X have bounded continuous third

order derivatives with respect to x and y respectively at (x, y).

The following theorem states the asymptotic distribution of the conditional density

estimators under the assumption that neither bandwidth process is dominant.
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This assumption is not necessary for asymptotic normality and only e�ects the

asymptotic bias and covariance. The relevant matrices are given explicitly in

Appendix 6.B.

Theorem 15 (Asymptotic distribution of (β̂, ˆ̃β)′). Assume the existence of a

constant C ∈ R such that hX
hY
−→ C. It then holds, under the standard regularity

conditions, that the conditional density estimator (β̂, ˆ̃β)′ is asymptotically normal:

rnHX,Y

{ β̂

ˆ̃β

−
 β

β̃

− Σ−1
1 b

}
D−→ N

(
0,Σβ

)
,

where rn :=
√
nhXhY , Σβ := fX,Y (x, y)Σ−1

1

 ν̃0S
? Σ

Σ ν0S̃
?

Σ−1
1 ,

Σ := (ν̃jνk)0≤j,k≤2, Σ1 :=

fX(x)S 0

0 fY (y)S̃

 ,


b1

b2

b3

 =
1

6
h3
XfX(x)


hX

∂4

∂x4
fY |X(y|x)µ4

∂3

∂x3
fY |X(y|x)µ4

hX
∂4

∂x4
fY |X(y|x)µ6

 {1 + oP (1)}

and 
b4

b5

b6

 =
1

6
h3
Y fY (y)


hY

∂4

∂y4
fX|Y (x|y)µ̃4

∂3

∂y3
fX|Y (x|y)µ̃4

hY
∂4

∂y4
fX|Y (x|y)µ̃6

 {1 + oP (1)}. (6.13)

Proof. The proof is deferred to Appendix 6.A.1.

The entries β̂3 and β̂6 hold the derivative estimators for the second derivatives

of fY |X and fX|Y with respect to the conditioning variable respectively. We had

chosen to include them into the estimation in view of Remark 3. Their inclusion

lowers the bias of β̂1, whilst leaving the variance unchanged. However, since we
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are not interested in second order derivatives of the conditional density, it will

be convenient to �lter out the relevant �rst two entries of β̂ and ˆ̃β. To this end,

de�ne E ′ as the projection matrix from R3 to R2 which chooses the �rst two rows:

E ′ :=

1 0 0

0 1 0

 .

With that notation, we can write:

θ̂ :=

(
E ′ 0
0 E ′

) β̂

˜̂
β


The following corollary to Theorem 15 gives the asymptotic distribution of the

(1, 2, 4, 5) entries of β̂ which form θ̂. Furthermore, a more explicit expression for

the bias vector is provided. The vectors β and β̃ appearing in Theorem 15 do not

hold the conditional densities and their derivatives but instead the approximating

quantities E{Khy(Y − y)|X = x}, E{WhX (X − x)|Y = y} and their derivatives.

This introduces a second source of bias as explained in Remark 3. As it turns out,

under the assumption that the bandwidth processes hX and hY converge to zero

at the same rate, this part of the bias dominates the bias Σ−1
1 b which arises from

the polynomial approximation.

Corollary 7 (Distribution of θ̂). Assume the standard regularity conditions hold.

De�ne H := diag (1, hX , 1, hY ). Then θ̂ as de�ned in (6.10) is asymptotically

normal and it holds that

rnH(θ̂ − θ − ζ)
D−→ N(0,Σθ),
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where

ζ :=



1
2
h2
Y µ̃2

∂2fY |X(y|x)

∂y2

1
2
h2
Y µ̃2

∂3fY |X(y|x)

∂x∂y2
+ 1

6
h2
X
µ4
µ2

∂3fY |X(y|x)

∂x3

1
2
h2
Xµ2

∂2fX|Y (x|y)

∂x2

1
2
h2
Xµ2

∂3fX|Y (x|y)

∂y∂x2
+ 1

6
h2
Y
µ̃4
µ̃2

∂3fX|Y (x|y)

∂y3
fY (y)


(6.14)

and

Σθ := fX,Y (x, y)

 ν̃0f
−2
X (x)E ′S−1S̃?S−1E f−1

X (x)f−1
Y (y)E ′S−1ΣS̃−1E

f−1
X (x)f−1

Y (y)E ′S̃−1Σ′S−1E ν0f
−2
Y (y)E ′S̃−1S?S̃−1E

 .

(6.15)

Proof. The proof is deferred to Appendix 6.A.2. The covariance matrix Σθ is

computed explicitly in Appendix 6.B.1.2.

Corollary 7 shows that the estimators of the conditional densities converge

quicker than the estimators of the derivatives by a factor of order hX . Hence,

we would expect the limiting distribution of Ẑ1 to depend only on the limiting

distributions of the derivative estimators. The next theorem states the asymptotic

distribution of Ẑ1 and con�rms that this is indeed the case.

Theorem 16 (Asymptotic distribution of Ẑ1). Let ζ be de�ned as in (6.14).

Assume that g, as de�ned in (6.11), is continuously di�erentiable about ξ :=

θ + ζ ∈ R4 and that there exists a constant C ∈ R such that hX
hY
−→ C. It then

holds, under the standard regularity conditions, that Ẑ1 is normally distributed

asymptotically. Speci�cally,

rnhX(Ẑ1 − g(ξ))
D−→ N(0,ΣẐ1

),

where

ΣẐ1
:=

 1
ξ21

fY |X(x,y)

fX(x)
ν2ν̃0
µ22

0

0 C2

ξ23

fX|Y (x,y)

fY (y)
ν0ν̃2
µ̃22

 .
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Proof. The proof is deferred to Appendix 6.A.3.

Note that the asymptotic covariance is zero. The proof of Theorem 16 demon-

strates that this due to the symmetry of the kernel functions. This last section

states, without proof, the results for the local linear estimator for the case that

neither bandwidth process dominates the other.

Theorem 17 (Distribution of θ̂). Assume the standard regularity conditions hold.

Let rn :=
√
nhXhY and H := diag (1, hX , 1, hY ). Then θ̂ is asymptotically normal

in accordance with

rnH(θ̂ − θ − ζ)
D−→ N(0,Σθ)

where

ζ :=



1
2
h2
Y µ̃2

∂2fY |X(y|x)

∂y2
+ 1

2
h2
Xµ2

∂2fY |X(y|x)

∂x2

1
2
h2
Y µ̃2

∂3fY |X(y|x)

∂x∂y2
+ 1

6
h2
X
µ4
µ2

∂3

∂x3
fY |X(y|x)

1
2
h2
Xµ2

∂2fX|Y (x|y)

∂x2
+ 1

2
h2
Y µ̃2

∂2fX|Y (x|y)

∂y2

1
2
h2
Xµ2

∂3fX|Y (x|y)

∂y∂x2
+ 1

6
h2
Y
µ̃4
µ̃2

∂3

∂y3
fX|Y (x|y)


and

Σθ =



fY |X(y|x)ν0ν̃0
fX(x)

0
fX,Y (x,y)ν0ν̃0
fX(x)fY (y)

0

0
fY |X(y|x)ν̃0ν2

fX(x)µ22
0 0

fX,Y (x,y)ν0ν̃0
fX(x) fY (y)

0
fX|Y (x|y)ν0ν̃0

fY (y)
0

0 0 0
fX|Y (x|y)ν0ν̃2

fY (y)µ̃22


.

By de�nition, θ̂1 and θ̂3 hold the density estimators, and θ̂2 and θ̂4 the estimators

of their derivatives. The density estimators have a higher bias if the linear �t is

applied. As mentioned earlier, the bias arises from two sources: The bias in Y

is due to the approximation of fY |X(y|x) through the expectation of the kernel

K: E(KhY (Y − y)|X = x), which di�ers from the conditional density fY |X(y|x)
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by an O(h2
Y )-term. The bias in X is a result of the polynomial approximation.

As we approximate through second order polynomials, the remainder term is of

order o(h2
X). By assumption, no bandwidth process dominates the other. Hence,

the bias in X is dominated by the bias in Y asymptotically. For the linear �t, the

bias in X is of order O(h2
X) and, no longer dominated by the bias in Y , appears

in the the expression for ζ.

6.4 Conclusion

This chapter has demonstrated how a functional of di�erential moments can be

estimated either through its local counterpart or via a local polynomial kernel

estimator.

An interesting aspect is that the two approaches are representative for two

di�erent modelling strategies. The local sample moment approach uses the local

analogues of di�erential moments in order to estimate functionals of densities.

The density estimation approach uses kernel estimators of densities and their

derivatives in order to estimate di�erential moments.

6.A Proofs of section 6.3

6.A.1 Proof of Theorem 15

The idea of the proof is to decompose (β̂,
˜̂
β)′ into a bias vector b ∈ R6, which

converges in probability, and a centralised vector t ∈ R6 of partial sums, which

is asymptotically Gaussian. The two convergence results are proved in separate



6.A. Proofs of section 6.3 141

lemma. De�ne

Sn,j :=
1

n

n∑
i=1

(Xi − x
hX

)j
WhX (Xi − x) ∈ R

Sn := (Sn,j+l)0≤j,l≤2 =
1

n
(H−1

X X ′xWXxH
−1
X ) ∈ R3×3

M := (m(Xi, y))1≤i≤n ∈ Rn

and the `tilde versions'

S̃n,j :=
1

n

n∑
i=1

(Yi − y
hY

)j
KhY (Yi − y) ∈ R

S̃n :=
1

n
(H−1

Y Y ′yKYyH−1
Y ) ∈ R3×3

M̃ := (m̃(x, Yi))1≤i≤n ∈ Rn.

We have have the following decomposition:

HX,Y

{ β̂

˜̂
β

−
 β

β̃

} =

Sn 0

0 S̃n

−1(
1
n
H−1
X X ′xWY

1
n
H−1
Y Y ′yKX

)

=

Sn 0

0 S̃n

−1

(b+ t),

where

b :=

 1
n
H−1
X X ′xW{M−Xxβ}

1
n
H−1
Y Y ′yK{M̃ − Yyβ̃}

 (6.16)

and

t :=

 1
n
H−1
X X ′xW{Y −M}

1
n
H−1
Y Y ′yK{X − M̃}

 . (6.17)

Fan and Gijbels (1996) show thatSn 0

0 S̃n

 =

fX(x)S 0

0 fY (y)S̃

 {1 + oP (1)}. (6.18)
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In Lemma 12 it is shown that b converges to the expression claimed in (6.13).

Finally, Lemma 13 shows that

rnt
D−→ N

(
0, fX,Y (x, y)

 ν̃0S
? Σ

Σ ν0S̃
?

). (6.19)

This completes the proof of Theorem 15 since Slutsky's lemma then entails that

(β̂′,
˜̂
β′)′ is asymptotically Gaussian with the required moments.

Lemma 12 (Fan and Gijbels (1996) - Convergence of b). For the bias vector b as

de�ned in (6.16) it holds that

(bk)1≤k≤3 =
1

6
h3
XfX(x)


4hX

∂4

∂x4
fY |X(y|x)µ4

∂3

∂x3
fY |X(y|x)µ4

4hX
∂4

∂x4
fY |X(y|x)µ6

 {1 + oP (1)}

and

(bk)4≤k≤6 =
1

6
h3
Y fY (y)


4hY

∂4

∂y4
fX|Y (x|y)µ̃4

∂3

∂y3
fX|Y (x|y)µ̃4

4hY
∂4

∂y4
fX|Y (x|y)µ̃6

 {1 + oP (1)}.

Proof. We provide the full proof since Fan and Gijbels (1996) only give a sketch.

By de�nition, b =

 1
n
H−1
X X ′xW{M−Xxβ}

1
n
H−1
Y Y ′yK{M̃ − Yyβ̃}

 . By a Taylor expansion of M

about (x, y)

(b)1≤j≤3 =
1

n
H−1
X X ′xW{M−Xxβ}

=
1

n
H−1
X X ′xW

{(
m3(x, y)(Xi − x)3 +m4(x, y)(Xi − x)4 + oP{(Xi − x)4}

)
1≤i≤n

}
.

(6.20)
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The �rst term can be written as:

1

n
H−1
X X ′xW

(
m3(x, y)(Xi − x)3

)
1≤i≤n

= m3(x, y)h3
X(Sn,j)3≤j≤5

= m3(x, y)h3
XfX(x)(µj)3≤j≤5{1 + oP (1)}.

(6.21)

By the symmetry of the kernel W , µj = 0 whenever j is odd, which is why

the expansion (6.20) includes the term involving m4(x, y). Applying yet another

Taylor expansion, we have

mj(x, y) :=
1

j!

∂j

∂xj
E{Khy(Y − y)|X = x}

=
1

j!

∂j

∂xj

(
fY |X(y|x) + oP (1)

)
. (6.22)

Substituting (6.22), with j = 3, into (6.21) yields:

1

n
H−1
X X ′xW

(
m3(x, y)(Xi − x)3

)
1≤i≤n

=
1

6
h3
XfX(x)

∂3

∂x3
fY |X(y|x)


0

µ4

0

 {1 + oP (1)}.

Similarly,

1

n
H−1
X X ′xW

(
m4(x, y)(Xi − x)4

)
1≤i≤n

=
1

4!
h4
XfX(x)

∂4

∂x4
fY |X(y|x)


µ4

0

µ6

 {1 + oP (1)}.

The remainder term in (6.20) is of order h4
X :

1

n
H−1
X X ′xW(oP{(Xi − x)4})1≤i≤n =

1

n

( n∑
i=1

(
Xi − x
hx

)jWhX (Xi − x)oP{(Xi − x)4}
)

0≤j≤2

= (Sn,j)0≤j≤2 op(h
4
X)

= op(h
4
X), (6.23)



6.A. Proofs of section 6.3 144

where (6.23) follows from the boundedness of the kernel W . We have for the �rst

three entries of b:
b1

b2

b3

 =
1

6
h3
X

∂3

∂x3
fX,Y (x, y)


4hXµ4

µ4

4hXµ6

 {1 + op(1)}.

Similar arguments hold for the entries (bk)4≤k≤6, which completes the proof of

Lemma 12.

Lemma 13 (Asymptotic normality of t). The centralised vector t, as de�ned in

(6.17), is asymptotically Gaussian. In particular it holds that:

t
D−→ N(0,Σt),

where

Σt =
1

nhXhY
fX,Y (x, y)

 ν̃0S
? Σ

Σ ν0S̃
?

 .

Proof. By the Cramer-Wold, it is su�cient to show that the linear combination

λ′t ∈ R is asymptotically Gaussian distributed for an arbitrary λ ∈ R6.

λ′t = λ′

 1
n
H−1
X X ′xW{Y −M}

1
n
H−1
Y Y ′yK{X − M̃}


=

1

n

n∑
i=1

{
2∑
j=0

λj

(
Xi − x
hX

)j
WhX (Xi − x)(KhY (Yi − y)−Mi)

+
2∑

k=0

λk+3

(
Yi − y
hY

)k
KhY (Yi − y)(WhX (Xi − x)− M̃i)

}
.

Asymptotic normality of t follows from the Central Limit Theorem for i.i.d.

sequences. The same result can be proved for the dependent case when certain

mixing conditions are met and the interested reader is referred to Fan and Gijbels

(1996) and Fan et al. (1996b). It remains to derive the mean and covariance

matrix of the asymptotic distribution.
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We �rst note that t has zero mean: Conditioning on (Xi)1≤i≤n and applying the

law of total expectation yields:

E{(tk)1≤k≤3} = E{E(n−1H−1
X X ′xW{Y −M}|(Xi)1≤i≤n)}

= E{E(n−1H−1
X X ′xW{M−M}|(Xi)1≤i≤n)}

= 0 ∈ R3. (6.24)

By conditioning on (Yi)1≤i≤n, we �nd that E{(tk)4≤k≤6} = 0.

We derive the asymptotic covariance of t. De�ne

C(u) :=
2∑
j=0

λju
jW (u) C̃(u) :=

2∑
j=0

λj+3u
jK(u)

ChX (u) :=
1

hX
C(

u

hX
) C̃hY (u) :=

1

hY
C̃(

u

hY
).

We can write λ′t = 1
n

∑n
i=1 Zi, where

Zi := ChX (Xi − x)(KhY (Yi − y)−Mi) + C̃hY (Yi − y)(WhX (Xi − x)− M̃i).

By independence and identical distribution,

var(λ′t) =
1

n
var(Z1) =

1

n
E(Z2

1), (6.25)

since E(Z1) = 0 by (6.24).

We decompose the variance of Z1. The expression we obtain for var{ChX (X1 −

x)(KhY (Y1 − y) −M1)} di�ers from Fan and Gijbels (1996), Fan et al. (1996b)

and Fan and Yao (2003) by a kernel moment term, so that we derive it explicitly.

var(Z1) = E(Z2
1)− {E(Z1)}2 = E(Z2

1)

= E

{
ChX (X1 − x){KhY (Y1 − y)−M1}

}2

+ 2E

{
ChX (X1 − x){KhY (Y1 − y)−M1}C̃hY (Y1 − y){WhX (X1 − x)− M̃1}

}
+ E

{
C̃hY (Y1 − y){WhX (X1 − x)− M̃1}

}2

= A+ 2B + Ã,

(6.26)
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where

A : = E

{
ChX (X1 − x){KhY (Y1 − y)−M1}

}2

(6.27)

B : = E

{
ChX (X1 − x){KhY (Y1 − y)−M1}C̃hY (Y1 − y){WhX (X1 − x)− M̃1}

}
Ã : = E

{
C̃hY (Y1 − y){WhX (X1 − x)− M̃1}

}2

.

We derive A and B explicitly. By the law of total expectation:

A = E

{
E

(
C2
hX

(X1 − x){KhY (Y1 − y)−M1}2
∣∣∣ (Xi)1≤i≤n

)}
= E

{
C2
hX

(X1 − x)E

(
{KhY (Y1 − y)−M1}2

∣∣∣ (Xi)1≤i≤n

)}
WithK andW bounded we may assume without loss of generality that (X1−x) =

OP (hX) and (Y1 − y) = OP (hY ).

E

(
{KhY (Y1 − y)−M1}2

∣∣∣ (Xi)1≤i≤n

)
= var

(
KhY (Y1 − y)

∣∣∣X1

)
=

∫
K2
hY

(u− y)fY |X(u|X1)du

−
(∫

KhY (u− y)fY |X(u|X1)du

)2

=
1

hY

∫
K2(u){fY |X(u|X1) + oP (1)}du

− {fY |X(u|X1) + oP (1)}2

=
1

hY
ν̃0fY |X(y|X1) + op(hY ).

Substituting this expression into (6.27) yields:

A = E

{
C2
hX

(X1 − x)(
1

hY
ν̃0fY |X(y|X1) + op(hY ))

}
=

1

hY
ν̃0

∫
C2
hX

(u− x)fY |X(y|u)fX(u)du}+ op(hY )

=
1

hXhY
fY,X(y|x)fX(x)ν̃0

∫
C2(z)dz{1 + op(1)}.
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Finally, noting that
∫
C2(z)dz = (λj)

′
0≤j≤2S

?(λj)0≤j≤2, we arrive at:

A =
1

hXhY
fX,Y (x, y)ν̃0(λj)

′
0≤j≤2S

?(λj)0≤j≤2{1 + op(1)}. (6.28)

By similar arguments we have

Ã =
1

hXhY
fX,Y (x, y)ν0(λj)

′
3≤j≤5S̃

?(λj)3≤j≤5{1 + op(1)}. (6.29)

We apply the law of total expectation to B as well:

B := E

{
ChX (X1 − x){KhY (Y1 − y)−M1}C̃hY (Y1 − y){WhX (X1 − x)− M̃1}

}
= EX

{
E

(
ChX (X1 − x){KhY (Y1 − y)−M1}C̃hY (Y1 − y){WhX (X1 − x)− M̃1}

∣∣∣X1

)}
= EX

{
ChX (X1 − x){WhX (X1 − x)− M̃1}E

(
{KhY (Y1 − y)−M1}C̃hY (Y1 − y)

∣∣∣X1

)}
.

(6.30)

Upon multiplying out (6.30), we �nd that

EX

{
ChX (X1 − x){WhX (X1 − x)}E

(
{KhY (Y1 − y)}C̃hY (Y1 − y)

∣∣∣X1

)}
= O

(
1

hXhY

)
(6.31)

is the dominating term. This holds true since we assume hX
hY

converges to some

constant and other terms are of order O(h−1
X ), O(h−1

Y ) and O(1), hence converge

at a faster rate. Consider �rst

E

(
{KhY (Y1 − y)}C̃hY (Y1 − y)

∣∣∣X1

)
=

∫
C̃hY (u− y)KhY (u− y)fY |X(u|X1)du

=
1

hY
fY |X(y|x)

∫
C̃(z)K(z)dz{1 + oP (1)}.

The integral
∫
C̃(z)K(z)dz has the simple form:∫

C̃(z)K(z)dz =

∫ 2∑
j=0

λj+3z
jK(z)K(z)dz

=
2∑
j=0

λj+3

∫
zjK2(z)dz

=
2∑
j=0

λj+3ν̃j. (6.32)
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Substituting (6.32) into (6.31) and using another change of variable argument and

a Taylor expansion we obtain:

B =
1

hXhY
fX,Y (x, y)

( 2∑
j=0

λj+3ν̃j

)( 2∑
j=0

λjνj

)
{1 + oP (1)}. (6.33)

Substituting (6.28), (6.29) and (6.33) into (6.26) we obtain for the variance of Z1 :

var(Z1) =
1

hXhY
fX,Y (x, y)λ′

 ν̃0S
? Σ

Σ′ ν0S̃
?

λ{1 + oP (1)},

where Σ was de�ned as Σ := (ν̃jνk)0≤j,k≤2. Since var(λ′t) = 1
n

var(Z1) the variance

of t is given by:

var(t) =
1

nhXhY
fX,Y (x, y)

 ν̃0S
? Σ

Σ′ ν0S̃
?

 {1 + oP (1)}.

This completes the proof of Lemma 13.

6.A.2 Proof of Corollary 7

Let ζ denote the bias term, which is the only part which deserves explanation.

We need to show that ζ is indeed equal to the expression claimed in (6.14). The

bias can be decomposed into two components:

ζ =

(
E ′ 0
0 E ′

)
Σ−1

1 b+

(
E ′ 0
0 E ′

) β

β̃

− θ.
The �rst part corresponds to the relevant entries of Σ−1

1 b in the preceeding theo-

rem. They are of order o(h3
X). The second part represents the bias introduced by

the approximation of fY |X through E{Khy(Y − y)|X = x} and similarly for fY |X .

Considering the Taylor expansions

mj(x, y) =
∂jfY |X(y|x)

∂xj
+

1

2
h2
Y µ̃2

∂j+2fY |Xy|x
∂xj∂y2

+ o(h2
Y )

m̃j(x, y) =
∂jfX|Y (x|y)

∂yj
+

1

2
h2
Xµ2

∂j+2fX|Y x|y
∂yj∂x2

+ o(h2
X)

and comparing the order of the summands yields the expression for ζ.
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6.A.3 Proof of Theorem 16

The key of the proof is an application of the so called Delta method, which allows

to compute the asymptotic distribution of a derived statistic from one with known

asymptotic distribution. Some care has to be taken, to accomodate the fact that

the components of the estimators have di�erent convergence rates.

Consider the Taylor expansion of g(θ̂) =
(
θ̂2
θ̂1
, θ̂4
θ̂3

)
about ξ:

g(θ̂) = g(ξ) + Jg(u)
∣∣∣
u=ξ

(θ̂ − ξ) + oP

(∥∥θ̂ − ξ∥∥)
 1

1

 ,

where Jg(u)
∣∣∣
u=ξ

denotes the Jacobian matrix of g evaluated at ξ, see (6.12). Mul-

tiply through by rnhX to obtain:

rnhX(g(θ̂)− g(ξ)) = rnhX Jg(u)
∣∣∣
u=ξ

(θ̂ − ξ) + oP

(
rnhX

∥∥θ̂ − ξ∥∥)
 1

1

 .

We �rst proof that the remainder term converges to zero. The sequence rnhX(θ̂−ξ)

converges weakly and is thus bounded in probability. If ξ was �xed, this would

be su�cient to show that the remainder term converges to zero in probability. ξ

is, however, a function of the bandwidth processes hX and hY , which again are

functions of n. Van der Vaart (2000, Theorem 3.8, page 33) shows that the same

result obtains even if ξ varies with n provided g is continuously di�erentiable in

a neighbourhood of ξ as assumed.

The term rnhX Jg(u)
∣∣∣
u=ξ

(θ̂− ξ) holds terms of di�erent convergence rates. The

terms rn(θ̂1−ξ1) and rn(θ̂3−ξ3) converge in distribution to a Gaussian by Corollary

7. Since hX → 0, Slutsky's lemma entails that rnhX(θ̂1 − ξ1) and rnhX(θ̂3 − ξ3)

converge to zero in probability. We thus have

rnhX(g(θ̂)− g(ξ)) = rnhX

 (θ̂2−ξ2)
ξ1

(θ̂2−ξ4)
ξ3

+ oP (1)

1

1

 .
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By Corollary 7 the �rst summand on the right hand side is normal asymptotically:rnhX(θ̂2 − ξ2)

rnhY (θ̂4 − ξ4)

 D−→ N (0,Σ2),

where

Σ2 :=

fY |X(x,y)

fX(x)
ν̃0ν2
µ22

0

0
fX|Y (x,y)

fY (y)
ν0ν̃2
µ̃22

 .

An application of Slutsky's lemma completes the proof.

6.B Matrices

This appendix lists a few of the matrices explicitly.

6.B.1 The quadratic case

6.B.1.1 Matrices appearing in Theorem 15

The kernel moments and associated matrices were de�ned on page 135. Odd kernel

moments are zero by the symmetry of K and W . This property is inherited by

K2 and W 2. The covariance matrix Σβ is given by

Σβ = fX,Y (x, y)Σ−1
1

 ν̃0S
? Σ

Σ′ ν0S̃
?

Σ−1
1

= fX,Y (x, y)

 ν̃0f
−2
X (x)S−1S?S−1 f−1

X (x)f−1
Y (y)S−1ΣS̃−1

f−1
X (x)f−1

Y (y)S̃−1Σ′S−1 ν0f
−2
Y (y)S̃−1S̃?S̃−1

 ,
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where

S−1S̃?S−1 =


µ24ν0−2µ4µ2ν2+µ22ν4

(µ22−µ4)2
0

−µ2µ4ν0+µ22ν2+µ4ν2−µ2ν4
(µ22−µ4)2

0 ν2
µ22

0

−µ2µ4ν0+µ22ν2+µ4ν2−µ2ν4
(µ22−µ4)2

0
µ22ν0−2µ2ν2+ν4

(µ22−µ4)2



S−1ΣS̃−1 =


(µ̃2ν̃2−µ̃4ν̃0)(µ2ν2−µ4ν0)

(µ22−µ4)(µ̃22−µ̃4)
0 (−µ̃4ν̃0+µ̃2ν̃2)(µ2ν0−ν2)

(µ22−µ4)(µ̃22−µ̃4)

0 0 0

− (µ2ν0−ν2)(µ̃4ν̃0−µ̃2ν̃2)

(µ22−µ4)(µ̃22−µ̃4)
0 (µ2ν0−ν2)(µ̃2ν̃0−ν̃2)

(µ22−µ4)(µ̃22−µ̃4)



S̃−1Σ′S−1 =


(µ2ν̃2−µ4ν̃0)(µ̃2ν2−µ̃4ν0)

(µ̃22−µ̃4)(µ22−µ4)
0 − (µ2ν̃0−ν̃2)(µ̃4ν0−µ̃2ν2)

(µ̃22−µ̃4)(µ22−µ4)

0 0 0

(−µ4ν̃0+µ2ν̃2)(µ̃2ν0−ν2)

(µ̃22−µ̃4)(µ22−µ4)
0 (µ̃2ν0−ν2)(µ2ν̃0−ν̃2)

(µ̃22−µ̃4)(µ22−µ4)



S̃−1S̃?S̃−1 =


µ̃24ν̃0−2µ̃4µ̃2ν̃2+µ̃22ν̃4

(µ̃22−µ̃4)2
0

−µ̃2µ̃4ν̃0+µ̃22ν̃2+µ̃4ν̃2−µ̃2ν̃4
(µ̃22−µ̃4)2

0 ν̃2
µ̃22

0

−µ̃2µ̃4ν̃0+µ̃22ν̃2+µ̃4ν̃2−µ̃2ν̃4
(µ̃22−µ̃4)2

0
µ̃22ν̃0−2µ̃2ν̃2+ν̃4

(µ̃22−µ̃4)2

 .
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The above matrices were computed using

S := (µj+l)0≤j,l≤2 =


1 0 µ2

0 µ2 0

µ2 0 µ4

 S−1 :=


−µ4
µ22−µ4

0 µ2
µ22−µ4

0 1
µ2

0

−µ2
µ22−µ4

0 −1
µ22−µ4



S̃ := (µ̃j+l)0≤j,l≤2 =


1 0 µ̃2

0 µ̃2 0

µ̃2 0 µ̃4

 S̃−1 :=


−µ̃4
µ̃22−µ̃4

0 µ̃2
µ̃22−µ̃4

0 1
µ̃2

0

−µ̃2
µ̃22−µ̃4

0 −1
µ̃22−µ̃4



S? = (νj+l)0≤j,l≤2 =


ν0 0 ν2

0 ν2 0

ν2 0 ν4

 S̃? := (ν̃j+l)0≤j,l≤2 =


ν̃0 0 ν̃2

0 ν̃2 0

ν̃2 0 ν̃4



Σ := (ν̃jνl)0≤j,l≤2 =


ν̃0ν0 0 ν̃2ν0

0 0 0

ν̃0ν2 0 ν̃2ν2

 Σ1 =

fX(x)S 0

0 fY (y)S̃

 .

6.B.1.2 Matrix Σθ in Corollary 7

The covariance matrix Σθ is a submatrix of Σβ:

Σθ =

(
E ′ 0
0 E ′

)
Σβ

(
E 0
0 E

)

=



fY |X(x,y)

fX(x)
ν̃0

µ24ν0−2µ4µ2ν2+µ22ν4
(µ22−µ4)2

0
fY |X(x,y)

fY (y)
(µ2ν2−µ4ν0)(µ̃2ν̃2−µ̃4ν̃0)

(µ22−µ4)(µ̃22−µ̃4)
0

0
fY |X(x,y)

fX(x)
ν̃0ν2
µ22

0 0

fX|Y (x,y)

fX(x)
(µ̃2ν2−µ̃4ν0)(µ2ν̃2−µ4ν̃0)

(µ̃22−µ̃4)(µ22−µ4)
0

fX|Y (x,y)

fY (y)
ν̃0

µ̃24ν̃0−2µ̃4µ̃2ν̃2+µ̃22ν̃4
(µ̃22−µ̃4)2

0

0 0 0
fX|Y (x,y)

fY (y)
ν0ν̃2
µ̃22


.
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6.B.2 The linear case

The relevant matrices which appear in Theorem 17 are rather simple: The covari-

ance matrix Σθ is given by

Σθ = fX,Y (x, y)Σ−1
1

 ν̃0S
? Σ

Σ′ ν0S̃
?

Σ−1
1

=



fY |X(y|x)ν0ν̃0
fX(x)

0
fX,Y (x,y)ν0ν̃0
fX(x)fY (y)

0

0
fY |X(y|x)ν̃0ν2

fX(x)µ22
0 0

fX,Y (x,y)ν0ν̃0
fX(x) fY (y)

0
fX|Y (x|y)ν0ν̃0

fY (y)
0

0 0 0
fX|Y (x|y)ν0ν̃2

fY (y)µ̃22


,

since

S =

1 0

0 µ2

 S−1 :=

1 0

0 µ−1
2



S̃ =

1 0

0 µ̃2

 S̃−1 =

1 0

0 µ̃−1
2



S? =

ν0 0

0 ν2

 S̃? =

ν̃0 0

0 ν̃2



Σ =

ν̃0ν0 0

0 0

 Σ1 =

fX(x)S 0

0 fY (y)S̃

 .
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